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Biomedical discovery is fraught with challenges stemming from diverse data types and siloed 
analysis. In this study, we explored common biomedical data tasks and pain points that could be 
addressed to elevate data quality, enhance sharing, streamline analysis, and foster collaboration 
across stakeholders. We recruited fifteen professionals from various biomedical roles and industries 
to participate in sixty-minute semi-structured interviews, which involved an assessment of their 
challenges, needs, and tasks as well as a brainstorm exercise to validate each professional’s research 
process. We applied a qualitative analysis of individual interviews using an inductive-deductive 
thematic coding approach for emerging themes. We identified a common set of challenges related to 
procuring and validating data, applying new analysis techniques and navigating varied computational 
environments, distributing results effectively and reproducibly, and managing the flow of data 
across phases of the data lifecycle. Our findings emphasize the importance of secure data sharing 
and facilities for collaboration throughout the discovery process. Our identified pain points provide 
researchers with an opportunity to align workstreams and enhance research data lifecycles to conduct 
biomedical discovery. We conclude our study with a summary of key actionable recommendations to 
tackle multiomic data challenges across the stages and phases of biomedical discovery.
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Achieving tailored medical treatment for every patient is a significant goal of biomedical research. Given the data 
diversity and various stakeholders involved, fulfilling this vision necessitates a shared process for biomedical 
discovery. Biomedical discovery involves the investigation of disease etiology and the elucidation of underlying 
mechanisms of biological processes. Precision medicine aims to achieve a more accurate and precise version of 
medicine that uses large-scale, multi-modal data to characterize the underlying mechanisms of disease onset 
across cohorts of patients and improve outcomes in clinical settings. The ultimate goal of precision medicine is 
to transform patient care through individualized disease prediction, prevention, treatment, and therapeutics1,2.

The currency for both precision medicine and biomedical discovery has always been data. Precision medicine 
begins with the integration of multiomics datasets, data that correspond to different levels of biological structure3, 
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for the purpose of gaining a comprehensive understanding of human health. These insights can assist healthcare 
professionals in personalizing patients’ diagnoses and treatment plans4.

The advent of big data, the exponential increase in variety and quantity of data that are collected, has 
significantly disrupted the field of biomedical discovery, leading to a rapid increase in the pace of innovation5. In 
only the past few years, big data facilitated the complete sequencing of the human genome6, pioneered chimeric 
antigen receptor (CAR) T-cell therapy for cancer7, and contributed to the development of novel vaccines during 
the COVID-19 pandemic8.

Despite the many advances made across the field of biomedical discovery, a lack of data interoperability 
and an absence of a unified standard across biomedical data types has left the ultimate promise of precision 
medicine unfulfilled. Therapeutic medicine has remained largely unchanged over the past twenty years, with 
minimal benefits to public health and ever-expanding research and development costs and researchers across the 
pipeline of biomedical discovery unable to align on a common process for accelerated research2. The majority of 
initiatives to improve the pace of biomedical research focus on advanced tooling and do not address challenges 
in data flow and collaboration across stakeholders9,10.

There is an opportunity to explore a unified process for biomedical research that facilitates enhanced data 
sharing, interoperability, analysis, and collaboration. Although contextual nuances vary extensively, we can 
identify a consistent set of data “jobs to be done” across subdisciplines of biomedical discovery. Across all 
subdisciplines of precision medicine research, researchers are handling large-scale, complex, high-dimensional 
data that include a variety of heterogeneous formats11. These data are typically isolated within their respective 
institutions, hindering reproducibility and preventing efforts to generate diverse, longitudinal, comprehensive 
patient cohorts.

A variety of stakeholders are involved in biomedical discovery and precision medicine research, including 
healthcare systems, clinical laboratories, technology companies, academia, and government12. The promise 
of precision medicine and the development of accurate biomedical digital twins rely on the ability of these 
stakeholders to collaborate with one another and accurately link diverse, high-quality data across ‘omic subtypes. 
Without a shared workstream to process and validate data collected from multiple studies, the output of 
biomedical data will not be as usable to new knowledge discovery.

Each biomedical subdiscipline assumes that its work differs from the rest. However, if we could identify 
similarities across data modalities and converge on a unified process for biomedical discovery research, then we 
could drastically reduce the time required to develop an individualized understanding of disease. Only through 
participation from stakeholders across basic sciences, translational research, clinical, and public health can we 
hope to reach a unified process to deliver population-level health benefits.

Many biomedical discovery frameworks have been published that aim to unify research workstreams (Table 1, 
Supplemental Table 1)13–31. However, each of these frameworks addresses only a specific research context related 
to tooling needs and data analysis. They also presume quality and integrity of the data. One notable example of 
a framework that has successfully reduced the time spent on research development is the drug discovery process 
– however, this process is specific to drug development and does not include other therapeutic or AI precision 
medicine discoveries. None of the other frameworks capture the full scale of biomedical discovery across data 
modalities and stakeholder roles while also considering the scope of data interoperability and integrity (Table 1, 
Supplemental Table 1).

Broadening our perspective beyond frameworks focused on biomedical research, multiple models have been 
published that focus on the research data life cycle at large, including Carlson 2014, Ball 2012, Cox and Tam 
2018, Sinaeepourfard et al. 2016, and Möller 201332–36. While these more general data lifecycle models do not 
include context specific to biomedical data, they serve as effective baselines that can be adapted to reflect broader 
biomedical discovery across data modalities and stakeholder types through the inclusion of facets unique to the 

Paper Data types considered
Personas 
considered Scope of framework Summary

A framework for big data technology in health and 
healthcare

Healthcare data (healthcare 
provider data, EMRs, 
insurance company/
payer data, patient data, 
wearables)

N/A Clinical research
Summarize options for clinical data 
sources, big data storage and analysis 
systems, and translational opportunities 
for clinical data in a 4-step process

A framework for the use of genomics data at the EPA Genomic data N/A
Human non-clinical 
research and disease 
diagnosis

Set of guidelines to be considered when 
working with genetic data

A Harmonized Data Quality Assessment Terminology and 
Framework for the Secondary Use of Electronic Health 
Record Data

Clinical data from EHRs N/A Clinical research
Multiple studies evaluating data quality 
in clinical research were harmonized to 
construct a unified set of requirements

An Integrated Data Management Framework for Drug 
Discovery – From Data Capturing to Decision Support

Chemical data related 
to drug discovery and 
development

N/A Drug Discovery
Drug discovery informatics platform 
that allows for management of multiple 
reagents compounds, and assays

Argonaut: A Web Platform for Collaborative Multiomic 
Data Visualization and Exploration Multiomics data N/A

Data visualization and 
analysis for multiomics 
research

Secure, web-based sharing of data analysis 
and visualization for multiomics data

Assuring the Machine Learning Lifecycle: Desiderata, 
Methods, and Challenges Data agnostic N/A Machine Learning 

Analysis
Defined a 4-step process / iterative loop for 
the lifecycle of machine learning analysis

Table 1.  A summary of some identified frameworks in the healthcare space.

 

Scientific Reports |         (2025) 15:6291 2| https://doi.org/10.1038/s41598-025-90453-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


challenges of the field. In other words, we can adapt such frameworks to provide guidelines for how participants 
should standardize each step of analysis to expedite different stages of biomedical research. Regulatory bodies 
such as the FDA could use an adapted biomedical research data lifecycle to clarify their expectations regarding 
biomedical discovery, facilitating a simplified submission process for research groups and a more thorough 
cycle of data validation and verification. Indeed, using such an updated framework could help foster data 
interoperability across the landscape of biomedical investigation through its definition of a unified procedure 
for research.

Study objectives
Data quality and interoperability are imperative in biomedical research. This need motivated our study to better 
understand the overarching process of biomedical discovery research across stakeholders and biomedical data 
types. Thus, our objectives were to (1) identify and define the processes and tasks performed by biomedical 
researchers, (2) evaluate researchers’ needs and challenges related to data, data management, and collaboration, 
and (3) assess the analytical tools and workflows that researchers leverage to conduct their work.

Materials and methods
We conducted fifteen sixty-minute semi-structured interviews with individuals placed throughout the scope of 
biomedical discovery, including computational biologists, research scientists, data curators, data stewards, and 
data generators. The first part of each interview focused on the participant’s background, research objective, 
general tasks and jobs-to-be-done, data and tooling needs, and current challenges. The second part of each 
interview focused on a brainstorming exercise. We present details on participant recruitment, informed consent 
process, data collection, and analysis methods below.

Ethics statement and participant recruitment
We conducted our study with fifteen professionals who work in biomedical discovery research in the United 
States (US). Our study criteria consisted of participants of age range 18 to 100, who work in biomedical discovery 
in the US, and speak English. Our study (protocol ID 10415 was reviewed and approved by Microsoft Research 
Institutional Review Board (IRB). Written informed consent was obtained from each participant prior to the 
start of the interviews.  All interviews were conducted in accordance with relevant guidelines and regulations.

Participants were enrolled through a research recruitment company that recruits for studies across the US. 
Participants were recruited through a combination of methods including active outreach and internal study 
panel contact databases. A detailed participant screener was applied, and pre-approval was performed by the 
research team. Pre-approved and interested participants who met study eligibility criteria were informed about 
the purpose of the study and provided a copy of the informed consent. Interested participants who provided 
written informed consent to the research recruitment company were then scheduled for an interview. Prior to 
the start of each interview session, participants were asked if they had any questions related to the study and 
confirmed they had read and signed the informed consent. Participants were compensated $175 USD for their 
time via a gift card distributed through the research recruitment company.

Data collection
In the first half of each interview, participants were asked questions related to their professional roles, the type of 
work they conduct, the research problems they are trying to solve, the data and tools they use, their challenges 
and needs, and their day-to-day research tasks. In the second half of the interview, the research team displayed 
a research diagram (Fig. 1) on their screen and asked questions related to how similar or different the diagram 
flow was to the participants’ research processes, where in the diagram flow they would position their day-to-day 
roles, and what information was amiss as well as what suggestions they had for how to accurately represent each 
stage of their research process. Figma (https://www.figma.com) was used for the virtual whiteboard brainstorm 
portion of the interview and sticky notes were used to capture participants’ feedback in real-time to allow them 
to clarify and validate their research process. Figure 2 depicts an example of the notetaking process. We created 
our research diagram (Fig. 1) as a brainstorm tool to elicit feedback from participants during the interviews to 
validate their research process37,38. At the end of each interview, participants were asked general quantitative 
demographic questions.

Data analysis
All interviews were conducted via Microsoft Teams video conference platform from July to August of 2022 by the 
first author (VS) and audio-recorded with participants’ informed consent. Microsoft Teams auto transcription 
was used and then each interview transcript was verified and corrected for accuracy later via the recordings by 
authors VS and AKH.  The first and last authors met periodically to discuss interviews and identify emerging 
themes. We applied a combination of inductive and deductive thematic coding approaches to the qualitative 
data39. Initial themes consisted of ‘data collaboration,’ ‘data quality,’ and ‘phases of analysis.’ As the interviews 
progressed, we iterated over the data to produce higher-level themes, such as ‘data extraction’ and ‘access’, ‘clinical 
trial data platforms’, ‘analysis processes’, and ‘data hand-offs’.

Results
Participant demographics
All participants lived in the US, worked in biomedical discovery research, and worked with a range of nonclinical, 
clinical, imaging, and genomics data. The age range of participants were 18–24 (1), 25–34 (8), 35–44 (4), and 45–
54 (2). Their work experience ranged from 1–5 years (5), 5–10 years (4), and more than 10 years (6). Our study 
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included 5 females and 10 males. Most participants identified as Caucasian/European descent (9), followed by 
South Asian (3), East Asian (1), African Descent (1), and other/Mixed Ancestry (1). Participants worked in a 
variety of industry and academic settings ranging in size from self-employed freelance positions to companies 
with over 20,000 employees, with about half coming from pharmaceutical or biotechnology operations and the 
other half from academic medical centers, healthcare organizations, or hospitals.

Participant expertise
The participants in this study included good laboratory practice (GLP) / benchwork scientists, good clinical 
practice (GCP) researchers, sequencing core personnel, dry lab scientists, and clinicians. Each individual 
had different understandings and uses of biomedical data based on their expertise and practice settings. We 
summarize these varied interpretations in Table 2.

As Table 2 suggests, different sectors of stakeholders in the biomedical discovery process have vastly different 
definitions of biomedical data depending on the roles that they play. Nevertheless, while these distinct subsets 
and uses of biomedical data all require separate normalization processes and data structures, the flow of data 
from non-clinical discovery to downstream precision medicine research necessitates a unification of data 
processes and enhanced collaboration among all personas.

Qualitative findings
The most common research motivations that participants discussed during interviews were the development of 
new domain-specific insights to (a) identify cohorts for clinical trials, (b) accelerate drug development, (c) bring 
therapeutics to patients, (d) facilitate FDA regulatory approval, (e) simplify patient diagnosis, and (f) discover 
positive changes that could be implemented in clinical settings for improved patient health outcomes.

Participants described a variety of data types with which they worked (Table 3), including protein abundances 
from model organisms, structured and free-text clinical data, genomic single-cell and whole genome sequencing 
data, and post-clinical data, such as drug performance and marketing metrics.

Fig. 1.  Baseline visualization for brainstorming exercise. Created with Biorender.com.
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Interviewee 
Category

Number of 
representative 
individuals 
from interviews Expertise Practice setting(s)

Examples of interpretations 
of biomedical data

GLP / Benchwork 
scientists 2 Lab technicians for early-stage and nonclinical research Non-profit research center

Academic medical center Nonclinical, assay-based data

GCP researchers 
/curators 5

Regulatory guidance vendor
Cohort builders / clinical research assistants
Data engineer – health outcomes
IT administrator

Pharmaceutical companies
Academic medical centers
Radiology company
Third-party data vendor

Clinical trial outcomes
Patient health criteria
MRI scans

Sequencing core 
personnel 1 Bioinformatics analyst Immunology lab at a research university Preprocessed genomic 

sequencing files

Dry lab scientists 5 Third-party statisticians and biotechnicians consulting 
for clinical trial data analysis Biotechnology and pharmaceutical companies Unstructured clinical data 

(i.e. medical notes)

Clinicians 2 Clinician conducting research
Pharmacist facilitating treatment evaluation

Research institution
Medical center

Patient responses to new care 
equipment and treatments

Table 2.  Expertise and practice settings for study participants.

 

Fig. 2.  Example of the note-taking process during the brainstorm exercise. Created with Biorender.com.
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Analysis tools were highly context-dependent (Supplemental Table 2) – participants used IBM SPSS, REDCap, 
and Microsoft Excel for intuitive computation, ImageJ and Prism for image analysis, GATK for primary and 
secondary genomic data, Python (including pandas, NumPy, SciPy packages), R (including Bioconductor, as 
well as ggplot2 and other tidyverse libraries), SQL, and SAS for general data needs, Nextflow and Cromwell for 
pipelining and workflow development, and Anaconda and Docker for versioning of software environments.

Challenges related to biomedical discovery
Based upon the interviews from our qualitative study, we identified the following pain points that typically 
hinder the biomedical discovery process.

Challenge 1. Identifying and procuring the appropriate data for a given research question
A primary focus across participant interviews was navigating the balance between identifying and extracting 
the appropriate data for a given research question. Both sufficient financial resources and an adequate amount 
of time are needed to either generate the required data or to procure it from an external source. Particularly in 
experimental lab (“wet lab”) environments, paper-based data collection can be a tedious manual process for 
much of data generation, leading to increased risk of downstream quality issues when transferring data into 
computational environments. Furthermore, complications can arise in terms of coordination and collaboration 
among stakeholders and research planners to identify the most suitable data for the research question at hand.

Challenge 2. Curating and validating procured data for downstream analysis
Ensuring the integrity and quality of procured data was another major concern across interviews. Pain points 
highlighted during the data curation process include lag time during data curation, particularly when processing 
unstructured data, a lack of consistency in the requirements for data quality control across organizations and 
biomedical subfields, an absence of effective, privacy-compliant data sharing methods, and tedious manual data 
processing when transferring data across systems to collaborators and stakeholders, particularly with respect to 
clinical research.

Challenge 3. Learning how to apply new analysis methods to validated data and navigating inconsistent 
computational environments
Participants coming from more traditional biological and medical backgrounds described facing significant 
learning curves when attempting to design and apply computational analysis workflows for the first time. 
Participants also mentioned a lack of standardized processes for version control of code and data. Interviewees 
working specifically with large-scale ‘omics data described how the scale of their data can make analysis and 
debugging in local environments infeasible. Participants working in computational biology research described 
how they needed to use both Python and R environments for their analysis work, and that continually 
transitioning back and forth between the two platforms was often an ordeal. Ultimately, both the variety of coding 
environments and software and the lack of effective, user-friendly methods for multiomics data integration 
hamper research participants’ ability to conduct reproducible analysis, adding to the time required for data 
analysis in the biomedical discovery process.

Challenge 4. Distributing data-driven findings effectively and reproducibly
The hope of interviewees in the distribution of the results of their data-driven analysis was that the results 
generated by data-driven discovery could be used to advance broader knowledge in the field. Key challenges 
with respect to the distribution of results included meeting regulatory requirements for data output, ensuring 
reproducibility of generated workflows and results, validating biological interpretation of results, and 
appropriately conveying the significance and meaning of conclusions drawn to public audiences.

Challenge 5. Managing the flow of data across phases of the data lifecycle
The numerous methods described by participants for storing (Supplemental Table 3), sharing (Supplemental 
Table 4), and managing access (Supplemental Table 5) highlight the significance of data flow from generation 
and procurement to curation and validation to analysis and discovery. Key pain points identified with respect to 
the data handoffs that occur among stakeholders included a lack of unity among data management and sharing 
systems, prohibitive data storage costs, difficulties ensuring data privacy and security, inconsistent regulatory 
requirements, learning curves for new data storage systems, a lack of standardization in version control 

Data Types Used

• ELISA / FISH / Flow cytometry data from model organisms and patient tissue samples

• Clinical data from patient electronic health records
o Lab measurements, vital readings, biomarker/metabolite measures, imaging/radiology data, qualitative measurements

• Genomic data
o Single-cell RNA-sequencing (scRNA-seq)
o Whole Genome DNA-sequencing (WGS)

• Post-clinical data
o Drug performance data
o Drug marketing data

Table 3.  Data Types used by Participants.
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expectations for code and data, and bottlenecking and latency due to the need for coordination among multiple 
stakeholders.

Ultimately, across the challenges identified for biomedical discovery, participant interviews all echoed a single 
message: the significance of collaboration and trust surrounding the flow of data. Each exchange of data 
involved multiple professional stakeholders, including data generators, research scientists, data curators, third-
party vendors, bioinformaticians, computational biologists, biologists, and clinicians. Insight and interpretation 
are continually needed from all stakeholders involved to ensure the accuracy and integrity of the data.

Recommendations
Based upon our data analysis findings, we developed a list of seven key actionable recommendations for 
organizations looking to enhance their ability to conduct biomedical discovery research.

Recommendation 1. Create a user-friendly platform for bench-side data collection in biological research
A transition from manual to electronic data collection in biologic discovery could increase efficiency, improve 
trust in the data collection and data analysis process for bench-side scientists, and improve interplay between 
wet and dry lab research.

Recommendation 2. Establish a unified system for reproducible biomedical research
A unified system for data analysis could allow for consistent, sharable workflows and lead to a lower barrier 
to entry for computational analysis.  An example of a group implementing such a system is the single-cell 
community, which consistently makes use of the Seurat and Monocle packages for its research. Furthermore, 
having such a system could help stakeholders keep track of data input and research progress throughout the 
biomedical discovery pipeline.

Recommendation 3. Develop a simplified workflow for debugging and integration from notebooks into workflows 
to handle the large scale of ‘omics data
This workflow could include the option to version control markdown documents and notebooks, as well as a 
graphical user interface to facilitate debugging in the cloud.

Recommendation 4. Study the third-party data management vendor networks for drug development
Currently, the robustness of the IT infrastructure for a project can vary extensively depending on the 
organization in charge – larger companies tend to have stronger, cloud-based infrastructures for data storage 
and administration. More data mean more complications in terms of data processing, data transfer, and analysis, 
and in such situations, multiple experts from a variety of fields are required to manage the data. Third-party data 
management vendors are highly useful in managing these data access issues as well as facilitating regulatory 
proceedings for pharmaceutical companies. A better understanding of the systematized data exchange that 
occurs across these could vastly expedite biomedical discovery.

Recommendation 5. Introduce improved, user-friendly tooling for data processing and ingestion
Multiple opportunities lie in the ability to use methods such as generative AI for data processing40,41. Integrating 
natural language processing and machine learning with the latest transformer or large language models could 
help reduce data loss through the processing of unstructured free-form text. Furthermore, tools that incorporate 
generative AI could reduce the learning curve for more complicated data processing techniques by providing 
direct feedback on data processing workflows for users jumping into computational analysis for the first time. 
Intuitive, user-friendly tools would help democratize access to data and simplify the ability to ingest them for 
downstream data analysis.

Recommendation 6. Improve the process of communication between clinical trial managers and clinicians
The wide variation in the data sharing systems that are used across pharmaceutical companies and third-party 
vendors results in a tremendous burden on clinical trial facilitators to ensure the ongoing viability of the trial 
– multiple data management portals may be required for a project depending on the type of data being used. 
Clinicians and other healthcare providers are also often not able to directly see the impact of the work they help 
facilitate. We could reduce the turn-around time for biomedical discovery in the clinical space through the 
development of easy-to-use co-working platforms that facilitating effective collaboration and communication 
between clinical trial managers and clinicians.

Recommendation 7. Develop tooling and platforms to facilitate quicker data access and more efficient, secure data 
sharing
The creation of secure, democratized data platforms that permit rapid, secure data sharing both within and 
beyond an organization would drastically help mitigate the existing challenges in data flow. Such tooling would 
need to include cost-efficient data storage and options for secure communication and data transfer between 
internal and external parties.

Discussion
Data integrity and interoperability are essential to improve our ability to achieve precision medicine. However, 
most of the research conducted today is fixated on the development of new tools and methods for analysis. 
This myopic focus ignores the gaps in biomedical experimentation that lead to failings of data interoperability. 
To identify these omissions, our work aimed to explore the biomedical discovery process across professional 
stakeholder roles, research goals, and data subtypes. Our qualitative study provided insights into the data journey 
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across stakeholders involved in biomedical discovery, and based on the identified data challenges, we proposed 
a set of seven actionable recommendations for those interested in addressing open challenges in the discipline.

Our study findings confirm many of the data challenges found in the literature with respect to biomedical 
discovery research, such as concerns related to (1) secure data storage, warehousing, withdrawal, access, and 
sharing, (2) quality control and curation of unstructured data, (3) processing and multiomics integration for 
large-scale, heterogeneous data, (4) reproducibility and version control, (5) coordination and collaboration 
among stakeholders, and (6) regulatory standards and collaborative data partnerships. Finally, we identified 
the importance of data integrity in hand-offs between the stages of biomedical research, and noted how data 
integrity is often assumed by data professionals who do not collect and curate their own data due to the isolation 
of their work from other steps in the research process ecosystem. Based on such considerations, we present an 
overview of a research data lifecycle that reflects the diverse data types, stages, and stakeholders involved in the 
biomedical discovery process derived from our study findings (Table 4).

Based on the above research data lifecycle, we include an additional itemization of biomedical data tasks by 
stages of research, including non-clinical and clinical discovery (Table 5).

The results of our study emphasize the need for secure collaboration and data analysis, with a focus on 
reducing data handoff miscommunication, early-stage data extraction errors, metadata errors, and reformatting 
errors during analysis to meet compliance and regulatory standards.  Our study was limited by the logistics 
of recruiting participants, as it had to be conducted virtually. As a result, further work is needed to validate 
the identified obstacles and data jobs to be done with additional participants. Furthermore, our proposed 
recommendations and process must be explored in real-world settings. Another future direction of this work 
involves additional investigation of the third-party data management and contract research organization vendor 
networks to gain a full grasp of the data flow and hand-offs that take place in larger-scale biomedical discovery 
projects.

Conclusion
In this study, we explored key challenges and data jobs to be done from the perspective of a variety of biomedical 
researchers. Based on the results of our interviews, we identified a set of common pain points and challenges 
faced by researchers across the biomedical discovery data lifecycle. We proposed a set of recommendations 
for improved data collaboration, integrity, and interoperability for knowledge discovery, including cloud-based 
computational infrastructures for centralized data warehousing and withdrawal, improved debugging workflows 

 Phase
STAGE 1:
DATA PLAN

DATA 
HANDOFF: 
RAW NON-
CURATED 
DATA

STAGE 2:
DATA 
CURATION AND 
PREPROCESSING

DATA 
HANDOFF: 
QUALITY-
CONTROLLED 
PROCESSED 
DATA

STAGE 3:
DATA 
ANALYSIS

DATA HANDOFF: 
ROBUST FINDINGS

STAGE 4: 
DATA-DRIVEN 
SOLUTION / 
DISCOVERY

LEVEL A
NON-HUMAN
Stakeholder 
Segments
- Academic Medical 
Centers / Research 
Centers
- Pharma / Biotech
- Vendor Networks

- If data are available, 
get a vendor to send 
them over
- If data are unavailable, 
pay a data generator to 
create the data
- Data collection and 
data standardization 
typically occur 
concurrently

- Handoff 
from data 
generator to 
data curator or 
computational 
scientist
Requires FDA 
compliance if 
proceeding to 
human studies

- Further curation and 
collection of metadata 
(e.g. handling batch 
effects)

- Handoff from 
a data generator 
to computational 
scientist

- Statistical 
analysis from a 
computational 
scientist

- Insight / interpretation 
from computational 
scientist and other 
stakeholders
- Shared through 
presentations, shared 
drives, visualizations, 
publications

- 
Communication 
with 
collaborators
- Publication 
of manuscript 
and/or data / 
workflows to 
advance the field

LEVEL B
HUMAN, NON-
CLINICAL
Stakeholder 
Segments
- Academic Medical 
Centers / Research 
Centers
- Pharma / Biotech
- Vendor Networks

- Collaboration with a 
wet lab or large-scale 
data consortium
- If data are available, 
procure tissue 
samples or sequencing 
information
- Otherwise, perform 
sequencing / data 
extraction

- Handoff 
occurs from the 
lab technician 
or an external 
vendor to the 
computational 
scientist

- Performed by a 
computational scientist
- For ‘omics data, 
follow best practices 
for QC and annotation 
– primary (reference 
alignment) and 
secondary analysis 
(variant calling)
- Short-tailed process

- Data evaluation 
continued by 
computational 
scientist or 
biologist
- Back-and-forth 
communication 
circle

- Context-
dependent 
data analysis
- Involves 
statistical/
ML modeling 
as well as 
biological 
interpretation
- 
Incorporation 
of public 
knowledge
- Long-tailed 
process

- Insight / interpretation 
from computational 
scientists, biologists, and 
other stakeholders
- Shared through 
presentations, shared 
drives, visualizations, 
publications, markdown 
notebooks, or file sharing 
systems

- 
Communication 
with 
collaborators
- Publication 
of manuscript 
and/or data / 
workflows to 
advance the field

LEVEL C
HUMAN, 
CLINICAL
Stakeholder 
Segments
- Hospital Systems / 
Academic Medical 
Centers
- Pharma / Biotech
- Vendor Networks

- Raw data collection 
from patients
- Mediation from third-
party data management 
vendors (CDMs)
- Long-tailed process

- Data go 
from a health 
system to a data 
management 
vendor to the 
pharmaceutical 
sponsor

- Cleaning / 
reformatting data 
for use in analysis, 
performed by a data 
scientist or data curator
- Oversight from a data 
management entity is 
often required
- Long-tailed process

- Curated data 
are handed 
to either a 
third-party 
computational 
scientist or an 
internal data 
curator or 
computational 
scientist

- Evaluation 
of efficacy of 
treatment

- Insight / interpretation 
from clinicians, 
pharmaceutical 
representatives, data 
analysts, and other 
stakeholders
- Shared through 
presentations, 
publications, dashboards, 
or vendor-specific portals 
that help manage data

- Enact change 
in medical 
centers and 
distribute results 
to the broader 
community
- Meet regulatory 
expectations
- Cycle of 
validation and 
verification

Table 4.  An overview of biomedical discovery framed within a research data lifecycle, derived from the results 
of our interviews.
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for the analysis of large-scale heterogeneous data, new methods for the ingestion of unstructured data, and the 
establishment of vendor networks to facilitate data management and the fulfilment of regulatory requirements. 
Such developments will be crucial to ensure the accuracy and reproducibility of biomedical models when 
considering transitions toward production-level applications in healthcare and the life sciences. Furthermore, 
we highlighted an example biomedical discovery process incorporating findings from our interviews that 
demonstrates how stakeholders across various sectors of biomedical analysis could converge on a common 
workflow to enhance data sharing and foster collaboration.

More research is needed to validate if our proposed recommendations could enhance existing data lifecycle 
frameworks to improve large-scale multiomics data integrity, interoperability, analysis, and collaboration 
challenges. Through their application, we hope to see a shift in biomedical discovery research practices, bringing 
us closer to realizing individualized therapeutics for all patients and fulfilling the promise of precision medicine.

Data availability
Aggregated findings from this qualitative study can be shared upon reasonable request to the corresponding 
author.
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