www.nature.com/scientificreports

scientific reports

W) Check for updates

OPEN A closer look into the structure and

magnetism of the recently fallen
meteorite Ribbeck

Mieszko Kotodziej'™, Danuta Michalska?, Karol Zateski?, Igor latsunskyi?,
Andrzej Muszyriski? & Emerson Coy?!

Meteorites are a unique source of geological information about our early Solar System and the
difference between planets and asteroids. In this study, meteorite Ribbeck (2024 BX1, SAR 2736) from
the recently fallen asteroid (21.01.2024), collected right after the fall, was investigated. This meteorite
is classified as a coarse-grained brecciated aubrite. The main mineral phases are enstatite, albite,

and forsterite. X-ray structural analysis and Raman Spectroscopy indicate its complex metamorphic
history, starting with magmatic crystallization and following metamorphic evolution (e.g., impacting).
Energy-dispersive. X-ray spectroscopy (EDS) confirms the presence of unusual minerals such as
oldhamite, brezinanite (daubréelite, zolenskyite), wassonite/heideite, and alabandite, that formed
under highly reductive conditions, with oxygen fugacity AIW (logf0,) in a range of -5 to -7. Similar
conditions can be found on the Mercury or the Asteroid 3103 Eger. Magnetic measurements confirm
that the primary magnetic components in the meteorite are accessory minerals - sulphides and metallic
nodules.

Today, humankind can send spacecraft, landers, and rovers to another planet, with each one leaving, except the
obtained knowledge, numerous questions to be answered. When it comes to planetary science, it is commonly
known that meteorites are a great source of knowledge, especially about the formation and evolution of the Solar
System!2, but most of the found meteoritic pieces already interacted with the Earth’s atmosphere (and water)
which in many cases resulted in their incomparably high level of weathering®.

Therefore, meteorites collected right after the fall are even more valuable from a scientific point of view. Each
day, several tons of meteorites reach the surface of our planet, most of which are just cosmic dust*. Most known
meteorites originate from the Asteroid Belt between Mars and Jupiter®. The first observation of an asteroid was
made over 200 years ago, to be exact, in 1801 by Giuseppe Piazzi®. However, the first asteroid observed that was
confirmed to impact the Earth’s atmosphere was made by Richard A. Kowalski just in 2008, only a day before
the fall”. The meteorite fall took place on October 7th at 02:46 GM. It entered the atmosphere and fell above
northern Sudan®. The meteorite, later named “Almahata Sitta,” is already one of the best-known anomalous
urelite-type meteorites and, as mentioned above - the first one originating from an asteroid that was first to be
confirmed to collide with our planet before the phenomenon®. Recently, an analogous occurrence took place.
The asteroid SAR2736 (2024 BX1), observed just several hours before impact by Krisztian Sarneczky, entered
the atmosphere on January 21st, 2024, at 00:32 UTC (01:32 CET). The harmless meteorite shower took place
near Berlin, Germany - in the town of Ribbeck. It was already the eighth and smallest asteroid observed before
impacting Earth’s atmosphere.

In this paper, we investigate, in a non-destructive manner, the mineral composition and structural analysis
of the Ribbeck meteorite obtained from two different pieces found by an author. First, the paper focuses on
the chemical analysis of the different phases of the meteorite using scanning electron microscopy (SEM) with
energy dispersive spectroscopy (EDS) followed by structural analysis using X-ray diffraction (XRD) and Raman
spectroscopy, and finally on magnetic response of selected pieces using superconducting quantum interference
device (SQUID). Our studies show that the meteorite mainly comprises the enstatite, albitic plagioclase, and
small assistance of the forsterite crystals and sulphides, consistent with aubrite-type meteorites. X-ray diffraction
followed by Raman spectroscopy confirms that enstatite is characterized by the Pbca space group, with smaller
elementary cell parameters than enstatite observed naturally existing on Earth. Albitic plagioclases (despite
most being pure albite) can be classified as an albite-oligoclase-type of feldspars. Analysis under an electron
microscope confirms no presence of Fe in enstatite. It reveals several sulphides, such as troilite (FeS), oldhamite
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(Ca$), alabandite ((Mn, Fe)S), and brezinaite enriched with Ti (Cr,S,). Several metallic nodules built of FeNi
(enriched with Ca and Si) were also observed. Additionally, several nodules built of Fe-Cr (with signs of Si and
S) were noticed, but they most likely formed as sulfides melting products upon entry into the atmosphere.

Strewn field

Due to early predictions, plenty of videos and data were available for the science; thus, three teams attempted
to calculate the possible strewn field for a meteorite fall - Pavel Spurny, Jiti Borovicka, and Lukas Shrbeny from
the Czech Republic!’, Denis Vida’s team from The University of Western Ontario in Canada and Jim Goodall
from the USA. All three maps overlapped, confirming the accuracy of each calculation, which led the meteorite
hunters and scientists to the field, where they discovered over 1.7 kg of meteoritic matter in over 200 pieces'!.
Ribbeck strewnfield represents an inversed type, which means the size of recovered meteorites was arranged
from the biggest on the west, to the smallest on the east. If the fall was not observed, one could conclude that the
strewnfield clearly shows that the meteorite fall took place from east to west. Nevertheless, the asteroid entered
the atmosphere of Earth at a steep angle (only about 14.5° from the vertical, ENE) with a velocity of 15 km
s71. The gale coming from the WNW created a strewn field that was rotated approximately 139° between the
fall’s directions and the strewn field’s elongation. The predicted strewn field calculations, asteroid trajectory, and
meteorological information were recently published®.

Ribbeck (2024 BX1) — an Aubrite

According to The Meteoritical Society (Meteoritical Bulletin Database), the 2024 BX1 meteorite (Fig. 1) was
classified as an aubrite by Museum fiir Naturkunde in Berlin and received the name “Ribbeck”. Aubrites are
extremely rare enstatite achondrite-group meteorites, which are mainly composed of enstatite (Mg-rich
pyroxene), albitic plagioclase, almost Fe-free diopside, forsterite, and unusual sulphides, naming several - troilite
(FeS), oldhamite (Ca$), brezinaite (Cr,S,) or heideite (FeTi,S 4)12. They also contain small amounts of Si-bearing
FeNi metal'?, resulting from highly oxygen-depleted conditions, most likely unknown to Earth nowadays'*. Most
known aubrites and enstatite chondrites contain similar isotopic variations for Cr, Ca, and Ti, remarking that,
most likely, these meteorites originate from a common celestial source!®. Aubrites, just like enstatite chondrites,
went through metamorphic (impactful) events in early Solar System formation'®. It was suggested'”that over
time, the rocks originating from the Aubrite Parent Body (AuPB), after its possible destruction, were captured
by other planets and asteroids. Reaccretion like this is one potential explanation for mesosiderite-type meteorite

formation's.

Cosmic ray exposure and origin of aubrites

Aubrites are also known for their very long cosmic ray exposure (from about ~ 12 Myr for Aubres, up to over
100 Myr for Norton County), which is among the longest stony-type meteorites, marking their pre-irridation
as a part of a parent body'®. Mineral phases in aubrites crystallized just about 4.5-4.8 Ma after the Solar system
formation?®. Aubrites’ chemical composition also matches the enstatite-high and enstatite-low (EH and EL)
chondrites, which could lead to the conclusion that they could share the parent body. However, when comparing
these two types, several differences have to be marked: the difference in cosmic ray exposure time; a five times
higher abundance of Fe-Ni to troilite ratio in the case of aubrites; lack of chondritic clasts in brecciated aubrites;
the difference in metallic grain bulk composition; different rare earth elements (REE) content in oldhamite?!:?2.
Trace element analysis of aubrites not only confirms their igneous origin®, but also suggests that after their
formation, most aubrites underwent metamorphic stages, including impactful events?*, Moreover, the variation
of REE among the minerals in aubrites could not have been caused only by fractional crystallization from magma.
Rather, it suggests an incomplete equilibrium, indicating brief melting events that resulted in segregating metals
and sulphides?®. Aubrites represent the most reduced magmatic conditions in the achondrite-type meteorite
group, with oxygen fugacity AIW (logfO,) ranging from —5 to —7%¢. The cooling rate of aubrites (for instance,
Norton County is estimated to be 1-10 K/ Ma)?” is also much slower than the cooling rate of enstatite chondrites
(for instance, for Abee, it was about 100 K / hour)?®. The AuPB of the most known aubrites are different and are
proposed to be E- and E(II)- type asteroids, such as 3103 Eger or 2867 Steins?!. Unlike a howardite-eucrite-
diogenite (HED) group, whose parent body is closely related to asteroid 4 Vesta?®, no such object matches
perfectly in the solar system for aubrites®.. It was noticed that the composition of aubrites could be similar to that
of enstatite chondrites’ parent bodies®’.. However, for enstatite chondrites, one of the more probable options for
a parent body is an asteroid (16) Psyche®. Spectral analysis of aubrites confirms that they generally match with
those of Tholen E-/Bus-DeMeo Xe-type asteroids; still, the near-infrared analysis reveals that the match is not
perfect®*. This difference can be explained by the cosmic dust covering an asteroid’s surface - and a similar case
of spectra difference was reported recently on Ryugu®. In the case of the Ribbeck, spectra analysis of meteorite
pieces was recently performed, and it was confirmed that it was consistent with other aubrites®.

Similarities to the proto-Mercury

The literature suggested that aubrites could be related to the surface of the Mercury®. Similarities have been
pointed out multiple times'*?23, Both aubrites and the surface of Mercury are composed mainly of Fe-poor
pyroxene (enstatite), olivine (forsterite), Na-rich plagioclase (albite), and Mg-Ca-Fe sulphides®. It also confirmed
that Mercury’s silicates-crust has been differentiated*’. Moreover, the oxygen fugacity AIW (logfO,) of aubrites
(=5 to —7)% is almost identical to those of the surface of Mercury (-5 to —6.5)*!. Petrological modeling of
Mercury’s crustal composition results in similar conclusions that its surface is mainly built of norite (an igneous
rock composed of plagioclase, orthopyroxene, and olivine)*2. However, the model proved that feldspar on the
Mercury should be highly enriched with Ca, such as on the Moon??, which is not the case with aubrites (mostly
Na-type). Moreover, the spectral analysis of Mercury’s surface reveals that the lower crust and upper mantle
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Fig. 1. (A) and (B) Ribbeck meteorite fragment weight 22.04 gram, size 3 x2,5x 2 cm, collected February
3rd 2024, 11:21 CET (UTC+ 1) by Mieszko Kotodziej. The whole specimen is covered with a very thin bubbly
glass-like transparent fusion crust. (C) and (D) interior part of the Ribbeck meteorite. White crystals are
enstatite, darker grey matrix is composed of mainly enstatite (with feldspar and forsterite). Darker spots are
sulphides and metallic fraction (FeNi).

should be enriched in Fe and Ti oxides*%. This type of analysis left immediate answers of a possible parent body,
for instance, an asteroid Vesta - for specific basaltic (HED group) achondrites*®, and additionally of Vestas’
origin, history, mineralogical characterization and diversity?*6:47,

Results

X-ray diffraction and mineral composition (EDS)

X-ray diffraction confirmed the main presence of orthorhombic phase with the Pbca space group (Fig. 2A, En),
with elementary cell parameters in a range of a=18.05-18.15 (+/- 0.03), b=8.67-8.81 (+/- 0.02) and c=5.09-
5.21 (+/- 0.02) A, which is identified as enstatite. Enstatite crystals contain 38-42% of MgO, 58-61% of SiO,, and
a trace amount of CaO (0-0.9%). It is also important that there was no iron (Fe,O,) in the structure of enstatite
crystals, except for those in the closest neighborhood to sulphides (Fig. 4D), where an enrichment in Fe and S
was observed, which shows an interaction between these phases, most likely long after the crystallization from
magma (caused by metamorphism, diffusion). Nevertheless, as mentioned above, the most analyzed enstatite
crystals were almost pure MgSiO,. No diopside crystals were observed. The orthorhombic phase with the Pmnb
space group is identified as a forsterite (Fig. 2A, Fo). The observed olivine crystals contained 25-57% MgO,
3-27% Fe203, and 0-16% MnO. It is important to note that analysis conducted on various olivine crystals
revealed differences in composition. Most analyses show that olivines are mostly pure forsterite (Fo,,,) and
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Fig. 2. (A) X-ray diffraction pattern of two different 2024 BX1 meteorite pieces (En- orthoenstatite, Fo —
forsterite, Ab- albitic plagioclase) and (B) Ternary diagram for feldspars observed in the Ribbeck meteorite
(AD- albite (Na-), Or- orthoclase (K-) and An- anorthite (Ca-) feldspars). As shown in the diagram, most of the
plagioclases are classified as an albite (Ab).
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Fig. 3. Backscattered electron (BSE) images of Ribbeck meteorite. (A), (B), (C) — Crust (grey) with visible
crystals of sulphides (white) — brezinaite and troilite. (D), (E), (F) - Cracks in enstatite (grey) filled with
molten metals (Fe) and sulphides (mainly troilite).

forsterite-fayalite type (Fo,, ,Fa,, . ). One of the olivine crystals has high MnO content (Fo, Fa, Te,,) with
a small amount of Ca in its structure (0.3-0.5% CaO). The observed triclinic (anorthic) phase with a C-1
space group is identified as an albite (feldspar) (Fig. 2A, Ab). Yet, as shown in Fig. 2A, these two phases are
just a minority. Feldspars are mainly composed of Na,O (7-13%), CaO (0-2.6%), Al,O, (17-21%), and SiO,
(67-71%), with a trace amount of K,0 (0.4-1.8%). According to EDS analysis, signs of zonal crystallization
in feldspars were absent. As shown in the ternary diagram (Fig. 2B), most of the observed plagioclases in the
2024 BX1 meteorite are of the albite type (Ab93AnSOr2, Ab93An ,Or,, and Ab92An50r3,). Only two crystals were
classified as oligoclase (Ab,,An,Or ,and Ab_,An,,Or,), and one as anorthoclase (Abg,An Or ). Troilite crystals
(Figs. 3E and 4A) have a chemical composition of Fe (48-55 at%), and S (37-49 at%) included with a trace
amount of Ti (0-6 at%), Cr (0-4,8 at%) and Ca (0-10 at%). Brezinaite crystals (Figs. 3A and C and 4, A and B)
were composed of Cr (29-47 at%), S (38-66 at%), and Ti (2-5 at%), with a trace amount of Ca (0-5 at%), Fe
(0-2.5 at%) Ni (0-0.2 at%) and Mn (0-0.3 at%). However, using only EDS investigations, it was impossible to

Scientific Reports |

(2025) 15:6866

| https://doi.org/10.1038/s41598-025-90383-8 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

A)

Troilite gt

Brezinaite (Ti)
500 pm
D)

Enstatite
(tFe)

Fe(Ni) /@

CAN

Alabandite

Wassonite (Cr)

i

500 im Enstatite
Daubreelite /

Schreibersite (rim) ) ; * Zolenskyite 3
l | En 10 e l%nstatnte

‘Alabandite (Fe)
av
> B

E o

Fig. 4. Backscattered electron (BSE) images of Ribbeck meteorite focused on crystal form of sulphides (light
gray, white) such as (A) wassonite/heideite (Cr), (A), (B) brezinaite, (A), (C), (F) alabandite, (E) oldhamite, (F)
daubréelite/zolenskyite, (F) bubbles filled with sulphides that most likely recrystallized due to melting while
entering the Earth’s atmosphere.

distinguish them from freshly discovered zolenskyite*. Alabandite (Fe) crystals (Fig. 4A, C, F) were composed
of Mn (28-41 at%), Fe (12-19 at%),

S (42-56 at%) with a trace amount of Ca (0.3-0.5 at%) and Cr (0-0.3 at%). Oldhamite crystals (Fig. 4E) were
hard to analyze because of their possible initial weathering, which affected their composition. In this work, we
present just two analyses with Ca (49-51 at%) and S (49-50 at%) with a trace amount of Mn (0-0.6 at%). Metallic
concentrations are mostly kamacite crystals (FeNi) (Fig. 4D), with over 80 at% of Fe, 0-2 at% of Ni, and enriched
with Ca (0.2-14 at%) and Si (0-3 at%). An enrichment of Ti (up to 6 at%) and K (0-0.2 at%) was detected
occasionally. Several different metallic concentrations were detected near the fusion crust, with a composition
of CrFe, which most likely formed due to the melting of sulphides on the atmosphere entrance (Fig. 3D, F)
(according to the metallic compositions previously brezinaite, daubréelite or unknown yet sulphides). The
observed crystal of kamacite (Fig. 4A) had a schreibersite rim around it, which also accumulated Ni (39 at%).
Detailed results of the EDS investigations are presented in Table 1.

Raman Spectroscopy

Raman spectroscopy was used to aid in identifying mineral phases in the meteorite. Several representative
spectra for three mineral phases, which are enstatite, plagioclase(albite), and forsterite, are shown in Fig. 5. The
main component, enstatite, with an orthorhombic Pbcasymmetry group, has characteristic Raman lines at 342,
663, 684, 1012, and 1032 cm™! (Fig. 5A). No clinoenstatite phase (C2/c) presence was detected, which should
be visible with an additional peak around 280 cm™!*°. Characteristic Raman lines for forsterite in the Ribbeck
meteorites represent a typical pure forsterite spectrum® (Fig. 5B). The primary peaks are 824, 856, 881, 918, and
963 cm™!. Active phonons below 500 cm™ are the lattice modes (Raman-active phonons), where Mg, translations
are mixed with SiO, translations and rotations'. The peak at 824 cm™ is related to the Si-O stretching, 856
and 963 cm™ to Si-O stretching and SiO,tetrahedra breathing. Peaks at 881 and 918 cm™ are connected to
v3vibration mode. Sharp peaks at 918 and 963 cm™! indicate that three analyzed forsterite crystals have no Fe
impurities®?. The Feldspar (albite) spectrum is typical for Na-rich plagioclases (Fig. 5C). Characteristic Raman
lines are located at 155, 168, 222, 285, 472, and 508 cm™!. The first three overlap with several more, which is
most likely the result of the previous annealing of feldspar (due to metamorphism), which was already reported
for albite® and can be connected with tetrahedral cage-ring rotation. The peak at 222 cm™ is well defined in
two samples, which is most likely a pure albite spectrum; however, the disappearance of the peak at 155 and
the appearance of another peak at 168 cm™! in three different spectra is most likely connected with the Ca-
substitution in feldspar, which was already mentioned in the EDS analysis. These changes in the Raman spectra
analysis had already been deeply studied®; thus, we came to a similar conclusion. Another peak at 285 cm™lis
assigned to Na(Ca) displacements perpendicular to the axis and shear deformations of the tetrahedral cage along
the a-c direction®. The peak at 472 cm™! presence is connected with the motions including Na(Ca)-coordination
expansion with tetrahedral ring compression in the a-b plane. The peak at 508 cm™ is connected with the
vibration of the tetrahedral cages along the c-axis®*. When modeled, McKeown connects it with compression-
expansion motions in a four-membered tetrahedral ring and Na(Ca) translation along the a axis®. It is also
known to be not affected by any substitution. What is more, these three peaks were noticed to be broader after the
annealing. The additional small peak at ~575 cm™! is connected with the tetrahedral deformation. Additionally,
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Fig. 5. Characteristic Raman lines obtained from Ribbeck meteorite fragments, which correspond to (A)
Enstatite (Fe-Free) - green, (B) Forsterite - blue and (C) Feldspars (albite) - grey. The Enstatite and Forsterite
crystals are similar to each other, while feldspars differ a little, which is caused most likely by their different
chemical composition (Na/Ca substitutions).

the presence of brezinaite and troilite was confirmed by Raman spectroscopy (and possibly daubréelite, see the
supplementary materials).

Magnetic measurements

The magnetic properties were studied for two samples taken from two different places of the meteorite, both
taken from its inside part. The first contained mainly dark fragments (brecciated part, sample A), and the second
contained mainly white fragments (enstatite crystal, sample B) of the meteorite. Magnetic field-dependent
magnetization M(H) measurements were performed in the 2 to 300 K temperature range. In the case of sample
A, the coercive field increases from 443 to 586 Oe when the temperature is changed from 2 to 10 K, respectively
(Fig. 6A). A further increase in temperature results in a monotonic decrease of the coercive field to 367 Oe at
300 K. This behavior can be explained by the presence of Fe, Cr, Ti, and Mn sulphides (likely troilite, which
coercive field in 5 K is estimated to be 560 Oe)>°, and additionally, FeNi-based (kamacite) metallic particles”’,
which are scattered all over the meteorite in low concentration (less than 1%, see SEM picture on Fig. 6B).
Sample A’s remanence magnetization (at zero field) is very low and decreases with temperature from 0.016 to
0.011 Am?kg! at 2 and 300 K, respectively. These values are in a range of, for instance, Neuschwanstein enstatite
chondrite (0.008-0.01 Am? kg!), whose magnetic properties were determined mainly by the presence of FeNi
(kamacite)®. Temperature dependence of the magnetization of sample A is shown in Fig. 6B. The Magnetization
versus Temperature M(T) curves were collected in Zero field cooling (ZFC) and field cooling (FC) mode at 10
kOe. Both curves almost overlap. However, there is a visible distinct in the FC magnetic behavior at 115-120 K
(main peak at T, = 117 K). Sample B shows a similar magnetic nature. Although, as seen in M(H) measurements,
the coercive field reaches much lower values (Fig. 6C). At low temperatures, in a range of 2 to 10 K, the value
of the coercive field increases from 214 to 263 Oe, respectively. Above the peak temperature, the coercive field
decreases to 157 Oe at 300 K. The remanence of sample B is slightly lower from sample A and decreases from
0.011 to 0.007 Am? kg~! when the temperature increases from 2 to 300 K, respectively, and could be connected
with kamacite presence, as mentioned in previous sample®®. The lower coercive field values and remanence
values in the brecciated part, when compared to the enstatite crystal, can be associated with fewer sulphides and
metallic particles (see SEM picture in Fig. 6D) and possibly their different composition. Moreover, this sample
has more of a paramagnetic behavior than sample A, as seen on the M(H) curve. No transition at about~ 120 K
is present, which was the case for sample A in the M(T) measurement (Fig. 6D).

Discussion

Most of the Ribbeck meteorites are rounded fragments, oriented (with flow lines), and partly (or fully) covered
with transparent to white, cracked fusion crust (which changes to brownish in some areas) (Fig. 1). Aubrites are
known to be very fragile®’; therefore, many pieces were broken. By an outlook, this meteorite looks almost identical
(e.g., color, crust, enstatite to plagioclase ratio, crystalite sizes) to the aubrite fall in 2021 in Morocco - Tiglitﬁo.
Similarities in the chemical composition of RibbecK’s meteorite and different aubrites, such as Aubres, Norton
County, and especially Bishopville, were also recently confirmed!’. In opposition to the Shallowater aubrite®!, it
is brecciated. Specifically, it is a coarse-grained achondritic breccia, composed mostly of macroscopic (~1 cm)
enstatite crystals, smaller (millimetric-size) feldspars (albite), and forsterite (up to 2 mm) crystals. Its brecciation
proves it went through metamorphic evolution (such as impacting). The elementary cell of orthoenstatite
crystals observed in the Ribbeck meteorite is smaller than those known on Earth (a=18.23,b=8.84, and c=5.19
A), and similar to the enstatite measured in situ with a pressure of 5.72 GPa and a temperature of 1473 K.
Moreover, studies in situ for even higher pressures confirm that the elementary cells are getting even smaller
with the constant presence of a high pressure®%4. One has to remember that impurities can also have a notable
effect on the elementary cell parameter. No presence of proto enstatite (high-temperature phase) or high or low
clinoenstatite (high/low-pressure phases) was detected, which suggests that according to the phase diagram
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Fig. 6. Magnetic measurements of the Ribbeck meteorite: Hysteresis loop magnetization vs. external magnetic
field of (A) darker (brecciated, with more sulphides) and (C) white fragments (enstatite), and magnetic
moment vs. temperature of (B) darker and (D) white fragments, obtained with SQUID. Magnetization vs.
temperature measurement was performed with an external magnetic field of 10 kOe.

(Fig. lin the ref%). , the temperature of formation was above 1120 K, and the pressure ranged from 0.5 to 6
GPa. The Raman spectrum of all enstatite crystals is similar to those obtained for decompressed clinoenstatite
in laboratory®. These results are also consistent with a recently published paper, where the white and dark
lithology of the Ribbeck meteorite were also tested by Raman spectroscopy®’. Raman spectra lines of both ortho-
and clinopyroxenes are very similar, but in Ribbeck’s enstatite crystals match almost perfectly with all peaks.
Slight shifts and a broadening are most likely caused by structural damage (local metamorphism on AuPB) and
according to EDS, possibly a small differences in the chemical composition. Shock processes can be reliable
for short-range lattice disruption, and it is connected directly to Raman response - the higher the intensity of
shock processes, the broader Raman spectra peaks of the crystal®®. One can conclude the Ribbeck meteorite
is consistent with the S2-54 shock stage in enstatite, which is similar to most known brecciated aubrites shock
stage®. Additionally, the Raman data obtained in this work for albitie crystals are consistent with the literature”
for S1-S3 shock stage (less than 20 GPa), therefore, we report the shock stage of S2-S3 for the Ribbeck meteorite.

What is more, the presence of sulphides such as oldhamite, troilite, alabandite, and brezinaite was confirmed.
Their size was primarily in the micrometric/nanometric scale (Figs. 3 and 4). Small metallic nodules (Fig. 4D)
built of FeNi (Fe,,_ Ni (x=1-7)) were also present. Oldhamite (and other sulphides found in aubrites) is known
for its instability in terrestrial conditions, which was proposed to be the case for its absence or low quantity of
this mineral phase in laboratory samples’!. That was also the case of the absence of characteristic spectra of
oldhamite (0.5-um band, which is observed in E-type asteroids) in aubrite-type meteorites. The origin of the
Ribbeck meteorite is most likely igneous, proven by the depletion of metals and their sulphides while containing
a high amount of silicates (which also marks the differentiation). Nevertheless, impacting and igneous origins
can have similar cooling rates and often share very similar textural remarks’2. The brecciation for aubrites is
proposed to have taken place in the first 4 Myr of the Solar System formation”*. Highly reductive conditions
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cause some lithophile elements to behave as siderophiles or chalcophiles. For instance, Ca, Fe, Cr, Mn, and Ti are
cumulated in sulphides, and Fe, Ni, and partially Si are cumulated in the metallic part. Most REEs in aubrites are
cumulated in the oldhamite mineral’, so in this case, REEs also act chalcophilic. It must also be mentioned that
oldhamite presence and diopside absence can be explained by high S fugacity and very low O fugacity, which
limits the stability of diopside in favor of oldhamite”. However, in Ribbeck, small ,traces” of diopside were
recently reported!!. When taking a closer look into sulphides, for daubréelite to be exsolved from troilite, the
temperature has to be lower than 600 °C. In the case of niningerite, the temperature has to be below 500 °C7°. In
the case of the Ribbeck meteorite, no such exsolvation has been observed, which agrees with recently published
papers. It emphasizes the value of freshly collected samples for scientific research. They provide researchers with
the most accurate and up-to-date information, allowing for more precise analysis and results. The sulphides
found in aubrites, such as alabandite, daubréelite, brezinaite, niningerite, wassonite/heideite, and (especially)
oldhamite, are those considered very susceptible for weathering in terrestrial conditions.

The average mass-normalized magnetic susceptibility (xm) of Ribbeck meteorite pieces was tested recently*’.
The mean value was estimated to be logx, =3.13, which lies in the proposed magnetic classification range for
achondrites”’, and other aubrites’®. Observed aubrites’ logxmvaries from less than 2 (LAP 03719, anomalous
aubrite) to almost 5 (Shallowater, unbrecciated aubrite)’®. The content of ferromagnetic metal (mostly kamacite)
was in a range of 0.1-0.6 wt%. As an example, the magnetic behavior of the Ribbeck meteorite is similar to
experimentally obtained komatiites (ultramafic extrusive rock)”. Komatiites are highly enriched with Mg and
depleted with Si, K, and Al, which both agree with known aubrites’ composition®’. Nevertheless, speaking of
komatiites, in aubrites, the high abundance of sulphur and low amounts of iron differs from any basaltic rocks
found on Earth or even on the Moon®.

According to the literature, the coercive field exceeding 500 Oe could be caused by the preferential alignment
of kamacite crystals, and the possible presence of ordered FeNi (tetrataenite) grains®2. The presented noticeable
change in the FC magnetic behavior of brecciated fragment at ~ 117 K can be explained by Fe-bearing sulphide
phase evolution, which similarities can be found in literature, as an example - for troilite and daubréelite>®8,
which both were confirmed to be present in the Ribbeck meteorite. The magnetic transition could be mistakenly
taken for the Verwey transition in magnetite®>. However, no iron oxides were detected in the analyzed pieces.
Still, signs of weathering of sulphides in the Ribbeck meteorite were detected recently in different work!!. The
presence of ferromagnetic pyrrhotite in the Ribbeck meteorite could also not be excluded®.

Conclusions and summary

2024 BX1 (SAR2736) was an eighth observed asteroid, detected shortly before the impact. The investigations
of the meteoritic matter confirmed that the Ribbeck meteorite belongs to a rare aubrite-type achondrite group.
XRD and Raman spectra investigations show that it mainly comprises Fe-free enstatite, forsterite, and Na-rich
feldspar (albite). EDS investigations additionally reveal that these three main phases are assisted by sulphides,
most of which are not to be found on Earth. Troilite, brezinanite (daubréelite/zolenskyite), alabandite, oldhamite,
and wassonite/heideite (Cr). Next, metallic phases such as kamacite (enriched with Si) were often observed with
a close sulphides neighborhood. Schreibersite crystals embedding kamacite and troilite crystals were detected.
These mineral phases are evidence of a highly reductive environment (depleted in fO,), with ATW reaching values
as low as =5 to —7. That caused many elements that behave as lithophiles in Earth’s conditions to switch their
character to chalcophiles or siderophiles. These are primarily metals such as Ca, Ti, Cr, and Mn (and partially
Si). We assume that CrFe alloys may be a product of atmospheric entry melting, which caused the sulphur to
evaporate. Magnetic measurements show the high value of the coercive field of the dark-part sample (over 500
Oe); however, the magnetic moment is relatively low (0.1-0.3 Am? kg™!), which we connect to the preferential
crystallographical alignment of suplhides and magnetic particles and the possible presence of tetrataenite phase.
The magnetic transition was found in M(T) measurements, similar to troilite and daubréelite transition at low
temperatures, with the highest magnetic moment peak at ~120 K, which would be another confirmation that
sulphides and metallic FeNi are primarily responsible for the magnetic behavior of the Ribbeck meteorite. One
of the potential sources (AuPB) of aubrite-brecciated type meteorites is 3103 Eger or 2867 Steins. One has to
remember, these meteorites (and possibly these asteroids) may also originate from the proto-Mercury, from
which the mantle was blasted off due to a massive impact in the past, and the aubrite-type meteorites are just
small pieces of its previous mantle in early Solar System Formation.

Methods

X-ray diffraction experiments were performed on Empyrean (Panalytical) X-ray equipment, working on a Cu
Ka (45 kV and 40 mA) lamp. Measurements were conducted on pieces of the Ribbeck meteorite, placed without
crushing on a zero background silicon holder. Samples were repositioned and re-measured to increase the
statistical contribution of all the crystalline phase samples.

Measurements of Raman scattering were conducted using a micro-Raman spectrometer from Renishaw,
which includes a confocal microscope by Leica. The analysis was carried out in a backscattering setup, achieving
a spectral resolution superior to 1.0 cm ~!. The incident light was unpolarized and the detector used for capturing
the light did not incorporate any polarization filters. The spectra resulting from Raman scattering were generated
using a 488 nm laser source. This beam was concentrated onto the sample areas using a microscope objective
that magnifies 50 times, featuring a numerical aperture of 0.4.

The morphology and chemical composition were studied with scanning electron microscopy (SEM) using
the HITACHI S-3700 N variable-pressure electron microscope with a tungsten filament, equipped with the
ThermoScientific’ Energy Dispersive Spectrometer (EDS) detector and the Noran System 7 (NSS) analytical
software. Minerals were located and identified using BSE mode at an accelerating voltage of 20 kV, a working
distance of 10 mm, and a vacuum of 25 Pa. Semi-quantitative EDS X-ray microanalysis was performed using
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EDS spot analysis with an acquisition time of 80 s and maximum process time to achieve the best resolution
of peaks in spectra. SEM-EDS was performed at the Faculty of Geographical and Geological Sciences (Adam
Mickiewicz University, Poznan).

Magnetic measurements were performed on a SQUID magnetometer, MPMS-XL (Quantum Design, Inc.).
The temperature dependence of the magnetization was measured in the temperature range 2-350 K in an external
field of 1 kOe, 5 kOe, and 10 kOe. The magnetization curves as a function of the magnetic field were measured
in the field range of +25 kOe at a temperature range from 2 K to 300 K. Measurements were performed on two
selected pieces, both taken from the inside of the meteorite — dark one, which weight 7.97 mg and white one,
which weight 13.63 mg (See SEM pic. On Fig. 6B and D).

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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