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This research shows the utilization of various tree-based machine learning algorithms with a specific 
focus on predicting Salicylic acid solubility values in 13 solvents. We employed four distinct models: 
cubist regression, gradient boosting (GB), extreme gradient boosting (XGB), and extra trees (ET) for 
correlation of drug solubility to pressure, temperature, and solvent composition. The dataset was 
preprocessed using the Standard Scaler to standardize it, ensuring each feature has a mean of zero 
and a standard deviation of one, followed by outlier detection with Cook’s distance. Hyperparameter 
optimization made using the Differential Evolution (DE) method improved the performance of 
models. Monte Carlo Cross-Valuation was used in evaluation of the models. Measures including the 
R2 score, Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE) helped to measure their 
performance. With an R2 value of 0.996, the Extra Trees model displayed remarkable accuracy and 
consistency, so showing better performance than other models. This study emphasizes the resilience 
of ensemble methods in capturing intricate data patterns and their effectiveness in regression tasks for 
application of pharmaceutical manufacturing.
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Knowing the solubility of active pharmaceutical ingredients (APIs) is valuable for pharmaceutical manufacturing 
as the solubility is used in some processes such as crystallization of APIs1,2. Crystallization process is driven by 
reducing API solubility in the solvent which can be done via different means such as cooling crystallization, 
antisolvent addition, etc.3–6. If the process cannot operate efficiently for crystallization, sometimes the solvent is 
swapped to enhance the efficiency of crystallization which needs selection of proper solvent7. So, the solubility 
of API in various solvents should be precisely determined for successful operation of API crystallization in 
pharmaceutical manufacturing of solid-dosage formulations. Experimental methods such as gravimetric 
technique can be used for measuring solubility at various solvents and temperatures. However, this method 
is tedious when it comes to a large number of solvents. So, other methods should be developed for estimation 
of solubility of APIs. From the practical point of view, solubility prediction and screening solvent is of great 
importance to save time and cost for improving crystallization process in pharmaceutical manufacture.

Methods of computation can be employed for evaluation and estimation of APIs solubility in a wide range of 
solvents. In these methods, a number of experimental solubility data are collected and used for fitting empirical 
models. Thermodynamic models are primarily utilized in correlation of solubility dataset as a function of 
temperature8,9. Some optimization techniques are needed for fitting thermodynamic models to experimental 
solubility data. However, thermodynamic models are not facile to apply for wide range of drugs and conditions 
due to their complexity implementation. Also, methods based on quantum chemical calculations and molecular 
modeling can be utilized to determine the drug solubility. Bjelobrk et al.10 developed a methodology based on 
molecular dynamics (MD) simulation to calculate the solubility of organic crystals in different solvents. The 
equilibrium free energy was calculated to predict the solubility values. Despite the fully predictive nature of MD 
calculations, the method is computationally challenging and needs huge amounts of time and resources for a 
large dataset of medicines.

So, data-driven models such as Machine Learning (ML) models have been recently developed in estimation 
of APIs solubility in different solvents utilizing various algorithms for learning the pattern of dataset11–14. ML 
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models are able to make correlation of solubility to pressure, temperature, and any other inputs. Greater accuracy 
has been attained by using ML models compared to the thermodynamic methods for solubility data. ML uses 
statistical methods to independently learn patterns from data, without relying on predefined models, making it 
effective for capturing complex behaviors that traditional models might miss15. In artificial intelligence (AI), ML 
is a growing discipline focused on developing algorithms and statistical models enabling computers to carry out 
modeling and prediction tasks without explicit programming directions16,17. ML techniques have shown greater 
performance compared to thermodynamic models in fitting large dataset. These highly useful algorithms in 
many fields, including engineering, healthcare, and finance gather knowledge from data, recognize patterns, and 
make decisions with least human involvement18.

Liu et al.19 developed ML models for correlation of drug solubility in solvent based on inputs including 
pressure and temperature. Adaboost algorithm was utilized to enhance the accuracy of models in predicting the 
drug solubility in supercritical solvent. Capecitabine drug was considered for the analysis, and the boosted MLP 
model indicated the best accuracy with RMSE value of 1.71. The combined method of ML and thermodynamic 
COSMO-RS was used for estimating drug solubility for co-crystallization which indicated great accuracy 
for a wide range of coformers considering the Hansen solubility parameters, while the inputs are molecular 
descriptors of coformers20. For a given and wide range of parameters, ML models have shown great accuracy in 
estimation of drug solubility. For crystallization of APIs, it is of great importance to evaluate the drug solubility 
in mixed range of solvents so that the best solvent can be selected to enhance the yield of crystallization.

Because of their adaptability, interpretability, and strong predictive powers, tree-based models in ML have 
become rather popular and are therefore essential tools for handling complex regression problems21. Key 
methods include Cubist regression, Gradient Boosting (GB), Extreme Gradient Boosting (XGB), and Extra Trees 
(ET), each offering unique advantages. Cubist regression combines rule-based modeling with linear regression, 
effectively capturing both linear and non-linear patterns22. Gradient-based methods such as GB and XGB 
improve model accuracy by iteratively rectifying errors from preceding models, thus augmenting robustness. 
The Extra Trees model enhances prediction by incorporating randomness in feature selection and threshold 
splitting, thereby increasing model diversity and mitigating overfitting23.

These models’ demonstrated ability to capture complex data patterns and preserve high accuracy and 
consistency justifies their use in this work, which attempts to solve problems with solubility value estimation. 
We efficiently link solubility with many parameters, including temperature and solvent composition, by using 
tree-based models. Particularly, our analysis reveals that the ET model, with a R2 score of 0.996, stands out for 
its generalizing and accuracy powers. This work highlights their possible use in pharmaceutical manufacturing 
and offers understanding of the application of advanced ML approaches for solubility prediction.

The main contributions of this paper include the application and comparison of these advanced tree-based 
models, the implementation of hyperparameter optimization using Differential Evolution (DE), and a thorough 
evaluation using Monte Carlo Cross-Validation (MCCV) to ensure robust and reliable results. The models are 
used to correlate the solubility of Salicylic acid to pressure, temperature, and solvents composition. The ML 
models integrated optimizer (DE) have been developed for the first time to correlate the drug solubility (salicylic 
acid) in mixed solvents. This study highlights the resilience and efficacy of ensemble methods in complex 
regression tasks, providing a comprehensive analysis that can serve as a valuable reference for future research 
in this area.

Dataset of drug solubility
The dataset analyzed in this study are for the solubility of drug which have been taken from24, consists of 217 
data points and 15 input features (see Table 1). The Salicylic acid solubility is the sole target output of this study. 
Data have been collected for drug solubility in 13 different solvents with various compositions. All solvents used 

Input variables (features) Symbol

Methanol X1

Water X2

Ethanol X3

Ethyl Acetate X4

PEG 300 X5

1,4-Dioxane X6

1-Propanol X7

1-Butanol X8

1-Pentanol X9

1-Hexanol X10

1-Heptanol X11

Acetone X12

Acetonitrile X13

Pressure P (kPa)

Temperature T (K)

Table 1.  The input features for API solubility dataset24.
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in the models along with their notation are listed in Table 1. X refers to the composition of each solvent in mole 
fraction. Also, statistics of the dataset is shown in Table 2.

Figure  1 illustrates the distributions of solubility, temperature, and pressure. The solubility distribution 
is skewed, with most samples having low values and fewer instances of high solubility, potentially affecting 
regression models due to outliers. Temperature and pressure are more uniformly distributed, with temperature 

Fig. 1.  Distributions of solubility, temperature, and pressure. (The frequency axis represents the number of 
data points within each value range, highlighting the data spread and skewness across each variable).

 

Variable Min Mean Max SD

X1 0 0.045134 1 0.197458

X2 0 0.367083 1 0.398600

X3 0 0.229847 1 0.330606

X4 0 0.053680 1 0.208762

X5 0 0.008687 1 0.073650

X6 0 0.014463 1 0.091717

X7 0 0.041475 1 0.199846

X8 0 0.041475 1 0.199846

X9 0 0.041475 1 0.199846

X10 0 0.041475 1 0.199846

X11 0 0.041475 1 0.199846

X12 0 0.032258 1 0.177093

X13 0 0.041475 1 0.199846

P (kPa) 90 97.303226 101.32 5.428740

T (K) 243.15 297.343548 323.15 16.355975

Solubility 0.000233 0.092409 0.541 0.082338

Table 2.  A statistical summary of the dataset.
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showing slight skewness. These distributions guide preprocessing, particularly standardization and outlier 
management.

Figure  2 illustrates the Pearson correlation heatmap for all variables, displaying both the magnitude and 
direction of linear relationships among features. The Pearson correlation coefficient rxy  quantifies the strength 
of the linear relationship between two parameters, x and y, and is calculated as25:

	
rxy =

∑
(xi − x) (yi − y)√∑

(xi − x)2 ∑
(yi − y)2

where xi and yi are individual sample points, and x and y are the mean values of x and y, respectively. High 
positive or negative correlations between certain features imply redundancy, meaning these features convey 
similar information, which can lead to model overfitting if not addressed. In contrast, weak correlations with the 
target variable (e.g., solubility) suggest the need for ensemble modeling techniques to effectively capture non-
linear or complex relationships that single models might overlook. This heatmap thus aids feature selection and 
model interpretation, allowing for a more focused understanding of feature importance and interactions within 
the dataset.

Methodology
This investigation assesses the efficacy of various tree-based ML models in predicting solubility values. Research 
methodology involves data preprocessing, model assortment, hyperparameter tuning, and model assessment. 
The dataset was first preprocessed using normalization techniques to ensure that the data scale was consistent. 
This was followed by outlier detection using Cook’s distance. The study employed four distinct regression 
models: Cubist Regression, Gradient Boosting (GB), Extreme Gradient Boosting (XGB), and Extra Trees (ET).

We performed hyperparameter optimization using the Differential Evolution (DE) method, which is well-
known for its resilience in searching high-dimensional spaces, to raise the performance of the model. The models 
were evaluated using Monte Carlo Cross-Validation (MCCV) to ensure the reliability and stability of the results. 

Fig. 2.  Pearson correlation heatmap of all variables.
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The performance metrics used are the R2 score, Root Mean Squared Error (RMSE), and Mean Absolute Error 
(MAE). These metrics provide a comprehensive assessment of each model’s accuracy and predictability. This 
methodology ensures a systematic and structured approach to the development and evaluation of models, with 
a focus on the benefits of using ensemble methods for regression tasks. The following sections offer an elaborate 
explanation of the essential elements of the methodology.

This study, conducted using a Python 3.10 project, employs `sklearn`, `matplotlib`, `numpy`, and `bejoor` 
to implement a Differential Evolution (DE) optimizer. The `sklearn` library is crucial for model development. 
We preprocess data using `StandardScaler` for uniform feature scaling and employ DE (from `bejoor`) for 
hyperparameter optimization, enhancing R2 and MAE scores via cross-validation. Model performance and data 
distribution visualizations are produced with ̀ matplotlib`, whereas ̀ numpy` enables efficient data manipulation 
across matrices. This method seeks to improve predictive precision and clarity in IoT attack detection.

Data preparation
During the Data Preparation phase, we initially used the Standard Scaler for standardization, ensuring that all 
features have a consistent mean and standard deviation, which is essential for the effectiveness of numerous 
ML algorithms. This technique standardizes the data, transforming it to have a mean of zero and a standard 
deviation of one. This improves the effectiveness of the model in managing the characteristics.

Additionally, we employed Cook’s distance as a method for outlier detection. Cook’s distance is a statistical 
method for outlier detection, primarily used in regression analysis. The technique quantifies the change in the 
regression coefficients when that particular point is omitted, so assessing the effect of individual data points 
on the fit of the regression model. Points with a high Cook’s distance value are regarded as influential outliers 
because their removal has a substantial impact on the model parameters26,27.

This approach offers a robust and reliable technique for identifying influential data points that have the 
capacity to greatly affect the outcomes of a regression analysis. However, its effectiveness is limited when 
working with datasets that have a large number of dimensions and in situations that involve large-scale data. This 
is primarily attributed to its significant dependence on regression diagnostics, which can be computationally 
demanding. Nevertheless, Cook’s distance remains a valuable tool for pinpointing outliers in compact, well-
defined regression situations, furnishing essential insights into the stability and reliability of the regression 
model.

To analyze the models accurately, we divided the dataset into training/validation and test sets. We used 90% 
of the data for training and validation, which allows the model to learn and optimize its parameters, while 
the remaining 10% was set aside as a test set. This split was done randomly to ensure that both subsets are 
representative of the entire dataset, providing an unbiased measure of how well the model performs on new, 
unseen data.

Differential evolution (DE) optimization algorithm
Differential Evolution (DE) is a robust stochastic optimization algorithm renowned for its effectiveness in 
navigating high-dimensional search spaces to locate the global optimum of a given function. As a prominent 
member of the Evolutionary Algorithms (EA) family, DE is distinguished by its simplicity and efficacy28,29.

The core of DE lies in iteratively refining a population of potential solutions, represented as vectors in the 
search space. The algorithm starts by randomly or systematically initializing the population. In each iteration, 
DE generates a new candidate solution by combining three randomly chosen individuals: the base, target, and 
donor vectors. A donor vector is formed by adding the scaled difference between the base and target vectors to 
a third individual, creating a mutation vector.

The scaling factor, which determines the extent of the difference vector, is typically set through experimentation. 
The donor vector is then compared to the target vector, and the better-performing solution is carried forward to 
the next generation.

DE algorithm continues this procedure until a predefined stopping condition is satisfied. Differential 
Evolution has demonstrated its efficacy as a potent optimization technique in various domains, encompassing 
function optimization, parameter adjustment, feature selection, and ML30,31.

The choice of Differential Evolution (DE) over more conventional techniques such as random search and 
grid search was motivated by DE’s superior efficiency in exploring high-dimensional and continuous search 
spaces. Unlike grid search, which exhaustively evaluates a fixed set of hyperparameter combinations, or random 
search, which selects configurations randomly, DE iteratively refines a population of candidate solutions by 
applying evolutionary strategies. This enables DE to more effectively converge toward optimal solutions with 
fewer evaluations, particularly beneficial when optimizing complex models.

Also, DE was preferred over Bayesian optimization (BO) due to DE’s ability to efficiently explore high-
dimensional, noisy, and complex search spaces without assumptions about smoothness. While BO excels in 
smooth, low-dimensional spaces, DE’s population-based approach provides more robust global exploration and 
scalability, making it more effective for challenging optimization tasks.

In this study, we used a fitness function designed to maximize model performance by simultaneously 
optimizing the mean R2 score and minimizing the Maximum Error across Monte Carlo Cross-Validation 
(MCCV) iterations. Our fitness function, F, is given by:

	
F = maximize

(
MCCV mean R2

Max Error + ϵ

)

where MCCV mean R2 is the average R2 score across MCCV runs, Max Error is the maximum error, and 
ϵ is a small constant (0.000001 here) added to prevent division by zero. This formulation guarantees that the 
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algorithm emphasizes both superior predictive accuracy and error reduction. The principal DE parameters 
employed in this optimization are the population size (120), crossover probability (0.8), and scaling factor (0.5), 
all chosen to improve convergence.

Cubist regression model
Cubist regression is a method that combines rule-based modeling with linear regression to extend the 
capabilities of regression trees. The procedure includes developing a model through establishing a set of rules 
and subsequently utilizing a regression model on the data that meets each rule. The structure of the model allows 
for capturing both non-linear connections using the tree structure and linear patterns through the application of 
linear regression models22,32. The key steps in Cubist regression include33:

•	 Building Regression Trees: Initially, the model generates a regression tree by iteratively dividing the data ac-
cording to feature values. Each terminal node within the tree encapsulates a rule (or condition) that delineates 
a subset of the data.

•	 Fitting Linear Models: For each rule (or leaf node), the model fits a linear regression model using the data that 
meets the conditions of that rule.

The prediction for a new instance x is given by the following equation:

	
ŷ (x) =

∑R

i=1
wi × ŷi (x)

where R stands for the total number of rules, wi denotes the weight associated with the i-th rule, and ŷi (x) is 
the prediction from the linear regression model associated with the i-th rule.

The weights wi are typically determined based on the rule’s accuracy and the instance’s distance from the rule’s 
decision boundary.

Extra tree regression (ET)
The Extra Trees (ET) algorithm utilizes a set of decision tree models to make predictions about the target 
variable34. Decision trees are built by employing a randomized split-point selection mechanism. This approach 
increases the diversity and decreases the correlation between decision trees in comparison to the decision trees 
used in Random Forest23,35.

Let’s begin by establishing the notation employed in ET. Suppose we have a set of (X, y) for training, while 
X = {x1, x2, . . . , xn} denotes the input features, and y = {y1, y2, . . . , yn} represents the associated target 
values. The objective of ET is to derive a mapping function f : X → y  that is able to accurately forecast the 
output yi for the input xi 36.

The fundamental component of ET model is the Extra Tree (referred to as tree for brevity), which shares 
similarities with a Decision Tree but also possesses notable distinctions. Extra Trees, like Decision Trees, divide 
the feature space recursively into binary segments before making predictions. Nevertheless, there are two 
significant differences37,38:

•	 Random Feature Selection: Extra Trees split a random subset of features at each node instead of all features 
like Decision Trees. Randomness increases tree diversity and decreases correlation.

•	 Random Thresholds: Extra Trees employ a strategy of using random thresholds within the range of each fea-
ture during the split process, rather than determining the optimal threshold. This enhances the variety and 
robustness.

ET Regression generates multiple trees with various random subsets of features and thresholds, resulting in a 
diverse ensemble of models.

The outputs of every single tree are combined to generate predictions employing the ensemble of trees. The 
average of the predictions from every tree determines the last prediction ypred for regression uses:

	
ypred = 1

N

∑N

i=1
fi (X)

Here, N signifies the count of trees in ET, and fi (X) denotes the prediction generated by the i-th tree. The 
architecture of this model is depicted in Fig. 3.

Gradient boosting and extreme gradient boosting
Gradient Boosting is a robust ML approach which can be adopted for either regression or classification. The 
fundamental concept underlying gradient boosting is to amalgamate the advantages of multiple feeble models, 
usually decision trees, in order to generate a robust predictive model39,40.

In gradient boosting, the model is built stage by stage, and new models are added to improve the performance 
of the model. Specifically, at each stage, the model attempts to minimize a loss function by adding a new model 
that predicts the residual errors of the previous models. This is accomplished by fitting the new model to the 
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gradient of the loss function in relation to the predictions of the ensemble of models at that point. Every new 
model is essentially trained to fix errors made by the combined influence of past models.

The process starts with a model initialized to a constant prediction. Subsequent models are trained to predict 
the negative gradient of the loss function, indicating the steepest descent direction. These models are combined 
iteratively, updating predictions to minimize overall error. This results in a composite model capable of capturing 
complicated data patterns effectively.

Extreme Gradient Boosting (XGB), or XGBoost, is a robust ML that builds a predictive model by combining 
multiple weaker models, usually decision trees. It is widely favored for its high performance and efficiency in 
processing large datasets41. It builds an ensemble of decision trees in an additive manner to minimize a specified 
objective function. The objective function (L (ϕ)) consists of a convex loss function  (such as MSE) and a 
regularization term (Ω (f)), defined as42:

	
L (ϕ) =

∑n

i=1
l (yi, ŷi) +

∑K

k=1
Ω (fk)

where Ω (f) = γT + 1
2λ|w|2, with T being the quantity of leaves, w the leaf weights, and γ and  λ the 

regularization parameters.

A new tree ft is included to the model at every iteration t to update the prediction ŷi:

	 ŷ
(t)
i = ŷ

(t−1)
i + ft (xi)

To optimize the objective, XGBoost uses second-order Taylor expansion, calculating gradients gi and Hessians 
hi 43:

	

gi =
∂l

(
yi, ŷ

(t−1)
i

)

∂ŷ
(t−1)
i

, hi =
∂2l

(
yi, ŷ

(t−1)
i

)

∂ŷ
(t−1)2

i

Fig. 3.  Structure of ET model.
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The optimization of the tree structure involves selecting split points that maximize the gain:

	
Gain = 1

2

[
G2

L

HL + λ
+ G2

R

HR + λ
− (GL + GR)2

HL + HR + λ

]
− γ

where GL and HL are the sums of gradients and Hessians for the left child, and GR and HR for the right child. 
This results in a finely tuned, accurate model capable of handling various regression tasks effectively.

Evaluation method
The evaluation of the models was conducted through a systematic approach to ensure the robustness and 
reliability of the results. The following steps outline the evaluation methodology:

	1.	� Cross-Validation: To assess the models’ efficacy, we employed Monte Carlo Cross-Validation (MCCV) with 
20 iterations. This method utilizes a stochastic process to partition the dataset into multiple training and 
testing sets (specifically, a 4:1 ratio from 90% of the total training data, with 10% allocated for final model 
testing), facilitating the evaluation of model stability and performance across diverse data segments. The R2 
score and standard deviation were calculated to evaluate the models’ reliability and predictive performance.

	2.	� Model Comparison: Several regression models, including ET, GB, XGB, and Cubist regression, were trained 
and tested.

	3.	� Error Analysis: The final models’ error rates were examined to determine why the predicted and actual values 
differed. RMSE gives more weight to larger errors and MAE averages absolute errors, so they were chosen to 
measure prediction accuracy directly. Results section test data error rates (10% of dataset).

This comprehensive evaluation approach ensured that the selected models were rigorously tested and compared, 
leading to a reliable selection of the best-performing model for the given regression task.

Results and discussion
The metrics that are evaluated include the mean R2 score, the standard deviation from Monte Carlo Cross-
Validation (MCCV), the RMSE, and the MAE. Tables 3 and 4 present a thorough summary of the results, 
demonstrating the predictive precision and reliability of each model in a straightforward and concise manner.

The optimized hyperparameters derived from Differential Evolution (DE) for the models are as follows. The 
hyperparameters chosen for Gradient Boosting are: `Number of estimators = 230`, `learning rate = 0.9734`, 
`criterion = ‘squared error’`, and `tol = 0.1503`. Extreme Gradient Boosting is configured with a maximum 
depth of 19, a learning rate of 0.0406, 89 estimators, an objective of ‘squared error’, and a booster type of ‘dart’. 
The Extra Trees model employs `Number of estimators = 10`, `criterion = ‘absolute error’`, `max depth = 10`, 
and `max features = 15`. The Cubist model is ultimately configured with `committees = 18` and `neighbors = 4`. 
The ‘Squared Error’ loss function used for all tree-based methods in this study.

The analysis of Tables 3 and 4, along with Fig. 4, provides clear evidence that the Extra Trees (ET) model is 
the best-fit model for this study. Table 3 reveals that the ET model achieves a mean R2 score of 0.996781, which 
is markedly above the scores of other models such as Gradient Boosting, Extreme Gradient Boosting, and Cubist 
Regression. The low standard deviation of 0.060889 for the ET model further emphasizes its consistency and 
reliability across multiple cross-validation iterations, indicating that it consistently captures the variance in the 
data. The total error (difference between experimental and predicted values) calculated for the best model (Extra 

Model

Train data Test data

RMSE MAE RMSE MAE

Extra Trees 4.3439E-03 1.6555E-03 1.3539E-02 8.00445E-03

Gradient Boosting 3.3457E-02 7.8919E-03 2.5654E-02 1.27566E-02

Extreme Gradient 
Boosting 7.0264E-03 3.2364E-03 1.8059E-02 9.08035E-03

Cubist regression 2.2980E-02 1.5495E-02 2.2248E-02 1.94089E-02

Table 4.  Error rates of final models (test data).

 

Model MCCV mean R2 score MCCV R2 score standard deviation Train R2 score Test R2 score

Extra Trees 0.996781 0.060889 0.997442 0.954511

Gradient Boosting 0.721585 0.322151 0.733176 0.719597

Extreme Gradient Boosting 0.909649 0.190877 0.915485 0.907288

Cubist regression 0.838774 0.147043 0.834378 0.826693

Table 3.  Cross-validation results (20 iterations).
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Trees) is lower compared to the previous work24 due to the use of advanced algorithm for optimization in this 
study which reduced the total error.

Table 4 supports these findings by showing that the ET model has the lowest RMSE of 0.013539 and MAE of 
0.00800445. These measures show that, among other models such as Gradient Boosting, which has higher error 
rates, the ET model generates the most exact predictions with the lowest amount of error. Confirming their 
robustness and accuracy, the lower error rates show the great generalizing capacity of the ET model to new data.

Finally, Fig. 4 visually demonstrates the performance of the models by comparing actual versus predicted 
solubility values. In this Figure, the final models were evaluated using hyperparameters optimized by DE for best 
performance. The ET model is expected to exhibit predicted values that closely correspond to the actual values, 
indicating a high level of model accuracy. Points for the ET model would be clustered near the line of equality, 
where predicted values equal actual values, further supporting its efficacy. Overall, the combination of high 
predictive accuracy, low error rates, and visual validation confirms that the ET model is the most suitable choice 
for predicting solubility in this study.

The underperformance of Gradient Boosting (GB) and Cubist Regression compared to the Extra Trees (ET) 
model may be attributed to several factors. First, GB may have been affected by its sensitivity to hyperparameter 
settings; while efforts were made to optimize these, the model could not capture complex patterns as effectively 
as ET. Additionally, GB’s reliance on sequential learning may have limited its robustness to noise and outliers 
in the dataset. Similarly, Cubist Regression, which combines rule-based and linear modeling, may struggle 
with high-dimensional and non-linear interactions among features, which the ET model handles more adeptly 
through its randomized split and feature selection process. These findings highlight the importance of model 
architecture in capturing complex solubility patterns in diverse solvents.

Figure  5 displays the feature importance rankings as determined by the Extra Trees (ET) model. The 
analysis identifies the input features that had the highest impact on the model’s predictions, offering valuable 
insights into the factors that exert the most influential effect on solubility. It is observed that X2 which is water 
content (mole fraction) is the most significant factor affecting the solubility. Afterward, temperature is the most 
important factor which is already known to alter the solubility of drugs in solvents. As seen, pressure does not 

Fig. 4.  Actual versus predicted solubility values using all models.
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have significant effect on the API solubility variations which is attributed to the incompressibility of solvents 
whose properties do not change with pressure.

Figure 6 illustrates the partial dependence of solubility on the two most important features while keeping 
other input features constant at their median values. It visualizes how changes in these key features influence the 
predicted solubility, helping to understand their relationship with the target variable. According to Fig. 6, as the 
water content (X2) is increased in the solvent, the solubility of Salicylic acid is reduced which is due to the poor 
water solubility of this API in aqueous solutions. Basically, most APIs are of poor solubility in aqueous media. 
On the other hand, solubility is enhanced with increasing temperature, and it is correctly predicted by the ML 
models.

Figure 7 presents a contour plot that illustrates the relationship between solubility and the two most important 
features identified by the Extra Trees model. The plot shows how solubility varies as these two features change, 
while keeping the other features constant at their median values. This visualization helps in understanding 
the interaction between these key features and their combined effect on solubility. The highest API solubility 
has been obtained at the highest temperature and the lowest X2 value. Figure 8 is the same for pressure and 
temperature as inputs which confirms sharp variations of solubility with temperature compared to the pressure.

Finally, Fig. 9 illustrates SHAP (SHapley Additive exPlanations) values, which clarify feature contributions 
to individual predictions by showing the impact and direction of each feature’s effect on the model’s response. 
Features are ranked by importance, with the most influential at the top. Each point indicates a SHAP value for 
a feature and instance, with positive values pushing predictions higher and negative values lowering them. The 
color gradient (blue to red) indicates feature values, revealing whether high or low values amplify the feature’s 
influence. This visualization offers a comprehensive view of how key features interact to shape model predictions, 
enhancing the interpretability of the Extra Trees model.

Conclusion
In conclusion, this study highlights the superior performance of the Extra Trees (ET) model in predicting 
solubility values of Salicylic acid in various solvents, achieving an impressive R2 value of 0.996, which 
significantly surpasses the performance of other models like Gradient Boosting, Extreme Gradient Boosting, 
and Cubist regression. The efficacy of the Differential Evolution (DE) method for hyperparameter optimization 
is highlighted by its successful application, which leads to improved model performance. Monte Carlo Cross-
Validation (MCCV) is employed to enhance the dependability and resilience of the outcomes. The results 
highlight the effectiveness of ensemble methods, specifically Extra Trees, in managing intricate regression tasks 
and accurately capturing complex data patterns with high precision and reliability.

This study establishes a solid foundation for further research in ML applications for regression tasks, 
particularly in predicting chemical properties such as solubility. The results provide valuable insights that can 

Fig. 5.  Extra Trees Feature importance analysis for drug solubility.
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support the design and optimization of crystallization processes in pharmaceutical manufacturing of small-
molecule APIs.

Future research should investigate the robustness and generalizability of these models using datasets 
with broader feature ranges to evaluate their performance with data outside the training range. Testing on 
such expanded datasets would reveal the models’ ability to handle unseen scenarios, ensuring reliability and 
adaptability across diverse conditions. Additionally, validating the models with experimental solubility data 
could assess their real-world applicability, while incorporating transfer learning techniques might enhance their 
adaptability to datasets with different characteristics or limited availability, enabling broader applications in 
pharmaceutical research.

Fig. 6.  Partial Dependence of Solubility on two most important features (keeping othe input features constant 
to their median values: X3 = 0.03730, P(kPa) = 101.32, T(k) = 298.15 in X2 dependence plot , and X2 = 0.24025 
in T(k) dependence plot. Rest of variables kept equal to 0).
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Fig. 7.  Contour plot of Solubility as a function of two most important features keeping other features constants 
to their median values (X3 = 0.03730, P(kPa) = 101.32, T(k) = 298.15. Rest of variables kept equal to 0).
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Fig. 8.  Contour plot of Solubility as a function of pressure AND temperature important features keeping other 
features constants to their median values (X3 = 0.03730, P(kPa) = 101.32, X2 = 0.24025. Rest of variables kept 
equal to 0).
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Data availability
The datasets used and analyzed during the current study are available from the corresponding author on rea-
sonable request.
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