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Relational information framework,
causality, unification of quantum
interpretations and return to
realism through non-ergodicity

Oded Shor'3%, Felix Benninger%%3> & Andrei Khrennikov**

In the framework of relational information, we explore analogs of physical theories and their
properties. Specifically, we investigate the causal characteristics of relational information, examining
how initial knowledge impacts future relational understanding of the universe/system. To achieve
this, we establish a parameter space defining relational structures called dendrograms, exhibiting
causal properties akin to those of Minkowski metric. Subsequently, we propose a statistical-dynamical
model on this Minkowski-like parameter space, unifying Bohmian and Many Worlds interpretations
of quantum theory in the framework of relational information. Additionally, we provide an analytical
proof of the non-ergodicity of the relational information framework, revealing CHSH inequality
violations as an emergent phenomenon. Our focus on relational information underscores its
significance across scientific disciplines, where a single measurement or observation lacks meaning
without context.

Keywords p-Adic numbers, Dendrograms, Relational information, Bohmian mechanics, Minkowski-like
parameter space, Many worlds interpretation, Non-ergodicity

Dendrogramic Holographic Theory (DHT) is a singular postulate theory of relational information, conceived
through a series of studies! 6. This theory represents a relational-event-observational approach to physics and
the broader realm of natural science”®. The foundational postulate underpinning and driving all theoretical
implications is the adherence to Leibniz’s Principle® and its empiricist epistemic reinterpretation which resembles
Mach’s interpertation: “If we are unable to distinguish two states of things from each other by any scientific
means, then science ought to regard them as identical and take no notice of the difference”!’.

Leibniz’s Principle, also known as the Principle of the Identity of Indiscernibles, is typically expressed in a
specific manner:

If, for every property F, object x possesses F' if and only if object y possesses F, then x is identical to y. In
symbolic logic notation, this can be represented as VF'(Fz <+ Fy) — « = y. In simpler terms, if x and y are
distinct entities, there must be at least one property that distinguishes them, ensuring their non-identity.

This principle is an ontic tool for the relational metaphysics (orignaly served for distinguishing between
monads?).

The epistemic view of DHT pertains to relational information concerning events as measured by an observer.
In this context, measurement/observation about a single event lacks significance and cannot exist in isolation;
its meaning derives only from its comparison to information obtained from other events. According to the
epistemically refined Leibniz’s principle which corresponds to Mach’s view, if a particular observer cannot
distinguish any features that differentiate two observations or measurements of distinct events, then these two
events are considered identical to that observer. In subsequent sections we will demonstrate the linkage between
such epistemic principle to the original ontic principle. We have to note that with that within the more pragmatic
Epistemic view the reinterpretations given to the original ontic Leibnitz principle came with the cost of added
postulates like the existance of observers and measurements (or “sensations” according to Mach).

We will call throughout this study the epistemic reinterpretation of the ontic Leibnitz principle — Leibnitz
principle or epistemic Leibnitz principle in cases we will refer to the original Leibnitz principle we will refer
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to it as the ontic Leibnitz principle. In the current study our models will be derived mainly from an epistemic
view but eventually (or in the limit of infinity) will be well connected to an ontic model. The epistemic-ontic
connection will be exemplified for each of the results we will derive below.

P-adic treelike formalization of Leibniz’'s principle

DHT relies on p-adic topology which is governed by the p-adic ultrametric and draws relational information
from p-adic tree structures called dendrograms. To distinguish observations, an observer uses inquiries often
yes/no questions, depicted as dendrograms resembling decision trees. These trees quantify observations
relationships based on divergent answers.

In the limit of infinite events, their inherent nature is represented as an infinite p-adic tree, characterized by
homogeneity and vertices with p> 1 edges. These trees possess an algebraic structure and topology corresponding
to this configuration!!.

In the p-adic topology, triangles are always isosceles due to the p-adic ultrametric satisfying the strong
triangle inequality. Here, the distance between two branches in the tree depends on their shared root (indicating
more questions answered similarly), with a longer shared root implying a shorter distance. Additionally, “open”
and “closed” balls are defined as follows:

B_(R;a) ={z:7p(a,z) < R},B(R;a) ={z : 1y (a,z) < R}

Where : r,, (a,z) = |a — x|, is the p — adic distance between the points aand x

Since branches symbolize distinct events relations to all other events, the relational event space, whether finite
or infinite in nature, is furnished with a p-adic ultrametric. This connection between DHT and p-adic analysis
intertwines with the realms of theoretical physics'>?". This relationship includes investigations by Parisi et
al.%¢ into complex disordered systems within the p-adic framework and the broader ultrametric context, as
expounded in article’”. General trees, in general, feature an ultrametric topology, and such topological spaces
have found extensive utility in the theory of complex disordered systems!®%.

The Leibniz principle necessitates event differentiation through a question-based process, represented
in the p-adic number field. This process, forming a p-adic tree, associates each event with all others. Thus,
Leibniz’s principle leads to Machian relationism, inherently arising from the p-adic tree representation of events.
Embracing this principle yields a background-independent theory, akin to shape dynamics, loop quantum
gravity, spin foams, and causal set theory®®-32. These two outcomes are not merely assumed, as seen in theories
like shape dynamics and Brans-Dicke theory, but rather emerge intrinsically from the structure of the p-adic
tree2$2932.

Recently, theoretical developments showed the emergence of our known physical theories from machine
learning perspectives. In these studies, the laws of physics are shown to emerge as a learning procedures.
For instance, action principle effectively determines the “best” or “most efficient” pathway a system follows
according to certain physical laws. much like an optimization process an action principle can be seen as a
mechanism by which the system “learns” the optimal path under constraints, In machine learning, we typically
define a loss function that quantifies how far a system’s predictions or behaviors are from desired outcomes.
The learning algorithm then iteratively updates parameters to minimize this loss, effectively “learning” the best
parameter values for the given problem. In essence, both systems “converge” toward an optimal configuration—
whether a physical path (action principle) or a set of model parameters (learning algorithm)—guided by an
optimization process. Thus, action principles might be referred trivially as a particular learning procedure®-%’.
In recent studies™S, we have already drawn attention to intriguing parallels between our approach, which yields
the emergence of quantum theory from DHT, and the neural network model of the universe as described in
articles*-¥’. Notably, we should highlight that p-adic neural networks have been investigated in conjunction
with Euclidean quantum field theory, as detailed in references®®%’, thereby establishing a closer connection
between our approach and the domain of machine learning.

We follow a structured approach to establish a relational framework, specifically in the form of a dendrogram.
This dendrogram exhibits a distinct branching pattern through a p-adic expansion. The dendrogram is
represented by p-adic (in this study we use mainly 2-adic in our numerical simulations) numbers, each depicting
an event’s relationship with other events as observed by the observers. It requires a minimum of two events to
construct a dendrogram due to its relational nature.

A dendrogram essentially takes the shape of a finite tree, serving as an observer’s epistemic representation
of reality (which is subjective in nature, see Supplementary Appendix Section Al). These finite trees are
constructed, epistemically, according to four steps: data collection, hierarchical clustering of the data, production
of agglomerative cluster tree and the dendrogram representation of relations where a longer shared path of the
dendrogram signifies a closer relationship between events based on chosen metrics (Fig. 1).

This study aims to investigate relational information analogs of physical theories and their causal
characteristics. We seek to prove the existence of a parameter space defining relational information structures
called dendrograms, with causal properties akin to the Minkowski metric (Fig. 1). Additionally, we will present
a statistical-dynamical model on this parameter space to unify interpretations of quantum theory. We also aim to
provide an analytical proof for the non-ergodicity of relational information, that might explain CHSH inequality
violations. Our focus on relational information suggests broad applicability across scientific domains.

33-37

Dendrogram relational structure as a configuration of nodes
The dendrogram’s structure resembles a decision-making tree, with branching nodes representing fundamental
“Question” (fundamental relational “particle”). These nodes are positioned in the p-adic field based on their
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Fig. 1. Mlustration of the relational information framework developed in this study. Data events are collected
by an observer, and pairwise distances between events are calculated to apply Hierarchical clustering, resulting
in a dendrogramic tree. Each event in the tree is represented by a binary string or p-adic expansion. Numerical
examples demonstrate calculations and 2-adic differences. The set of these strings/p-adic expansions
constitutes the relational information between all collected data events, describing the dendrogram’s structure.
We compress this relational information set into a 4D parameter space without information loss. Utilizing the
information.

p-adic expansion. Using p-adic numbers, any dendrogram can be constructed, where leaf nodes represent non-
branching nodes (Fig. 2).

Additionally, dendrograms can be built from entities less fundamental than the “question” by combining
partial configurations of all questions. A sequence of events can be seen as a union of unique partial “question”
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Fig. 2. The fundamental “question” (fundamental relational “particle”). Example of consecutive evolvement
of the relational information dendrogramic structure by adding one “questions” in each step (upper row). At
the lower the configuration of these questions in the p-adic field is presented upon same addition of “question”
Each such configuration can be constructed from a union of unique partial configurations.

configurations. These configurations can be mapped to a lower level dendrogram, resulting in indistinguishability,
as observed in previous numerical simulations!~.

geometry Hellinger metric, we demonstrate causal relations in the parameter space, aligning with those
found in Minkowski space of special relativity.

Causal structure on the space of dendrograms

In our model, we introduce O; where i = 1,2,....N — oo observers who collects/measures events/data. Thus,
an observer with already m events collected €,€,... €. will measure each time a single event, e . Each time an
observer O, measures an event, he constructs a dendrogram using the procedure outlined in the Introduction
and Supplementary Appendix.

Initially, all N observers have a trivial dendrogram with two branches. As observers accumulate more events,
various dendrogram configurations with more branches become apparent. The number of observers, denoted as
n, forming a unique dendrogram remains a fraction of the total observers in our universe, IV, expressed as 3. At
each level of m events gathered, all V observers are encompassed. In essence, n is a function of the dendrogram
D, denoted as n = n (D). This iterative process enables the evolution of observers’ dendrograms event by
event, resulting in increasingly intricate relational structures. Please refer to Fig. 3 for a visual representation.
We emphasize that in the current model any observer can measure any event at any iterative step increasing the
number of events relationally represented in the dendrogram.

In essence, for two observers dendrograms, D1 and D2, which gathered each a set of m events, set1 and set2,
there are 3 possibilities

1. setlNset2 = setl U set2leading to D1 = D2.

2. setl N set2 = & but the set of relations between events in setl is equal to the set of relations between
events in set2 leading to D1 = D2.

3. setl N set2 = @ and the set of relations between events in set1 is not equal to the set of relations between
events in set2 leading to D1 # D2.

4. setl N set2 # @ but the set of relations between events in setl is equal to the set of relations between
events in set2 leading to D1 = D2.
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Fig. 3. Illustration of the relational information dendrogramic space. Initially, all N observers have a trivial
dendrogram with two branches at E=2. When observers measure more events, they evolve their dendrograms.
The possible number of dendrogram structures increases with number of events level E. the distribution of

N observers, initially all concentrated with a single structure at E=2, over the possible dendrogram structure
at each level E, is described by the pink distributions. The blue line with black dots depicts the world line of a
single observer traversing the parameter space. Each dot on the world line represents a unique dendrogram
structure outlined below for each level E; i =2-10. The point 61 is also a point where some fraction of the N
observers will pass through. This fraction of observers is described by the value of the pink distribution at 81

. When 61, the fraction of observers passing through it will evolve their dendrograms only within a partial
section of the parameter space. The parameter points within this partial section are time-like to that point.
Again initially the whole fraction of the observers is concentrated at 1. Upon measuring more events, the
potential number of dendrogram structures that the fraction of observers will develop increases. Thus, the
initial population of observers at 01 is described by the green distributions. None of the observers at 61 will
pass through points outside their light cone, such as 2, making 62 a space-like point for the observers passing
at 01.

5. setl N set2 # & and the set of relations between events in set1 is not equal to the set of relations between
events in set2 leading to D1 # D2.

A given dendrogram might have some dendrograms they can evolve to and some they will not. This is the case if
a fraction of the observers with dendrogram D1 evolves to a dendrogram D2 or otherwise none of the observers
with D1 evolve to D2. The question that arises is whether by examining the structure of two dendrograms, can
we predict whether they are connected? Dendrograms that exhibit observer flow from one to the other can be
referred to as “timelike separated” dendrograms, while dendrograms that show no observer flow between them
can be classified as “spacelike separated”

More specifically, “timelike/spacelike separated” dendrograms are defined as follows:

Definition 1 D1 and D2 are two, timelike separated, different dendrograms with number of events/data collected
el < e2, respectively, if and only if there exist at least one observer with D1 dendrogram with el events moves from
D1 to D2 upon collecting the next e2 — el events.
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Definition 2 D1 and D2 are two, spacelike separated, different dendrograms with number of events/data collect-
ed el < e2, respectively, if and only if there are zero observers with D1 dendrogram with el events to move from
D1 to D2 upon collecting the next e2 — el events.

More simply, consider a scenario with N — 0o observers. After measuring m events and representing their
relations as a dendrogram, a finite fraction & > O (thus n is not finite) of the N observers acquire a unique
dendrogram D1. Now, consider a unique dendrogram D2 representing relations of m + k events ( k =1,2...).

Timelike separated means: at least one observer out of the n observers, all with D1 dendrogram, after
measuring another k events acquire the D2 dendrogram.

Spacelike separated means: none of the n (infinite) observers, all with D1 dendrogram, after measuring another
k events acquire the D2 dendrogram. We note that all different unique dendrograms at the same level

m = mevents measured are by definition spacelike separated.

In essence, we will introduce the concept of a dendrogramic “light cone;” first:

Definition 3 A specific dendrogram D is identified with numerous observers who share identical relations among
all the observations each of them has made of the universe.

Thus, a dendrogramic “light cone” is defined as:

Definition 4 A dendrogramic “future light cone” associated with a particular unique dendrogram, D, encompasses
all the potential dendrograms that can evolve from dendrogram D.

A dendrogramic “past light cone” associated with a particular unique dendrogram, D, encompasses all past
dendrograms that could have evolved to dendrogram D.

More simply, Consider a scenario with N — oo observers. After measuring m events and representing their
relations as a dendrogram, a finite fraction § > O (thus 7 is not finite) of the IV observers acquire a unique
dendrogram D.

Those n observers all possible future dendrograms upon acquiring additional any k£ = 1,2. — oo events
constitutes the future light cone of the unique dendrogram D.

all possible past dendrograms of n observers with any k = 2,3 ... m events constitutes the past light cone of
the unique dendrogram D.

This holds true irrespective of the observer’s identity in relation to D and considers all conceivable events
and combinations of events they might measure.This draws an analogy to the Minkowski spacetime metric that
characterizes events. This concept allows us to analyze the propagation of relational information of an observer
or ensemble of observers within the dendrogramic framework.

Please note that while the causal structure of Minkowski space is not statistical in nature, in DHT, we seek
to establish a statistical counterpart referred to as the “dendrogramic Minkowski causal structure of observers
ensemble relational Information universe .

Where a universe is defined as:

Definition 5 A universe is unique dendrogram D. Thus, a universe is an observer’s, current, relational knowledge
(information) he acquired on the ontic universe by measuring some finite amount of events. Moreover, by definition
3 and 4, a current unique dendrogram D representing relations of m events is acquired by a finite fraction 5 > 0
(where - N — oo and thus n is not finite) observers. As a consequence, all n observers have the same universe
after measuring m events.

Thus, for a finite dendrogram the dendrogramic Minkowski space does not allow us to uniquely define an observer.
As a consequence, it does not allow us to determine for a single observer which dendrograms will he acquire in each
step.

We emphasize again, each dendrogram represents a fraction of observers who collect a specific number
of events (e.g., level) this fraction of observers have same relations between their acquired events. Thus, we
operate within statistical ensemble of observers that can measure any possible event from an ensemble of events
at any iterative step increasing the number of events relationally represented in the dendrogram. Each unique
dendrogram is identified with numerous observers and representing the same relations between the events they
measured (generally not same sets of events).

Real parametrization of dendrograms-lossless compression
In our study, we employed the following equation to facilitate our analysis.
The representation of a dendrogram branch, denoted as edge;, can be expressed as the sum of a series:

k )
edge; = Zj:()aj xp’,a; =0,1.p—1. (1.1)

Throughout this study we will use p=2 thus a; = 0,1

Here, a; represents the binary digit at position j, with possible values of 0 or 1.

we now introduce the concept of the monna map conversion of an edge to event, denoted as event;, is
computed using the formula:
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k )
event; = Z aj xp 7 a; =0,1p—1. (1.2)

j=0

Throughout this study we will use p=2 thus a; = 0,1

where a; represents the binary digits (0 or 1) in the 2-adic expansion of the dendrogram branch, and k is the
maximum ball level of the dendrogram.

By applying this Monna map conversion, we represent the edges as rational numbers on the continuous
interval [0,1]. This conversion preserves the precise relations between the edges, ensuring that the inherent
structure and ordering within the dendrogram branches are maintained. Furthermore, we introduced the metric
@ik» which represents the absolute difference two events,

qix = |event; — eventy| (1.3)

we can define 5 parameters of a dendrogram as follows.
First we define our dendrogramic vector, D, as follows:

E = event;, where i =1,2...n = number of events

B = 2—maacimal ball level of the dendrogram

D = [E B] withelementsD;, i =2,3...n+1

k-1 &k
Mp = ( Z D; - D;)*
i=1 j=i+1
k-1 k k-1 & 23
Ro=0_> Di=-D)*=0_ > ay)+ ZlB D)
=1 j=1i+1 1=1 j=i+1 Jj=1i+1
k-1 & k z4
ro=0Q_ > /(D= Dy)+ 1) Z Z V(g + 0+ D 1/(B=Ds[+1)  (4)
1=1 j=1i+1 i1=1 j=1i+1 Jj=1i+1

k = number of branches and thus events in dendrogram and

where z, z1, 22, z3 and z4 are free parameters

we will demonstrate now that there are parameters spaces that have the ability to uniquely define a unique
dendrogram structure. For:

01=Up) "
0'2= (V)" /(Up)~*
0's=(Up) *(Vp) " Rp " (Mp)*
0's =+/n(rp)*/Rp~"°

Lets suppose 0'1 = 0"1,0'o = 0"5,0'3 = 0”3 and 0’y = 0" 4 for two different dendrograms D’ and D" then if
0y =0"1and 0's = 0" then (U ) > = (U )" and.

0.5 0.5
EZD';_Q = ((‘[;D"§_2 which means (V ,,)"° = (V ,,,)>"° the combination.
D/ D//

(VD/)O‘5 - (VD//)O‘5 > . s / "
9 _o can’t happen by their definition unless D" = D" and we are done.
(U D’) = (U D”)
We've demonstrated that relational information, represented by strings or p-adic expansions, can be
compressed without loss into a 4-dimensional parameter point.

The informational Minkowski-like metric of the relational information dendrogramic space

Having established the existence of at least one space with four parameters that uniquely determine a dendrogram,
we can now develop an informational metric inspired by Minkowski spacetime. We will describe our model
step by step: each parameter point 6 in parameter space uniquely defines a dendrogram with ny events. This
dendrogram is the n level state of an ensemble of observers with same dendrogram. Thus, the point 6 has a flow-
in of observers from different smaller dendrograms with n — 1 events. The distribution of observers over these
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smaller dendrograms can be converted to an observer’s distribution over 8’. where 6’ are parameter points of all
dendrograms with n — 1 events. This is the past observer distribution of ¢

Furthermore, the dendrogram at level n, at point 6, exhibits a flow of observers emanating from the 0
parameter point. The ensemble of observers, at 6, is distributed to the next level dendrograms with n 4- 1 events.
This certain manner of distribution of the observers represents the future distribution of the n-level 6 point.

Specifically, for a single dendrogram at level n (representing a fraction of m/N observers), its future cone at
levels n + k (where k ranges from 1 to M — 00 ) consists of k distributions pg,n(0") +,;..,-.» dependent on the
level n (or number of events in dendrogram) of the initial ' point in the parameter 1milarly, the past cone of
a dendrogram at level n extends to level n — k (where k ranges from 1 to n — 2 ) and exhibits & distributions
Pk.n (W)past (see Fig. 3).

Ontic-epistemic linkage
consider a finite fraction 37 (where N — 00) of observers with same unique dendrogram D, with finite n events
(n'" level), represented by a point 6’ in parameter space. D is finite and thus Epistemic dendrogram, relational
structure. When each of those m observers acquire another k — oo events the distributions pg, ., (6") Future
at n + k flatten, 1mply1ng each observer possesses a unique infinite dendrogram. Thus for k£ — oo, point 6’
distribution pr,n (0') e = f( o) = =

In fact the epistemic point 6’ is defined by am size set of infinite ontic dendrograms and vice versa.

Consider two epistemic points §’1 and '2 withm1 and m2 number of observers and thus withm1 and m2

size set of infinite ontic dendrograms. An intersection between the 0’1 and 6’2 sets means observers transitioning
between those points-thus 6’1 and 6’2 are timelike separated. Conversely, an empty intersection signifies
spacelike separation between 6’1 and 6’2.

If we consider observers and worldline as entities then, as shown above, the ontic Leibnitz principle is
followed. Moreover, those arguments imply:

1. Distinguishability by ontic Leibnitz principle <+ 2. observer’s ontic dendrogram uniqueness <> 3. uniqueness
of observer infinite worldline through parameter space.

We note that an infinite worldline is equivalent to an observer infinite dendrogram which, in turn, is a unique
infinite but partial set of allowed relational branches out of the whole p-adic tree.

We need to stress again the linkage- an epistemic dendrogram relational structure at 6’ is fully defined by a
set of ontic infinite dendrograms and thus a set of infinite worldlines.

Please note that an infinite as well as finite dendrograms are a relational structures and thus, in the current
model presented, views from epistemic relationism, ontic relationism as well as Platonist views reside together
without much contradictions.

We stress that a point # in parameter space is accompanied with all its past distributions flowing into that
point and all future distribution flowing out of that point. These distributions and the point 6 are defined either
by the set of the observers that flow in and out of the 6 point or the set of ultimate infinite dendrograms, defining
unique observers, and vice versa.

We can envision the distributions dynamics as manifested from level to level by a “potential”/’force” we call
the “Leibnitz potential/force” which forces the observers to become distinct (ultimately at the ontic infinite sub
dendrogram), Otherwise the ontic Leibnitz principle holds. Now we can modify the epistemic principle into an
ontic dendrogramic reformulation: If, for every dendrogram Deo, observer x has Deo if and only if observer y has
Deoo, then observer x is identical to observer y.

To quantify the informational distance between two parameter points accompanied with their distribution,
we propose an informational geometric metric:

informational distance = 2HJ[TW + 2HZ[T] - (Hf/ +Hpy)—2 Hatio + [T]) (1.5)

( L
L+1
Consider two points 8’1 and 6’2 where n1, n2 are their level where without loss of generality n1 < n2:

. Hf = Hellinger distance between pk;’ﬂlygll( )f11.fu'reatﬂ2+1 and Pk,n2, 0’2( )future atn2+41 (Flg 4A)
if Pr,n1,0'1(T) future at n2t1 AN Pk,n2,0'2(Z) fusure at nata Share parameter points with non zero probability

0<H;<leseHs=1
Hy = Hellinger distance between py, .1 9/1(T) past atn1—1 974 Pk,n2,0'2(T) pasiarn1 1 (Fig. 4A),
if pron1,e1 (T)pastat ni—1 and Py p2.672 (x)past wtni_1 Share parameter points Wltﬁ non zero probability
O0<H;<lelseHf=1
Phkonl,01 (m)futum nipr1 = theminimum klvalue distribution of 0'1
pk7n27912(1')futu,re notre = theminimum k2 value distribution of 0'2
where both distributions intersect with nonzero probability values
Thus: Hy, = Hellinger distance between py, 1,01 (x)futm.e 14k And pk7n279/2(3:)futm.e 24k (Fig. 4C)

Phkn2,672 (as)past na_ro = theminimum k2value distribution of 0'2

Pk.n1, o1 (a:)past ni_p1 = theminimum klvalue distribution of 0'1
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T E=10

light-cone of 6,

~E=10

E-9
light-cone of 6,

Fig. 4. Ilustration of components in the informational geometric metric
Informational distance = QHJETW + 2HI[T] —(Hp +Hpy)—2 (LL_HHratio + fTD . (A) Ilustration

of two informational light cones originating at 81 and 2. Hy and H), are calculated from the yellow
intersections (indicated by H s and H, and arrow) of the green and blue distributions belonging to 1 and 62
respectively. (B) Illustration of two informational light cones originating at 01 and 62. H,, is calculated

from the yellow intersection (indicated by H,, and arrow) of the blue and green distributions belonging

to 01 and 02 respectively. (C) illustation of two informational light cones originating at 1 and 02. Hy/ is
calculated from the yellow intersection (indicated by ;s and arrow) of the blue and green distributions
belonging to 01 and 02 respectively. (D) illstration of the 7" component calculated for 01 and 62. value
(indicated by an arrow) of the blue distribution value at 62.

where both distributions intersect with nonzero probability values.

Thus: Hyp, = Hellinger distance between py »n2,0'2() pqst na— k2 414 Pr,n1,0'1(T) pasi n1 g1 (Fig. 4B)
we define: L = |nl — n2|

Hratio = Hellinger distance of two distributions ppoper1 and ppoper2

total number of observers total number of observers

Whereppopor1 = [

number of observers at point 0’1 at level nl number of observers at points other then 0’1 at level n1:|
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number of observers at point 0'2 at level n2 number of observers at points other then 0'2 at level n2

Ppopo’2 =
pop total number of observers total number of observers

finally we define: T = py/1 (x = 6'2) = distribution value of py n1,0:1(x)
Now for proving the timelike/ spacelike signature:
For time like dendrograms H;y = Hyp, Hp = Hp and [T] =1. Thus, the metric reduces to:
informational distance = Hy + H, — 2 (L+1 Hyotio + fT])

0 < Hy + H, < 2 since they are timelike. On the other hand: H.qti0 < 1, L+1 <1

As [por1 (x = 6'2)] = [T] = 1 resulting from the fact that time like dendrograms share some fraction of
observer flow from one dendrogram to the other.
So, the component 2 < 2 (L+1Hmti0 + [T]) resulting in:

,atz = 0’2 (Fig.4D).

futureatn

L
H.f + Hp -2 (T—HHTG“O + [T]) < 0

Now for space like, we have in fact two cases. lets treat the first one where n1 <n2.

Hjy =1, H, = 1 thus, we reduce the metric to 4 — (H ;, + Hp) — 2 (25 Hratio + [T1) .

Since: 0 < (Hy, + Hp) <2— — 4 — (H,, + Hp) > 2

Then for 2 (L+1Hm“0 + [T]) we have Hrqtio <1, L+1 <1 but [per1 (x=602)]=[T]=0 so
2 (L—HHMW, + [T]) < 2 thus, the interval is greater than zero.

The other case is when Hy < 1, H, < 1then Hf = Hy/, H, = H,s and [T'] = 0 leading to

L
in formational distance = 4 — (Hf + Hp)—2 (erlm‘o + Wq)

Again 0 < Hy + Hp < 2thus4d — (H;, + Hp/) > 2but 2 (L+1Hratio + [T]) reduces to

L
2 7Hraio 2
(L+1 o) <

Thus: 4 — (Hf, +Hy)— (L_~_1 Hyqtio + [T]) > 0 and again, the interval is bigger then zero

For nl =n2.

We have if Hy =1,H, =1— —4 —(H; + Hy) —2 (Lile”"’ + [T]) since [T]=0and L =0

thus 2 (L+1 Hyratio + [T]) =0and we have 4 —(H ;, + H,/) > 2 and we are done.
If we have Hy <1,H, <1— —4 —(H; + Hy) — 2 (55 Hratio + [T]) since [T] =0 and L =0
where Hy = Hyr, H, = H,y we conclude that 2 (L+1 Hyatio + [T}) =0 and we have 4 — (Hf/ +Hy)>2

and we are done.

Establishing dendrogram-parameters coupling via numerical simulation

Although the informational geometric Minkowski-like metric is analytically proven in practical data analysis,
distinguishing “time-like” and “space-like” dendrograms remains a challenge. To address this, we need
parameter spaces reflecting Minkowski space-time, exhibiting light-cone characteristics. proving analytically
that a real parameterization encoding of a dendrogram poses a Minkowski-like character, is complex and
requires significant time. In the realm of DHT theory, we propose “numerical experimenting confirmation”
to select parameters, validated through extensive simulations. While not a mathematical proof, the likelihood
of encountering dendrograms that do not conform to our parametrization is practically negligible. We outline
our procedural methods used in numerical simulations, along with the results and conclusions, in the appendix
sections A1.1-A1.3.

The consequence of our numerical analysis. We propose that:

1 (t—i(s2)0' )" + (@ = 0)° + (y — 0'2)° + (2 — 0'5)
(X)) = —— — .
per (X) (27m2)2exp ( 502 (1.6)
Where X is a vector of [t, x,y, z] and s2 is our equivalent of ¢ = speed of light.
This distribution is normalized: meaning [ d* X pe: (X) = 1 and leads to a fisher
information matrix
—-s2 0 0 O
0 1 0 0
gw=1 0 01 0 (1.7)
0 0 0 1

After rescaling by a2
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Furthermore, we define #, = number of events in dendrogrami,i’ = 2,3... and N = [n1 — n2]| then
we define the simultaneity matrix or operator of these Minkowski-like parameter spaces

SRR
Sy = 0 0 1 0 (18)
0 0 0 1
And thus:
dist (dendrograml1, dendrogram?2) = (ﬁm\j‘_)lwgwdeludﬁ',, (1.9)

One benefit of this construction is the transformation of the discrete parameter space into a continuous one.
Thus, every dendrogram is defined by its non-hermitian distribution pgs (X) and we operate on a smooth
Riemann 4d parameter space. This will result also in null like parameters for a given dendrogram (although they
will (probably) not represent a dendrogram relational structure)

Emergent many worlds interpretation in the relational information framework

In this section, we view events as interactions or measurements of an observer upon another. We've established,
in the previous section, the Minkowski-like parameter space of dendrograms. Thus, a unique observer’s is
defined by its unique world line on the parameter space, whether experiencing acceleration or not. As shown in
the previous section, two observers cannot share the same infinite world line if adhering to the ontic Leibniz’s
principles and vice versa. The observer’s ontic view of the universe relies on the measurements they perform,
defining their world line within the subjective parameter space.

Following the epistemic Leibniz’s principle an observer conducts a unique and infinite set of measurements,
leading to a distinct world line within the parameter space. Thus, even if the number of observers approaches
infinity, each is uniquely defined (by the set of measurements). Defining each observer is achieved by posing
an unlimited series of yes/no questions on all world-lines/measurement set and creating an infinite p-adic tree,
where each branch represents the relation of an observer world line to all other observer’s world line. This branch
is defined as the observer’s objective ontic property.

Thus, events are epistemically measured by one observer. These events are other observer’s ontic objective
properties. We stress that subjective dynamic of an observer is guided by the objective properties of other
observers he measures. In turn the objective properties of each of these observers are their infinite worldline-
infinite subjective dynamic. An infinite worldline is equivalent to an observer infinite dendrogram which, in
turn, is a unique infinite but partial set of allowed relational branches set out of the whole p-adic tree ( see section
Ontic-Epistemic linkage above).

Thus: unique infinite partial set of allowed relational branches set out of the whole p-adic tree is an objective
property of an observer.

Again, a connection between the ontic (the p-adic infinite tree) and the observer’s subjective- epistemic view
is established.

Moreover, in this model, the observer/system discrepancy converges into an all-encompassing observer
universe, where every physical entity interacting or rather measuring, with another is considered an observer.
We will show also that the “observer” and “observed” (measured) apply to any arbitrary system, microscopic or
macroscopic.

The observer subjective wave function
The construction of the observer subjective wave function was developed thoroughly in recent work>.

We emphasize that the subjective wave function, ¥supjective, is completely dependent on the measurements
the observer is preforming thus for a set M= {m ,m,. m/,

Ysubjective (M) = Ysubjective (0) where different sets M can have same 6.

The transition of this kind of measurements “world line” into the dynamical evolvement of the subjective
wave function, Ysubjective (0), is shown in® and is emergent from the following action through the bohmian
mechanics formalism:

A= a0 [ “s@aa+ [0sro@ae-v@+U @) @

For a detailed derivation of Eq. 2.1 we refer the reader to® or the Supplementary Appendix Section A2.1.

Transformation of objective property of an observer to wave function

Let us consider the situation where all observers at a particular @ measure a particular observer Op, . The
objective property of Op,, is composed as follows : the sum of the finite p-adic expansion with x, x; X, ...x_is
Z ,, meaning the objective property is a p-adic ball. This p-adic expansion can be transformed by monna map
to a rational number gp, € [0 1] C Q.

Each of the observers at @ measure the same ¢p, and incorporate it subjectively into their dendrogram. Thus,
each observer at € will incorporate it as a finite branch with different p-adic expansion that by the monna map
will be identified with a rational number value, we call event, on the interval [0 1]. So, for § Op . 1s a distribution
of possible rational numbers. we thus identify O, as a distribution ps, (z,8) on the interval € [0 1]. From
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these possible events values we can construct the objective wave function of O, for 6 . At some level n, the
procedure to construct the objective wave function of Op, follows same procedures as in® and section A2.1
(Eq. 2.1-2.10). In this procedure, event; = Z;‘;Oaj x 27771 a; = 1,0 is the act of measuring observer

OB, /s objective property (represented by the ball value that signifies O, ) conducted by another observer at 6.
So, 198k (0) = pB, (z, 0)e°® s a relational wave function (in relation to a certain 6 ). For each

different @ it dynamically changes. this wave function of O, , is the transformation of an objective property to
an ensemble of subjective properties (dependent on the ensemble of observers measuring it) in relation to 6.
Where 6 is inherently subjective, e.g., it represents each of the observers at € with same subjective knowledge
about the universe.

Measurement

An observer at 0 has a subjective dendrogram that again (as in our previous study and Sect. 2.1) we can
construct from it a subjective wave function )¢ for the 8 coordinate. For a fraction b; of observers at 8, all with
same dendrogram, that will measure Op, and will transform upon this measurement to 6 will have before
measurement

o’ +op, _ Op, 0
¥ B = aip; Hp (2.2)
[

And after

On,
PO =} aie " (23)

(3

So, the state of 8 (M) (level M is the number of edges of the dendrogram that encodes the coordinate 6) at
6(M + 1) upon all observers, bj, in @ measuring Op,, is:

O(M+1)+0O Op 0.
PEMTOm =3 TN aip; by (2.4)
i 4

Where 0; # 0 and j runs from 1 to u
We can now generalize the situation into 8 (M) measuring several Op, /s so k = {1,2.h}
The combined distribution of Op, , , with respect to 6 is p By (z,0) and
2.h 2:h

POz (0) = \/PBy o (T, 0)e'5® with eigenvalues ¢, >" inserting it to the equation above we
o
have: "M VOB = S7 SN a0 P b0 (25)

We can even generalize to a region of the parameter space.
Soletd (G) =1{0,(k),0,(1),0s(f)....},G=k,1,f...

And the combined distribution of Op, , , with respectto 8is pp, , , (:c, 5) and

9 4\ .i5(0 o 0
N ERS (9) =1/PB1on (a:,0)6ls(o)witheigenvalues ©; 2120 (%)

Then we have:

6(G+1)+0 3 OB 2np 0
" ( ) Bl,z_h,( ) — ZZ‘“%‘ 1,27 b (2.6)
i

We then can have by Everett second rule another measurement of different set of observers

Op, where L # {1,2...h} resultingin

6(G+2)4+0 0 o 9.
SO = TS o a2 e
i l i

We then need to consider the situation where some observer at @ will measure an observer O, , that he already
measured, so his dendrogram will not change and so does his wave function.
Thus

9(G+1)+0p 0)+0 _ OB1any 0
’(/) 1,2.h( ) = Zzalwi b]'l/J 7 (2~8)
J i

Where now 8 runs from 1tou + sizeof 0 (G)
We now compare with Everett’s interpretation.
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We note that for 6 there is no longer any independent state of the observers O, , , (5) orthed (G +1)+6

Op 0 .. - . . iy
. However each element of the superposition, ¢, >"%, is in a particular eigenstate of 8, 1%, and

= —- Op : . a . ..
furthermore the 0 - Op, , , (9) state, o, > 4)% describes all observers at @; as definitely perceiving that

particular system state.
Please compare with Everett’s thesis®:

We note that there is no longer any independent system state or observer state, although the two have be-
come correlated in a one-one manner. How- ever, in each element of the superposition (2.3), if (pill)ic[)....,cxi ]

, the object-system state is a particular eigenstate of the observer, and furthermore the observer-system state

describes the observer as definitely perceiving that particular system state. It is this correlation which allows
one to maintain the interpretation that a measurement has been performed.

OB 9. .

We note that for each observer at the superposition combination ¢, = > 1% the encoded eigenvalue c; of

OB1a2.
[

memory [....q;] is not constant but subjectively changes so we should note it as in the next measurements as
1
[...a5.].

is encoded in ¥% subjectively the same as in the 1/)?[””7 ; of Everetts. In contrast to Everett the

(223

o
In this formalism ¢, Bi,2.n

Is the objective property transformation to the subjective measurement thus
while 1% is the purely subjective knowledge of an observer of the universe. Each world, in the MWI meaning,
is a world line of objective observations in superposition with an observer subjective wave function. We can
Bi2.n Bi,2.n

. s . OBy 5,
identify the world line as the ¢, , &; M, .... sequences.

Let’s define the equivalent of the MWI relative state taken from Everett’s thesis®:

“We now introduce the concept of a relative state-function, which will play a central role in our interpretation of
pure wave mechanics. Consider a composite system S = S1 + Sa in the state 1S . To every state ) of S we associate
a state of S1, 1], called the relative state in S1 for ) in S through: Definition.

rel’
Wl =N Y (o v®)e! (2.9)

So, we have for the one Op, and single 1% we decompose 1% into it’s eigenfunctions ¢y

6, (M+1)+0 Op,, 6, ©
v Pe= D i 0 =) D aie, e (2.10)
ki

%OB’“ P
YPMHD+05, Z Z aicpiOBk b = Z Z Z ai(pioBk bicy, qSkj 2.11)
i i k4
So, the relative state in Op,, for 6; is
v = % Z Z (SOiOBk Ck; ¢k_7,71/’9(M+1)+OB’“ )@?Bk (2.12)
7 k

. - 0,
Where Z is a normalization constant. Thus 1,7,

¥»°Br conditioned by the state 4% in oM+
. . OBy, .
The relative state in @ for ¢, ~* is

correctly gives the conditional expectation of all operators in

Op,, 1
P, _ OB 0(M+1)+0
wrcl 7 E E (Soz kckj(pkjvw B )ij¢kj (2.13)
ik

Op
i
re

o
in 9?M+1) conditioned by the state ¢, in Op,.

k

Where Z is a normalization constant. Thus 1) correctly gives the conditional expectation of all operators

Coupling to Rovelli's relational quantum mechanics

It's important to highlight that DHT does not fall within the confines of either the quantum or classical paradigms.
Both these paradigms naturally emerge from the p-adic relational tree, as demonstrated in!~>4°, without the
need for any additional assumptions other than the acceptance of the Leibniz Principle. The main idea behind
RQM is that different observers may upon measurement/interaction give different but equally accurate accounts
of the same system. This idea is equivalent to the subjective wave function outlined above as well as the fact that
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an event newly measured will generally have different relations with all previous events thus two observers will
generally have generally different subjective knowledge on the same event. More over, in accordance with RQM,
while deriving the Emergent many worlds interpretation in the relational information framework it is evident
That the notion of state is inherently relative to a particular observer. There is no privileged, “real” description
of a state that is observer-independent. Thus, the state vector is not an absolute representation but rather a
description of the correlation between certain degrees of freedom within the observer and the observed system.

Notably, Rovellis Relational Quantum Mechanics (RQM) shares a significant ideological similarity with
DHT*, particularly in their treatment of quantum phenomena. However, RQM posits that all systems are
inherently quantum systems. Like DHT, RQM leverages the concept that any quantum mechanical measurement
can be deconstructed into a series of yes-no questions, which is then used to formulate the state of a quantum
system (relative to a given observer, much like in DHT).

In contrast to DHT, RQM asserts the completeness of quantum mechanics. Accordingly, RQM posits that
there are no hidden variables or additional factors that need to be introduced into quantum mechanics, based
on current experimental evidence. As demonstrated in®, quantum theory can be viewed as an emerging theory
stemming from a relational structure. Consequently, notions such as completeness and hidden variables become
irrelevant. From this perspective, the various interpretations of quantum mechanics can be seen as corresponding
to different emergence frameworks for quantum theory from an event-based relational structure.

We compare the postulates of RQM with the consequences of DHT and show they align. Originally RQM
included two empirical postulates:

o Postulate 1 Maximum Extractable Information: RQM posits that there exists a maximum amount of relevant
information that can be extracted from a quantum system. In DHT, this aligns with the assertion that the
maximal information about an event is encoded within the event branch contained in the infinite p-adic tree.

o Postulate 2 Continuous Information Extraction: According to RQM, it is always possible to obtain new in-
formation from a system. Similarly, DHT acknowledges that by introducing more events or asking more
questions within the relational structure, additional information is added to each event’s relations with other
events. This process is mathematically described as adding and elongating branches of a dendrogramic tree or
adding nodes, or “questions,” to the initial configuration of nodes.

Recently, additional postulates were introduced in the RQM interpretation**:

1. Relative facts: Events, or facts, can happen relative to any physical system. In our model framework the sub-
jectivity of information acquired by an observer fulfils this postulate more over 1)?Zx which is the objective
wave function, or property of the observer is only a relative concept to another observer.

2. No hidden variables: Unitary quantum mechanics is complete. As demonstrated in® and in the current mod-
el, quantum theory can be seen as emerging from a relational structure. Consequently, concepts like com-
pleteness and hidden variables become irrelevant.

3. Relations are intrinsic: The relation between any two systems A and B is independent of anything that hap-
pens outside these systems’ perspectives. As is shown in the current model interaction/measurements be-
tween observers or group of observers pertains only to the relational information one observer (group of
observers) acquire on the other (another group). In that sense also the “objective” 1)“Zx is dynamically
evolving only in relation to another observer or group of observers.

4. Relativity of comparisons: It is meaningless to compare the accounts relative to any two systems except by
invoking a third system relative to which the comparison is made. In our model, each observer possesses a
description of the scenario that is accurate from their perspective. However, due to the relativity of compari-
sons, these descriptions cannot be meaningfully compared. This parallels the situation described in Wigner’s
friend case, as elucidated by Rovelli regarding the significance of the aforementioned postulate.

5. Measurement: An interaction between two systems results in a correlation within the interactions between
these two systems and a third one; that is, with respect to a third system W, the interaction between the two
systems S and F is described by a unitary evolution that potentially entangles the quantum states of S and F.
In our model observer S and F are measured by W their eigenfunctions are both now part of its world line
and evolve in full correlation to the worldline trajectory of W.

6. Internally consistent descriptions: In a scenario where F measures S, and W also measures S in the same
basis, and W then interacts with F to “check the reading” of a pointer variable (i.e., by measuring F in the
appropriate “pointer basis”), the two values found are in agreement. In our model, two “same readings” cor-
respond to the same eigenfunctions in the observer’s world line, which results in no movement of the observ-
er through the 0 parameter space upon the second checking. Consequently, interaction without movement
leads to the same pointer.

Please notice again that all postulates of RQM are emergent in the relational information framework.
For more details on DHT coupling to Smolin’s approach to quantum theory emergence, see Appendix A2.3
and43—46'

Non-ergodicity of the relational information framework
In this section we will show that the relational information framework is generally non-ergodic.

Let us choose a level N and another level n such that N > n and mod (N, n) = 0. The N'th level is all
parameter points @y in the Minkowski-like space that represent dendrograms with N edges/different events.
We know that a single dendrogram is a certain configuration of M nodes. Moreover, we know we can represent
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it as a union of all ( 11\14 ) combinations of partial configurations of n nodes that are contained in the M

configuration. Each of the ( JXI ) unique configuration can be mapped to the n-level parameter points 8, in

the minkowski-like space that represent dendrograms with n edges/different events. Let’s consider all the N'th
level Ox- s points representing all unique dendrograms at the N’th level. If there are R On parameter points we
have R unique configuration of M ; nodes atlevel N. Again each of the R node configurations (M1,M2,M3....M,.)

is a union of all ( J\'r/{l ) , ¢ =1,2...R. combinations of partial configurations of n nodes that are contained

in the M configuration. Then again, each of the ( ]\747,1 ) unique configuration can be mapped to the n-level
parameter points 6, in the minkowski-like space that represent dendrograms with n edges/different events. Let’s
denote a; € a as a unique configuration from the set of all ( ]\TJL’ ) , ¢ =1,2...R, configurations for all 7. we

can have a discrete distribution of all unique configurations f (a;) = p;. Similarly for a single point in 8 we

have by, € b such that bla as a unique configuration from the set of all ( ¢ ) where i is fixed. Thus, for a

single point we have a uniform, trivial, discrete distribution f (bx) = p;, = 1/ ( J\g' )

Let’s now consider an observer that measures some N events over time. Thus, we have an ordered sequence
E= {El, E2, E3...EN}. Dividing the sequence to N/n blocks and constructing from each block a n-edge
dendrogram is equivalent to take have some g ordered sequence of the b configurations but generally gCb so

we have a configuration N/n unique configuration b,r = 1,2. .. (%) . Again, we obtain, for a single observer,
_ oy N
Lets prove that the mean of f(b.)# f(a;),r=12...(Y) andb,Ca. Since all a; represent
unique dendrogram lets denote them with a discreate values a; € N. First lets order p; such that
p1 > p2 > ps... 2> pr > 0and accordingly denote each a; such that

a1 > az > as... > ar > 0 as a consequence, we have for the observer by > by > b3... > bnx >0
And since p1 = P2 = P3...pn = « both pairs of series fulfill Chebyshev sum inequality: ™

i=1 1= =1
N N N
N n n n n n
_ > ) . A X )
" Zb]p] = bj (N J) (3.1)
j=1 j=1 j=1
Thus:
- 1 . 1
Z aipi T Z a; | > Osince T sz =7
i=1 i=1 i=1
X X x
Zb]'ﬁj - % b]' Z Osince % v]' =5 % (32)
Jj=1 Jj=1 j=1
Without loss of generality:
T T o x
1 . n
> aipi - <T Za) > b= | 5 Db (3.3)
=1 =1 Jj=1 Jj=1
Thus:
T o L& o
Z aip; — bjp; > (T Z ai) - % Z b; | wearedone
i=1 j=1 i=1 j=1
If

N
T n
(;Zal) — %ij > Qweare done
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else

N
n n
ai> T2 bi| <o (3.4)

//
Nl =
(1~

resulting in either

N
n

T ;
E a;p; —
i=1 J

T X T o
biﬁj > 0, Zalpi — Z biﬁ]’ < OOI‘Zaipi - Z biﬁj =0
1 i=1 =1 i=1 =1

With the two first options we are done, Else if the equality holds

3=z

b;

[

8

S

|

[~
&

S

I

[en)

(Y2
VN
el

M-
\i/
|
o

j=1

s N . T n ¥ 1N T
But (ﬁ Zjll bj) = Zf:l b;p; thus the following should hold: Zi:l aipi = & Ej”:l b; > (T Zi:1 ai)

T N
Z a; — % bj =2.2<0
i=1 j=1
T N
I &
> (a;+ 2 /T) - W" bj =0 (3.5)
i=1 j=1

but we didn’t set a; and since they represent unique node configurations, we can give them any discrete values so
let as “name” them: a; = (group size — i) * 100 then we change only one of the a;s, one that is not contained
in b to a value

ifz < 0a; = (group size — i) + q*T|Z|,ai ¢b,q#0

q*1
T

ifz = 0a; = (group size — i) + and qis such that

(group size —i — 1) x 100 < a; < (group size — i + 1) * 100 and a; # i * 100 will result in

T
Tn q* |z
D (o +/T) = 55 Y by =T #£0
i=1 Jj=1
N T N
n 1 n &
Zaipi — Z bipj =0 Z (T Z ai> - N bj > 0. (3.6)
i=1 j=1 i=1 j=1

Which is a contradiction.
Thus at least for the above “naming” procedure we have more possibilities to “name” the configuration such
that

T x
|Za¢pi - ijﬁﬂ >0
=1 =

Let’s assign for each unique dendrogram c, at the n level all its unique configurations a; that map to it.

! ({ah}H) =G

H € all a's such that ap, maps to ¢; and does not maptoc; fori # j

Thus, group H is L size ascending combination of 1, 2,... T'
Again: pr, > Dhy > Dhs... > Pry > 0and accordingly denote each a; such that
QAhy > Qhy > Qhg - o > Qay,, > 0 resulting in
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Lzahph > ( Z th

=1
L
Z Qh;Ph; = Z th
i=1 i=1

L
wherep’; = (thi) <1
i=1

But Zf an;ph; = D ;jc; where p; is the ¢; fraction of all the unique ap,; configurations that map to c;. Thus

B2 (3 ) (Y )

And we set

For a single observer we again repeat as above:

U € allb' s such that by, maps to ¢; and does not maptoc; fori # j
Thus, the group U is some L1 size ascending combination of 1, 2,... N/n
Again: as all p; are equal then Pu; = Pu; = Puy - --- = Puy, = n/N of the group Ul and accordingly

denote each b, ; such that
bui > buz > buz.... > byr1 > Oresulting in

L1
E bujﬁuj = QkCk
Jj=1

And again, since all by > by > b3 --- > by, > 0and p1 = p1 =p1 .. .151% = % where
f ({bu}U) = ¢;with probability g¢;
U € allb's suchthat b, maps to c; and does not maptoc; fori # j
Thus, the group U is some L1 size ascending combination of 1, 2,... T'

Again: we selectall P 7# 0 Pu; = Puy = Puy - - - - = Puy,; = n/N and where we order b,; such that
buy > buy > byg ... > by, > Oresulting in

K1 K1 K1
y n
YOITED 3 S A SE D o1
j=1 i=1 U, i=1 U;

For all 8 x points we have already shown in steps (4.1-4.6) we have much more “naming” procedure of a; that

K K1 T
INTEDIITED ) U 3 WD W
j=1 j=1 : P

j=1 H;

Jpj>0

it M:\z

And thus by “naming” correctly the a;/s in 6 the observer mean will be different also at 6,

Non-ergodicity has been suggested as causing non-locality?’, furthermore numerical simulations of the non-
ergodic series of block dendrograms have demonstrated apparent non-locality, with correlations values that
violate the CHSH inequality (see? and Supplementary Appendix A3.1 details for two such simulations setups).
The process in® involves Alice and Bob selecting “different naming,” and confirming if that naming aligns with
the observed block dendrogram. We extend, in the current study, the “naming” concept to any type of naming,
Enabled by the distinct parameterization of dendrogramic structures in a Minkowski-like space. Additionally,
numerical simulations' of such mapping ( f : @n — 6x ) resulting in less distinguishability which in turn
explains explicate-implicate order with reminiscent correlations between the ajsandc;/s configurations
(Fig. 5). We note that the implicate and explicate order are an ontic and epistemic ideas established by Bohm
which emerge both in DHT with simple and clear connection.
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TIME SERIES OF EVENTS:
EvE2Es B Es Es EvEs

0 [ ]
|E1 B+ B E E E E E

f:e,> 6,
2
1
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r==dt==y ==+ ==n
| [ |
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| I [ | |
! == : : =t !
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| | | .o 1 1 !
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Fig. 5. Illustration of the consequence of decomposing a time series of events into blocks of events for
relational information structures. Construction of the relational information structure from a discrete
consecutive series of events. By decomposing the series of events into two blocks {E, E, E, E,} and {E, E, E, E}
and constructing from each block a dendrogram is equivalent to applying the map f : O — 0, to two partial
node (“question”) configurations.

Discussion

Exploring the relational information framework with the p-adic treelike geometry offers new insights on relational
information evolution. Experimental data, represented by dendrograms, undergo dynamic restructuring upon
the addition of new information. By connecting relational event models with conventional ones based on real
spacetime, we introduce a statistical causality approach, encoding dendrograms with real parameters to map
them onto four-dimensional spacetime. These parameter spaces, reflecting subjective observer knowledge,
enable transformations akin to special relativity within the dendrogramic configuration space, expanding the
scope of DHT.

The intriguing co-existence of s Bohmian mechanics with the Many-Worlds Interpretation within the
framework of relational information using DHT, along with the fulfillment of Rovelli's RQM postulates,
underscores the fundamentality of the relational approach. Our model consolidates the dynamics between
observers and systems into what we term an “observers universe,” where measurements are conducted by
observers on observers themselves.

An interesting feature of our model is the tight link between an observer’s measurements and their world
line, underscoring subjectivity’s role in driving dynamics. While the ontic world line remains static, represented
by the p-adic infinite tree, dynamics emerge from subjective parameters, revealing subjectivity as the primary
driver of dynamics.

The adherence to the ontic/epistemic Leibniz principle directly leads to Machian relationism, not as an
assumption, in contrast to theories like shape dynamics and Brans-Dicke theory?®*32, but as an intrinsic
outcome of the p-adic tree representation of events. Furthermore, the endorsement of the Leibniz principle
gives rise to a background-independent theory, akin to theories such as shape dynamics, loop quantum gravity,
spin foams, and causal set theory?® =318, We note that Rovellis partial observables which are quantities that can
be measured locally, but don’t provide complete information by themselves are in DHT the events themselves.
In other words, a partial observable is any quantity you could theoretically measure, but which lacks meaning
in isolation. These observables are not gauge-invariant and are Context-dependent. A complete observable was
defined by Rovelli as an expression that combines partial observables in a way that results in a gauge-invariant
quantity. Complete observables are constructed by linking two or more partial observables to create a relational
observable. Thus the partial observables are the objective but since an observer in DHT has a subjective view of
the universe the single event only have meaning when related to other event. Therefore, each dendrogram, which
is in fact some configuration of Leibnitz monads, is already describing all observables as relational observable.
The basic relational and dynamical laws of these dendrograms suggests (although still needs to be proved)
gauge invariance on the Minkowski-like parameter space - implying a correspondence to Rovelli’s complete
observables.
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DHT extends beyond physics, applied in brain modeling, medical diagnostics, and potentially machine
learning. Our approach aids in understanding clinical data analysis, enriching our understanding of complex

systems”S.

Opverall, studies within DHT hint at unifying quantum and classical paradigms, yet more research is required
to understand how phenomena like gravitation and conventional physics emerge from this framework.

Data availability
The datasets generated and/or analysed during the current study are available in the kaggle repository, https://w
ww.kaggle.com/datasets/odedshor/dynamics-of-relational-information.
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