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Despite major advances in environmental security research, non-experimental observations typically 
rely on methods that retrieve or validate specific linkages, rather than uncovering broader causal 
mechanisms underlying environmentally driven armed conflict. This article demonstrates how recent 
advances in causal methodology can be applied to more comprehensively retrieve and validate 
a network of such linkages. By retrieving a more integrated causal structure of pathways from 
environmental variables to conflict activity, we offer a novel methodological perspective on how 
causal relationships among environmental, demographic, agricultural and armed conflict variables 
can be identified, and how associated causal hypotheses can be tested. To uncover these pathways 
and infer causal effects of natural conditions on conflict activity, we apply this methodology to 
non-experimental observations of armed conflict across Iraqi subdistricts. Our findings support the 
hypotheses that latent energy and soil moisture indirectly cause conflict activity. While confirming that 
armed conflict is positively mediated by population density, the results do not support the hypothesis 
that wheat production negatively mediates conflict. Finally, we discuss our methodological approach, 
clarify its limitations, propose future research directions, and consider the implications for evidence-
based policy interventions.

Since the founding of the Correlates of War project in 19631, armed conflict research has benefited from advances 
in the scientific method, including data collection2,3, modeling4 and prediction5. However, an outbreak of armed 
conflict remains difficult to predict, and any attempt to do so requires an explanation of its underlying causes5,6. 
These challenges have led many scholars in environmental security research to refrain from offering causal 
explanations altogether. For instance, one of the field’s founders, Homer Dixon, explicitly avoided “entangling 
himself in the metaphysical debate about the relative importance of causes of naturally caused armed conflict”7.

Ever since, a host of studies have attempted to overcome many of these limitations, by using econometric, 
statistical, and qualitative causal inference methods for observational data8–10. Since the 1990s,  pathways 
that causally trace armed conflict to environmental variables have become increasingly rich and diverse11–16. 
Observationally identified causes linking conflict, agriculture, and weather include rapacity dynamics17–19 
intensifying enmities along political fracture lines20,21, and food prices22,23 among others.

Until now, however, methods have only been able to empirically confirm less exhaustive causal mechanisms 
that link conflict to environmental factors16,24,25. To estimate causal effects, randomized controlled trials (RCTs) 
have typically been regarded as the gold standard, as random assignment of units to treatment or control 
eliminates confounding between assignment and outcome. Since such rigorous experimentation does not apply 
to armed conflict, more exhaustive causal mechanisms are still in search of appropriate methodology16,25. This 
leaves a significant gap in the literature not only for scholarly purposes but also for policy-making, as policy 
interventions can only effectively address causes once they are identified and estimated.

In addressing this gap, our article outlines a methodology for inferring causality from non-experimental 
observations of armed conflict. We leverage recent advances in the theory and methods of causality26. In 
particular, Pearl’s contributions—such as causal diagrams, causal interventions, and a formalized approach 
to causal reasoning—provide a robust framework for testing commonly hypothesized causal pathways using 
observational data. Our cross-sectional dataset consists of 294 non-experimental observations, one for each 
subdistrict in Iraq (Arabic: ةيحان nāḥiya), which serves as our unit of analysis. Our outcome variable is the 
count of conflict events, with each observation additionally described by explanatory variables, including 
demographics, vital resources, the environment, and weather. These observations were sampled from several 
geo-coded maps2,27–32. From these data, we derived an empirical causal mechanism outlining linkages between 
environmental variables and conflict. Represented as a causal graph, the mechanism illustrates causal pathways 
from environmental variables to armed conflict outcomes. The mechanism is characterized by the causal effects 
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of these variables on the count of conflict events, accounting for causal spillover wherever these effects could 
be identified and estimated. Several findings confirm that causal effects on conflict events can be traced back to 
their natural causes.

While we refrain from making strong claims about having established a robust causal mechanism, our study 
highlights exogenous dynamics that must be considered in environmental security research. More importantly, 
by demonstrating how advances in causal methodology can be leveraged in armed conflict research with non-
experimental observations, we show how empirical causal structures, the identification of causal paths, and the 
estimation of causal effects can inform environmental security research. Third, we corroborate the existence of 
cause-and-effect relationships between environmental variables and conflict. Finally, we illustrate how causal 
frameworks can be used to inform more effective policy interventions.

Our study adapts causal methodology, including the retrieval of empirical causal structures and the 
estimation of causal effects under spillover conditions, to test existing hypotheses in armed conflict research 
using observational data—a novel approach in this domain. Furthermore, it applies these frameworks to 
environmental conflict research, offering new insights and paving the way for more effective policy interventions.

The article is structured as follows: Section  2 demarcates the research gap in the existing environmental 
security and armed conflict literature. Section  3 presents the hypotheses, and Section  4 outlines the results. 
Section  5 discusses key contributions, research limitations, future directions, practical implications, and 
conclusions. Finally, Section 6 describes the study’s data and methods.

Related studies
Armed conflict prediction is generally difficult6,33,34. It is particularly challenging in localities where armed 
conflict is expected to occur for the first time35. Efforts to overcome the challenges and pitfalls of armed conflict 
prediction have occasionally grounded prediction in environmental variables36. A specific line of environmental 
security research has focused on the causality of armed conflict. Studies have investigated both the connections 
tracing the causes of violent, organized conflict to scarce resources11,16,37 and the causal typologies of 
environmental conflict11,14,15.

Some studies have focused on and explicated specific pathways using econometric, statistical, and qualitative 
causal inference methods for observational data. An overview of these studies can be found in, e.g., Martin-
Shields and Stojetz8; Von Uexkull and Buhaug9; Ide et al.10. Researchers have identified numerous causes 
linking conflict, agriculture, and the environment using observational data, including rapacity dynamics17–19, 
intensifying enmities along political fracture lines20,21, and food prices22,23, among others. Causes of conflict 
have been attributed to environmental stress and scarcity12,13,37, the allocation and management of scarce water 
resources38–40, and shocks in food production41.

Some high-profile studies such as Hsiang, Burke, and Miguel24 have attracted sharp criticism41 for capturing 
publication bias and making questionable omissions from data, rather than focusing on actual dynamics. The 
critique demonstrated that the inferred impact of environmental conditions on conflict is contingent upon the 
context, the type of violence, the involved actors, and the methodology itself. By extension, broad claims about 
causal pathways linking the environment to conflict are,  at best, weak and inconclusive16,25,42.

Hence, while domain knowledge strongly suggests that environmental conditions contribute to organized 
armed conflict within countries, more comprehensive causal mechanisms linking these conditions to conflict 
remain less understood. Understanding these mechanisms in greater detail will likely require methodological 
advances to retrieve them from empirical data43. This is the research gap that our study aims to address.

Theory and hypotheses
This section derives our causal hypotheses from relevant findings. Adapted from Sakaguchi, Varughese, 
and Auld16, Fig. 1 outlines the basic mechanism of causal linkages between the environment and conflict,  a 
mechanism that has been extensively hypothesized in environmental security literature. These hypothetical 
linkages are rooted in environmental causes. The figure distinguishes between direct and indirect linkages (i.e., 
paths A and B, respectively). The indirect linkages are based on the idea that the scarcity of vital resources—also 
referred to as environmental scarcity—hypothetically mediates the relationship between environmental causes 
and armed conflict outcomes. This is the rationale behind our hypotheses.

Long-term weather patterns have been argued to directly cause armed conflict24,44–47. The direct link between 
long-term weather patterns and armed conflict can be seen in how populations respond to environmental 
changes. For instance, environmental disruptions affecting livelihoods can prompt community mobilization and 
lead armed groups to intervene, anticipating adverse outcomes. These actions may lead to direct causal effects 
of environmental processes on armed conflict. Such effects can originate from factors such as soil moisture, 
temperature, or the way different physical environments absorb or release accumulated heat or energy (i.e., latent 
heat or energy)16,24. Therefore, we hypothesize that changes in soil moisture, temperature, and latent energy 
directly cause changes in armed conflict activity (H1).

•	 H1a: An increase in latent energy in the form of heat directly causes an increase in armed conflict activity.
•	 H1b: An increase in skin temperature directly causes an increase in armed conflict activity.
•	 H1c: An increase in soil moisture directly causes a decrease in armed conflict activity.

Further, environmental processes have been argued to indirectly cause armed conflict16,48,49. Causal mediation 
of environmental effects on armed conflict primarily concernsenvironmental scarcity7,12,17,37. Environmental 
scarcity has been proposed as a mediator of environmental effects on armed conflict7,16. While we elaborate 
on causal mediation more specifically below, we can already hypothesize that the environmental processes 
indirectly cause armed conflict.
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•	 H2a: An increase in latent energy indirectly causes an increase in armed conflict activity.
•	 H2b: An increase in skin temperature indirectly causes an increase in armed conflict activity.
•	 H2c: An increase in soil moisture indirectly causes a decrease in armed conflict activity.

To add specificity to the indirect causal paths, causal mediation depends on specific causal conditions. 
Agricultural and pastoral conditions have been argued to shape social response to long-term weather patterns 
that induce migration50. Additionally, degradation and desertification of arable land, as well as the availability 
of water for agriculture, have been argued to mediate the environmental effects on violent conflict10,51,52. Wheat 
production has been shown to mediate the causal effects of temperature on the emergence of actual violence19. 
Since wheat is one of Iraq’s key crops53, we hypothesize that the environmental effects are also mediated by the 
production of agricultural resources, specifically wheat production.

•	 H3a: Given the indirect paths from the environmental processes to armed conflict activity, wheat production 
causally mediates the effects of these processes on armed conflict activity, by further decreasing armed con-
flict activity.

In line with the previous reasoning, since the association between conflict activity and factors such as population 
size, growth, density, or migration has already been established54–56, these variables may also naturally mediate 
the effects of the environmental causes on armed conflict outcomes. Specifically, the scarcity of vital resources 
matters more to denser populations than to less dense ones48,57. Intuitively, a denser population is more likely 
to cope with and mitigate tensions less effectively than a less dense population. Everything else being equal, 
the denser population is, therefore, more likely to succumb to organized violence caused by environmental 
processes. Thus, our next hypothesis, H3b, aligns with this reasoning.

•	 H3b: Given the indirect pathways from the environmental processes to armed conflict activity, population 
density causally mediates these effects by further increasing armed conflict activity.

With these hypotheses, we can construct the entire hypothetical causal structure of linkages between environment 
and conflict, as shown in Fig. 2. As depicted in the figure, grounded in the environmental processes, the scarcity 
of vital resources exposes population to existential stress. Both population density and the scarcity of agricultural 
resources aggravate these effects.

Results
Empirical causal structure
In the theory section, we proposed a hypothetical causal structure for the linkages between environment and 
conflict. Figure 3 presents the causal structure that we empirically retrieved from the available non-experimental 
observations.

Although somewhat less expressive, the empirical causal structure largely corresponds to the hypothetical 
one in Fig. 2. The conflict nodes are clustered together, with the only node having only incoming edges being 
the count of conflict events. Additionally, the structure is rooted in the environmental processes. Apart from the 
direct causal path from the temperature node to battle events, all other paths from the environmental processes 
to conflict events are indirect.

Because the population density,  skin temperature, and wheat production nodes have the highest number 
of incoming and outgoing edges, these nodes are pivotal to the connectedness of empirical causal structure. 

Fig. 1.  Hypothesized causal pathways linking the environment to conflict.
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Fig. 3.  The empirical causal structure retrieved from the aggregated data.

 

Fig. 2.  All the hypotheses combined: The hypothetical causal structure.
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This supports the causal mediation of environmental processes on conflict outcomes. In fact, the absence of 
population density, wheat production, and skin temperature would significantly disconnect the environmental 
causes from these outcomes. Rather than accepting this evidence as conclusive, we further use the empirical 
structure to conduct hypothesis testing.

Causal hypotheses
The empirical causal structure can assist in validating the causal hypotheses of naturally caused armed conflict. 
Using this structure, we fitted a spatially explicit structural equation model (SESEM) and formulated and 
estimated the causal effects of our explanatory variables on the count of conflict events.

The SESEM model demonstrated acceptable performance, with the Comparative Fit Index (CFI) exceeding 
0.90 and the Standardized Root Mean Square Residual (SRMR) falling below 0.08 across nearly all spatial 
distances58. These values indicate an acceptable model fit, highlighting the model’s effectiveness in capturing the 
underlying data structure. While the Root Mean Square Error of Approximation (RMSEA) occasionally exceeded 
0.10, suggesting room for improvement, this is likely due to the limited number of available observations.

For each causal estimate, a hypothesis test was conducted to determine whether the estimate should be 
attributed to random error. Table 1 lists the causal estimates, the standard errors, and statistical significance.

Our first set of hypotheses posits that the environmental processes directly cause armed conflict outcomes. 
Specifically, changes in latent energy (H1a), skin temperature (H1b), and soil moisture (H1c) were hypothesized 
to directly affect the count of conflict events. Among these, only skin temperature shows a direct causal path to 
conflict events through battle events. The estimates, standard errors, and statistical significance for each isolated 
path from skin temperature to conflict events are provided in Table 2.

Our first set of hypotheses posits that the environmental processes directly cause conflict events. Based on the 
empirical causal structure, the estimated causal effect of skin temperature on total conflict events is statistically 
significant at the 0.1% level and shows a positive relationship to conflict eventsacross all spatial distances (see 

Distance Wheat production Latent energy Soil moisture Skin temperature Population density

0 km 14.02*** (3.87) 24.27*** (6.21) -18.30*** (4.57) 51.67*** (9.53) 29.66*** (5.75)

3–27 km 23.48*** (4.06) 33.92*** (5.84) -20.72*** (4.23) 64.16*** (7.55) 22.61*** (4.26)

27–40 km 10.69*** (2.57) 21.83*** (4.28) -17.93*** (3.13) 48.17*** (7.44) 29.42*** (4.48)

40–50 km 15.62*** (3.38) 26.64*** (5.19) -19.95*** (3.83) 56.04*** (8.13) 26.65*** (4.50)

50–59 km 12.38*** (2.69) 23.22*** (4.41) -18.93*** (3.42) 45.23*** (6.45) 34.42*** (4.67)

59–66 km 7.59*** (2.22) 15.05*** (3.54) -10.41*** (2.40) 36.99*** (6.97) 16.52*** (3.28)

66–73 km 13.99*** (3.14) 28.43*** (5.35) -16.99*** (3.79) 58.17*** (7.79) 18.17*** (4.08)

73–80 km 14.62*** (3.71) 28.87*** (5.54) -19.53*** (4.04) 71.40*** (8.98) 32.45*** (5.93)

80–86 km 11.18*** (2.57) 15.61*** (3.61) -14.71*** (2.85) 41.21*** (6.85) 26.29*** (3.97)

86–92 km 14.45*** (2.72) 20.63*** (4.07) -16.43*** (3.08) 47.49*** (6.32) 23.16*** (3.84)

92–99 km 12.00*** (2.51) 21.88*** (4.28) -19.68*** (3.45) 41.15*** (5.97) 26.86*** (3.98)

99–104 km 18.30*** (3.68) 26.26*** (5.17) -25.15*** (4.25) 63.40*** (8.29) 43.84*** (5.59)

104–110 km 23.17*** (4.55) 37.04*** (6.58) -24.85*** (4.79) 81.29*** (9.38) 27.69*** (5.08)

110–116 km 7.70*** (1.96) 13.16*** (3.14) -14.46*** (2.63) 30.19*** (5.87) 30.58*** (3.71)

116–121 km 11.67*** (2.65) 23.80*** (4.76) -14.04*** (3.04) 45.79*** (7.41) 29.06*** (4.32)

121–126 km 6.92*** (1.73) 13.87*** (3.02) -16.06*** (2.66) 33.26*** (5.54) 27.72*** (3.40)

126–132 km 16.08*** (3.01) 23.86*** (4.48) -16.46*** (3.18) 50.07*** (6.82) 21.62*** (3.52)

132–137 km 8.66*** (2.26) 15.93*** (3.97) -13.12*** (2.83) 33.65*** (6.82) 18.19*** (3.37)

137–142 km 11.02*** (2.54) 16.71*** (3.82) -14.94*** (2.91) 41.28*** (6.97) 22.61*** (3.55)

142–147 km 15.89*** (3.19) 20.92*** (4.60) -17.00*** (3.57) 54.80*** (7.76) 31.78*** (4.57)

147–152 km 9.75*** (2.20) 18.46*** (4.04) -11.33*** (2.53) 30.66*** (5.74) 15.23*** (3.49)

152–158 km 11.11*** (2.47) 17.22*** (4.00) -14.67*** (2.97) 34.63*** (6.26) 20.02*** (3.31)

158–163 km 14.61*** (2.98) 27.24*** (5.22) -13.79*** (3.30) 56.28*** (7.80) 25.70*** (4.71)

163–168 km 14.06*** (2.83) 22.30*** (4.62) -18.70*** (3.60) 43.42*** (6.85) 29.26*** (3.96)

168–173 km 11.76*** (2.73) 18.74*** (4.48) -15.62*** (3.28) 32.77*** (6.59) 28.39*** (4.20)

173–178 km 13.12*** (2.98) 23.36*** (4.77) -15.54*** (3.33) 54.18*** (7.64) 24.45*** (4.31)

178–183 km 8.16*** (2.37) 12.68*** (3.43) -12.00*** (2.62) 41.87*** (8.02) 24.57*** (4.18)

183–188 km 17.17*** (3.43) 22.95*** (4.99) -20.85*** (4.09) 48.57*** (7.56) 39.79*** (5.41)

188–193 km 14.64*** (2.90) 25.01*** (5.14) -20.75*** (4.10) 50.37*** (6.90) 19.87*** (3.66)

193–198 km 15.00*** (3.18) 23.31*** (4.93) -17.27*** (3.58) 48.83*** (7.66) 24.65*** (4.80)

Table 1.  The causal effects across varying distances. The table presents standardized causal estimates across a 
range of distance bins. The corresponding standard errors, which reflect the uncertainty of the estimated causal 
effects, are shown in parentheses. Statistical significance levels: 5%: *; 1%: **; 0.1%: ***.
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Table 1). This includes a 47.35 non-spillover effect at a distance of zero (see Table 2). Since there is no evidence to 
reject the null hypotheses for (H1a) and (H1c), we accept (H1b), and we do not accept (H1a) and (H1c).

Further, our second set of hypotheses posits that the environmental processes indirectly cause conflict events. 
Latent energy was hypothesized to increase the count of conflicts indirectly (H2a). According to the empirical 
causal structure, all causal effects of latent energy on conflict events must be mediated. Everything else being 
equal, the estimated causal effects of latent energy on conflict events are statistically significant at the 0.1% 
level and positive across all spatial distances. This includes a 24.27 non-spillover effect at a distance of zero (see 
Table 1). Thus, we accept (H2a). Similarly, soil moisture was hypothesized to decrease the count of conflicts 
indirectly (H2c). With no direct paths from soil moisture to conflict events,  its effects can only be mediated. 
Everything else being equal, the estimated causal effects of soil moisture on conflict events are statistically 
significant at the 0.1% level and negative across all spatial distances, including a -18.30 non-spillover effect 
at a distance of zero (see Table 1). Therefore, we also accept (H2c). However, for the indirect paths from skin 
temperature to armed conflict activity through population density (H2b), , the estimated causal effects of skin 
temperature on conflict events are not statistically significant at the 0.1% level across all spatial distances (see 
Table 2). Consequently, we do not accept (H2b).

Finally, our third set of hypotheses posits that the causal effects of the environmental processes on conflict 
events are agriculturally and demographically mediated.  Specifically,  given the indirect paths from soil 
moisture and latent energy to armed conflict activity,  wheat production was hypothesized to decrease the 
count of conflict events (H3a), while population density was hypothesized to increase the count of conflict 
events (H3b).  Everything else being equal, the estimated causal effects of wheat production on conflict events are 
statistically significant at the 0.1% level and positive across all spatial distances, including a 14.02 non-spillover 
effect at a distance of zero (see Table 1).  Similarly, the estimated causal effects of population density on conflict 
events are statistically significant at the 0.1% level and positive across all spatial distances, with a 29.66 non-

Distance
Temperature → Population → Violence against 
civilians → Battles → Conflicts Temperature → Battles → Conflicts

Temperature → Population → Violence 
against civilians → Conflicts

0 km 1.39 (0.83) 47.35*** (9.36) 2.93* (1.25)

3–27 km 0.13 (0.17) 63.34*** (7.50) 0.69 (0.72)

27–40 km 1.29* (0.65) 44.88*** (7.31) 2.00** (0.82)

40–50 km 0.68 (0.52) 52.46*** (8.03) 2.91** (1.02)

50–59 km 0.52 (0.42) 41.22*** (6.28) 3.49** (1.28)

59–66 km 0.19 (0.26) 35.14*** (6.93) 1.66* (0.70)

66–73 km 0.87 (0.54) 55.63*** (7.76) 1.66*** (0.54)

73–80 km 0.58 (0.52) 68.62*** (8.88) 2.20* (1.04)

80–86 km 0.30 (0.48) 37.21*** (6.74) 3.70*** (1.18)

86–92 km 0.36 (0.27) 45.67*** (6.25) 1.46 (0.75)

92–99 km 2.05** (0.74) 36.79*** (5.86) 2.30*** (0.64)

99–104 km 1.31 (0.71) 58.73*** (8.06) 3.36* (1.41)

104–110 km 0.58 (0.56) 77.91*** (9.29) 2.79** (1.06)

110–116 km 2.15** (0.76) 24.85*** (5.65) 3.19*** (0.97)

116–121 km 0.95 (0.52) 42.72*** (7.28) 2.12* (0.98)

121–126 km 1.73* (0.70) 28.14*** (5.34) 3.39*** (1.01)

126–132 km 1.13* (0.51) 47.13*** (6.73) 1.82** (0.69)

132–137 km 0.82* (0.39) 30.58*** (6.75) 2.25*** (0.76)

137–142 km 1.53* (0.61) 37.31*** (6.87) 2.45*** (0.74)

142–147 km 1.58 (0.72) 49.34*** (7.62) 3.88*** (1.10)

147–152 km 0.35 (0.24) 29.54*** (5.69) 0.76 (0.49)

152–158 km 0.97* (0.45) 31.38*** (6.18) 2.28*** (0.71)

158–163 km 0.63 (0.51) 53.10*** (7.72) 2.55*** (0.90)

163–168 km 1.04 (0.56) 39.35*** (6.68) 3.04** (1.14)

168–173 km 0.71 (0.48) 30.67*** (6.47) 1.39 (0.83)

173–178 km 1.96* (0.87) 49.37*** (7.56) 2.85*** (0.78)

178–183 km 1.14 (0.65) 38.80*** (7.92) 1.93* (0.82)

183–188 km 1.84* (0.84) 43.89*** (7.36) 2.84** (1.08)

188–193 km 0.52 (0.50) 47.06*** (6.84) 2.79*** (0.85)

193–198 km 1.79* (0.90) 44.92*** (7.56) 2.12** (0.74)

Table 2.  The causal effects of skin temperature on conflict events across three different paths and varying 
distances. The table presents standardized causal estimates of the effects of skin temperature on conflict events 
across three distinct paths along a range of distance bins.. The corresponding standard errors, which reflect the 
uncertainty of these estimates,  are shown in parentheses. Statistical significance levels: 5%: *; 1%: **; 0.1%: ***.
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spillover effect at a distance of zero (see Table 1. These findings lead us to reject the null hypotheses for (H3a) and 
(H3b), not accepting (H3a) and accepting (H3b) across all spatial bins. Finally, the removal of wheat production, 
skin temperature. and population density from the empirical causal structure would significantly disconnect 
soil moisture and latent energy from conflict events. Our causal estimates corroborate these structural findings.

Seasonal effects
In addition to the aggregated results, we applied the causal discovery algorithm to temporally non-aggregated 
data slices at each season’s mid-point. The results are presented in Figs. 7, 8, 9 and 10 of the Appendix. As seen in 
the figures, applying the causal discovery algorithm to the seasonal data slices reveals highly irregular empirical 
causal structures that deviate from the prevailing domain knowledge.

Discussion
We make three contributions to armed conflict research. First, we demonstrate how advances in causal 
methodology can be applied to armed conflict research. While natural experiments on armed conflict are rare, 
and most observations are non-experimental24, causal assumptions can bridge the gap between experimental 
and non-experimental studies. By leveraging causal methodology, we show how to retrieve an empirical causal 
structure, identify causal paths, and estimate causal effects using non-experimental data. Additionally, the 
probability of distances between hypothesized and empirically discovered causal structures can be quantified 
and tested59,60, especially when domain knowledge informs causal discovery of naturally caused armed conflict. 
Otherwise, an empirical causal structure can be retrieved exploratorily, as shown in our study.

Second, in the context of environmental security research, we confirm the existence of cause-and-effect 
relationships between environmental and demographic variables and armed conflict outcomes. We demonstrate 
that environmental processes, mediated by agriculture and demographics, play a role in causing conflict. By 
disentangling the causal factors underlying the naturally caused armed conflict, we addressed the research gap 
in the environmental security literature16,25,43. The early research avoided engaging in the metaphysical debate 
over the relative importance of natural causes of armed conflict7. By retrieving the empirical causal structure 
from non-experimental conflict observations, we identified the causal mechanism linking the environment to 
conflict. Our empirical causal structure shows that the environmental processes, particularly soil moisture and 
latent energy, can be at the core of naturally caused armed conflict. We also established direct and indirect causal 
effects, such as the direct aggravating effect of skin temperature andthe indirect alleviating effect of soil moisture. 
Our findings show that the effects of these environmental causes on conflict events are mediated by demographics 
and vital resources. Additionally, we confirm that population density aggravates conflict however, contrary to 
our hypothesis, we find no evidence that higher wheat production alleviates conflict activity.

Third, we show how our causal findings can inform the design of more effective policy interventions to 
address armed conflict outcomes. Our findings provide a foundation for policy approaches that mitigate 
armed conflict. Policy acceptance hinges on unpacking black-box predictions5, and because causality explains 
underlying mechanisms, it offers greater interpretability than other approaches to analysis do61. Causality also 
holds policy relevance. For instance, mediators such as population density and wheat production are key points 
where indirect causal paths from the environmental factors to conflict outcomes can be strategically targeted 
for intervention. Causal frameworks also enable validation of additional such points. Thus, understanding the 
causal mechanisms behind naturally caused armed conflict can guide the development of policies aimed at 
addressing its root causes.

Our research is constrained by several limitations. First, regarding our variables, many vital resources are 
influenced by factors such as precipitation, temperature, energy, and water availability24,51,52,62,63, which justifies 
the selection of wheat, skin temperature, soil moisture, and latent energy as explanatory variables. Population 
density is also a well-established variable54,55,64. However, the causal sufficiency assumption posits that any 
omitted, causally relevant variable can confound causal estimates65. In our case, this primarily applies to social 
and political variables (e.g., political power-sharing arrangements, inter-group animosities, and horizontal 
inequality)2,66,67. The absence of these variables may have violated the causal sufficiency assumption, potentially 
confounding our causal estimates. Unfortunately, such data is not available at an adequate resolution for a 
data-scarce country like Iraq. Even if these variables had been available, however, their inclusion might have 
introduced reverse or cyclical causality, thereby confounding our estimates. Hence, the trade-off between 
methodological rigor and domain knowledge is an inherent challenge of causal modeling.

Our second limitation relates to the geographical nature of subdistricts. The need to delimit the conflict 
under study both geographically and historically5 constrains the generalizability of our findings to other 
geographies. This reflects a broader trade-off: the need to localize armed conflict spatially and temporally 
versus the need to ensure sufficient variability in the sampled observations. Moreover, because subdistricts are 
geographical units, it cannot be assumed that the observations are independently and identically distributed. 
Neither conflict activity nor the explanatory variables necessarily conform to subdistrict borders. Specifically, 
the tribal dynamics play a role in shaping armed conflict in Iraq, and the subdistrict and tribal boundaries do not 
always coincide68. As a result, it is plausible that some Iraqi subdistricts are affected by causal effects from other 
Iraqi subdistricts40,69,70: While our spatially explicit structural equation modeling accounted for such spillover 
effects, the causal discovery method used to retrieve the causal structure does not incorporate a remedy for this 
spatial dependency.

Our third limitation pertains to the temporal dimension of causality. Since causes are conventionally 
expected to precede their effects, temporality is a fundamental property of causal inference. However, the 
limited availability and quality of our time-series data constrained our ability to model the temporal dynamics of 
naturally caused armed conflict. Specifically, the available time-series were not sufficiently granular or consistent 
to support robust temporal modeling. This lack of time-series data prevented us from inferring seasonal effects 
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beyond the irregular causal structures, deviating from the domain knowledge. The irregular causal structures for 
the seasonal snapshots are unlikely to be robust, as it is unlikely that the entire environmental conflict dynamic 
could have unfolded within a single month.

Several research directions could address the limitations outlined above. First, given the exclusion of social 
and political variables from our study, subsequent studies should assess the robustness of our causal findings 
under the assumption of unobserved confounding—i.e., by relaxing the causal sufficiency assumption. Causal 
frameworks for this purpose already exist69,71,72. An increasing number of these tools are now available as off-
the-shelf solutions, providing researchers with practical means to integrate them into their methodology72–74.

Further research should also investigate the generalizability of our findings to other geographical localities. 
The smaller the size of locality, the less variable are the observations. Consequently, the less likely it is that 
their variability suffices for statistical significance. Any reduction in the size of locality can artificially make 
causal findings less statistically significant. However, it is also possible to overcome the reduced variability of 
observations, characteristic of small-size localities, by describing conflict observations in informationally dense 
terms. This can be achieved by describing each locality with additional explanatory variables, while dimensionally 
reducing the number of explanatory variables to a smaller number of latent factors. Armed conflict outcomes 
can then be modeled in terms of these latent factors. This approach allows us to examine more diverse contextual 
data and assess the extent to which our findings can be generalized and applied to different geographical regions 
and conflict contexts.

Geography also matters for strategy. Natural resources are inherently geo-located, as are competing factions. 
Claiming these resources, competing factions often act strategically. These dynamics rarely unfold in a socio-
political and demographic vacuum. For instance, the already mentioned cross-subdistrict tribal networks can 
introduce both natural and strategic contingencies into conflict dynamics, as has been observed across Iraqi 
subdistricts. Obviously,  armed conflict within some Iraqi subdistricts may contract causal effects from other 
subdistricts because of geographical reasons. However,   further investigation is warranted into whether such 
spillover effects are primarily driven by natural environmental factors or by strategic human agency.  Causal 
frameworks that support such investigation are already available for use69,70.

Our findings should also be examined for temporal effects.  The retrieved empirical causal structure already 
suggests the non-linearity of armed conflict outcomes75.  Future research should, therefore, investigate how 
to infer causal effects on armed conflict dynamics across time. Causality can be temporally represented by 
causal time-series graphs76. Such graphs can identify time-varying causal paths and guide the estimation of 
temporal causal effects. However, not only would this require time-series data of sufficient quality, but also a 
plausibly hypothesized mechanism of temporal causal effects, which may go beyond our explanatory variables. 
Additionally, most currently available causal discovery methods for time-series data rely on the stationarity 
assumption, which limits their ability to detect and account for seasonal fluctuations in conflict dynamics77.

By explaining why phenomena occur as they do, causal analysis offers greater pragmatic utility for 
policymaking than any other methodological approach. This strengthens the case for accepting our findings 
and underscores the broader value of applying causal methodology. This also encourages adoption of causal 
methodology in other policy domains where decisions can benefit from empirically grounded causal evidence.

In the context of environmental security, understanding the causal linkages between environmental factors 
and conflict provides valuable guidance for designing conflict mitigation strategies. By targeting mediators along 
natural causal pathways to conflict outcomes, policy interventions can be crafted to disconnect these pathways 
before aggravating causal effects reach conflict outcomes. Such interventions can be cost-effective and even 
preventive. For instance, well-conceived social and migration policies aimed at reducing population density can 
disconnect some of these causal links. Similarly, development aid policies can mitigate conflict by addressing 
environmental stressors This can be achieved by strategic investments in long-term hydrological infrastructure. 
Finally, our findings enable the geographical assessment of Iraqi subdistricts for their specific vulnerability to 
particular causal effects, thereby informing the spatial targeting of policy implementation.

In conclusion, quasi-experimental approaches often fall short in the study of armed conflict, and natural 
experiments are rare. Further, ethical considerations preclude rigorous experimentation in this domain. To the 
best of our knowledge, our study is the first to apply the recent advances in the theory and methods of causality 
to the analysis of naturally caused armed conflict. Relying exclusively on non-experimental observations, we 
derived an empirical causal structure that corresponds to the underlying mechanism linking the environmental 
factors to conflict outcomes. Based on this structure, we exemplified how to infer the causal effects of natural 
processes on armed conflict. While our findings rest on specific assumptions, they offer a foundation that can be 
strengthened through additional validation. Such validation—particularly through interdisciplinary methods—
is therefore welcome.

Data and methods
Data sources
The armed conflict activity variables were sourced from the Armed Conflict Location and Event Data Program2 
(ACLED). We also retrieved geo-coded maps from multiple sources, including the Humanitarian Data 
Exchange, the European Centre for Medium-Range Weather Forecasts of Copernicus Climate Change Service28, 
NASA27,29,31, the Center for International Earth Science Information Network of Columbia University30, and 
MapSPAM78. These maps provided grid-based representations of our explanatory variables. Our unit of analysis 
is the Iraqi subdistrict (n=294), encompassing all subdistricts across the country. The observational time frame 
spans from January 1, 2020, to January 1, 2022. Within this period, observations were aggregated into a single 
cross-sectional dataset. The choice of this time horizon was motivated by the high availability of recent data. In 
cases where a grid layer was unavailable for the entire period, we used data covering the maximum available 
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portion of the horizon for the corresponding variable. The aggregation methods are specified in the sections 
below.

Despite a strong rationale for including additional explanatory variables that capture the societal and 
political context of Iraq2,66,67, Iraq remains a data scarce country, and such variables are generally unavailable at 
a sufficiently granular resolution. We addressed this issue of unavailability as one of our key research limitations 
in the discussion section.

Conflict activity variables
We retrieved several armed conflict variables from ACLED2. These variables are geospatially linked to specific 
geographical coordinates and are geo-coded as counts. ACLED categorizes conflict activity into distinct 
types, including battles, explosions/remote violence, violence against civilians, protests, riots, and strategic 
developments.

Conflict events, violence against civilians
Violence against civilians refers to the deliberate infliction of harm on unarmed non-combatants by organized 
armed factions. Such events include acts of sexual violence, abductions, and forced disappearances2.

Conflict events, battles
In addition to violence against civilians, we also included conflict events categorized as battles, which are defined 
as violent engagements between two organized armed groups.

Total conflict events
Our outcome variable was the total count of conflict events, proxied by summing the counts of each specific 
conflict event type (i.e., battles, explosions/remote violence, violence against civilians, protests, riots, and 
strategic developments).

Explanatory variables
Environmental variables
Some environmental conditions pertain specifically to weather. While weather refers to short-term atmospheric 
conditions, climate describes the average weather of a region over an extended period. We specified our 
environmental variables in line with Sakaguchi, Varughese, and Auld16. Given that temperature, soil moisture, 
and heat have been already hypothesized—and empirically demonstrated—to be associated with and causal to 
violent conflict24, we selected these variables to represent the weather conditions in Iraq.

Skin temperature  Temperature is a physical quantity that indicates how hot matter is79,80. For our analysis, we 
selected skin temperature—the temperature at the interface between the Earth’s surface and the atmosphere—
because it directly influences the growth and cultivation of agricultural resources, as well as the availability of 
water81. Skin temperature data was sourced from ERA5-Land dataset28. Each pixel on the corresponding map, 
with a spatial resolution of 11,132 square meters,  represents a temperature value measured in Kelvins.

Soil moisture  Soil moisture refers to the total amount of water, including water vapor, present in unsaturated 
soil79,80. We selected soil moisture as an explanatory variable because it impacts the growth and cultivation of 
agricultural resources, as well as the availability of water. The soil moisture data was also sourced from ERA5-
Land dataset28, specifically at a depth of 28–100 cm. Each pixel on the map, with a resolution of 11,132 square 
meters, represents a volumetric fraction of water at this depth.

Latent energy  Also referred to as latent heat, latent energy refers to the energy released from the Earth’s surface 
to the atmosphere. Latent energy is associated with the evaporation or condensation of water vapor at the Earth’s 
surface79. It represents an environmental process that extends beyond temperature but still impacts the physical 
surroundings. We sourced the average latent heat net flux27 from NASA and United States Geological Survey’s 
MODIS 006 MOD16A2 dataset. The flux represents the average latent energy passing through matter. Corre-
sponding to a resolution of 500 square meters, each pixel on the map displays a value in Joules.

Environmental scarcity
Environmental scarcity refers to the lack of vital resources on which human communities directly and critically 
depend. Since the scarcity of agricultural resources can catalyze violent conflict16, earlier findings on wheat 
production guided our proxy for crop availability in Iraq19.

Wheat production  We sourced the total wheat production for rainfed and irrigated crops from the 2020 ver-
sion of Global Spatially Disaggregated Crop Production Statistics Data (MapSPAM, Version 1.0) 78. Each pixel 
on the map, corresponding to a resolution of 10,000 square meters,  shows a value in metric tons. Due to the 
constrained time horizon of this dataset, the wheat production variable was only available for 2020 as the most 
recent observation.

Demographics
Population density  Given that population density has been found relevant for armed conflict activity55, we 
sourced this variable from the Gridded Population of the World Version 4.11 dataset by the Center for Interna-
tional Earth Science Information Network at Columbia University30. Each pixel on the map, corresponding to 
a resolution of 927.67 square meters, shows an estimated number of people per 30 arc-second grid cell. Due to 

Scientific Reports |        (2025) 15:16198 9| https://doi.org/10.1038/s41598-025-90767-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


the constrained time horizon of this dataset, the population density variable was sourced for 2020 as the most 
recent available observation.

From geo-coded observations to subdistrict values
Our variables are geo-coded, meaning that each corresponding value is linked to specific geographical 
coordinates. Since our unit of analysis is the Iraqi subdistricts, the value for each variable within a subdistrict 
must be an aggregate of the geo-located values of that variable within that subdistrict. However, the geo-coded 
maps containing these variables do not include subdistrict borders. To enable the geographical aggregation 
of pixel values across subdistricts, a shapefile with the subdistrict borders was integrated into each map. We 
sourced this shapefile from the UN OCHA Humanitarian Data Exchange, and it stores the subdistrict borders as 
a geometry variable (i.e., a polygon). The 294 subdistrict borders are shown in Fig. 4.

Further, the conflict activity variables are geo-located. For each subdistrict, we counted the geo-located values 
of conflict activity variables reported within that subdistrict’s polygon. This procedure was applied to the count 
of battle events, violent events against civilians, and the total count of conflict events.

Furthermore, the available grids store values of the explanatory variables as pixels, each associated with 
specific geographical coordinates. We bounded these pixel values by the subdistrict polygons, as previously 
described. Since the storage of explanatory variables was no longer sparse, we aggregated the values of 
explanatory variables to highlight the extreme values of each observed explanatory variable. Specifically, pixel 
values for soil moisture were aggregated geographically as pixel minima and temporally as subdistrict standard 
deviations. Pixel values for skin temperature were aggregated geographically as pixel maxima and temporally as 
subdistrict standard deviations. Pixel values for average latent heat flux were aggregated geographically as pixel 
maxima and temporally as subdistrict standard deviations. Moreover, pixel values for wheat production were 
aggregated geographically as pixel means for the year 2020, the most recent available observation. Finally, pixels 
values for population density were aggregated geographically as pixel maxima for the year 2020, the most recent 
available observation.

Finally,  considering that seasonality plays a crucial role in the relationship between environmental and 
conflict variables82, we extracted four non-aggregated time slices corresponding to the seasonal midpoints: 
January, April, July, and October 2020. The methods detailed in the following section were applied to both the 
aggregated data and the non-aggregated time slices, with a focus on demonstrating where the method proves 
most effective.

Methods
Causal methodology traditionally requires experimentation83–86. However, it is now possible to infer causality 
even from non-experimental observations26,87–90. Acknowledging the need for non-experimental approaches in 
environmental security, we argue that it is possible to retrieve the causal structure linking the environment to 
conflict. By applying causal methodology to non-experimental observations, the underlying paths and effects of 
the causal structure can be identified and quantified. This process unfolds in three stages: causal discovery, causal 
identification, and causal inference.

Fig. 4.  Subdistrict borders in Iraq.
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The following three subsections explain how causality is discovered, identified, and inferred from non-
experimental observations. These subsections exemplify how to respond to a specific causal query: “What is the 
magnitude of the causal effect of soil moisture on the count of conflict events?”

Causal discovery
The purpose of causal discovery is to retrieve a causal structure from available observations65. These structures 
can be modeled graphically26. Each directed edge in such a causal graph represents causality between the node 
with an outgoing arrow (the cause) and the node with an incoming arrow (the effect)26. The graph on the left in 
Fig. 5 shows a directed edge: Soil moisture → Conflict events, indicating that a change in soil moisture causes a 
change in conflict events. In contrast, the graph in the middle shows a bidirected edge: Soil moisture ↔ Conflict 
events, suggesting a reciprocal relationship between soil moisture and conflict events.

Each node between a node with only outgoing arrows (i.e., a root cause) and a node with only incoming 
arrows (i.e., an effect or outcome) is a mediating node (e.g., population density). Further, the graph on the right 
in Fig. 5 is characterized by a causal cycle: Soil moisture → Conflict events → Population density → Soil moisture. 
Despite recent theoretical advances91, the simplest conception of causality requires bidirected edges and causal 
cycles to be absent from a causal graph, as they indicate hidden common causes and reverse causality, both of 
which can confound causal inference26. Graphs without bidirected edges and cycles are referred to as directed 
acyclic graphs (DAGs). The simplest conception of causality dictates that causal discovery should retrieve a DAG 
from available observations65.

Following this logic of the causal discovery stage, we retrieved a DAG from our observations using Greedy 
Equivalence Search (GES) algorithm65. We selected GES, because it is considered a suitable causal discovery 
method for small sample sizes65. We employed the Bayesian Information Criterion (BIC) as our loss function. 
The GES algorithm iteratively adds and removes edges in a stepwise manner, scoring each configuration to 
identify the structure that best fits the data, while optimizing the BIC. The output was the most likely DAG given 
our observations. The nodes of the DAG correspond to our armed conflict activity and explanatory variables, 
while the edges represent the causal relationships between them.

Causal identification
The purpose of causal identification is to determine whether, given a causal structure, the causal query has 
a unique answer92. If the query is unidentifiable, the identification process reveals this. Additionally,  causal 
identification helps in formulating a quantity that provides a unique answer to the query26,92. This formula, 
which allows for the quantification of the answer, is referred to as an estimand93.

Given the arrow from Soil moisture → Conflict events in Fig. 6, a node like population density introduces an 
alternative path between soil moisture and conflict events. If this node is not explicitly considered, it is referred 
to as a confounder26. If all confounders can be accounted for, the causal query can be properly identified.

Given the probabilistic interpretation of causal graphs26, let P (.|.) represent a conditional probability 
distribution. Let C, M, and D represent the conflict events, soil moisture, and population density 
variables, respectively, and let c, m, and d represent their corresponding realized values. The do(.) operator 
represents intervention. If no variable were associated with soil moisture and conflict events (see Fig. 6), the unique 
answer to our causal query would have been P (C| do (m)) = P (C |m). However, since population density 
introduces an alternative causal path between soil moisture and conflict events, failing to account for population 
density could prevent the determination of a unique answer to the query. Therefore, to identify the causal query 
properly, the confounding effect of population density must be marginalized. As a result, the causal graph in 

Fig. 5.  Bidirected edges and causal cycle in a causal structure.
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Fig. 6 enables the identification of a unique answer to our query, with P (C| do (t)) =
∑

DP (C| t, D )P ( D) 
representing this unique answer.

This reasoning illustrates an identification criterion known as the backdoor criterion26. For other identification 
methods, we refer the reader to Tian and Pearl94 and Shpitser and Pearl92. By applying this reasoning to the 
retrieved DAG, we were able to identify causal estimands for our explanatory variables, provided that access to 
the relevant variables made such identification feasible.

Causal estimation and hypothesis testing
The final stage of causal inference involves estimation and hypothesis testing. In this stage, an estimator (i.e., a 
method for calculating estimates) is applied to a causal estimand, using sampled observations26,93. This process 
produces an estimated causal quantity of causal effect, i.e., causal estimate. Ultimately, an assessment is made to 
determine whether the estimate should be attributed to random error. If not, the quantity is deemed statistically 
significant.

 Since the values of environmental variables in one subdistrict can influence the environmental security of 
another , the estimation procedure required a method capable of accounting for spatial confounding. To address 
this, we employed spatially explicit structural equation modeling (SESEM)95.

SESEM combines structural equation modeling (SEM) with spatial dependence modeling to account for 
effects across varying spatial lag distances. While SEM was used to implement the retrieved causal structure, 
spatial dependence modeling addressed the conflict dynamics that extended beyond the subdistrict boundaries.

A straightforward way to incorporate spatial dependence modeling via lag distances is to calculate the 
distances between subdistricts. This can be done in several ways. The most intuitive method involves computing 
the centroid of each subdistrict and measuring the distances between these centroids. Alternatively, a network 
can be formed by connecting adjacent subdistricts with edges, in which case the distance between any two 
subdistricts equals the length of the shortest path between them.

The first step in applying SESEM was to fit a non-spatial SEM model to the data96. Next, spatially explicit 
variance–covariance matrices were computed across a range of lag distances, which were binned according to 
sample pair distances. We focused on the lowest 20% of these distances, as spillover effects are more likely to 
occur among neighboring subdistricts. To ensure reliable inference across each distance range, each bin was set 
to include 500 sample pairs. SEM models were then fitted for each lag distance, and edge coefficients, standard-
errors, and p-values were computed. Finally, individual causal paths were parameterized to obtain path-specific 
coefficients, standard-errors, and p-values.

Data availability
All the data is available at https:​​​//gith​ub.​com/​HCSS​-Da​ta-Lab/Sub​missi​on​-An​gling-For-Causality. This ​r​e​p​o​s​i​t​
o​r​y includes all the code for the method implementation, with comprehensive in-line documentation provided 
directly within the code files.
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Fig. 6.  Confounder: Population density.
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