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In the framework of relational information, we explore analogs of physical theories and their 
properties. Specifically, we investigate the causal characteristics of relational information, examining 
how initial knowledge impacts future relational understanding of the universe/system. To achieve 
this, we establish a parameter space defining relational structures called dendrograms, exhibiting 
causal properties akin to those of Minkowski metric. Subsequently, we propose a statistical-dynamical 
model on this Minkowski-like parameter space, unifying Bohmian and Many Worlds interpretations 
of quantum theory in the framework of relational information. Additionally, we provide an analytical 
proof of the non-ergodicity of the relational information framework, revealing CHSH inequality 
violations as an emergent phenomenon. Our focus on relational information underscores its 
significance across scientific disciplines, where a single measurement or observation lacks meaning 
without context.
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Dendrogramic Holographic Theory (DHT) is a singular postulate theory of relational information, conceived 
through a series of studies1–6. This theory represents a relational-event-observational approach to physics and 
the broader realm of natural science7,8. The foundational postulate underpinning and driving all theoretical 
implications is the adherence to Leibniz’s Principle9 and its empiricist epistemic reinterpretation which resembles 
Mach’s interpertation: “If we are unable to distinguish two states of things from each other by any scientific 
means, then science ought to regard them as identical and take no notice of the difference”10.

Leibniz’s Principle, also known as the Principle of the Identity of Indiscernibles, is typically expressed in a 
specific manner:

If, for every property F, object x possesses F if and only if object y possesses F, then x is identical to y. In 
symbolic logic notation, this can be represented as ∀F (F x ↔ F y) → x = y. In simpler terms, if x and y are 
distinct entities, there must be at least one property that distinguishes them, ensuring their non-identity.

This principle is an ontic tool for the relational metaphysics (orignaly served for distinguishing between 
monads9).

The epistemic view of DHT pertains to relational information concerning events as measured by an observer. 
In this context, measurement/observation about a single event lacks significance and cannot exist in isolation; 
its meaning derives only from its comparison to information obtained from other events. According to the 
epistemically refined Leibniz’s principle which corresponds to Mach’s view, if a particular observer cannot 
distinguish any features that differentiate two observations or measurements of distinct events, then these two 
events are considered identical to that observer. In subsequent sections we will demonstrate the linkage between 
such epistemic principle to the original ontic principle. We have to note that with that within the more pragmatic 
Epistemic view the reinterpretations given to the original ontic Leibnitz principle came with the cost of added 
postulates like the existance of observers and measurements (or “sensations” according to Mach).

We will call throughout this study the epistemic reinterpretation of the ontic Leibnitz principle – Leibnitz 
principle or epistemic Leibnitz principle in cases we will refer to the original Leibnitz principle we will refer 
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to it as the ontic Leibnitz principle. In the current study our models will be derived mainly from an epistemic 
view but eventually (or in the limit of infinity) will be well connected to an ontic model. The epistemic-ontic 
connection will be exemplified for each of the results we will derive below.

P-adic treelike formalization of Leibniz’s principle
DHT relies on p-adic topology which is governed by the p-adic ultrametric and draws relational information 
from p-adic tree structures called dendrograms. To distinguish observations, an observer uses inquiries often 
yes/no questions, depicted as dendrograms resembling decision trees. These trees quantify observations 
relationships based on divergent answers.

In the limit of infinite events, their inherent nature is represented as an infinite p-adic tree, characterized by 
homogeneity and vertices with p > 1 edges. These trees possess an algebraic structure and topology corresponding 
to this configuration11.

In the p-adic topology, triangles are always isosceles due to the p-adic ultrametric satisfying the strong 
triangle inequality. Here, the distance between two branches in the tree depends on their shared root (indicating 
more questions answered similarly), with a longer shared root implying a shorter distance. Additionally, “open” 
and “closed” balls are defined as follows:

	 B− (R; a) = {x : rp (a, x) < R} , B (R; a) = {x : rp (a, x) ≤ R}

	 Where : rp (a, x) = |a − x|p is the p − adic distance between the points aand x

Since branches symbolize distinct events relations to all other events, the relational event space, whether finite 
or infinite in nature, is furnished with a p-adic ultrametric. This connection between DHT and p-adic analysis 
intertwines with the realms of theoretical physics12–27. This relationship includes investigations by Parisi et 
al.26 into complex disordered systems within the p-adic framework and the broader ultrametric context, as 
expounded in article27. General trees, in general, feature an ultrametric topology, and such topological spaces 
have found extensive utility in the theory of complex disordered systems16,26.

The Leibniz principle necessitates event differentiation through a question-based process, represented 
in the p-adic number field. This process, forming a p-adic tree, associates each event with all others. Thus, 
Leibniz’s principle leads to Machian relationism, inherently arising from the p-adic tree representation of events. 
Embracing this principle yields a background-independent theory, akin to shape dynamics, loop quantum 
gravity, spin foams, and causal set theory28–32. These two outcomes are not merely assumed, as seen in theories 
like shape dynamics and Brans-Dicke theory, but rather emerge intrinsically from the structure of the p-adic 
tree28,29,32.

Recently, theoretical developments33–37 showed the emergence of our known physical theories from machine 
learning perspectives. In these studies, the laws of physics are shown to emerge as a learning procedures. 
For instance, action principle effectively determines the “best” or “most efficient” pathway a system follows 
according to certain physical laws. much like an optimization process an action principle can be seen as a 
mechanism by which the system “learns” the optimal path under constraints, In machine learning, we typically 
define a loss function that quantifies how far a system’s predictions or behaviors are from desired outcomes. 
The learning algorithm then iteratively updates parameters to minimize this loss, effectively “learning” the best 
parameter values for the given problem. In essence, both systems “converge” toward an optimal configuration—
whether a physical path (action principle) or a set of model parameters (learning algorithm)—guided by an 
optimization process. Thus, action principles might be referred trivially as a particular learning procedure33–37. 
In recent studies5,6, we have already drawn attention to intriguing parallels between our approach, which yields 
the emergence of quantum theory from DHT, and the neural network model of the universe as described in 
articles33–37. Notably, we should highlight that p-adic neural networks have been investigated in conjunction 
with Euclidean quantum field theory, as detailed in references36,37, thereby establishing a closer connection 
between our approach and the domain of machine learning.

We follow a structured approach to establish a relational framework, specifically in the form of a dendrogram. 
This dendrogram exhibits a distinct branching pattern through a p-adic expansion. The dendrogram is 
represented by p-adic (in this study we use mainly 2-adic in our numerical simulations) numbers, each depicting 
an event’s relationship with other events as observed by the observers. It requires a minimum of two events to 
construct a dendrogram due to its relational nature.

A dendrogram essentially takes the shape of a finite tree, serving as an observer’s epistemic representation 
of reality (which is subjective in nature, see Supplementary Appendix Section A1). These finite trees are 
constructed, epistemically, according to four steps: data collection, hierarchical clustering of the data, production 
of agglomerative cluster tree and the dendrogram representation of relations where a longer shared path of the 
dendrogram signifies a closer relationship between events based on chosen metrics (Fig. 1).

This study aims to investigate relational information analogs of physical theories and their causal 
characteristics. We seek to prove the existence of a parameter space defining relational information structures 
called dendrograms, with causal properties akin to the Minkowski metric (Fig. 1). Additionally, we will present 
a statistical-dynamical model on this parameter space to unify interpretations of quantum theory. We also aim to 
provide an analytical proof for the non-ergodicity of relational information, that might explain CHSH inequality 
violations. Our focus on relational information suggests broad applicability across scientific domains.

Dendrogram relational structure as a configuration of nodes
The dendrogram’s structure resembles a decision-making tree, with branching nodes representing fundamental 
“question” (fundamental relational “particle”). These nodes are positioned in the p-adic field based on their 
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p-adic expansion. Using p-adic numbers, any dendrogram can be constructed, where leaf nodes represent non-
branching nodes (Fig. 2).

Additionally, dendrograms can be built from entities less fundamental than the “question” by combining 
partial configurations of all questions. A sequence of events can be seen as a union of unique partial “question” 

Fig. 1.  Illustration of the relational information framework developed in this study. Data events are collected 
by an observer, and pairwise distances between events are calculated to apply Hierarchical clustering, resulting 
in a dendrogramic tree. Each event in the tree is represented by a binary string or p-adic expansion. Numerical 
examples demonstrate calculations and 2-adic differences. The set of these strings/p-adic expansions 
constitutes the relational information between all collected data events, describing the dendrogram’s structure. 
We compress this relational information set into a 4D parameter space without information loss. Utilizing the 
information.
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configurations. These configurations can be mapped to a lower level dendrogram, resulting in indistinguishability, 
as observed in previous numerical simulations1–4.

geometry Hellinger metric, we demonstrate causal relations in the parameter space, aligning with those 
found in Minkowski space of special relativity.

Causal structure on the space of dendrograms
In our model, we introduce Oi where i = 1,2, . . . .N → ∞ observers who collects/measures events/data. Thus, 
an observer with already m events collected e1, e2… em will measure each time a single event, em+1. Each time an 
observer Oi measures an event, he constructs a dendrogram using the procedure outlined in the Introduction 
and Supplementary Appendix.

Initially, all N observers have a trivial dendrogram with two branches. As observers accumulate more events, 
various dendrogram configurations with more branches become apparent. The number of observers, denoted as 
n, forming a unique dendrogram remains a fraction of the total observers in our universe, N , expressed as n

N . At 
each level of m events gathered, all N  observers are encompassed. In essence, n is a function of the dendrogram 
D, denoted as n = n (D). This iterative process enables the evolution of observers’ dendrograms event by 
event, resulting in increasingly intricate relational structures. Please refer to Fig. 3 for a visual representation. 
We emphasize that in the current model any observer can measure any event at any iterative step increasing the 
number of events relationally represented in the dendrogram.

In essence, for two observers dendrograms, D1 and D2, which gathered each a set of m events, set1 and set2, 
there are 3 possibilities

	1.	�  set1 ∩ set2 = set1 ∪ set2 leading to D1 = D2.
	2.	�  set1 ∩ set2 = ∅ but the set of relations between events in set1 is equal to the set of relations between 

events in set2 leading to D1 = D2.
	3.	�  set1 ∩ set2 = ∅ and the set of relations between events in set1 is not equal to the set of relations between 

events in set2 leading to D1 ̸= D2.
	4.	�  set1 ∩ set2 ̸= ∅ but the set of relations between events in set1 is equal to the set of relations between 

events in set2 leading to D1 = D2.

Fig. 2.  The fundamental “question” (fundamental relational “particle”). Example of consecutive evolvement 
of the relational information dendrogramic structure by adding one “questions” in each step (upper row). At 
the lower the configuration of these questions in the p-adic field is presented upon same addition of “question”. 
Each such configuration can be constructed from a union of unique partial configurations.
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	5.	�  set1 ∩ set2 ̸= ∅ and the set of relations between events in set1 is not equal to the set of relations between 
events in set2 leading to D1 ̸= D2.

A given dendrogram might have some dendrograms they can evolve to and some they will not. This is the case if 
a fraction of the observers with dendrogram D1 evolves to a dendrogram D2 or otherwise none of the observers 
with D1 evolve to D2. The question that arises is whether by examining the structure of two dendrograms, can 
we predict whether they are connected? Dendrograms that exhibit observer flow from one to the other can be 
referred to as “timelike separated” dendrograms, while dendrograms that show no observer flow between them 
can be classified as “spacelike separated”.

More specifically, “timelike/spacelike separated” dendrograms are defined as follows:

Definition 1   D1 and D2 are two, timelike separated, different dendrograms with number of events/data collected 
e1 ≤ e2, respectively, if and only if there exist at least one observer with D1 dendrogram with e1 events moves from 
D1 to D2 upon collecting the next e2 − e1 events.

Fig. 3.  Illustration of the relational information dendrogramic space. Initially, all N observers have a trivial 
dendrogram with two branches at E = 2. When observers measure more events, they evolve their dendrograms. 
The possible number of dendrogram structures increases with number of events level E. the distribution of 
N observers, initially all concentrated with a single structure at E = 2, over the possible dendrogram structure 
at each level Ei is described by the pink distributions. The blue line with black dots depicts the world line of a 
single observer traversing the parameter space. Each dot on the world line represents a unique dendrogram 
structure outlined below for each level Ei i = 2–10. The point θ1 is also a point where some fraction of the N 
observers will pass through. This fraction of observers is described by the value of the pink distribution at θ1
. When θ1, the fraction of observers passing through it will evolve their dendrograms only within a partial 
section of the parameter space. The parameter points within this partial section are time-like to that point. 
Again initially the whole fraction of the observers is concentrated at θ1. Upon measuring more events, the 
potential number of dendrogram structures that the fraction of observers will develop increases. Thus, the 
initial population of observers at θ1 is described by the green distributions. None of the observers at θ1 will 
pass through points outside their light cone, such as θ2, making θ2 a space-like point for the observers passing 
at θ1.
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Definition 2   D1 and D2 are two, spacelike separated, different dendrograms with number of events/data collect-
ed e1 ≤ e2, respectively, if and only if there are zero observers with D1 dendrogram with e1 events to move from 
D1 to D2 upon collecting the next e2 − e1 events.

More simply, consider a scenario with N → ∞ observers. After measuring m events and representing their 
relations as a dendrogram, a finite fraction n

N
> 0 (thus n is not finite) of the N observers acquire a unique 

dendrogram D1. Now, consider a unique dendrogram D2 representing relations of m + k events ( k =1,2…).
Timelike separated means: at least one observer out of the n observers, all with D1 dendrogram, after 

measuring another k events acquire the D2 dendrogram.
Spacelike separated means: none of the n (infinite) observers, all with D1 dendrogram, after measuring another 

k events acquire the D2 dendrogram. We note that all different unique dendrograms at the same level
 m = m events measured are by definition spacelike separated.
In essence, we will introduce the concept of a dendrogramic “light cone,” first:

Definition 3  A specific dendrogram D is identified with numerous observers who share identical relations among 
all the observations each of them has made of the universe.

Thus, a dendrogramic “light cone” is defined as:

Definition 4  A dendrogramic “future light cone” associated with a particular unique dendrogram, D, encompasses 
all the potential dendrograms that can evolve from dendrogram D.

A dendrogramic “past light cone” associated with a particular unique dendrogram, D, encompasses all past 
dendrograms that could have evolved to dendrogram D.

More simply, Consider a scenario with N → ∞ observers. After measuring m events and representing their 
relations as a dendrogram, a finite fraction n

N
> 0 (thus n is not finite) of the N  observers acquire a unique 

dendrogram D.
Those n observers all possible future dendrograms upon acquiring additional any k = 1,2. → ∞ events 

constitutes the future light cone of the unique dendrogram D. 
all possible past dendrograms of n observers with any k = 2,3 . . . m events constitutes the past light cone of 

the unique dendrogram D.
This holds true irrespective of the observer’s identity in relation to D and considers all conceivable events 

and combinations of events they might measure.This draws an analogy to the Minkowski spacetime metric that 
characterizes events. This concept allows us to analyze the propagation of relational information of an observer 
or ensemble of observers within the dendrogramic framework.

Please note that while the causal structure of Minkowski space is not statistical in nature, in DHT, we seek 
to establish a statistical counterpart referred to as the “dendrogramic Minkowski causal structure of observers 
ensemble relational Information universe “.

Where a universe is defined as:

Definition 5  A universe is unique dendrogram D. Thus, a universe is an observer’s, current, relational knowledge 
(information) he acquired on the ontic universe by measuring some finite amount of events. Moreover, by definition 
3 and 4, a current unique dendrogram D representing relations of m events is acquired by a finite fraction n

N
> 0 

( where - N → ∞ and thus n is not finite) observers. As a consequence, all n observers have the same universe 
after measuring m events.

Thus, for a finite dendrogram the dendrogramic Minkowski space does not allow us to uniquely define an observer. 
As a consequence, it does not allow us to determine for a single observer which dendrograms will he acquire in each 
step.

We emphasize again, each dendrogram represents a fraction of observers who collect a specific number 
of events (e.g., level) this fraction of observers have same relations between their acquired events. Thus, we 
operate within statistical ensemble of observers that can measure any possible event from an ensemble of events 
at any iterative step increasing the number of events relationally represented in the dendrogram. Each unique 
dendrogram is identified with numerous observers and representing the same relations between the events they 
measured (generally not same sets of events).

Real parametrization of dendrograms-lossless compression
In our study, we employed the following equation to facilitate our analysis.

The representation of a dendrogram branch, denoted as edgei, can be expressed as the sum of a series:

	
edgei =

∑k

j=0
aj × pj , aj = 0,1.p − 1.� (1.1)

Throughout this study we will use p = 2 thus aj = 0,1 
Here, aj  represents the binary digit at position j, with possible values of 0 or 1.
we now introduce the concept of the monna map conversion of an edge to event, denoted as eventi, is 

computed using the formula:
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eventi =

∑k

j=0
aj × p−j−1, aj = 0,1.p − 1.� (1.2)

Throughout this study we will use p=2 thus aj = 0,1 
where aj  represents the binary digits (0 or 1) in the 2-adic expansion of the dendrogram branch, and k is the 

maximum ball level of the dendrogram.
By applying this Monna map conversion, we represent the edges as rational numbers on the continuous 

interval [0,1]. This conversion preserves the precise relations between the edges, ensuring that the inherent 
structure and ordering within the dendrogram branches are maintained. Furthermore, we introduced the metric 
qik, which represents the absolute difference two events,

	 qik = |eventi − eventk|� (1.3)

we can define 5 parameters of a dendrogram as follows.
First we define our dendrogramic vector, D, as follows:

	 E = eventi, where i = 1,2 . . . n = number of events

	 B = 2−maximal ball level of the dendrogram

	 D = [E B] with elements Di, i = 2,3 . . . n + 1

	
VD = (

∑k

i=0
Di)z

	
UD = (

∑k

i=0

1
Di + 1)z1

	
MD = (

k−1∑
i=1

k∑
j=i+1

Di · Dj)z2

	
RD = (

k−1∑
i=1

k∑
j=i+1

Di − Dj)z3 = (
k−1∑
i=1

k∑
j=i+1

qij) +
k∑

j=i+1

|B − Dj |)
z3

	
rD = (

k−1∑
i=1

k∑
j=i+1

1/ (( Di − Dj) + 1))z4 = (
k−1∑
i=1

k∑
j=i+1

1/(qij + 1)+
k∑

j=i+1

1/(|B − Dj | + 1 ))
z4

� (1.4)

	 k = number of branches and thus events in dendrogram and

	 where z, z1, z2, z3 and z4 are free parameters

we will demonstrate now that there are parameters spaces that have the ability to uniquely define a unique 
dendrogram structure. For:

	 θ′
1 = (UD)−2

	 θ′
2 = (V D)0.5/(UD)−2

	 θ′
3 = (UD)−2(V D)0.5RD

−0.5(M
D

)2

	 θ′
4 =

√
n(rD)2/RD

−0.5

Lets suppose θ′
1 = θ′′

1, θ′
2 = θ′′

2, θ′
3 = θ′′

3 and θ′
4 = θ′′

4 for two different dendrograms D′ and D′′ then if 
θ′

1 = θ′′
1 and  θ′

2 = θ′′
2 then (UD′ )−2 = (UD′′ )−2 and.

 (V D′ )0.5

(UD′ )−2 = (V D′′ )0.5

(UD′′ )−2  which means (V D′ )0.5 = (V D′′ )0.5 the combination.

 
{

(V D′ )0.5 = (V D′′ )0.5

(UD′ )−2 = (UD′′ )−2  can’t happen by their definition unless D′ = D′′ and we are done.

We’ve demonstrated that relational information, represented by strings or p-adic expansions, can be 
compressed without loss into a 4-dimensional parameter point.

The informational Minkowski-like metric of the relational information dendrogramic space
Having established the existence of at least one space with four parameters that uniquely determine a dendrogram, 
we can now develop an informational metric inspired by Minkowski spacetime. We will describe our model 
step by step: each parameter point θ in parameter space uniquely defines a dendrogram with nθ  events. This 
dendrogram is the n level state of an ensemble of observers with same dendrogram. Thus, the point θ has a flow-
in of observers from different smaller dendrograms with n − 1 events. The distribution of observers over these 
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smaller dendrograms can be converted to an observer’s distribution over θ′. where θ′ are parameter points of all 
dendrograms with n − 1 events. This is the past observer distribution of θ 

Furthermore, the dendrogram at level n, at point θ, exhibits a flow of observers emanating from the θ 
parameter point. The ensemble of observers, at θ, is distributed to the next level dendrograms with n + 1 events. 
This certain manner of distribution of the observers represents the future distribution of the n-level θ point.

Specifically, for a single dendrogram at level n (representing a fraction of m/N  observers), its future cone at 
levels n + k (where k ranges from 1 to M → ∞ ) consists of k distributions ρk,n(θ′)future, dependent on the 
level n (or number of events in dendrogram) of the initial θ′ point in the parameter. Similarly, the past cone of 
a dendrogram at level n extends to level n − k (where k ranges from 1 to n − 2 ) and exhibits k distributions 
ρk,n(θ′)past (see Fig. 3).

Ontic–epistemic linkage
consider a finite fraction m

N
(where N → ∞) of observers with same unique dendrogram D, with finite n events 

( nth level), represented by a point θ′ in parameter space. D is finite and thus Epistemic dendrogram, relational 
structure. When each of those m observers acquire another k → ∞ events the distributions ρk,n(θ′)future 
at n + k flatten, implying each observer possesses a unique infinite dendrogram. Thus for k → ∞, point θ′ 
distribution ρk,n(θ′)future = f (θ′

∞) = 1
m

. 
In fact the epistemic point θ′ is defined by a m size set of infinite ontic dendrograms and vice versa.
Consider two epistemic points θ′1 and θ′2 with m1 and m2 number of observers and thus with m1 and m2 

size set of infinite ontic dendrograms. An intersection between the θ′1 and θ′2 sets means observers transitioning 
between those points-thus θ′1 and θ′2 are timelike separated. Conversely, an empty intersection signifies 
spacelike separation between θ′1 and θ′2.

If we consider observers and worldline as entities then, as shown above, the ontic Leibnitz principle is 
followed. Moreover, those arguments imply:

	1.	� Distinguishability by ontic Leibnitz principle ↔ 2. observer’s ontic dendrogram uniqueness ↔ 3. uniqueness 
of observer infinite worldline through parameter space.

We note that an infinite worldline is equivalent to an observer infinite dendrogram which, in turn, is a unique 
infinite but partial set of allowed relational branches out of the whole p-adic tree.

We need to stress again the linkage- an epistemic dendrogram relational structure at θ′ is fully defined by a 
set of ontic infinite dendrograms and thus a set of infinite worldlines.

Please note that an infinite as well as finite dendrograms are a relational structures and thus, in the current 
model presented, views from epistemic relationism, ontic relationism as well as Platonist views reside together 
without much contradictions.

We stress that a point θ in parameter space is accompanied with all its past distributions flowing into that 
point and all future distribution flowing out of that point. These distributions and the point θ are defined either 
by the set of the observers that flow in and out of the θ point or the set of ultimate infinite dendrograms, defining 
unique observers, and vice versa.

We can envision the distributions dynamics as manifested from level to level by a “potential”/”force” we call 
the “Leibnitz potential/force” which forces the observers to become distinct (ultimately at the ontic infinite sub 
dendrogram), Otherwise the ontic Leibnitz principle holds. Now we can modify the epistemic principle into an 
ontic dendrogramic reformulation: If, for every dendrogram D∞, observer x has D∞ if and only if observer y has 
D∞, then observer x is identical to observer y.

To quantify the informational distance between two parameter points accompanied with their distribution, 
we propose an informational geometric metric:

	
informational distance = 2H

⌈T ⌉
f + 2H⌈T ⌉

p − (Hf ′ + Hp′ ) − 2
(

L

L + 1Hratio + ⌈T ⌉
)

� (1.5)

Consider two points θ′1 and θ′2 where n1, n2 are their level where without loss of generality n1 ≤ n2 :
 Hf = Hellinger distance between ρk,n1,θ′1(x)futureatn2+1 and ρk,n2,θ′2(x)future at n2+1 (Fig. 4A), 

if ρk,n1,θ′1(x)future at n2+1 and ρk,n2,θ′2(x)future at n2+1 share parameter points with non zero probability 
0 ≤ Hf < 1 else Hf = 1 

 Hp = Hellinger distance between ρk,n1,θ′1(x)past at n1−1 and ρk,n2,θ′2(x)past at n1−1 (Fig.  4A), 
if ρk,n1,θ′1 (x)past at n1−1 and ρk,n2,θ′2 (x)past at n1−1 share parameter points with non zero probability 
0 ≤ Hf < 1 else Hf = 1 

	
...

ρk,n1,θ′1(x)future n1+k1 = the minimum k1 value distribution of θ′1

	 ρk,n2,θ′2(x)future n2+k2 = the minimum k2 value distribution of θ′2

	 where both distributions intersect with nonzero probability values

Thus: Hf ′ = Hellinger distance between ...
ρk,n1,θ′1(x)future n1+k1 and ρk,n2,θ′2(x)future n2+k2 (Fig. 4C)

	
...

ρk,n2,θ′2(x)past n2−k2 = the minimum k2 value distribution of θ′2

	 ρk,n1,θ′1(x)past n1−k1 = the minimum k1 value distribution of θ′1
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	 where both distributions intersect with nonzero probability values.

Thus: Hp′ = Hellinger distance between ...
ρk,n2,θ′2(x)past n2−k2 and ρk,n1,θ′1(x)past n1−k1 (Fig. 4B)

	 we define: L = |n1 − n2|

	 Hratio = Hellinger distance of two distributions ppopθ′1 and ppopθ′2

Where ppopθ′1 =
[

number of observers at point θ′1 at level n1
total number of observers

number of observers at points other then θ′1 at level n1
total number of observers

]
 

Fig. 4.  Illustration of components in the informational geometric metric 
Informational distance = 2H

⌈T ⌉
f + 2H

⌈T ⌉
p − (Hf ′ + Hp′ ) − 2

(
L

L+1 Hratio + ⌈T ⌉
)

. (A) Illustration 
of two informational light cones originating at θ1 and θ2. Hf and Hp are calculated from the yellow 
intersections (indicated by Hf and Hp and arrow) of the green and blue distributions belonging to θ1 and θ2 
respectively. (B) Illustration of two informational light cones originating at θ1 and θ2. Hp′  is calculated 
from the yellow intersection (indicated by Hp′  and arrow) of the blue and green distributions belonging 
to θ1 and θ2 respectively. (C) illustation of two informational light cones originating at θ1 and θ2. Hf ′  is 
calculated from the yellow intersection (indicated by Hf ′  and arrow) of the blue and green distributions 
belonging to θ1 and θ2 respectively. (D) illstration of the T  component calculated for θ1 and θ2. value 
(indicated by an arrow) of the blue distribution value at θ2.
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ppopθ′2 =

[
number of observers at point θ′2 at level n2

total number of observers

number of observers at points other then θ′2 at level n2
total number of observers

]

 finally we define: T = pθ′1(x = θ′2) = distribution value of ρk,n1,θ′1(x)future at n2 at x = θ′2 (Fig. 4D).
Now for proving the timelike/spacelike signature:
For time like dendrograms Hf  = Hf ′ , Hp = Hp′  and ⌈T ⌉ = 1. Thus, the metric reduces to: 

informational distance = Hf + Hp − 2
(

L
L+1 Hratio + ⌈T ⌉

)
. 

 0 ≤ Hf + Hp < 2 since they are timelike. On the other hand: Hratio ≤ 1, L
L+1 < 1 

As ⌈pθ′1 (x = θ′2)⌉ = ⌈T ⌉ = 1 resulting from the fact that time like dendrograms share some fraction of 
observer flow from one dendrogram to the other.

So, the component  2 ≤ 2
(

L
L+1 Hratio + ⌈T ⌉

)
 resulting in:

	
Hf + Hp − 2

(
L

L + 1Hratio + ⌈T ⌉
)

< 0

Now for space like, we have in fact two cases. lets treat the first one where n1 < n2.
 Hf = 1, Hp = 1 thus, we reduce the metric to 4 − (Hf ′ + Hp′) − 2

(
L

L+1 Hratio + ⌈T ⌉
)

. 
Since: 0 < (Hf ′ + Hp′) ≤ 2− → 4 − (Hf ′ + Hp′) ≥ 2 
Then for 2

(
L

L+1 Hratio + ⌈T ⌉
)

 we have Hratio ≤ 1, L
L+1 < 1 but ⌈pθ′1 (x = θ′2)⌉ = ⌈T ⌉ = 0 so 

2
(

L
L+1 Hratio + ⌈T ⌉

)
< 2 thus, the interval is greater than zero.

The other case is when Hf < 1, Hp < 1 then Hf  = Hf ′ , Hp = Hp′  and ⌈T ⌉ = 0 leading to

	
informational distance = 4 − (Hf + Hp) − 2

(
L

L + 1Hratio + ⌈T ⌉
)

Again 0 ≤ Hf + Hp < 2 thus 4 − (Hf ′ + Hp′) ≥ 2 but 2
(

L
L+1 Hratio + ⌈T ⌉

)
 reduces to

	
2

(
L

L + 1Hratio

)
< 2

Thus: 4 − (Hf ′ + Hp′ ) − 2
(

L
L+1 Hratio + ⌈T ⌉

)
> 0 and again, the interval is bigger then zero

For n1 = n2.
We have if Hf = 1, Hp = 1− → 4 −(Hf ′ + Hp′ ) − 2

(
L

L+1 Hratio + ⌈T ⌉
)

 since ⌈T ⌉ = 0 and L = 0 
thus 2

(
L

L+1 Hratio + ⌈T ⌉
)

 =0 and we have 4 −(Hf ′ + Hp′ ) ≥ 2 and we are done.
If we have Hf < 1, Hp < 1− → 4 −(Hf ′ + Hp′ ) − 2

(
L

L+1 Hratio + ⌈T ⌉
)

 since ⌈T ⌉ = 0 and L = 0 
where Hf  = Hf ′ , Hp = Hp′  we conclude that 2

(
L

L+1 Hratio + ⌈T ⌉
)

 =0 and we have  4 − (Hf ′ + Hp′ ) ≥ 2 
and we are done.

Establishing dendrogram-parameters coupling via numerical simulation
Although the informational geometric Minkowski-like metric is analytically proven in practical data analysis, 
distinguishing “time-like” and “space-like” dendrograms remains a challenge. To address this, we need 
parameter spaces reflecting Minkowski space-time, exhibiting light-cone characteristics. proving analytically 
that a real parameterization encoding of a dendrogram poses a Minkowski-like character, is complex and 
requires significant time. In the realm of DHT theory, we propose “numerical experimenting confirmation” 
to select parameters, validated through extensive simulations. While not a mathematical proof, the likelihood 
of encountering dendrograms that do not conform to our parametrization is practically negligible. We outline 
our procedural methods used in numerical simulations, along with the results and conclusions, in the appendix 
sections A1.1-A1.3.

The consequence of our numerical analysis. We propose that:

	
pθ′ (X) = 1

(2πa2)2 exp
(

−
(t − i(s2) θ′

4)2 + (x − θ′
1)2 + (y − θ′

2)2 + (z − θ′
3)2

2a2

)
� (1.6)

Where X  is a vector of [t, x, y, z] and s2 is our equivalent of c = speed of light.

This distribution is normalized: meaning 
∫

d4Xpθ′ (X) = 1 and leads to a fisher 
information matrix

	

gµν =




−s2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


� (1.7)

After rescaling by a2 38.
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Furthermore, we define ni = number of events in dendrogram i, i′ = 2,3 . . .  and N = |n1 − n2| then 
we define the simultaneity matrix or operator of these Minkowski-like parameter spaces

	

ŝym+ =




⌈ N
N+1 ⌉ 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1


� (1.8)

And thus:

	 dist (dendrogram1, dendrogram2) = (ŝym+)µνg
µν

dθ′
µdθ′

ν � (1.9)

One benefit of this construction is the transformation of the discrete parameter space into a continuous one. 
Thus, every dendrogram is defined by its non-hermitian distribution pθ′ (X) and we operate on a smooth 
Riemann 4d parameter space. This will result also in null like parameters for a given dendrogram (although they 
will (probably) not represent a dendrogram relational structure)

Emergent many worlds interpretation in the relational information framework
In this section, we view events as interactions or measurements of an observer upon another. We’ve established, 
in the previous section, the Minkowski-like parameter space of dendrograms. Thus, a unique observer’s is 
defined by its unique world line on the parameter space, whether experiencing acceleration or not. As shown in 
the previous section, two observers cannot share the same infinite world line if adhering to the ontic Leibniz’s 
principles and vice versa. The observer’s ontic view of the universe relies on the measurements they perform, 
defining their world line within the subjective parameter space.

Following the epistemic Leibniz’s principle an observer conducts a unique and infinite set of measurements, 
leading to a distinct world line within the parameter space. Thus, even if the number of observers approaches 
infinity, each is uniquely defined (by the set of measurements). Defining each observer is achieved by posing 
an unlimited series of yes/no questions on all world-lines/measurement set and creating an infinite p-adic tree, 
where each branch represents the relation of an observer world line to all other observer’s world line. This branch 
is defined as the observer’s objective ontic property.

Thus, events are epistemically measured by one observer. These events are other observer’s ontic objective 
properties. We stress that subjective dynamic of an observer is guided by the objective properties of other 
observers he measures. In turn the objective properties of each of these observers are their infinite worldline- 
infinite subjective dynamic. An infinite worldline is equivalent to an observer infinite dendrogram which, in 
turn, is a unique infinite but partial set of allowed relational branches set out of the whole p-adic tree ( see section 
Ontic-Epistemic linkage above).

Thus: unique infinite partial set of allowed relational branches set out of the whole p-adic tree is an objective 
property of an observer.

Again, a connection between the ontic (the p-adic infinite tree) and the observer’s subjective- epistemic view 
is established.

Moreover, in this model, the observer/system discrepancy converges into an all-encompassing observer 
universe, where every physical entity interacting or rather measuring, with another is considered an observer. 
We will show also that the “observer” and “observed” (measured) apply to any arbitrary system, microscopic or 
macroscopic.

The observer subjective wave function
The construction of the observer subjective wave function was developed thoroughly in recent work5.

We emphasize that the subjective wave function, ψsubjective, is completely dependent on the measurements 
the observer is preforming thus for a set M= {m1,m2. mi},

 ψsubjective (M) = ψsubjective (θ) where different sets M can have same θ.
The transition of this kind of measurements “world line” into the dynamical evolvement of the subjective 

wave function, ψsubjective (θ), is shown in5 and is emergent from the following action through the bohmian 
mechanics formalism:

	
A (S, ρ) =

∫
d (θ) {

∫
d (S)
dθ

ρ (Q) dQ +
∫

(∂S)2ρ (Q) dQ − ν (Q) + U (Q)}� (2.1)
 

 
For a detailed derivation of Eq. 2.1 we refer the reader to5 or the Supplementary Appendix Section A2.1.

Transformation of objective property of an observer to wave function
Let us consider the situation where all observers at a particular θ measure a particular observer OBk . The 
objective property of OBk  is composed as follows : the sum of the finite p-adic expansion with x0 , x1 x2  ....xk, is 
ZBk  meaning the objective property is a p-adic ball. This p-adic expansion can be transformed by monna map 
to a rational number qBk ∈ [0 1] ⊂ Q.

Each of the observers at θ measure the same qBk  and incorporate it subjectively into their dendrogram. Thus, 
each observer at θ will incorporate it as a finite branch with different p-adic expansion that by the monna map 
will be identified with a rational number value, we call event, on the interval [0 1]. So, for θ OBk  is a distribution 
of possible rational numbers. we thus identify OBk  as a distribution ρBk (x, θ) on the interval x ∈ [0 1]. From 
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these possible events values we can construct the objective wave function of OBk  for θ . At some level n, the 
procedure to construct the objective wave function of OBk  follows same procedures as in5 and section A2.1 
(Eq.  2.1–2.10). In this procedure, eventi =

∑∞
j=0aj × 2−j−1, aj = 1,0 is the act of measuring observer 

OBk ′s objective property (represented by the ball value that signifies OBk  ) conducted by another observer at θ.
 So, ψOBk (θ) =

√
ρBk (x, θ)eiS(θ) is a relational wave function (in relation to a certain θ ). For each 

different θ it dynamically changes. this wave function of OBk , is the transformation of an objective property to 
an ensemble of subjective properties (dependent on the ensemble of observers measuring it) in relation to θ. 
Where θ is inherently subjective, e.g., it represents each of the observers at θ with same subjective knowledge 
about the universe.

Measurement
An observer at θ has a subjective dendrogram that again (as in our previous study and Sect.  2.1) we can 
construct from it a subjective wave function ψθ  for the θ coordinate. For a fraction bj  of observers at θ, all with 
same dendrogram, that will measure OBk  and will transform upon this measurement to θ1 will have before 
measurement

	
ψθ

bj +OBk =
∑

i

aiφ
OBk
i ψθ

� (2.2)

And after

	
ψθ1+OBk =

∑
i

aiφ
OBk
i ψθ1

� (2.3)

So, the state of θ (M) (level M is the number of edges of the dendrogram that encodes the coordinate θ) at 
θ(M + 1) upon all observers, bj , in θ measuring OBk  is:

	
ψ

θ(M+1)+OBk =
∑

j

∑
i

aiφ
OBk
i bjψθj

� (2.4)

Where θj ̸= θ and j runs from 1 to u
We can now generalize the situation into θ (M) measuring several OBk ′s so k = {1,2.h} 
The combined distribution of OB1,2.h  with respect to θ is ρB1,2.h (x, θ) and
 ψOB1,2.h (θ) =

√
ρB1,2.h (x, θ)eiS(θ) with eigenvalues φ

OB1,2.h

i  inserting it to the equation above we 

have: ψθ(M+1)+OB1,2.h =
∑

j

∑
i
aiφ

OB1,2.h

i bjψθj  (2.5)
We can even generalize to a region of the parameter space.
So let θ (G) = {θ1 (k) , θ2 (l) , θ3 (f) . . . .}, G = k, l, f . . .  
And the combined distribution of OB1,2.h  with respect to θ is ρB1,2.h

(
x, θ

)
 and

	
ψ

OB1,2.h
(
θ
)

=
√

ρB1,2.h

(
x, θ

)
eiS(θ)with eigen values φ

OB1,2.h (θ)
i

Then we have:

	
ψ

θ(G+1)+OB1,2.h (θ) =
∑

j

∑
i

aiφ
OB1,2.h

i bjψθj

� (2.6)

We then can have by Everett second rule another measurement of different set of observers

	 OBL where L ̸= {1,2 . . . h} resulting in

	
ψ

θ(G+2)+OB1,2.h (θ) =
∑

j

∑
l

∑
i

clϕ
OL
l a

i
φ

OB1,2.h

i
bjψθj

� (2.7)

We then need to consider the situation where some observer at θ will measure an observer OBm  that he already 
measured, so his dendrogram will not change and so does his wave function.

Thus

	
ψ

θ(G+1)+OB1,2.h (θ)+θ =
∑

j

∑
i

aiφ
OB1,2.h

i bjψθj

� (2.8)

Where now θj runs from 1 to u + size of θ (G) 
We now compare with Everett’s interpretation.
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We note that for θ there is no longer any independent state of the observers OB1,2.h

(
θ
)

 or the θ (G + 1) + θ

. However each element of the superposition, φ
OB1,2.h

i ψθj , is in a particular eigenstate of θ, ψθj , and 

furthermore the θ - OB1,2.h

(
θ
)

 state, φ
OB1,2.h

i ψθj , describes all observers at θj  as definitely perceiving that 
particular system state.

Please compare with Everett’s thesis39:

We note that there is no longer any independent system state or observer state, although the two have be-
come correlated in a one-one manner. How- ever, in each element of the superposition (2.3), if φiψ

O
i[....,αi]

, the object-system state is a particular eigenstate of the observer, and furthermore the observer-system state 
describes the observer as definitely perceiving that particular system state. It is this correlation which allows 
one to maintain the interpretation that a measurement has been performed.

We note that for each observer at the superposition combination φ
OB1,2.h

i ψθj  the encoded eigenvalue αi of 
φ

OB1,2.h

i  is encoded in ψθj  subjectively the same as in the ψO
i[....,αi] of Everett’s. In contrast to Everett the 

memory [. . . .αi] is not constant but subjectively changes so we should note it as in the next measurements as 
[. . . .α′′

i .].
In this formalism φ

OB1,2.h

i  Is the objective property transformation to the subjective measurement thus 

while ψθj  is the purely subjective knowledge of an observer of the universe. Each world, in the MWI meaning, 
is a world line of objective observations in superposition with an observer subjective wave function. We can 
identify the world line as the φ

OB1,2.h

i , ϕ
OB1,2.h

i , η
OB1,2.h

i  …. sequences.
Let’s define the equivalent of the MWI relative state taken from Everett’s thesis39:
“We now introduce the concept of a relative state-function, which will play a central role in our interpretation of 

pure wave mechanics. Consider a composite system S = S1 + S2 in the state ψS . To every state η of S2 we associate 
a state of S1, ψη

rel, called the relative state in S1 for η in S2 through: Definition.

	
ψη

rel = N
∑

i

(φiη, ψS)φ′′
i � (2.9)

  
So, we have for the one OBk  and single ψθj  we decompose ψθj  into it’s eigenfunctions ϕk  

	
ψ

θj (M+1)+O
Bk =

∑
i

aiφ
OBk
i ψθj =

∑
k

∑
i

aiφ
OBk
i ckϕk � (2.10)

	 φ
OBk
i ϕk

	
ψ

θ(M+1)+OBk =
∑

j

∑
i

aiφ
OBk
i bjψθj =

∑
j

∑
k

∑
i

aiφ
OBk
i bjckj

ϕ
kj � (2.11)

So, the relative state in OBk  for θj  is

	
ψ

θj

rel = 1
Z

∑
i

∑
k

(φ
OBk
i ckj ϕ

kj
, ψ

θ(M+1)+OBk )φ
OBk
i � (2.12)

Where Z  is a normalization constant. Thus ψθj

rel correctly gives the conditional expectation of all operators in 
ψOBk  conditioned by the state ψθj  in ψθ(M+1) 

The relative state in θ for φ
OBk
i  is

	
ψ

φ
OBk
i

rel = 1
Z

∑
j

∑
k

(φ
OBk
i ckj ϕ

kj
, ψ

θ(M+1)+OBk )ckj ϕ
kj

� (2.13)

Where Z  is a normalization constant. Thus ψ
φ

OBk
i

rel  correctly gives the conditional expectation of all operators 

in ψθ(M+1) conditioned by the state φ
OBk
i  in OBk .

Coupling to Rovelli’s relational quantum mechanics
It’s important to highlight that DHT does not fall within the confines of either the quantum or classical paradigms. 
Both these paradigms naturally emerge from the p-adic relational tree, as demonstrated in1–3,40, without the 
need for any additional assumptions other than the acceptance of the Leibniz Principle. The main idea behind 
RQM is that different observers may upon measurement/interaction give different but equally accurate accounts 
of the same system. This idea is equivalent to the subjective wave function outlined above as well as the fact that 
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an event newly measured will generally have different relations with all previous events thus two observers will 
generally have generally different subjective knowledge on the same event. More over, in accordance with RQM, 
while deriving the Emergent many worlds interpretation in the relational information framework it is evident 
That the notion of state is inherently relative to a particular observer. There is no privileged, “real” description 
of a state that is observer-independent. Thus, the state vector is not an absolute representation but rather a 
description of the correlation between certain degrees of freedom within the observer and the observed system.

Notably, Rovelli’s Relational Quantum Mechanics (RQM) shares a significant ideological similarity with 
DHT41, particularly in their treatment of quantum phenomena. However, RQM posits that all systems are 
inherently quantum systems. Like DHT, RQM leverages the concept that any quantum mechanical measurement 
can be deconstructed into a series of yes-no questions, which is then used to formulate the state of a quantum 
system (relative to a given observer, much like in DHT).

In contrast to DHT, RQM asserts the completeness of quantum mechanics. Accordingly, RQM posits that 
there are no hidden variables or additional factors that need to be introduced into quantum mechanics, based 
on current experimental evidence. As demonstrated in5, quantum theory can be viewed as an emerging theory 
stemming from a relational structure. Consequently, notions such as completeness and hidden variables become 
irrelevant. From this perspective, the various interpretations of quantum mechanics can be seen as corresponding 
to different emergence frameworks for quantum theory from an event-based relational structure.

We compare the postulates of RQM with the consequences of DHT and show they align. Originally RQM 
included two empirical postulates:

•	 Postulate 1 Maximum Extractable Information: RQM posits that there exists a maximum amount of relevant 
information that can be extracted from a quantum system. In DHT, this aligns with the assertion that the 
maximal information about an event is encoded within the event branch contained in the infinite p-adic tree.

•	 Postulate 2 Continuous Information Extraction: According to RQM, it is always possible to obtain new in-
formation from a system. Similarly, DHT acknowledges that by introducing more events or asking more 
questions within the relational structure, additional information is added to each event’s relations with other 
events. This process is mathematically described as adding and elongating branches of a dendrogramic tree or 
adding nodes, or “questions,” to the initial configuration of nodes.

Recently, additional postulates were introduced in the RQM interpretation42:

	1.	� Relative facts: Events, or facts, can happen relative to any physical system. In our model framework the sub-
jectivity of information acquired by an observer fulfils this postulate more over ψOBk  which is the objective 
wave function, or property of the observer is only a relative concept to another observer.

	2.	� No hidden variables: Unitary quantum mechanics is complete. As demonstrated in5 and in the current mod-
el, quantum theory can be seen as emerging from a relational structure. Consequently, concepts like com-
pleteness and hidden variables become irrelevant.

	3.	� Relations are intrinsic: The relation between any two systems A and B is independent of anything that hap-
pens outside these systems’ perspectives. As is shown in the current model interaction/measurements be-
tween observers or group of observers pertains only to the relational information one observer (group of 
observers) acquire on the other (another group). In that sense also the “objective” ψOBk  is dynamically 
evolving only in relation to another observer or group of observers.

	4.	� Relativity of comparisons: It is meaningless to compare the accounts relative to any two systems except by 
invoking a third system relative to which the comparison is made. In our model, each observer possesses a 
description of the scenario that is accurate from their perspective. However, due to the relativity of compari-
sons, these descriptions cannot be meaningfully compared. This parallels the situation described in Wigner’s 
friend case, as elucidated by Rovelli regarding the significance of the aforementioned postulate.

	5.	� Measurement: An interaction between two systems results in a correlation within the interactions between 
these two systems and a third one; that is, with respect to a third system W, the interaction between the two 
systems S and F is described by a unitary evolution that potentially entangles the quantum states of S and F. 
In our model observer S and F are measured by W their eigenfunctions are both now part of its world line 
and evolve in full correlation to the worldline trajectory of W.

	6.	� Internally consistent descriptions: In a scenario where F measures S, and W also measures S in the same 
basis, and W then interacts with F to “check the reading” of a pointer variable (i.e., by measuring F in the 
appropriate “pointer basis”), the two values found are in agreement. In our model, two “same readings” cor-
respond to the same eigenfunctions in the observer’s world line, which results in no movement of the observ-
er through the θ parameter space upon the second checking. Consequently, interaction without movement 
leads to the same pointer.

Please notice again that all postulates of RQM are emergent in the relational information framework.
For more details on DHT coupling to Smolin’s approach to quantum theory emergence, see Appendix A2.3 

and43–46.

Non-ergodicity of the relational information framework
In this section we will show that the relational information framework is generally non-ergodic.

Let us choose a level N and another level n such that N > n and mod (N, n) = 0. The N’th level is all 
parameter points θN  in the Minkowski-like space that represent dendrograms with N edges/different events. 
We know that a single dendrogram is a certain configuration of M  nodes. Moreover, we know we can represent 
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it as a union of all 
(

M
n

)
 combinations of partial configurations of n nodes that are contained in the M 

configuration. Each of the 
(

M
n

)
 unique configuration can be mapped to the n-level parameter points θn in 

the minkowski-like space that represent dendrograms with n edges/different events. Let’s consider all the N’th 
level θN′ s points representing all unique dendrograms at the N’th level. If there are R θN parameter points we 
have R unique configuration of M i nodes at level N. Again each of the R node configurations (M1,M2,M3….MR.) 

is a union of all 
(

M i

n

)
, i = 1,2...R. combinations of partial configurations of n nodes that are contained 

in the M configuration. Then again, each of the 
(

M i

n

)
 unique configuration can be mapped to the n-level 

parameter points θn in the minkowski-like space that represent dendrograms with n edges/different events. Let’s 

denote aj ∈ a as a unique configuration from the set of all 
(

M i

n

)
, i = 1,2...R, configurations for all i. we 

can have a discrete distribution of all unique configurations f (aj) = pj . Similarly for a single point in θN  we 

have bk ∈ b such that b∁a as a unique configuration from the set of all 
(

M i

n

)
 where i is fixed. Thus, for a 

single point we have a uniform, trivial, discrete distribution f (bk) = pk = 1/
(

M i

n

)
.

Let’s now consider an observer that measures some N events over time. Thus, we have an ordered sequence 
E= {E1, E2, E3…EN}. Dividing the sequence to N/n blocks and constructing from each block a n-edge 
dendrogram is equivalent to take have some g ordered sequence of the b configurations but generally g∁b so 
we have a configuration N/n unique configuration brr = 1,2 . . .

(
N
n

)
. Again, we obtain, for a single observer, 

f (br) = p̌r = 1/
(

N
n

)
.

Let’s prove that the mean of f (br) ̸= f (aj) , r = 1,2 . . .
(

N
n

)
and br∁a. Since all aj  represent 

unique dendrogram lets denote them with a discreate values aj ∈ N. First let’s order pj  such that 
p1 ≥ p2 ≥ p3... ≥ pT ≥ 0 and accordingly denote each aj  such that

 a1 > a2 > a3... > aT > 0 as a consequence, we have for the observer b1 > b2 > b3... > b N
n

> 0 
And since p̌1 = p̌2 = p̌3 . . . p̌ N

n
= n

N  both pairs of series fulfill Chebyshev sum inequality:

	

1
T

T∑
i=1

aipi ≥

(
1
T

T∑
i=1

ai

) (
1
T

T∑
i=1

pi

)

	

N

n

N
n∑

j=1

bj p̌j ≥


 n

N

N
n∑

j=1

bj





 n

N

N
n∑

j=1

p̌j


� (3.1)

Thus:

	

T∑
i=1

aipi −

(
1
T

T∑
i=1

ai

)
≥ 0since

(
1
T

T∑
i=1

pi

)
= 1

T

	

N
n∑

j=1

bj p̌j −


 n

N

N
n∑

j=1

bj


 ≥ 0since


 n

N

N
n∑

j=1

p̌j


 = n

N
� (3.2)

Without loss of generality:

	

T∑
i=1

aipi −

(
1
T

T∑
i=1

ai

)
≥

N
n∑

j=1

bj p̌j −


 n

N

N
n∑

j=1

bj


� (3.3)

Thus:

	

T∑
i=1

aipi −

N
n∑

j=1

bj p̌j ≥

(
1
T

T∑
i=1

ai

)
−


 n

N

N
n∑

j=1

bj


 we are done

If

	

(
1
T

T∑
i=1

ai

)
−


 n

N

N
n∑

j=1

bj


 > 0 we are done
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else

	

(
1
T

T∑
i=1

ai

)
−


 n

N

N
n∑

j=1

bj


 ≤ 0,� (3.4)

 

 
resulting in either

	

T∑
i=1

aipi −

N
n∑

j=1

bip̌j > 0,

T∑
i=1

aipi −

N
n∑

j=1

bip̌j < 0or
T∑

i=1

aipi −

N
n∑

j=1

bip̌j = 0

With the two first options we are done, Else if the equality holds

	

T∑
i=1

aipi −

N
n∑

j=1

bip̌j = 0 ≥

(
1
T

T∑
i=1

ai

)
−


 n

N

N
n∑

j=1

bj




But 
(

n
N

∑ N
n

j=1 bj

)
 = 

∑ N
n

j=1 bip̌j  thus the following should hold: 
∑T

i=1 aipi = n
N

∑ N
n

j=1 bj ≥
(

1
T

∑T

i=1 ai

)
 

	

T∑
i=1

ai − T n

N

N
n∑

j=1

bj = z.z ≤ 0

	

T∑
i=1

(ai + |z| /T ) − T n

N

N
n∑

j=1

bj = 0� (3.5)

but we didn’t set ai and since they represent unique node configurations, we can give them any discrete values so 
let as “name” them: ai = (group size − i) ∗ 100 then we change only one of the a′

is, one that is not contained 
in b to a value

	
ifz < 0ai = (group size − i) + q ∗ |z|

T
, ai /∈ b, q ̸= 0

	
ifz = 0ai = (group size − i) + q ∗ 1

T
and q is such that

 (group size − i − 1) ∗ 100 < ai < (group size − i + 1) ∗ 100 and ai ̸= i ∗ 100 will result in

	

T∑
i=1

(ai + |z| /T ) − T n

N

N
n∑

j=1

bj = q ∗ |z|
T

≠ 0

	

T∑
i=1

aipi −

N
n∑

j=1

bip̌j = 0 ≥

(
1
T

T∑
i=1

ai

)
−


 n

N

N
n∑

j=1

bj


 > 0.� (3.6)

Which is a contradiction.
Thus at least for the above “naming” procedure we have more possibilities to “name” the configuration such 

that

	
|

T∑
i=1

aipi −

N
n∑

j=1

bj p̌j | > 0

Let’s assign for each unique dendrogram cv  at the n level all its unique configurations ai that map to it.

	 f
(
{ah}H

)
= ci

	 H ∈ all a′s such that ah maps to ci and does not map to cj for i ̸= j

Thus, group H  is L size ascending combination of 1, 2,… T  
Again: ph1 ≥ ph2 ≥ ph3... ≥ phL ≥ 0 and accordingly denote each aj  such that
 ah1 > ah2 > ah3 . . . . > aahL

> 0 resulting in
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1
L

L∑
i=1

ahi phi ≥ ( 1
L

L∑
i=1

ahi )( 1
L

L∑
i=1

phi )

	

L∑
i=1

ahi phi ≥ ( 1
L

L∑
i=1

ahi )(
L∑

i=1

phi )

	
where

...
p j = (

L∑
i=1

phi ) < 1

But 
∑L

i
ahi phi = ...

p jcj  where ...p j  is the cj  fraction of all the unique ahi  configurations that map to cj . Thus

	

...
p jcj ≥ ( 1

L

L∑
i

ahi )(
L∑
i

phi )

And we set

	

K∑
j=1

...
p jcj = 1

K

K∑
j=1

∑
Hj

ahi phi

For a single observer we again repeat as above:

	 U ∈ all b′s such that bu maps to ci and does not map to cj for i ̸= j

Thus, the group U  is some L1 size ascending combination of 1, 2,… N/n 
Again: as all p̌j  are equal then p̌u1 = p̌u1 = p̌u1 . . . . = p̌uL1 = n/N  of the group U1 and accordingly 

denote each buj  such that
 bu1 > bu2 > bu3 . . . . > buL1 > 0 resulting in

	

L1∑
j=1

buj p̌uj = qkck

And again, since all b1 > b2 > b3 · · · > bN/n > 0 and p̌1 = p̌1 = p̌1 . . . p̌1 N
n

= n
N  where

	 f
(
{bu}U

)
= cjwith probability qj

	 U ∈ all b′s such that bu maps to cj and does not map to ci for i ̸= j

Thus, the group U  is some L1 size ascending combination of 1, 2,… T  
Again: we select all ...p ̸= 0 p̌u1 = p̌u1 = p̌u1 . . . . = p̌uL1 = n/N  and where we order buj  such that
 bu1 > bu2 > bu3 . . . . > buL1 > 0 resulting in

	

K1∑
j=1

qjcj =
K1∑
i=1

∑
Ui

buj p̌uj =
K1∑
i=1

n

N

∑
Ui

buj

For all θN  points we have already shown in steps (4.1–4.6) we have much more “naming” procedure of ai that

	

K∑
j=1

...
p jcj −

K1∑
j=1

qjcj =
K∑

j=1

∑
Hj

ahi phi

K1∑
j=1

n

N

∑
Uj

bui =
T∑

i=1

aipi −

N
n∑

j=1

bj p̌j > 0

And thus by “naming” correctly the ai′s in θN  the observer mean will be different also at θn 
Non-ergodicity has been suggested as causing non-locality47, furthermore numerical simulations of the non-

ergodic series of block dendrograms have demonstrated apparent non-locality, with correlations values that 
violate the CHSH inequality (see2 and Supplementary Appendix A3.1 details for two such simulations setups). 
The process in2 involves Alice and Bob selecting “different naming,” and confirming if that naming aligns with 
the observed block dendrogram. We extend, in the current study, the “naming” concept to any type of naming, 
Enabled by the distinct parameterization of dendrogramic structures in a Minkowski-like space. Additionally, 
numerical simulations1 of such mapping ( f : θN → θn ) resulting in less distinguishability which in turn 
explains explicate-implicate order with reminiscent correlations between the a′

is and ci′s configurations 
(Fig. 5). We note that the implicate and explicate order are an ontic and epistemic ideas established by Bohm 
which emerge both in DHT with simple and clear connection.
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Discussion
Exploring the relational information framework with the p-adic treelike geometry offers new insights on relational 
information evolution. Experimental data, represented by dendrograms, undergo dynamic restructuring upon 
the addition of new information. By connecting relational event models with conventional ones based on real 
spacetime, we introduce a statistical causality approach, encoding dendrograms with real parameters to map 
them onto four-dimensional spacetime. These parameter spaces, reflecting subjective observer knowledge, 
enable transformations akin to special relativity within the dendrogramic configuration space, expanding the 
scope of DHT.

The intriguing co-existence of s Bohmian mechanics with the Many-Worlds Interpretation within the 
framework of relational information using DHT, along with the fulfillment of Rovelli’s RQM postulates, 
underscores the fundamentality of the relational approach. Our model consolidates the dynamics between 
observers and systems into what we term an “observers universe,” where measurements are conducted by 
observers on observers themselves.

An interesting feature of our model is the tight link between an observer’s measurements and their world 
line, underscoring subjectivity’s role in driving dynamics. While the ontic world line remains static, represented 
by the p-adic infinite tree, dynamics emerge from subjective parameters, revealing subjectivity as the primary 
driver of dynamics.

The adherence to the ontic/epistemic Leibniz principle directly leads to Machian relationism, not as an 
assumption, in contrast to theories like shape dynamics and Brans-Dicke theory28,29,32, but as an intrinsic 
outcome of the p-adic tree representation of events. Furthermore, the endorsement of the Leibniz principle 
gives rise to a background-independent theory, akin to theories such as shape dynamics, loop quantum gravity, 
spin foams, and causal set theory28–31,48. We note that Rovellis partial observables which are quantities that can 
be measured locally, but don’t provide complete information by themselves are in DHT the events themselves. 
In other words, a partial observable is any quantity you could theoretically measure, but which lacks meaning 
in isolation. These observables are not gauge-invariant and are Context-dependent. A complete observable was 
defined by Rovelli as an expression that combines partial observables in a way that results in a gauge-invariant 
quantity. Complete observables are constructed by linking two or more partial observables to create a relational 
observable. Thus the partial observables are the objective but since an observer in DHT has a subjective view of 
the universe the single event only have meaning when related to other event. Therefore, each dendrogram, which 
is in fact some configuration of Leibnitz monads, is already describing all observables as relational observable. 
The basic relational and dynamical laws of these dendrograms suggests (although still needs to be proved) 
gauge invariance on the Minkowski-like parameter space - implying a correspondence to Rovelli’s complete 
observables.

Fig. 5.  Illustration of the consequence of decomposing a time series of events into blocks of events for 
relational information structures. Construction of the relational information structure from a discrete 
consecutive series of events. By decomposing the series of events into two blocks {E1 E2 E3 E4} and {E5 E6 E7 E8} 
and constructing from each block a dendrogram is equivalent to applying the map f : θN → θn to two partial 
node (“question”) configurations.
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DHT extends beyond physics, applied in brain modeling, medical diagnostics, and potentially machine 
learning. Our approach aids in understanding clinical data analysis, enriching our understanding of complex 
systems7,8.

Overall, studies within DHT hint at unifying quantum and classical paradigms, yet more research is required 
to understand how phenomena like gravitation and conventional physics emerge from this framework.

Data availability
The datasets generated and/or analysed during the current study are available in the kaggle repository, ​h​t​t​p​s​:​​​/​​/​w​
w​​w​.​k​a​g​g​l​​e​.​c​​o​m​​/​d​a​t​a​s​​e​​t​s​/​o​​d​e​d​s​​h​o​​r​/​d​y​n​​a​m​​i​c​​s​-​o​f​-​r​e​l​a​t​i​​o​n​a​l​-​i​n​f​o​r​m​a​t​i​o​n.
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