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Biomedical discovery is fraught with challenges stemming from diverse data types and siloed
analysis. In this study, we explored common biomedical data tasks and pain points that could be
addressed to elevate data quality, enhance sharing, streamline analysis, and foster collaboration
across stakeholders. We recruited fifteen professionals from various biomedical roles and industries
to participate in sixty-minute semi-structured interviews, which involved an assessment of their
challenges, needs, and tasks as well as a brainstorm exercise to validate each professional’s research
process. We applied a qualitative analysis of individual interviews using an inductive-deductive
thematic coding approach for emerging themes. We identified a common set of challenges related to
procuring and validating data, applying new analysis techniques and navigating varied computational
environments, distributing results effectively and reproducibly, and managing the flow of data

across phases of the data lifecycle. Our findings emphasize the importance of secure data sharing

and facilities for collaboration throughout the discovery process. Our identified pain points provide
researchers with an opportunity to align workstreams and enhance research data lifecycles to conduct
biomedical discovery. We conclude our study with a summary of key actionable recommendations to
tackle multiomic data challenges across the stages and phases of biomedical discovery.

Keywords Biomedical discovery, Multiomics, Precision medicine, Data interoperability, Research data
lifecycle

Achieving tailored medical treatment for every patient is a significant goal of biomedical research. Given the data
diversity and various stakeholders involved, fulfilling this vision necessitates a shared process for biomedical
discovery. Biomedical discovery involves the investigation of disease etiology and the elucidation of underlying
mechanisms of biological processes. Precision medicine aims to achieve a more accurate and precise version of
medicine that uses large-scale, multi-modal data to characterize the underlying mechanisms of disease onset
across cohorts of patients and improve outcomes in clinical settings. The ultimate goal of precision medicine is
to transform patient care through individualized disease prediction, prevention, treatment, and therapeutics'2.

The currency for both precision medicine and biomedical discovery has always been data. Precision medicine
begins with the integration of multiomics datasets, data that correspond to different levels of biological structure?,
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for the purpose of gaining a comprehensive understanding of human health. These insights can assist healthcare
professionals in personalizing patients’ diagnoses and treatment plans*.

The advent of big data, the exponential increase in variety and quantity of data that are collected, has
significantly disrupted the field of biomedical discovery, leading to a rapid increase in the pace of innovation®. In
only the past few years, big data facilitated the complete sequencing of the human genome?®, pioneered chimeric
antigen receptor (CAR) T-cell therapy for cancer’, and contributed to the development of novel vaccines during
the COVID-19 pandemic®.

Despite the many advances made across the field of biomedical discovery, a lack of data interoperability
and an absence of a unified standard across biomedical data types has left the ultimate promise of precision
medicine unfulfilled. Therapeutic medicine has remained largely unchanged over the past twenty years, with
minimal benefits to public health and ever-expanding research and development costs and researchers across the
pipeline of biomedical discovery unable to align on a common process for accelerated research?. The majority of
initiatives to improve the pace of biomedical research focus on advanced tooling and do not address challenges
in data flow and collaboration across stakeholders®1°.

There is an opportunity to explore a unified process for biomedical research that facilitates enhanced data
sharing, interoperability, analysis, and collaboration. Although contextual nuances vary extensively, we can
identify a consistent set of data “jobs to be done” across subdisciplines of biomedical discovery. Across all
subdisciplines of precision medicine research, researchers are handling large-scale, complex, high-dimensional
data that include a variety of heterogeneous formats!'!. These data are typically isolated within their respective
institutions, hindering reproducibility and preventing efforts to generate diverse, longitudinal, comprehensive
patient cohorts.

A variety of stakeholders are involved in biomedical discovery and precision medicine research, including
healthcare systems, clinical laboratories, technology companies, academia, and government'2. The promise
of precision medicine and the development of accurate biomedical digital twins rely on the ability of these
stakeholders to collaborate with one another and accurately link diverse, high-quality data across ‘omic subtypes.
Without a shared workstream to process and validate data collected from multiple studies, the output of
biomedical data will not be as usable to new knowledge discovery.

Each biomedical subdiscipline assumes that its work differs from the rest. However, if we could identify
similarities across data modalities and converge on a unified process for biomedical discovery research, then we
could drastically reduce the time required to develop an individualized understanding of disease. Only through
participation from stakeholders across basic sciences, translational research, clinical, and public health can we
hope to reach a unified process to deliver population-level health benefits.

Many biomedical discovery frameworks have been published that aim to unify research workstreams (Table 1,
Supplemental Table 1)!3-31. However, each of these frameworks addresses only a specific research context related
to tooling needs and data analysis. They also presume quality and integrity of the data. One notable example of
a framework that has successfully reduced the time spent on research development is the drug discovery process
- however, this process is specific to drug development and does not include other therapeutic or AI precision
medicine discoveries. None of the other frameworks capture the full scale of biomedical discovery across data
modalities and stakeholder roles while also considering the scope of data interoperability and integrity (Table 1,
Supplemental Table 1).

Broadening our perspective beyond frameworks focused on biomedical research, multiple models have been
published that focus on the research data life cycle at large, including Carlson 2014, Ball 2012, Cox and Tam
2018, Sinaeepourfard et al. 2016, and Méller 20133236, While these more general data lifecycle models do not
include context specific to biomedical data, they serve as effective baselines that can be adapted to reflect broader
biomedical discovery across data modalities and stakeholder types through the inclusion of facets unique to the

Personas

Paper Data types considered considered | Scope of framework | Summary

Healthcare data (healthcare Summarize options for clinical data
A framework for big data technology in health and provider data, EMRs, sources, bi dl:;ta storage and analysis

i sy insurance company/ N/A Clinical research VI8 28 SIS

healthcare aver data. patient data systems, and translational opportunities

\l:/’ve);rables)’ pati ? for clinical data in a 4-step process

Human non-clinical Set of guidelines to be considered when
A framework for the use of genomics data at the EPA Genomic data N/A research and disease ki UL h icd
diagnosis working with genetic data
A Harmonized Data Quality Assessment Terminology and Multiple studies evaluating data quality
Framework for the Secondary Use of Electronic Health Clinical data from EHRs N/A Clinical research in clinical research were harmonized to
Y
Record Data construct a unified set of requirements
An Integrated Data Management Framework for Drug ChemlcalA data related ) Drug discovery informatics platforn}
Discovery — From Data Capturing to Decision Support to drug discovery and N/A Drug Discovery that allows for management of multiple
Y P s PP development reagents compounds, and assays
Argonaut: A Web Platform for Collaborative Multiomic - Data Ylsuallzatlop an.d Secure, web-based sharing of data analysis
e i : Multiomics data N/A analysis for multiomics e >

Data Visualization and Exploration research and visualization for multiomics data
Assuring the Machine Learning Lifecycle: Desiderata, " Machine Learning Defined a 4-step process / iterative loop for

Data agnostic N/A
Methods, and Challenges Analysis the lifecycle of machine learning analysis

Table 1. A summary of some identified frameworks in the healthcare space.
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challenges of the field. In other words, we can adapt such frameworks to provide guidelines for how participants
should standardize each step of analysis to expedite different stages of biomedical research. Regulatory bodies
such as the FDA could use an adapted biomedical research data lifecycle to clarify their expectations regarding
biomedical discovery, facilitating a simplified submission process for research groups and a more thorough
cycle of data validation and verification. Indeed, using such an updated framework could help foster data
interoperability across the landscape of biomedical investigation through its definition of a unified procedure
for research.

Study objectives

Data quality and interoperability are imperative in biomedical research. This need motivated our study to better
understand the overarching process of biomedical discovery research across stakeholders and biomedical data
types. Thus, our objectives were to (1) identify and define the processes and tasks performed by biomedical
researchers, (2) evaluate researchers’ needs and challenges related to data, data management, and collaboration,
and (3) assess the analytical tools and workflows that researchers leverage to conduct their work.

Materials and methods

We conducted fifteen sixty-minute semi-structured interviews with individuals placed throughout the scope of
biomedical discovery, including computational biologists, research scientists, data curators, data stewards, and
data generators. The first part of each interview focused on the participant’s background, research objective,
general tasks and jobs-to-be-done, data and tooling needs, and current challenges. The second part of each
interview focused on a brainstorming exercise. We present details on participant recruitment, informed consent
process, data collection, and analysis methods below.

Ethics statement and participant recruitment
We conducted our study with fifteen professionals who work in biomedical discovery research in the United
States (US). Our study criteria consisted of participants of age range 18 to 100, who work in biomedical discovery
in the US, and speak English. Our study (protocol ID 10415 was reviewed and approved by Microsoft Research
Institutional Review Board (IRB). Written informed consent was obtained from each participant prior to the
start of the interviews. All interviews were conducted in accordance with relevant guidelines and regulations.
Participants were enrolled through a research recruitment company that recruits for studies across the US.
Participants were recruited through a combination of methods including active outreach and internal study
panel contact databases. A detailed participant screener was applied, and pre-approval was performed by the
research team. Pre-approved and interested participants who met study eligibility criteria were informed about
the purpose of the study and provided a copy of the informed consent. Interested participants who provided
written informed consent to the research recruitment company were then scheduled for an interview. Prior to
the start of each interview session, participants were asked if they had any questions related to the study and
confirmed they had read and signed the informed consent. Participants were compensated $175 USD for their
time via a gift card distributed through the research recruitment company.

Data collection

In the first half of each interview, participants were asked questions related to their professional roles, the type of
work they conduct, the research problems they are trying to solve, the data and tools they use, their challenges
and needs, and their day-to-day research tasks. In the second half of the interview, the research team displayed
a research diagram (Fig. 1) on their screen and asked questions related to how similar or different the diagram
flow was to the participants’ research processes, where in the diagram flow they would position their day-to-day
roles, and what information was amiss as well as what suggestions they had for how to accurately represent each
stage of their research process. Figma (https://www.figma.com) was used for the virtual whiteboard brainstorm
portion of the interview and sticky notes were used to capture participants’ feedback in real-time to allow them
to clarify and validate their research process. Figure 2 depicts an example of the notetaking process. We created
our research diagram (Fig. 1) as a brainstorm tool to elicit feedback from participants during the interviews to
validate their research process®”. At the end of each interview, participants were asked general quantitative
demographic questions.

Data analysis

All interviews were conducted via Microsoft Teams video conference platform from July to August of 2022 by the
first author (VS) and audio-recorded with participants’ informed consent. Microsoft Teams auto transcription
was used and then each interview transcript was verified and corrected for accuracy later via the recordings by
authors VS and AKH. The first and last authors met periodically to discuss interviews and identify emerging
themes. We applied a combination of inductive and deductive thematic coding approaches to the qualitative
data®. Initial themes consisted of ‘data collaboration, ‘data quality; and ‘phases of analysis. As the interviews
progressed, we iterated over the data to produce higher-level themes, such as ‘data extraction’ and ‘access, ‘clinical
trial data platforms, ‘analysis processes, and ‘data hand-offs.

Results

Participant demographics

All participants lived in the US, worked in biomedical discovery research, and worked with a range of nonclinical,
clinical, imaging, and genomics data. The age range of participants were 18-24 (1), 25-34 (8), 35-44 (4), and 45-
54 (2). Their work experience ranged from 1-5 years (5), 5-10 years (4), and more than 10 years (6). Our study
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Fig. 1. Baseline visualization for brainstorming exercise. Created with Biorender.com.

included 5 females and 10 males. Most participants identified as Caucasian/European descent (9), followed by
South Asian (3), East Asian (1), African Descent (1), and other/Mixed Ancestry (1). Participants worked in a
variety of industry and academic settings ranging in size from self-employed freelance positions to companies
with over 20,000 employees, with about half coming from pharmaceutical or biotechnology operations and the
other half from academic medical centers, healthcare organizations, or hospitals.

Participant expertise

The participants in this study included good laboratory practice (GLP) / benchwork scientists, good clinical
practice (GCP) researchers, sequencing core personnel, dry lab scientists, and clinicians. Each individual
had different understandings and uses of biomedical data based on their expertise and practice settings. We
summarize these varied interpretations in Table 2.

As Table 2 suggests, different sectors of stakeholders in the biomedical discovery process have vastly different
definitions of biomedical data depending on the roles that they play. Nevertheless, while these distinct subsets
and uses of biomedical data all require separate normalization processes and data structures, the flow of data
from non-clinical discovery to downstream precision medicine research necessitates a unification of data
processes and enhanced collaboration among all personas.

Qualitative findings
The most common research motivations that participants discussed during interviews were the development of
new domain-specific insights to (a) identify cohorts for clinical trials, (b) accelerate drug development, (c) bring
therapeutics to patients, (d) facilitate FDA regulatory approval, (e) simplify patient diagnosis, and (f) discover
positive changes that could be implemented in clinical settings for improved patient health outcomes.
Participants described a variety of data types with which they worked (Table 3), including protein abundances
from model organisms, structured and free-text clinical data, genomic single-cell and whole genome sequencing
data, and post-clinical data, such as drug performance and marketing metrics.
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GI.‘P /'Benchwork 2 Lab technicians for early-stage and nonclinical research Non-p rqﬁt rese~arch center Nonclinical, assay-based data
scientists Academic medical center
Regulatory guidance vendor Pharmaceutical companies Clinical trial outcomes
GCP researchers Cohort builders / clinical research assistants Academic medical centers . o
5 . . Patient health criteria
/curators Data engineer - health outcomes Radiology company MRI scans
IT administrator Third-party data vendor
Sequencing core | Bioinformatics analyst Immunology lab at a research university Preprocessed genomic
personnel sequencing files
Dry lab scientists | 5 ﬂiqu-parw statisticians a.n(_i biotechnicians consulting Biotechnology and pharmacentical companies I_Jnstruct}.lred clinical data
for clinical trial data analysis (i.e. medical notes)
Clinicians 5 Clinician conducting research Research institution Patient responses to new care
Pharmacist facilitating treatment evaluation Medical center equipment and treatments
Table 2. Expertise and practice settings for study participants.
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Data Types Used

« ELISA / FISH / Flow cytometry data from model organisms and patient tissue samples

« Clinical data from patient electronic health records
o Lab measurements, vital readings, biomarker/metabolite measures, imaging/radiology data, qualitative measurements

« Genomic data

o Single-cell RNA-sequencing (scRNA-seq)
0 Whole Genome DNA-sequencing (WGS)

« Post-clinical data
o Drug performance data
o Drug marketing data

Table 3. Data Types used by Participants.

Analysis tools were highly context-dependent (Supplemental Table 2) — participants used IBM SPSS, REDCap,
and Microsoft Excel for intuitive computation, Image] and Prism for image analysis, GATK for primary and
secondary genomic data, Python (including pandas, NumPy, SciPy packages), R (including Bioconductor, as
well as ggplot2 and other tidyverse libraries), SQL, and SAS for general data needs, Nextflow and Cromwell for
pipelining and workflow development, and Anaconda and Docker for versioning of software environments.

Challenges related to biomedical discovery
Based upon the interviews from our qualitative study, we identified the following pain points that typically
hinder the biomedical discovery process.

Challenge 1. Identifying and procuring the appropriate data for a given research question

A primary focus across participant interviews was navigating the balance between identifying and extracting
the appropriate data for a given research question. Both sufficient financial resources and an adequate amount
of time are needed to either generate the required data or to procure it from an external source. Particularly in
experimental lab (“wet lab”) environments, paper-based data collection can be a tedious manual process for
much of data generation, leading to increased risk of downstream quality issues when transferring data into
computational environments. Furthermore, complications can arise in terms of coordination and collaboration
among stakeholders and research planners to identify the most suitable data for the research question at hand.

Challenge 2. Curating and validating procured data for downstream analysis

Ensuring the integrity and quality of procured data was another major concern across interviews. Pain points
highlighted during the data curation process include lag time during data curation, particularly when processing
unstructured data, a lack of consistency in the requirements for data quality control across organizations and
biomedical subfields, an absence of effective, privacy-compliant data sharing methods, and tedious manual data
processing when transferring data across systems to collaborators and stakeholders, particularly with respect to
clinical research.

Challenge 3. Learning how to apply new analysis methods to validated data and navigating inconsistent
computational environments

Participants coming from more traditional biological and medical backgrounds described facing significant
learning curves when attempting to design and apply computational analysis workflows for the first time.
Participants also mentioned a lack of standardized processes for version control of code and data. Interviewees
working specifically with large-scale ‘omics data described how the scale of their data can make analysis and
debugging in local environments infeasible. Participants working in computational biology research described
how they needed to use both Python and R environments for their analysis work, and that continually
transitioning back and forth between the two platforms was often an ordeal. Ultimately, both the variety of coding
environments and software and the lack of effective, user-friendly methods for multiomics data integration
hamper research participants™ ability to conduct reproducible analysis, adding to the time required for data
analysis in the biomedical discovery process.

Challenge 4. Distributing data-driven findings effectively and reproducibly

The hope of interviewees in the distribution of the results of their data-driven analysis was that the results
generated by data-driven discovery could be used to advance broader knowledge in the field. Key challenges
with respect to the distribution of results included meeting regulatory requirements for data output, ensuring
reproducibility of generated workflows and results, validating biological interpretation of results, and
appropriately conveying the significance and meaning of conclusions drawn to public audiences.

Challenge 5. Managing the flow of data across phases of the data lifecycle

The numerous methods described by participants for storing (Supplemental Table 3), sharing (Supplemental
Table 4), and managing access (Supplemental Table 5) highlight the significance of data flow from generation
and procurement to curation and validation to analysis and discovery. Key pain points identified with respect to
the data handoffs that occur among stakeholders included a lack of unity among data management and sharing
systems, prohibitive data storage costs, difficulties ensuring data privacy and security, inconsistent regulatory
requirements, learning curves for new data storage systems, a lack of standardization in version control
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expectations for code and data, and bottlenecking and latency due to the need for coordination among multiple
stakeholders.

Ultimately, across the challenges identified for biomedical discovery, participant interviews all echoed a single
message: the significance of collaboration and trust surrounding the flow of data. Each exchange of data
involved multiple professional stakeholders, including data generators, research scientists, data curators, third-
party vendors, bioinformaticians, computational biologists, biologists, and clinicians. Insight and interpretation
are continually needed from all stakeholders involved to ensure the accuracy and integrity of the data.

Recommendations
Based upon our data analysis findings, we developed a list of seven key actionable recommendations for
organizations looking to enhance their ability to conduct biomedical discovery research.

Recommendation 1. Create a user-friendly platform for bench-side data collection in biological research

A transition from manual to electronic data collection in biologic discovery could increase efficiency, improve
trust in the data collection and data analysis process for bench-side scientists, and improve interplay between
wet and dry lab research.

Recommendation 2. Establish a unified system for reproducible biomedical research

A unified system for data analysis could allow for consistent, sharable workflows and lead to a lower barrier
to entry for computational analysis. An example of a group implementing such a system is the single-cell
community, which consistently makes use of the Seurat and Monocle packages for its research. Furthermore,
having such a system could help stakeholders keep track of data input and research progress throughout the
biomedical discovery pipeline.

Recommendation 3. Develop a simplified workflow for debugging and integration from notebooks into workflows
to handle the large scale of ‘omics data

This workflow could include the option to version control markdown documents and notebooks, as well as a
graphical user interface to facilitate debugging in the cloud.

Recommendation 4. Study the third-party data management vendor networks for drug development

Currently, the robustness of the IT infrastructure for a project can vary extensively depending on the
organization in charge — larger companies tend to have stronger, cloud-based infrastructures for data storage
and administration. More data mean more complications in terms of data processing, data transfer, and analysis,
and in such situations, multiple experts from a variety of fields are required to manage the data. Third-party data
management vendors are highly useful in managing these data access issues as well as facilitating regulatory
proceedings for pharmaceutical companies. A better understanding of the systematized data exchange that
occurs across these could vastly expedite biomedical discovery.

Recommendation 5. Introduce improved, user-friendly tooling for data processing and ingestion

Multiple opportunities lie in the ability to use methods such as generative Al for data processing’®*!. Integrating
natural language processing and machine learning with the latest transformer or large language models could
help reduce data loss through the processing of unstructured free-form text. Furthermore, tools that incorporate
generative Al could reduce the learning curve for more complicated data processing techniques by providing
direct feedback on data processing workflows for users jumping into computational analysis for the first time.
Intuitive, user-friendly tools would help democratize access to data and simplify the ability to ingest them for
downstream data analysis.

Recommendation 6. Improve the process of communication between clinical trial managers and clinicians

The wide variation in the data sharing systems that are used across pharmaceutical companies and third-party
vendors results in a tremendous burden on clinical trial facilitators to ensure the ongoing viability of the trial
- multiple data management portals may be required for a project depending on the type of data being used.
Clinicians and other healthcare providers are also often not able to directly see the impact of the work they help
facilitate. We could reduce the turn-around time for biomedical discovery in the clinical space through the
development of easy-to-use co-working platforms that facilitating effective collaboration and communication
between clinical trial managers and clinicians.

Recommendation 7. Develop tooling and platforms to facilitate quicker data access and more efficient, secure data
sharing

The creation of secure, democratized data platforms that permit rapid, secure data sharing both within and
beyond an organization would drastically help mitigate the existing challenges in data flow. Such tooling would
need to include cost-efficient data storage and options for secure communication and data transfer between
internal and external parties.

Discussion

Data integrity and interoperability are essential to improve our ability to achieve precision medicine. However,
most of the research conducted today is fixated on the development of new tools and methods for analysis.
This myopic focus ignores the gaps in biomedical experimentation that lead to failings of data interoperability.
To identify these omissions, our work aimed to explore the biomedical discovery process across professional
stakeholder roles, research goals, and data subtypes. Our qualitative study provided insights into the data journey
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across stakeholders involved in biomedical discovery, and based on the identified data challenges, we proposed
a set of seven actionable recommendations for those interested in addressing open challenges in the discipline.

Our study findings confirm many of the data challenges found in the literature with respect to biomedical
discovery research, such as concerns related to (1) secure data storage, warehousing, withdrawal, access, and
sharing, (2) quality control and curation of unstructured data, (3) processing and multiomics integration for
large-scale, heterogeneous data, (4) reproducibility and version control, (5) coordination and collaboration
among stakeholders, and (6) regulatory standards and collaborative data partnerships. Finally, we identified
the importance of data integrity in hand-offs between the stages of biomedical research, and noted how data
integrity is often assumed by data professionals who do not collect and curate their own data due to the isolation
of their work from other steps in the research process ecosystem. Based on such considerations, we present an
overview of a research data lifecycle that reflects the diverse data types, stages, and stakeholders involved in the
biomedical discovery process derived from our study findings (Table 4).

Based on the above research data lifecycle, we include an additional itemization of biomedical data tasks by
stages of research, including non-clinical and clinical discovery (Table 5).

The results of our study emphasize the need for secure collaboration and data analysis, with a focus on
reducing data handoff miscommunication, early-stage data extraction errors, metadata errors, and reformatting
errors during analysis to meet compliance and regulatory standards. Our study was limited by the logistics
of recruiting participants, as it had to be conducted virtually. As a result, further work is needed to validate
the identified obstacles and data jobs to be done with additional participants. Furthermore, our proposed
recommendations and process must be explored in real-world settings. Another future direction of this work
involves additional investigation of the third-party data management and contract research organization vendor
networks to gain a full grasp of the data flow and hand-offs that take place in larger-scale biomedical discovery
projects.

Conclusion

In this study, we explored key challenges and data jobs to be done from the perspective of a variety of biomedical
researchers. Based on the results of our interviews, we identified a set of common pain points and challenges
faced by researchers across the biomedical discovery data lifecycle. We proposed a set of recommendations
for improved data collaboration, integrity, and interoperability for knowledge discovery, including cloud-based
computational infrastructures for centralized data warehousing and withdrawal, improved debugging workflows
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Centers / Research | information . alignment) and - Back-and-forth drives, visualizations,
. computational . S - L and/or data /
Centers - Otherwise, perform scientist secondary analysis communication |y o publications, markdown workflows to
- Pharma / Biotech | sequencing / data (variant calling) circle P notebooks, or file sharing
) ) of public advance the field
- Vendor Networks | extraction - Short-tailed process systems
knowledge
- Long-tailed
process
- Insight / interpretation | - Enact change
LEVEL C - Cleaning / - Curated data from clinicians, in medical
HUMAN, £ 3 are handed h ical
CLINICAL - Raw data collection - Data go reformatting data to cither a pharmaceutical centers and
Stakeholder from patients from a health for use in analysis, third-part representatives, data distribute results
Segments - Me. dIi)ation from third- | SYstem toa data | performed by a data com Ptati}c’unal - Evaluation analysts, and other to the broader
gmer management scientist or data curator | <°"PY of efficacy of | stakeholders community
- Hospital Systems / | party data management d h 0O ioht fi d scientist or an Shared th h M 1
Academic Medical | vendors (CDMs) vendor to the - Oversight fromadata | /- 0o o treatment - Shared throug - Meet regulatory
Centers ~ Lone-tailed process pharmaceutical | management entity is curator or presentations, expectations
. i P sponsor often required . publications, dashboards, | - Cycle of
- Pharma / Biotech - computational . Lo
- Long-tailed process - or vendor-specific portals | validation and
- Vendor Networks scientist o
that help manage data verification

Table 4. An overview of biomedical discovery framed within a research data lifecycle, derived from the results
of our interviews.
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Stage

‘ Main Tasks Subtasks

Forming a new research question

questions?

Stage 1: Data Plan
Collaborative stage with multiple stakeholders that work b. Non-clinical data (lab results from tissue samples from model organisms)
together to determine data needs and how best to answer
research questions; Mainly asking—Is there data available
or do we need to collect data to answer our research

a. Clinical data (samples collected from patients)

1. Data collection (private data)

a. Individual-level sequencing data

2. Data extraction (public and private

data, and data access) b. Clinical data (Electronic Health Records, Claims, Payer data, Imaging)

c. Large-scale biobanks, social determinants of health

Data Hand-off: Raw non-curated data

Stage 2: Data Curation and Preprocessing

a. Manual process of checking for errors, experts in the loop to validate

1. Quality control (generated data) output, handle batch effects, ctc

a. Label metadata

2. Data standardization (generated and

controlled data) b. Correct file formats (fixed naming conventions)

c. Curate data

Data Handoff: Quality-controlled, processed data

Stage 3: Data Analysis

1. Re-formatting data a. Merge multiple datasets and types of data

a. Identify the right tools and execute

2. Apply methods b. Hypothesis testing

c. Ensure reproducibility

a. Validate or invalidate research questions

3. Investigation
b. Develop new insights

Data Handoff: Robust findings

next steps

Stage 4: Data-Driven Discovery
Stakeholders come together to review results and discuss

a. Contribute to common/collective knowledge

1. Review results b. Determine if new data or more data are needed

c. Return to Phase 3

a. Develop new research question(s)

2. Identify next steps b. Submit to regulatory agencies for clinical trial approval

c. Change polices based on findings

Output: AI Models, Therapeutics, or New Discoveries

Table 5. Overview of data tasks by stage of biomedical research.

for the analysis of large-scale heterogeneous data, new methods for the ingestion of unstructured data, and the
establishment of vendor networks to facilitate data management and the fulfilment of regulatory requirements.
Such developments will be crucial to ensure the accuracy and reproducibility of biomedical models when
considering transitions toward production-level applications in healthcare and the life sciences. Furthermore,
we highlighted an example biomedical discovery process incorporating findings from our interviews that
demonstrates how stakeholders across various sectors of biomedical analysis could converge on a common
workflow to enhance data sharing and foster collaboration.

More research is needed to validate if our proposed recommendations could enhance existing data lifecycle
frameworks to improve large-scale multiomics data integrity, interoperability, analysis, and collaboration
challenges. Through their application, we hope to see a shift in biomedical discovery research practices, bringing
us closer to realizing individualized therapeutics for all patients and fulfilling the promise of precision medicine.

Data availability
Aggregated findings from this qualitative study can be shared upon reasonable request to the corresponding
author.
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