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Given a world increasingly dominated by climate extremes, modifying the Earth’s climate with 
large-scale geoengineering intervention is inevitable. However, geoengineering faces a conundrum: 
forecasting the consequences of climate intervention accurately in a system for which we have 
incomplete observations and an imperfect understanding. We evaluate the global response 
and potential implications of mitigation and intervention deployment by utilizing CRU TS4.08 
observations, ERA5 reanalysis data, and CMIP6 scenario-based UKESM0-1-LL simulations. From 
1950 to 2022, global weighted mean surface temperature (Tsurf) and total precipitation (P) rose by 
1.37 ± 0.48 °C and 0.05 ± 0.57 mm day-1. Significant regional Tsurf anomalies and erratic interannual 
variability of P were revealed, with ranges from 7.63 °C in Greenland and northern Siberia to -2.38 °C 
in central Africa and 1.17 mm day-1 in southern Alaska to -1.20 mm day-1 in Colombia and east 
Africa. Collectively, mitigation and intervention simulations tended to overestimate the variability 
and magnitude of Tsurf and P, exhibiting substantial regional discrepancies and scenario-specific 
heterogeneity when estimating atmospheric methane concentration ([CH4]). Despite capturing 
significant departures in Tsurf, P, and [CH₄], replicating historical P teleconnections and spatial 
patterns of warming remained a challenge. These results underscore regional disparities with global 
implications, harkening the necessity to refine existing architectures while developing novel methods 
to evaluate the risks and feasibility of geoengineering intervention.
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State-of-the-art climate models failed to explain why global temperatures spiked in 2023, with a 0.2 °C divergence 
between expected and observed annual mean temperatures, suggesting that the world may be entering uncharted 
territory1. Climate change is accelerating while anthropogenic greenhouse gas (GHG) emissions continue to 
rise, risking the ability of the global community to achieve key climate stabilization targets2. For decades, climate 
models warned of linear atmospheric warming and nonlinear changes to the land surface. Despite this warning, 
global net emissions of anthropogenic greenhouse gases reached record levels over the last decade3. Current 
projections suggest that barring significant mitigation efforts, the cumulative concentration of greenhouse gases 
will likely eclipse the 1.5 °C climate stabilization threshold by 2035, a stark acceleration from previous forecasts4. 
If left unabated, there is a 67% likelihood that current emissions trends could exhaust the remaining carbon 
budget in less than a decade5.

These events drive an increasing demand for global solutions to mitigate climate change, and the deployment 
of geoengineering technologies appears increasingly inevitable6. Geoengineering - the deliberate large-scale 
intervention in the Earth system to manipulate specific biogeochemical processes or elements of the physical 
climate to counteract the impacts of climate change - presents an intricate problem: what strategies to implement 
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and when to implement them. As the planet continues to warm and GHG emission reduction and carbon 
removal methods fall short of their goals, offsetting these growing climate impacts will likely require direct 
modifications5,7,86. According to the World Meteorological Organization (WMO), weather modifications 
to mitigate climate warming are currently operational, with approximately 50 countries and nine U.S. states 
deploying regional climate engineering projects without regulation via interstate provisioning, e.g., cloud 
seeding (i.e., rain enhancement)9. Recent geoengineering proposals seek to reduce global temperatures and 
carbon dioxide concentrations ([CO2]) to preindustrial levels10–13. Some methods involve offsetting climate 
change impacts by solar radiation management (SRM)14. SRM strategies involve the injection of sulfate aerosols 
into the stratosphere to achieve regional climate balance by reflecting sunlight to cool the planet15. Aside from 
the feedback repercussions of this approach (i.e., amplified ocean acidification), SRM strategies introduce 
significant uncertainties16,17. These uncertainties originate from the assumption of a uniform distribution of 
aerosols in both hemispheres; in reality, adopting SRM methods could precipitate an uneven spatiotemporal 
distribution of cooling effects across different latitudes and seasons with unknown secondary and tertiary 
consequences6,10. Stratospheric aerosol injection (SAI) remains a widely discussed SRM climate intervention 
mechanism for reducing Tsurf, though it may result in catastrophic side effects, including reduced productivity 
or global breadbasket collapse18–24. Alternative SRM proposals include deploying space reflectors and a space-
based solar shield, thinning cirrus clouds, brightening marine clouds, and injecting ice particles 17 km above the 
Earth’s surface to facilitate stratospheric dehydration25–28. Cirrus cloud seeding involves injecting silver iodide 
into the lower atmosphere to facilitate precipitation formation, mimicking ice crystallinity while altering the 
geochemical properties of supercooled mixed-phase clouds29–31. Modeling studies integrating global circulation 
models (e.g., ECHAM6-HAM, CESM-CAM5) and scenario-specific forcing data explore the feasibility of cloud 
seeding strategies and associated impacts on radiative and climate response patterns, demonstrating a reduction 
in cirrus-induced radiative effect (− 0.8 to -1.8 Wm-2), a reduction in CO2-induced climate change (50–85%), 
and mixed effects and uncertainty for extreme precipitation events32.

The challenge for geoengineering deployment is that these decisions will occur under high uncertainty 
and incomplete information and invariably require estimating the impact of physical phenomena beyond the 
range of the current observational record, thus minimizing the effectiveness of data-driven forecasts. Machine 
learning, neural networks, and other data-driven approaches generate interpolated forecasts based on training 
datasets that span relevant spatial, temporal, and physical parameter ranges occupied by the input and prediction 
sets. Despite their promise, data-driven approaches to speculative scenarios may introduce additional risks and 
biases that emerge from their fundamental assumptions and disjointed standards of practice. Accordingly, the 
uninformed application of data-driven methods can manifest as unintended risks and outcomes that are difficult 
to detect or diagnose even under manual inspection by domain experts33,34. Such oversight may originate 
from failing to rigorously assess model performance with sufficient data while supporting interpretability, 
explainability, and transparency35.

How do we harness data and state-of-the-art tools to address the fundamental challenges associated 
with when and how to deploy geoengineering solutions? Given an incomplete observational record and an 
imperfect knowledge and understanding of the Earth system and related feedbacks, what is the optimal use 
of these techniques and tools to guide intervention strategies36? What are the potential risks and unintended 
consequences of these decisions? This study explores these questions using multimodal data processing and 
modeling frameworks to match these complex challenges. We propose leveraging reanalysis products and 
model simulations to help optimize mitigation logistics, bridge multiscale intervention challenges, summarize 
contingency scenarios, and support continuous monitoring infrastructure. We examine various mitigation 
and geoengineering strategies and their subsequent impacts on the Earth system by using historical estimates 
from the fifth-generation, land-specific, global atmospheric reanalysis data subset (i.e., ERA5) ) and a series 
of mitigation and intervention experiments supporting the Coupled Model Intercomparison Project, Phase 6 
(i.e., CMIP6)37. Mitigation experiments are derived from the Carbon Dioxide Removal Model Intercomparison 
Project (i.e., CDRMIP), while geoengineering intervention experiments are derived from the Geoengineering 
Model Intercomparison Project (i.e., GeoMIP)38–41. By utilizing existing observational systems and nascent 
technology effectively, we can monitor and interpret the biogeochemical processes, synergistic relationships, 
and spatiotemporal variability governing the Earth system, observe how regional and global climate baselines 
are changing, and better understand how the Earth and land-atmospheric responses will respond to mitigation 
and intervention deployment42.

Results
ERA5 reanalysis
For retrospective analysis, we examined high-resolution surface variables, i.e., 2-meter surface temperature 
(Tsurf) and total precipitation, i.e., precipitation flux (P) derived from the ECMWF ERA5 Monthly-Averaged 
Climate Reanalysis dataset over a 73-year period (i.e., 1950–2022). These data products provide global physics-
based data-driven land surface postprocessed monthly-resampled observations on a 31-km rectilinear latitude-
longitude grid (i.e., Methods, S1). The results below illustrate mean departures computed from monthly weighted 
climatologies with temporal thresholding (Fig. 1).

Retrospectively, global mean Tsurf and P results from ERA5 reanalysis data indicate substantial climatological 
variability from the observed record during these 73 years. When resampled, these global and regional patterns 
remained intact; however, the statistical ranges varied; specifically, the regional Tsurf mean variability (i.e., 
departures) ranged between − 2.33-4.53 ◦ C, with increasing global mean Tsurf variability, i.e., 0.18 ± 0.59 ◦ C. 
Greenland, northern Siberia, the Horn of Africa, and the Antarctic coastline experienced elevated Tsurf as high 
as 7.63 ◦ C between 1950 and 2022, while central Africa, southern Australia, eastern Brazil, and northwestern 
Mexico observed notable reductions in Tsurf (-2.38 ◦ C); however, the global mean Tsurf steadily increased by 
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Fig. 1.  The monthly means of Tsurf and P were grouped by monthly time coordinates to compute global 
interannual weighted climatologies and departures from 1950–2022 (i.e., reference period: 1981–2010). 
Global departure variability is illustrated by both covariates, with subpanel time series illustrating anomalous 
dynamics in S1. The variabilities exhibit increasing Tsurf and P of 1.374±0.481ºC and 0.045±0.567 mm day−1, 
respectively. Climatologies, departures, and statistics are available in S1 and S9. The plots were generated with 
Python 3.9.18 and the various modules from the Matplotlib and Cartopy libraries43,44
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1.37 ± 0.48 ◦ C. During this period, regional Tsurf anomalies ranged from − 1.33 ◦ C across the Canadian Boreal 
and northern Siberia (e.g., Yamalo-Nenets Autonomous Okrug) to 1.19 ◦ C across the Arctic (e.g., Greenland, 
northwestern Alaska, Chukotka Autonomous Okrug), Antarctica, Uruguay, Angola, and southeastern China. 
Moreover, the global mean departures of Tsurf accounted for a significant reduction (-0.30 ± 0.33 ◦ C).

In parallel, regions including southern Alaska (e.g., Chugach and Copper River), the northern coast of 
Norway, South America (e.g., western Ecuador, northern Brazil, Rio Grande do Sul, Uruguay), southern India, 
northwestern Indonesia, and Africa (e.g., Central Africa Republic, Democratic Republic of the Congo, Angola, 
South Africa) experienced increased P (1.17 mm day-1), South America (e.g., Colombia, Bolivia, Amazonas) and 
east Africa (e.g., Sudan, Ethiopia) experienced reductions in P (-1.20 mm day-1). The global mean P marginally 
increased by 0.05 ± 0.57 mm day-1. Furthermore, regional P departures indicate a decrease of -0.39 mm day-1 
across the Amazon, Sahel, and Southeast Asia, while P anomalies exhibit nearly 0.13 mm day-1 in southeastern 
Africa (e.g., Zimbabwe, Mozambique). Reductions in the global mean P anomalies were computed, i.e., -0.03 ±
0.05  mm day-1. Similar to Tsurf variability after resampling, regional P departures ranged from − 5.11 to 
5.55 mm day-1, with global mean P departures of 0.05 ± 0.57 mm day-1 (i.e., increasing precipitation, P > ET).

CMIP6 | CDRMIP simulations
For prognostication and simulation purposes, we simulated two CO2 removal (i.e., CDR) mitigation experiments 
with the UKESM0-1-LL model, including (1pctCO2-cdr) after the abrupt quadrupling of CO2, instantiate 1% 
CO2 reduction per year, i.e., 1pctCO2-cdr and (esm-1pct-brch-1000PgC) continuation of the zero-emission 
simulation branch from 1pctCO2-cdr after the 1000PgC cumulative emissions threshold was achieved, i.e., 
esm-1pct-brch-1000PgC. We employed additional historical and future controls on emissions reduction in the 
model simulations for retrospective and prognostic purposes. Concluding simulation analyses, we identify and 
compare discrepancies between these mitigation and intervention simulations relative to the resampled ERA5 
observational record.

1pctCO2-cdr
During this idealized experiment, we used CO2 removal methods to reduce 4xCO2 baseline levels by 1% per 
year until the preindustrial control (PiC) was obtained and maintained, with increases in global weighted mean 
variability (i.e., detrending via annual climatology) of Tsurf (3.89 ± 2.62 ◦ C), P (0.17 ± 0.78 mm day-1), and 
[CH4] (0.01 ± 0.27 ppb) over the 1990–2149 time period (Fig.  2). Interestingly, the global weighted mean 
variability further condensed these trends to decreasing Tsurf and P (-1.91 ± 1.22 ◦ C, -0.26 ± 1.13 mm day-1), 
while [CH4] increased (0.03 ± 0.02 ppb).

The most compelling relationship with this first experiment is the clear indication of pronounced Arctic 
amplification and widespread warming (-0.25-13.08 ◦ C), with hotspots near Hudson Bay, the Bering Sea, Baffin 
Bay, eastern Europe, and the Middle East in addition, amplified [CH4] variability occurred along the Antarctic 
Peninsula coastline (-2.55-2.87 ppb), with pronounced warming surrounding Ellsworth Land, the Ross Ice 
Shelf, and north of Queen Maud Land. In contrast, large regions of the South Pacific Ocean and the Indian 
Ocean demonstrated clear indications of cooling, potentially driven by the deep-water formation, westerlies, 
and surface currents, i.e., westward wind drift from the Antarctic Circumpolar Current and the Peru Current 
and possibly catalyzed by the Northern Subpolar Gyre collapse, as indicated by the inactivity of P variability 
across the mid-latitudes. The most significant variability in P may be attributed to ocean-atmospheric equatorial 
interactions in the Arabian Sea (-12.23–9.06 mm day-1), Marshall Islands, and eastern Bolivia.

To differentiate regional patterns over this period, we examined the historical relationships between 
simulation outputs of Tsurf and P derived from this 1pctCO2-cdr experiment in alignment with the temporal 
windowing characterizing the ERA5 reanalysis observational record (i.e., 1990–2022, S10). Most significantly, 
these tri-decadal simulations predominantly overestimate global weighted Tsurf anomalies (6.88 ± 0.01ºC) 
and marginally underestimate global weighted P (-0.102 ± 0.003 mm day-1), with subsequent weighted mean 
departures for Tsurf and P (3.784 ± 2.004 ◦ C, 0.43 ± 0.91  mm day-1). Furthermore, Tsurf and P decreased 
(-0.01 ± 0.37ºC, -0.02 ± 0.89 mm day-1) while [CH4] increased (0.02 ± 0.25 ppb) over this period. Moreover, 
we examined global weighted departures and noted Tsurf and [CH4] increased (0.01 ± 0.72ºC, 0.03 ± 0.23 ppb) 
while P decreased (-0.09 ± 0.39 mm day-1) over this 33-year window.

 esm-1pct-brch-1000PgC
For the next experiment, we emulated a zero-emissions scenario from the previous 1pctCO2-cdr experiment, 
with [CO2] removal continuing beyond achieving the 1000 Pg threshold for cumulative emissions from 1950 
to 2149. Over 200 years of continued [CO2] reduction, the global mean climatologies characterizing all three 
covariates increased, with Tsurf increasing 0.06 ± 0.35ºC, P increasing by 0.003 ± 0.331 mm day-1 and elevating 
[CH4] by 0.001 ± 0.169 ppb (Fig. 3). Alternatively, the global weighted mean variability exhibited by all three 
covariates decreased, with Tsurf departures ranging from − 5.45-4.85 ◦ C, P variability from − 5.40 to 5.22 mm 
day-1, and [CH4] departures ranging from − 1.73 to 2.52 ppb. This coupled relationship is further illustrated 
by the mean of the global weighted mean variability computed for each covariate: -0.17 ± 0.83 ◦ C, -0.01 ±
0.67 mm day-1, and − 0.001 ± 0.188 ppb, respectively.

We evaluated regional changes in mean covariability over time. The results suggest that warming is less 
pronounced and more stochastic globally, with increasing Tsurf variability occurring west of the Antarctic 
Peninsula and distributed across the Norwegian and Greenland Seas, extending into the Arctic Ocean (4.85 ◦

C). Increasing P departures and cluster densities were localized to equatorial regions of eastern Brazil, French 
Polynesia, Arabian Sea and Bay of Bengal, northern Vietnam, and east of the Coral Sea (7.47 mm day-1). In 
addition, we observed increased variability of the [CH4] mean in the Komi Republic, isolated anomalies occurred 
near the Northwestern Passages, and relatively minor plumes developed near the Amundsen Sea coastline and 
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Fig. 2.  The first vertical panel above illustrates the weighted departures for annual periodicity of Tsurf ( ◦

C), P (mm day− 1), and [CH4] (ppb, 300-1,000 hPa) from the first CDRMIP experiment (i.e., 1pctCO2-cdr) 
simulated by UKESM1-0-LL. The second vertical panel expands on the departure variabilities (i.e., reference 
period: 1991–2020) constrained to the observational record (S8). Additional plots delineating on weighted 
and unweighted climatologies, departures, and temporal windows for ERA5 intercomparisons (i.e., 1pctCO2-
cdr, 1990–2149 [1990–2022]) are contextualized in S2 and S8, with comprehensive statistics provided in 
S10. The plots were generated with Python 3.9.18 and the various modules from the Matplotlib and Cartopy 
libraries43,44.
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Fig. 3.  The first vertical panel above illustrates the weighted departures for the annual periodicity of Tsurf 
( ◦ C), P (mm day− 1), and [CH4] (ppb, 300-1,000 hPa) from the second CDRMIP experiment (i.e., esm-1pct-
brch-1000PgC) simulated by UKESM1-0-LL. The second vertical panel expands on departure variabilities 
(i.e., reference period: 1991–2020) constrained to the observational record (S8). Additional plots delineating 
weighted and unweighted climatologies, departures, and temporal windows for intercomparisons (i.e., esm-
1pct-brch-1000PgC, 1950–2149 [1950–2022]) are provided in S3 and S8, with comprehensive statistics located 
in S10. The plots were generated with Python 3.9.18 and the various modules from the Matplotlib and Cartopy 
libraries43,44.

 

Scientific Reports |         (2025) 15:8158 6| https://doi.org/10.1038/s41598-025-91195-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


between Wilkes and Victoria Land (2.52 ppb). In contrast, the regional mean variability in Tsurf decreased near 
the Kara and Laptev Seas, the Canadian boreal zone, and the Amery Ice Shelf in Antarctica (-5.45 ◦ C), while 
[CH4] departures decreased near the Bellingshausen Sea and off the coast of Eastern Antarctica (-1.73 ppb). 
Bands of P variability are distributed across equatorial Oceania near the Hawaiian Islands, off the coast of eastern 
Brazil (i.e., Pernambuco), and north of the Solomon Islands and Papua New Guinea (-7.38 mm day-1).

Historical simulations from the esm-1pct-brch-1000PgC experiment were compared with the ERA5 
observational record, ensuring temporal alignment over 1950–2022, wherein zero-emissions were emulated 
from the 1pctCO2-cdr run after achieving the cumulative emissions 1000 Pg threshold (S3). During the 
intercomparison, simulations overestimate the global weighted mean of Tsurf (2.88 ± 0.07ºC) and underestimate 
the P (-0.101 ± 0.003  mm day-1). In addition, global climatologies and weighted mean variabilities were 
computed, resulting in the following climatologies: Tsurf (-0.03 ± 0.30 ◦ C, with ranges between − 3.20-3.44 ◦

C), P (0.001 ± 0.330 mm day-1, ranging from − 3.62 to 2.37 mm day-1), and [CH4] (0.01 ± 0.16 ppb, with ranges 
of -1.63-1.81 ppb). We computed global weighted mean departures, with simulations tending to overestimate 
Tsurf (0.05 ± 0.61ºC) and [CH4] (0.01 ± 0.17 ppb) while narrowly underestimating P (-0.0003 ± 0.5830 mm 
day-1).

CMIP6 | geomip simulations
Similarly, we conducted model simulations with the UKESM0-1-LL Earth system model components (e.g., 
aerosol, atmospheric, oceanic general circulation models, biogeochemical models) across four retrospective 
and prognostic geoengineering experiments. These four experiments and their corresponding climatological 
and departure variabilities – Tsurf, P, and [CH4] anomalies, differ from the long-term global climatological 
mean. These experiments included (G1) an abrupt quadrupling of CO2 while simultaneously integrating solar 
irradiance reduction, i.e., solar dimming (i.e., G1); (G6Solar) high-to-medium solar net forcing reduction from 
SSP585 to SSP245 (i.e., G6Solar); (G6Sulfur) stratospheric sulfate aerosol injection to reduce the net radiative 
forcing from SSP585 to SSP245 (i.e., G6Sulfur); and (2d) cirrus cloud seeding to minimize the net radiative 
forcing from SSP585 by 1 Wm[-2 (i.e., G7Cirrus).

G1
The first intervention experiment simulated the instantaneous quadrupling of atmospheric CO2 concentration 
while simultaneously deploying solar irradiance reduction (i.e., dimming) strategies to establish a historical 
baseline. The results in Fig.  4 illustrate global Tsurf, P, and [CH4] weighted mean variability from 1850 to 
1949, ranging between − 6.87-4.38 ◦ C, -5.80–8.14 mm day-1, and − 0.004-2.200 ppb, respectively. The global 
climatological mean of Tsurf, P, and [CH4] remained relatively stable, with Tsurf and P decreasing from − 0.01 ±
0.47 ◦ C and − 0.01 ± 0.32  mm day-1 while [CH4] increased over 100 years, i.e., 0.003 ± 0.180 ppb. This 
homeostatic behavior demonstrates a relatively balanced net radiation budget in response to reducing the solar 
constant by offsetting longwave radiative impacts with fast radiative responses and reducing shortwave radiation 
via stratospheric adjustments.

From a regional perspective, the global Tsurf mean variability increased from 1850–1949 (0.10 ± 0.85 ◦

C), with increased Tsurf departures displayed in the Middle East, northern Australia, Shandong, Sendai Bay, 
and several other Antarctic ice shelves including the Ronne Ice Shelf, Ross Ice Shelf, and Amery Ice Shelf, all 
demonstrating increased warming trends and pronounced ‘hotspot’ activity and variability (4.38 ◦ C). However, 
significant reductions in Tsurf variability were indicated primarily across the Chukchi and Beaufort Seas, as was 
the ‘mirroring’ of the Norwegian Atlantic Current period of the Atlantic Meridional Overturning Circulation 
near divergence in the Iceland Basin (0.15 ◦ C). Over 100 years, the P variability increased less steadily, with a 
total incremental P mean equivalent to 0.02 ± 0.81 mm day-1 across regional surfaces. Examining the regional 
patterns of global P mean departures, Micronesia, Uruguay, and Bangladesh experienced the highest magnitude 
relative to significant drying in Southeast Asia and eastern Brazil (-1.91–8.14 mm day-1).

To inform baselines with carbon flux data from G1 simulations, the historical evolution of the global mean 
[CH4] experienced abrupt pulses of increasing emissions yet maintained a marginal net sink progressively from 
1850 to 1949, terminating with a net concentration difference of -0.001 ± 0.206 ppb. High concentrations of 
atmospheric carbon aggregated across Scandinavia, northwestern Siberia, and the coastline west of the Antarctic 
Peninsula near the Ross Ice Shelf and the Amundsen Sea (2.20 ppb), with noticeable opposing reductions in 
global [CH4] variability occurring along the eastern coast of Antarctica, emanating northeasterly from the 
Amery Ice Shelf into the Indian Ocean (-1.91 ppb). We did not conduct intercomparisons between resampled 
ERA5 reanalysis data and G1 simulations due to the temporal misalignment, i.e., ERA5 (1950–2022) v. G1 
(1850–1949). However, after detrending G1 climatology to compute global mean departures from 1850 to 1949, 
Tsurf and P departures decreased from 1950 to 2022 relative to 1850–1949 (-0.24 ± 0.0.33 ◦ C, -0.17 ± 0.77 mm 
day-1), with ranges of -2.97-4.62 ◦ C and − 8.60–2.26 mm day-1, respectively.

G6Solar
The second geoengineering experiment simulated high-to-medium solar forcing reduction efforts via solar 
irradiance curtailment (i.e., SSP585 to SSP245, 2020–2100). The radiative transfer dynamics evolve in response to 
the model’s instantiated variables, forcings, drivers, and parameterization. In essence, this experiment illustrates 
how solar geoengineering facilitates cooling effects, and the resulting maps and metrics demonstrate its utility 
and veracity for exploration and deployment. The global weighted climatological means for Tsurf, P, and [CH4] 
increased marginally from 2020 to 2100 (Fig. 5), ranging from − 1.15–6.59ºC (1.28 ± 1.26ºC), -2.62–5.26 mm 
day-1 (0.05 ± 0.35 mm day-1), and − 4.61–7.12 ppb (1.58 ± 1.08 ppb). The weighted mean variability of global 
Tsurf and P from 2020 to 2100 ranged between − 14.48-1.62 ◦ C, -10.52–3.92 mm day-1, and − 11.22–0.64 ppb, 
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Fig. 4.  The panel above illustrates the weighted mean departures for Tsurf (°C), P (mm day− 1), and 
subtropospheric multilevel mean of [CH4] (ppb, 300-1,000 hPa) from the first GeoMIP experiment (i.e., 
G1) simulated by UKESM1-0-LL over the course of 100 years (i.e., 1850–1949). Additional plots delineating 
weighted and unweighted climatologies and departures are contextualized in S4 and S8, with comprehensive 
statistics provided in S10. The plots were generated with Python 3.9.18 and the various modules from the 
Matplotlib and Cartopy libraries43,44.
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Fig. 5.  The first vertical panel above illustrates weighted mean departures for Tsurf (°C), P (mm day− 1), and 
subtropospheric multilevel mean of [CH4] (ppb, 300-1,000 hPa) from the second GeoMIP experiment (i.e., 
G6Solar) simulated by UKESM1-0-LL.The second vertical panel expands on the departure variabilities (i.e., 
reference period: 1991–2020) constrained to the observational record (S8). Additional plots delineating on 
weighted and unweighted climatologies, departures, and temporal windowing for ERA5 intercomparisons 
(i.e., G6Solar, 2020–2022 [2020–2100]) are provided in S5 and S8, with comprehensive statistics located in 
S10. The plots were generated with Python 3.9.18 and the various modules from the Matplotlib and Cartopy 
libraries43,44.
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with a reduction in the global mean variability for Tsurf, P, and [CH4] indicated by -2.55 ± 2.61 ◦ C, -0.08 ±
0.61 mm day-1, and − 4.37 ± 0.62 ppb, respectively.

According to model simulations from this experiment, several regions exhibit hotspots for elevated Tsurf 
and [CH4] departures from planetary homeostasis, i.e., the climatological norm. These hotspots include Tsurf 
anomalies in northern and southeastern Brazil, the northern coastlines of Nunavut, the western coast of 
Baffin Bay, eastern Europe, northern Siberia, south Australia, Gujarat, and Indonesia. In addition to the clear 
equatorial gravitation for precipitation patterns, Uruguay exhibits periods of extended precipitation consistency. 
Alternatively, this intervention strategy introduces the concept of ‘cooling’ down the Earth: some spatial patterns 
of change emerge as ‘cold spots’ indicated by these results. In particular, these departures illustrate how the 
climate changes and moves away from past climatological norms. Although mostly constrained to open water 
at high latitudes, some cold spots include regions in the Bering and Barents Seas, Hudson Bay, and extending 
westward into the Greenland and Norwegian Seas.

Abiotic simulations predominately underestimate the global weighted mean variability of Tsurf (-0.17 ±
0.60ºC), P ( -0.01 ± 0.65 mm day-1), and [CH4] (-0.14 ± 0.56 ppb). We examined the resulting global mean 
temporal differences and variabilities between historical observations from resampled ERA5 reanalysis data 
and G6Solar simulations (i.e., 2020–2022). During ERA5 and G6Solar model intercomparisons of Tsurf and P 
from 2020 to 2022, the global weighted mean of mean differencing and standardized metrics were computed 
by spatially weighting the anomalies (i.e., weighted), removing climatological trends (i.e., unweighted), and 
applying a global mean operation across each observation and prediction originating from reanalysis data or 
simulation outputs (S3). Simulations from 2020 to 2022 indicated overestimations of Tsurf on the order of 0.02 ±
0.06ºC and underestimations of P variability by -0.102 ± 0.001 mm day-1. Interestingly, from 2020 to 2022, these 
upward-trending patterns of global mean Tsurf and P variability were observed and analyzed with respect to the 
overestimation of magnitudes. Furthermore, precipitation demonstrates intrinsic dynamic shifts in regime45; 
consequently, temporal subsetting permitted the isolation of trends for validation and sensitivity analyses. From 
2020 to 2021, global weighted mean variability differencing of Tsurf and P from G6Solar simulations and ERA5 
were overestimated (1.98 ± 0.03ºC, 0.865 ± 0.004 mm day-1) while both covariates subsequently overestimated 
across the 2021–2022 period, i.e., differencing resulted in Tsurf and P mean variability of 2.03 ± 0.08ºC and 
0.88 ± 0.03 mm day-1, respectively, yielding net overestimations in Tsurf and P over this three-year validation 
window.

G6Sulfur
Stratospheric aerosol injection is simulated in this experiment (i.e., 2020–2100) to demonstrate the variability 
of forcing mechanisms and consequential impacts on the Earth system. Steady increases in the global mean 
climatologies of Tsurf, P, and [CH4] are represented by ranges of -1.05-6.41ºC (1.35 ± 1.30ºC), -2.22–3.13 mm 
day-1 (0.03 ± 0.33 mm day-1), and − 4.43–6.38 ppb (1.37 ± 1.18 ppb), respectively, until the end of the century 
(Fig. 6). Interestingly, all three covariates collectively experience reductions in global weighted mean variabilities, 
i.e., departures between the bounds of 2020 and 2100 (-2.70 ± 2.64ºC, -0.06 ± 0.65 mm day-1, and − 4.63 ±
0.99 ppb), illustrating persistent reductions in global mean Tsurf and [CH4] mean concentration. However, 
erratic oscillations prompt marginal reductions in P. Additional marked increases in the global weighted mean 
variability for P across eastern Brazil - from Bahia to São Paulo - and Tsurf and [CH4] anomalies near the Ross 
and Amery Ice Shelf.

A comparison of ERA5 reanalysis data with historical simulations of SAI reveals a marked uptick in global 
mean Tsurf prior to climatological detrending, i.e., the increased warming trend is more explicit, suggesting that 
potential feedback interactions manifest and contribute to amplified overestimations of water cycle covariates, 
notably during the shoulder or transition seasons. Contemporary and CMIP6-derived simulation projections 
overestimate the magnitudes of some of these marginal/fringe oscillations, with future predictions (i.e., 2023–
2100) of high-to-medium reduction (i.e., SSP585 to SSP245) via SAI demonstrating an even greater propensity 
to overestimate these covariates with large margins of magnitude differences. Therefore, temporal alignment 
with the observational record from ERA5 reanalysis during 2020–2022 allows observation-driven data and 
simulation output intercomparison to identify any correlations, relationships, or behaviors that manifest and 
contribute to global change (S3).

We determined that model simulations exhibit wide variability in covariate ranges (-2.15-1.56ºC, -5.71–
3.56 mm day-1, and − 3.56-2.00 ppb) after computing these metrics and global mean variabilities (i.e., departures) 
via climatology removal and spatial averaging. However, on average, these simulations underestimate the global 
weighted mean variabilities of all covariates, i.e., Tsurf (-0.002 ± 0.430ºC), P (-0.17 ± 0.60  mm day-1), and 
[CH4] (-0.16 ± 0.17 ppb). Thereafter, the simulations from 2020 to 2022 indicated an overestimation of Tsurf 
(0.02 ± 0.06ºC) and an underestimation of P (-0.102 ± 0.001 mm day-1. From 2020 to 2022, this overall upward-
trending pattern and potential overestimation of the global mean Tsurf and P variability were analyzed with 
temporal shifts over the three years. From 2020 to 2021, the differences in global weighted mean variability of 
Tsurf and P between G6Sulfur simulations and ERA5 were overestimated (1.98 ± 0.03ºC, 0.855 ± 0.004 mm day-
1) while similarly, simulations overestimated observations from 2021 to 2022, i.e., differencing resulted in Tsurf 
and P mean variability of 2.03 ± 0.08ºC and 0.88 ± 0.03 mm day-1, respectively, yielding net overestimations of 
Tsurf and P.

G7Cirrus
Evaluating the radiative forcing impacts of cloud seeding on land-atmospheric interactions foretells a different 
story. For this experiment, simulations promote increases in the rate of cirrus ice crystallization (i.e., G7Cirrus) 
to mitigate high-emission baseline forcing from SSP585 by 1 Wm[-2, resulting in substantial increases in the 
global weighted mean of Tsurf (2.03 ± 1.57ºC; -0.22-7.72 ◦ C), P (0.09 ± 0.41 mm day-1; -3.94–3.99 mm day-1), 
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Fig. 6.  The first vertical panel above illustrates weighted mean departures for Tsurf (°C), P (mm day− 1), and 
subtropospheric multilevel mean of [CH4] (ppb, 300-1,000 hPa) from the third GeoMIP experiment (i.e., 
G6Sulfur) simulated by UKESM1-0-LL. The second vertical panel expands on departure variabilities (i.e., 
reference period: 1991–2020) constrained to the observational record (S8). Additional plots delineating on 
weighted and unweighted climatologies, departures, and temporal windows for ERA5 intercomparisons (i.e., 
G6Sulfur, 2020–2022 [2020–2100]) are contextualized in S6 and S8, with comprehensive statistics provided in 
S10. The plots were generated with Python 3.9.18 and the various modules from the Matplotlib and Cartopy 
libraries43,44.
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and [CH4] (1.52 ± 1.12 ppb; -4.52-7.57 ppb) from 2020 to 2100 (Fig. 7). Additionally, global mean departures 
indicated consistent reduced variability of Tsurf (-4.09 ± 3.32ºC), P (-0.18 ± 0.74  mm day-1), and [CH4] 
(-4.42 ± 0.78 ppb) under cloud seeding-induced radiative effects. These patterns are most notably illustrated 
across the Arctic, with increasing Tsurf via weighted mean differencing across Greenland and Baffin Island, 
northern Scandinavia, British Columbia and the Canadian Rockies, southern Kazakhstan and Mongolia, 
northern Siberia (i.e., northern Trans-Siberian extent from the Yamalo-Nenets Autonomous Okrug to the Sakha 
Republic), and the foothills and rainforests east of the Andes Mountains (i.e., northern Argentina, Paraguay, 
Bolivia, and western Amazonas). Alternatively, several cool spots proliferate across the Arctic as well, i.e., the 
Chukchi and Beaufort Seas, Hudson Bay, Svalbard, and parts of the Barents and Kara Seas.

Total precipitation events appear localized to the western Arabian Sea equatorial regions and the North 
Pacific Ocean. However, increasing P trends were observed along the west coast of Jalisco, central Bahia in 
South America, Uruguay, southern Malawi, and Brisbane. Alternatively, significant dry spells were depicted in 
the Indian Ocean south of the Bay of Bengal, west of North Sumatra, east of the Philippines (i.e., Guam), and 
southwestern Colombia. Strong [CH4] anomalies are displayed in the Nord-du-Québec region, along the coast 
of Terra Nova Bay and the Gerlache Inlet (Amery Ice Shelf), a substantial anomaly near the Ross Ice Shelf in 
the South Ocean, and finally, localized hot spots in western Kalimantan and North Sumatra. Notable cool spots 
emerge off the coast of Queen Maud Land (i.e., Utsteinen Nunatak, East Ongul Island).

During ERA5 and G7Cirrus model simulations from 2020 to 2022, Tsurf and P were compared: with 
climatology removed and spatial averaging applied to compute global mean, we determined that these simulations 
overestimated the weighted mean of Tsurf (0.02 ± 0.32ºC; -2.00-2.12ºC) and underestimated the P (-0.004 ±
0.321 mm day-1; -4.27–3.36 mm day-1). Tsurf demonstrated interannual volatility between the simulation and 
reanalysis data but generalized to a net negative − 0.12 ◦ C reduction from 2020 to 2022. Total precipitation 
revealed similar yet inverted patterns of volatility. Specifically, these patterns illustrated divergent temperatures 
yielding periods of higher P accuracy, with a generalized diverging net positive trend of 0.05 mm day-1 (i.e., 
P > ET). Computing the global weighted mean departures for these variables from 2020 to 2022 indicated the 
model’s tendency to underestimate both Tsurf (-0.61 ± 0.02ºC; -4.17-4.72ºC) and P (-0.102 ± 0.001 mm day-1; 
-4.77–5.45 mm day-1) based on temporal bounding conditions in the interest of ERA5 intercomparison efforts. 
The historical relationships (i.e., 2020–2022) between ERA5-derived and simulated Tsurf and P resulted in global 
annual weighted mean differences of 1.79 ± 0.03ºC and 0.89 ± 0.02 mm day-1, respectively. Furthermore, we 
spatially flattened and temporally differenced the validation data from 1990 to 2022, 1950–2022, and 2020–2022 
to generate time series plots and illustrate Tsurf and P variability over 73 years (Fig. 8). These plots demonstrate 
how model simulations drift from the observational record.

Discussion
This study examined various mitigation and geoengineering experiments to understand these strategies’ 
potential impacts and identify the most feasible solutions to address global climate change. Some of these 
experiments included CO2 removal, setting emissions targets, and employing solar dimming, SAI, and cloud 
seeding technology to reduce solar forcing; these operations and simulation outputs were instantiated and 
simulated with the UKESM1-0-LL model and compared with ERA5 reanalysis data. In the near term, solar 
geoengineering strategies could accomplish the brief objective of allowing human management of the solar 
constant. However, these methods must account for lagged effects from bias and uncertainty originating 
from Earth system complexities and innumerable multiscale biogeochemical processes. Moreover, potential 
unintended consequences resulting from each of these geoengineering scenarios are essential to highlight; in 
particular, Tsurf and P briefly reach - and exceed - stabilization thresholds during the contemporary period in 
many of these experiments, with rapid warming and increased P, bolstering an enhanced runaway greenhouse 
effect.

Traditional mitigation approaches primarily focus on reducing GHG emissions to stabilize global 
temperatures, afforestation, carbon aerosol capture, biochar, and ocean fertilization1,46. Alternatively, market-
based instruments include carbon offset incentivization and global carbon accounting approaches (e.g., 
renewable energy credits). However, current efforts are insufficient to achieve the 1.5 °C climate stabilization 
target, with global emissions expected to exceed critical thresholds within the next decade. Mitigation strategies 
often underestimate feedback mechanisms and systemic uncertainties, limiting their effectiveness in stabilizing 
Earth’s climate systems. Mitigation simulations (e.g., 1pctCO2-cdr) demonstrate reduced Tsurf and altered P 
patterns in the short term. However, Arctic amplification persists, with pronounced warming in high-latitude 
regions despite aggressive CO2 reductions. These strategies generally promote gradual stabilization but cannot 
prevent erratic climate responses entirely.

In contrast, geoengineering involves direct, large-scale manipulation of the Earth’s climate system with SRM 
and carbon-focused interventions. SRM strategies such as the G6Sulfur sub-experiment demonstrate significant 
short-term cooling effects while introducing long-term risks, e.g., uneven precipitation patterns facilitate 
ecosystem disruption, Arctic warming, and equatorial cooling. Other SRM intervention models - including the 
G7Cirrus sub-experiment - predict marginal Tsurf reductions but highlight P and [CH4] variability, underscoring 
the complexity of managing interdependent climate systems. Long-term simulations reveal that intervention 
strategies might exacerbate feedback loops or introduce irreversible climatic shifts when improperly managed. 
Alternatively, geoengineering intervention via carbon management, including ocean fertilization and enhanced 
mineral weathering, aims to increase carbon uptake but often encounters substantial ecological uncertainties 
and unintended consequences, such as hydrological cycle disruption, ocean acidification, biodiversity loss, and 
ecosystem collapse.

Traditional mitigation strategies offer gradual and predictable outcomes, while geoengineering interventions 
promise rapid temperature reductions but introduce substantial risks and uncertainties. Mitigation strategies are 
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Fig. 7.  The first vertical panel illustrates weighted mean departures for Tsurf (°C), P (mm day− 1), and 
subtropospheric multilevel mean of [CH4] (ppb, 300-1,000 hPa) from the fourth GeoMIP experiment (i.e., 
G7Cirrus). The second vertical panel expands on departure variabilities (i.e., reference period derived from 
ERA5 reanalysis: 1991–2020) constrained to the observational record (S8). Additional plots for climatologies, 
departures, statistics, and intercomparison temporal windowing (i.e., G7Cirrus; 2020–2022 [2020–2100]) are 
provided in S7, S8, and S10, respectively. The plots were generated with Python 3.9.18 and the various modules 
from the Matplotlib and Cartopy libraries43,44.
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Fig. 8.  In the top panel, simulation drift is illustrated, thus demonstrating the relationships between Tsurf and 
P derived from CDRMIP simulations relative to ERA5 reanalysis observations from 2020–2022. Below this 
panel, the bottom plots illustrate how these covariates (i.e., Tsurf and P) differ not only among various GeoMIP 
simulations and ERA5 reanalysis data, but also relative to the overlaying plots above, i.e., CDRMIP simulations. 
The plots were generated with Python 3.9.18 and the various modules from the Matplotlib and Cartopy 
libraries43,44.

 

Scientific Reports |         (2025) 15:8158 14| https://doi.org/10.1038/s41598-025-91195-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


generally global in scope and balanced in effect, while geoengineering exhibits pronounced regional anomalies 
(e.g., Arctic warming and equatorial cooling). Mitigation strategies align with natural processes and are more 
sustainable over the long term. Conversely, geoengineering often requires sustained intervention to maintain 
results, as abrupt cessation can lead to catastrophic climatic rebound. Geoengineering introduces unknown 
risks and ethical considerations, such as governance and global equity in impacts, while mitigation emphasizes 
systemic changes to reduce the root causes of climate change. While mitigation offers long-term sustainability 
and aligns with global climate stabilization goals, geoengineering provides a rapid but risky pathway to counteract 
warming trends. Effective climate strategies will likely require an integrated approach, balancing mitigation with 
carefully regulated geoengineering interventions to address the multifaceted challenges of climate change.

Collectively, intervention and mitigation simulations tended to overestimate the variability and magnitude 
of Tsurf and P, with substantial regional deviations and scenario-dependent estimation heterogeneity for 
[CH4]. This highlights the challenges in accurately quantifying and projecting GHG feedback mechanisms. 
Furthermore, forward projections indicate that both mitigation and intervention scenarios can lead to varied 
climate responses, emphasizing the complexity and uncertainty in predicting the exact outcomes of different 
geoengineering strategies. This suggests that model uncertainty may promulgate through the projections but 
represents a near-to-observational record that is still useful for forecasting. These results demonstrate the 
efficacy of employing systematic physics-based data-driven methodologies to extend temporal envelopes for 
exploring multimodal intercomparisons and applying sensitivity analyses to better understand Earth system 
complexities and highlight potential limitations and unintended consequences of mitigation and intervention 
strategies. Future efforts will introduce artificial intelligence optimization to enable knowledge discovery and 
bolster confidence for recommendation and contingency formulation.

Although imperfect compared to observational records, these mitigation and intervention simulation 
experiments capture large-scale Earth system dynamics well; however, some discrepancies emerge. Utilizing 
global mean Tsurf and P as points of departure – with the understanding that regional-to-localized dynamics 
still require more spatially explicit refinement in Earth System Model frameworks – reanalysis and model 
intercomparisons act as quality assessments and validation baselines to inform calibration updates (i.e., forcing 
observations, parameterization, drivers) and improve future simulations47. Each model run exhibited unique 
responses to experiment-specific mitigation (1) or intervention (2) strategies; most importantly, no experimental 
‘solution’ produced a stable, steady-state Earth system at any point in time. By introducing geoengineering 
strategies into the baseline environment, rapid and sustained changes to the Earth system are observed.

1. Mitigation scenarios were simulated to demonstrate the potential of CO2 removal strategies to alter 
global climatologies in the future substantially; in particular, initialization of the "1pctCO2-cdr"1pctCO2-cdr 
experiment resulted in global mean climatologies demonstrating consistent increases in Tsurf, P, and [CH4] from 
1990 to 2149 (3.89 ± 2.62 ◦ C, 0.17 ± 0.78 mm day-1, 0.01 ± 0.27 ppb). In contrast, Tsurf and P were reduced 
while [CH4] increased from 1990 to 2022 (-0.01 ± 0.37ºC, -0.02 ± 0.89 mm day-1, 0.02 ± 0.25 ppb), suggesting 
an effective cooling and drying mechanism in the short-term yet vastly underestimates the evolution of Tsurf 
and P (4.16 ± 0.05ºC, 0.98 ± 0.01  mm day-1). Critically, this experiment precipitated pronounced Arctic 
amplification, with Tsurf in excess of 13.08 °C across the tundra and boreal ecotones. In addition, the 1b esm-
1pct-brch-1000PgC experiment demonstrated a more balanced climate response with less pronounced increases 
in global Tsurf, P, and [CH4] from 1950 to 2149 in comparison to 1a, i.e., 0.06 ± 0.35ºC, 0.003 ± 0.331 mm day-
1, 0.001 ± 0.169 ppb. However, relative to the entire simulation period, regional variabilities resulted in Tsurf 
reductions for the 1990–2022 simulation period, with marginal increases in P and [CH4] trajectories (-0.03 ±
0.30 ◦ C, 0.001 ± 0.330 mm day-1, 0.01 ± 0.16 ppb). The "esm-1pct-brch-1000PgC" experiment indicates that 
even under aggressive CO2 removal and carbon management strategies, complex climate feedbacks remain 
unfettered48.

We extended the distribution curve tails toward a ‘new normal’ by increasing CO2, seemingly magnifying 
contemporary observed changes of punctuated extreme weather and precipitation49. This variability introduces 
shifts in regional climates, though it may also be responsible for the increased global warming trend. While 
the ranges of Tsurf and P in esm-1pct-brch-1000PgC is less than 1pctCO2-cdr, P is increasingly variable in the 
models, with interannual shifts in P patterns across regions. While the variability of the models at a regional scale 
may account for some of these outputs, the overall trend towards punctuated P, governed by biogeochemical 
processes that are not fully captured by the models, is of concern. Moreover, extending the "1pctCO2-cdr" 
experiment beyond the 1000 PgC benchmark facilitates increasing loss of [CH4] beyond net zero, which may 
have biogeochemical consequences over time. Regional incongruencies in Tsurf and P are localized to hot and 
cool dry ecotones exhibiting high net primary productivity and persistent carbon sink-to-source conversion.

2. Various intervention scenarios were explored with numerous geoengineering simulations analyzed, 
including SRM.

strategies (e.g., solar dimming, stratospheric aerosol injection, cirrus cloud thinning), with many 
demonstrating the potential to significantly modify Tsurf, P, and [CH4] patterns with varying regional impacts. 
The G1 experiment (i.e., 4xCO2 and solar dimming) illustrates global radiative balance by reducing solar 
irradiance to stabilize climatological feedbacks, resulting in significant Tsurf modulations (i.e., slight cooling), 
extensive variability in P, and increasing [CH4] across the simulated period, i.e., 1850–1949 (-0.01 ± 0.47 ◦ C, 
-0.01 ± 0.32 mm day-1, 0.003 ± 0.180 ppb). However, regional hotspots were distinguishable, with pronounced 
warming trends and emergent climatic patterns, trends, and anomalies. In the "G6Solar" G6Solar experiment, 
high-to-medium solar forcing reduction promoted cooling trends, with elevated Tsurf and [CH4] hotspots 
despite an overall decrease in global mean variability (i.e., departures). Despite reducing Tsurf, P, and [CH4] 
from 2020 to 2022 (-2.55 ± 2.61 ◦ C, -0.08 ± 0.61 mm day-1, -4.37 ± 0.62 ppb) – and cultivating cool, dry spots 
across the globe in the short-term – Tsurf, P, and [CH4] rebounded and increased over the 2020–2100 simulation 
period (1.28 ± 1.26ºC, 0.05 ± 0.35 mm day-1, 1.58 ± 1.08 ppb). The "G6Sulfur" experiment (G6Sulfur) aimed 
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to reduce radiative forcing via SAI methods and demonstrated promising results to mitigate warming and cool 
the planet in the short-term but reduced global P departures (i.e., variability) by doing so. Additionally, the 
results suggest that this strategy may cause abrupt climatic changes and pose significant long-term stability 
issues beyond the initial beneficial impacts being achieved, and aerosol effects are diminished. Similarly, the 
"G7Cirrus" experiment (G7Cirrus) initially facilitated an increase in Tsurf and [CH4], though regional patterns 
of reduced Tsurf variability were observed. In the long term, the impacts on P variability are significant. 
Collectively, these results suggest a complex interplay of oscillating dynamics between global, regional, and 
localized climate regimes and highlight the challenges in forecasting accurate outcomes under mitigation and 
intervention mechanisms.

"G6Solar" simulation outputs of global weighted mean variabilities indicate synergistic coregulated feedbacks, 
with persistent trends characterized by abrupt pulses; specifically, [CH4] began and ended the simulation period 
with net emissions in terms of annual magnitude, but throughout most of the simulation period, [CH4] variability 
decreased and remained low. In contrast, P variability illustrated anticorrelated behavior, i.e., the simulation 
period began and terminated with minimal precipitation events and accumulation but rather a steady increase 
followed by a gradual decrease – in enhanced P variability. Tsurf characteristically stimulates climate feedback 
patterns governing water vapor distribution and precipitable accumulation. During this validation window, 
Tsurf and P differencing and dimensionality reduction via spatial flattening demonstrates that over regions 
with high variability in P, Tsurf departures were marginal and remained stable (i.e., oceans, equatorial tropics); 
however, less P variability prompted an elevation of Tsurf variability, triggering positive climate feedbacks (i.e., 
high latitudes). These trends remained periodic with gradual increases in Tsurf and P – in concert with net 
release yield from [CH4] – through the end of the century, followed by a slight stabilization period.

Marked reductions in global mean departures from "G6Solar" simulations suggest this strategy will cool 
the planet while synergistically amplifying the positive coupling feedbacks between Tsurf and P, fostering cool, 
drier conditions. Examining global climatologies and mean departures for each of the covariates indicate similar 
characteristics to prescribed solar geoengineering scenarios, with marked increases in global weighted mean 
variability for P variability across the entirety of eastern Brazil – from Bahia to São Paulo - as well as Tsurf and 
[CH4] anomalies near the Ross and Amery Ice Shelf. Results from these simulations are shockingly similar 
to those derived from the previous experiment; however, when constraining and comparing these dynamics 
with a three-year period and examining global response, subtle nuances between experimental methods are 
blanketed by statistical liberties. These nuances are not readily discernible in the second panels illustrated in 
Figs. 5 and 6, both yielding nearly identical visual outputs; however, it is important to note that this three-year 
window is a sensitivity method for validation purposes and successfully demonstrates similar spatiotemporal 
dynamics with those observed and re-analyzed datasets. Moreover, the global mean variability between the 
two experiments from 2020 to 2100 results in strikingly different outcomes, thus illustrating how climatologies 
change, anomalies evolve, and land-ocean-atmospheric interactions over space and time foster global climate 
change. Tsurf variability in "G6Solar" is likely coupled with unique surface flux exchanges and biogeophysical 
dynamics. However, it is more likely associated with the erratic variability of P. SAI, which has the potential 
to mitigate solar irradiance within Earth’s atmosphere for a finite amount of time. The model results respond 
accordingly, with steady, linear, and increasing Tsurf and P for the first 30 years after initialization, followed 
by an abrupt increase in global mean Tsurf. These dynamics may be caused by feedback interactions with the 
Earth systems or due to progressive atmospheric sulfate loss. Still, the stabilization of the system with abating 
temperatures, even in the absence of fossil fuel reductions, is concerning, especially when abrupt increases occur. 
This strategy exhibits less.

interannual variability and challenges long-term climate stability.
Relative to baseline simulations, SAI methods facilitate similar trends to these patterns. However, the 

magnitude of P’s global weighted mean variability is significantly higher as a consequence of G6Solar, while 
Tsurf exhibits lower variability. In addition, "G1" and "G6Solar" produced anticorrelated covariate trends, with 
G1 showing higher variability of Tsurf, P, and [CH4]. This is due to solar irradiance reduction techniques. The G1 
experiment created a broad reduction in variable magnitude but demonstrated how reduced variability does not 
necessarily foster and maintain Earth system stability. This experiment yields a poorly distributed and relatively 
static lower atmosphere with less fluidity and more turbidity (i.e., amplified hot and cool dry regions, Antarctic 
methane pooling). These two approaches address and resolve uncertainty challenges by altering light or matter. 
Another case of an anticorrelated covariate trend is G6Sulfur and 1pctCO2-cdr: "G6Sulfur" induces a reduction 
in Tsurf and [CH4] variability while increasing P variability on a global scale. In contrast, 1pctCO2-cdr increases 
Tsurf variability coupled with a less variable global weighted mean in P. The variability of the global weighted 
mean of [CH4] was significant during G6Sulfur, representing nearly four orders of variable magnitude relative to 
[CH4] output variability from 1pctCO2-cdr. The dissimilar system responses reiterate that small perturbations 
can have significant effects when magnified across space and time. During the G7Cirrus experiment, the global 
mean Tsurf is reduced considerably. The elevation in P may be marginal, but the variance has a long tail toward 
positive, which could result in considerable precipitation increases over time. The mean cooling response from 
this experiment requires more time than the others, reaching the maximum radiative and cooling benefit over 
160 years.

Based on the observed record, model simulations, sub-experiment intercomparisons, and statistical 
analyses, potential mechanisms and drivers of change are explored and elucidated within spatiotemporal 
patterns, relationships, and trends. First, warming departures in Greenland and northern Siberia facilitate land-
atmosphere interactions through arctic amplification due to reductions in snow and ground ice, subsequent 
albedo reduction, and coincident amplification of solar energy absorption and land Tsurf. Hot spot anomalies 
– in particular, Tsurf departure anomalies – may be a byproduct of equatorial and polar temperature gradient 
reductions contributing to a weakening of the polar jet stream resulting from the reduction of the temperature 
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gradient. With amplified surface warming and accelerating permafrost degradation, a higher rate and magnitude 
of [CH4] release from thawing permafrost contributes directly to localized weather patterns. [CH4] departures 
are located in model diagnostics to isolate and, more explicitly, identify drivers of regional warming. We quantify 
albedo changes and feedback amplification using remote sensing and process-based models to disentangle 
driving mechanisms and reconcile algorithm, data, and knowledge gaps.

Furthermore, SRM deployment may alter the cloud cover and radiative balance in high-latitude ecotones 
due to immediate cooling effects. Alternatively, warming departures in the Horn of Africa may facilitate ocean-
atmosphere interactions in the form of alterations to sea surface temperatures (SSTs) in the Indian Ocean, disrupt 
monsoon systems, and catalyze warmer weather with sporadic precipitation activity. Demonstrating the validity 
of this conjecture would require coupled oceanic and atmospheric models to assess an SST-driven impact on 
regional climatological variability. Additionally, persistent drought events were observed and simulated in this 
region; these disturbances and conditions elevate surface albedo via soil desiccation, reducing latent heat flux and 
promulgating heat intensification. Moreover, model parameterization, including soil moisture and vegetation 
feedbacks, would enhance the model architecture, increase the precision of the simulation outputs, and reduce 
uncertainties and confidence intervals that directly validate and support drivers of change.

Cooling mechanisms and drivers of change are further examined; in particular, central Africa and eastern 
Brazil experienced significant regional cooling effects. Drivers contributing to regional cooling departures in 
central Africa may result from vegetation feedbacks and changes to the hydrological regime; more specifically, 
afforestation catalyzes an increase in evapotranspiration and latent heat flux, effectively cooling Tsurf. Though 
enhanced forest cover may be a minute contributor, this hypothesis may be validated by integrating dynamic 
vegetation models into the coupled terrestrial and atmospheric circulation models to simulate land-atmosphere 
interactions while conducting cooling effect assessments effectively. In contrast, moisture transport variability 
may result from altered trade wind patterns, thereby increasing P and promulgating evaporative cooling; 
similarly, this hypothesis may be tested with remote sensing platforms that observe water vapor flux and cloud 
cover variability. Alternatively, the historical rate and magnitude of deforestation in eastern Brazil across the 
Amazon basin may help contribute to localized cooling patterns via reduced transpiration and latent heat 
flux (i.e., land-use land-cover change scenarios may be used to emulate and assess the interplay among the 
spatiotemporal dynamics of deforestation and Tsurf trends across this region). In addition, cooling effects in 
eastern Brazil may be a result of the circulation pattern of the Atlantic Ocean; more specifically, disruptions to 
the Atlantic Meridional Overturning Circulation (AMOC) would drastically affect heat transport to the tropics. 
Simulating this scenario with AMOC variations in response to various geoengineering intervention strategies 
would validate and effectively constrain potential states of the regional climate.

Discrepancies between the observational record, model simulations, and statistical products are present, 
most notably acknowledged previously as over- and under-estimations of simulated outputs and observed data. 
In particular, P was overestimated in southern Alaska, while P was underestimated in east Africa. First, we 
expound on potential climatological, geophysical, and biogeochemical contributors to these errors; then, we 
expand these inquiries to technological limitations. The error or overestimation of P in southern Alaska may be 
a result of marine-dominated regimes; in particular, warm SSTs in the North Pacific may expedite a significant 
amount of moisture and heat transport to southern Alaska (i.e., atmospheric river), prompting the development 
of thunderstorms and excessive precipitation. Alternatively, if warm SST in the North Pacific does not fuel 
the system, model simulations and architectures may not accurately reflect orographic effects or convective 
processes. Instead, much of the overestimation error and biases likely originate from inadequately accounting 
for and capturing the dynamics of cloud microphysics and convective processes. To remedy this, adapting high-
resolution cloud-resolving models into the coupled oceanic and atmospheric circulation models to better resolve 
and improve the representation of orographic P.

The underestimation of P in East Africa may be a byproduct of generalized downsampling; however, the 
inability to capture and simulate localized convection and mesoscale phenomena at coarse resolution may 
contribute iteratively to the resulting error and underlying biases. Furthermore, this underestimation of P may 
result from poor representation of monsoon dynamics in simplified parameterizations of moisture convergence 
and seasonal wind shifts. Integrating observational datasets for model calibration purposes would reduce 
errors and biases significantly. Broader structural constraints and model limitations may directly contribute 
to these P errors via parameterization errors and feedback mechanisms; however, spatial resolution was not a 
contributing factor in this context (i.e., preprocessing methodology guided by ERA5 resolution). By refining 
parameterizations, updating simplified assumptions generalizing cloud formation, radiation, and convection 
- and interjecting complexity with satellite cloud retrievals and ground-based radar data - regional climate 
simulations will contain fewer biases and output more precise data products. Amending the represented feedback 
mechanisms in coupled Earth system model frameworks is crucial as well to enhance the predictive accuracy of 
the simulations (e.g., vegetation-climate, ocean-atmosphere).

Climate change remains a critical issue, and the likelihood of geoengineering intervention in the future 
is likely. Geoengineering represents an unprecedented scale of planetary intervention, carrying profound 
implications and the risk of significant consequences. It is a field marked by considerable uncertainties that 
can only be addressed through systematic and coordinated research efforts. In addition, while CDR strategies 
are integral to many climate change mitigation scenarios, their development has yet to achieve the necessary 
deployment scale required for climate change mitigation, and their impacts on the Earth system still need to 
be better understood. Through detailed simulation analyses, this research study – presuming other approaches 
to this challenge are generalized and not comprehensive – identified substantial variability in global, regional, 
and localized climate patterns from ERA5 reanalysis observations over 73 years (i.e., 1950–2022) as well as six 
mitigation and intervention simulations from CMIP6 experiments (i.e., CDRMIP, GeoMIP) from 1850 to 2149, 
reflecting complex hydrological responses to changing atmospheric conditions. While the experiments provide 
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valuable insights into potential strategies for managing climate change, they also reveal the complexities and 
uncertainties involved, necessitating further research and cautious approaches to large-scale implementation of 
geoengineering solutions.

Geoengineering strategies are intrinsically characterized by significant uncertainties, those which critically 
govern and influence decision-making processes by shaping the evaluation of risks, trade-offs, and potential 
unintended consequences. Empirical, temporal, technological, ethical, and socioeconomic uncertainties 
permeate from various stages of geoengineering deployment, from regional climate responses to governance 
and moral challenges. Ethical and governance issues arise from these uncertainties, significantly influencing 
international cooperation and policy frameworks. Intervention often produces unequal regional impacts, e.g., 
the G7Cirrus sub-experiment, which illustrates increased P variability in equatorial regions but induces drying 
patterns in parts of southeast Asia and Brazil. Quantitative evaluations, including the ± 1Wm-2 radiative 
forcing reduction in cloud-seeding sub-experiments, inform the design of equitable governance frameworks 
to address these disparities. Additionally, uncoordinated regional deployment of cloud-seeding efforts 
highlights the risks and pressing need for global regulatory mechanisms. While cloud-seeding experiments 
suggest radiative forcing reductions of 50–85%, geographic variability in outcomes necessitates comprehensive 
oversight. Uncertainties from geoengineering outcomes arise due to an incomplete understanding of Earth 
system processes, model limitations, and potential unintended consequences. Model simulations such as the 
G6Sulfur experiment illustrate erratic regional climate responses, with P departures ranging from − 2.22 mm 
day-1 to 3.13 mm day-1 globally. Regions such as eastern Brazil experience extreme drying, while high-latitude 
areas exhibit increased P variability, complicating regional projections. Similarly, [CH4] dynamics and sensitivity 
to atmospheric chemistry variability add to the complexity; G6Sulfur simulations indicate global mean [CH4] 
variability between − 4.43 ppb and 6.38 ppb, raising concerns about activation and amplification of nonlinear 
feedback loops, particularly in methane-sensitive regions. These regional disparities compel policymakers to 
weigh localized risk against global cooling benefits, underscoring the cautious approach policymakers adopt. 
This complicates large-scale deployment consensus and includes the implementation of well-informed decisions 
and actionable task delegation that minimizes risk and maximizes utility and efficiency, ultimately seeking to 
diminish feedback-driven warming while prioritizing adaptation and mitigation approaches.

These results and uncertainties quantified from erratic regional climate response patterns and [CH4] dynamics 
collectively impact and govern decision-making processes. Moreover, these wide-ranging outcomes make it 
challenging to predict how regions will respond and adapt to driving factors and covariate departures, which 
inherently lead policymakers to approach geoengineering decision-making with caution. Another challenge 
regarding geoengineering deployment is the uncertainty representing each strategy’s efficacy and uneven regional 
impacts, challenges that often result in hesitancy regarding policy timing, risk assessment, and deployment. 
Unpredictability and unwavering uncertainties characterize intervention strategies motivate policymakers to 
favor established alternative mitigation strategies until these uncertainties and confidence intervals are better 
constrained. Moreover, the risk of catastrophic rebound from intervention highlights the temporal dependencies 
illustrated by geoengineering approaches; more concretely, if intervention ceases abruptly, global mean Tsurf 
may rise sharply and catalyze climatic shocks​. Consequently, policymakers are inclined to mandate parallelized 
mitigation approaches to reduce the reliance on interventions and dependencies while suppressing potential 
climatic shocks with sustained sequestration efforts.

The potential benefits of geoengineering must be weighed against its associated risks and uncertainties through 
cost-benefit analyses, i.e., SAI strategies show promise for global cooling but risk destabilizing precipitation 
patterns and disproportionately affecting agriculture-dependent economies. Cooling effects exhibit significant 
uncertainty; e.g., the G1 experiment predicts Tsurf reductions of -6.87  °C to 4.38  °C with uneven regional 
distributions​. G6Sulfur results demonstrate a global P increase of 0.03 mm day-1, contrasted with a -1.20 mm 
day-1 reduction in East Africa, posing significant regional drought risks​. Temporal dynamics further complicate 
these analyses, i.e., solar dimming approaches, i.e., the G6Solar sub-experiment, provide cooling effects lasting 
80–120 years. However, this comes at the cost of long-term dependencies on continuous intervention, which 
policymakers find unsustainable​ in general. Risk-reward balancing is another mechanism to guide climate 
policy; in particular, the 1pctCO2-cdr sub-experiment explores arctic amplification and reveals Arctic warming 
up to 13.08 °C, far exceeding global mean changes, thus accelerating permafrost thaw and methane release​. This 
unabated warming in the Arctic and the activation of multiple feedback loops emphasize the need for Arctic-
specific geoengineering trials, such as localized aerosol injections, to mitigate these nonlinear runaway effects. In 
addition, intervention escalation risks are identified, and an intervention escalation risk framework is adopted, 
e.g., the abrupt cessation of SAI may result in warming rates of up to 1.5  °C per decade, with catastrophic 
ecological consequences​. Dual strategies combining emissions reduction and geoengineering could mitigate 
reliance on high-risk interventions.

Uncertainty requires iterative enhancement and application of sensitivity analyses and model architecture 
refinements to update, bolster, and improve model performance while reducing uncertainty and increasing 
confidence in geoengineering proposals (e.g., Tsurf variability of ± 2.55 °C in G6Solar simulations underscores 
the need for region-specific models​). Policymakers increasingly rely on such analyses to guide incremental 
deployment or pilot testing. Phased approaches to geoengineering allow policymakers to target regions where 
benefits outweigh risks while implementing pilot testing, small-scale trials, and conditional deployment for risk 
mitigation. Policies may also link deployment to predefined thresholds, such as global temperatures exceeding 
2.0 °C. Quantitative examples from model simulations highlight the guiding policies that prioritize mitigation 
and adaptation, invest in model refinement, integrated assessment model development, and state-of-the-art 
research, bolster multilateral governance frameworks, manage shared risks (i.e., delicate trade-offs between 
potential benefits and risks), and ensure equitable outcomes. By addressing these uncertainties, policymakers 
are better positioned to address scientific, ethical, and geopolitical challenges. Examples of quantitative insight 
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derived from this study are iterated below to demonstrate policy responses to climatological trends: P variability 
necessitates regional pilot studies with controlled P monitoring, i.e., G6Sulfur simulations indicate global 
P anomalies of ± 2.5  mm day-1 with regional drought risk probabilities; delay SAI deployment until [CH4] 
dynamics are more universally and comprehensively understood, i.e., [CH4] magnitude ~ 6.38 ppb exacerbates 
warming in defined regions; adaptation and mitigation mandate serve as a backup to avoid intervention 
overreliance, with abrupt SAI cessation leading to a 1.5 °C decade-1 warming rate.

The contributions and sources of error resulting in simulated over- and underestimations may originate from 
computational methods, statistical limitations (e.g., climatological mean, temporal windowing), lack of variant 
ensemble diversity, spin-up perturbations, generalized parameterization, and new data assimilation techniques 
that impose new conditions on the system with restrictions and potential information loss from scaling efforts. To 
reduce possible errors and uncertainties originating from coarsely resolved scaling practices, ongoing efforts will 
prioritize stability and consistency by incorporating a multi-model multi-variant ensemble (i.e., UKESM1-0-LL, 
CanESM5, CNRM-ESM2-1, MIROC-ES2L, MPI-ESM1-2-LR) while introducing cutting-edge methodologies to 
reduce uncertainties and bolster validation efforts prior to 1950 – including artificial intelligence (AI), machine 
learning (ML), and AI optimization (AIO) frameworks – to better quantify and understand dynamics, patterns, 
and trends that emerge over time. These methodologies will enable knowledge discovery and confidence for 
recommendation systems and contingency formulation while offering the potential to optimize geoengineering 
designs by simulating nonlinear dynamics, analyzing large datasets with various data harmonization and 
assimilation frameworks, and minimizing risks with a multimodal neural network architecture.

An AIO implementation plan is defined by algorithm selection, data integration, and validation criteria to 
enhance the utility and rigor of these tools and methodologies. Suitable algorithms for geoengineering AIO 
tasks include reinforcement learning for SAI optimization, convolutional long short-term memory recurrent 
neural network (ConvLSTM) for spatiotemporal feedback prediction, variational autoencoders for reducing 
the dimensionality of massive climate datasets and process-based modeling outputs, and Bayesian optimization 
for uncertainty quantification during model predictions. For demonstration purposes, the data preprocessing 
workflow consists of training and testing the ConvLSTM network with historical SST, P, and atmospheric 
pressure data assimilated from MODIS observations, high-resolution ERA5 reanalysis data, and CMIP6 multi-
model ensemble outputs. After training, validation protocol (e.g., cross-validation with independent climate 
data records), cost functions (RMSE, MAE), and skill scores are implemented to correct simulation biases or 
assess the fidelity, resilience, and reliability of regional climate feedback predictions generated from upsampled 
geoengineering intervention scenarios. Baseline quantities and these validation metrics not only assist with 
defining benchmarks for model agreement and bias detection, i.e., simulated v. observed intercomparisons 
but also improve existing and future climate feedback representations in model architecture while enhancing 
G6Solar and G6Sulfur simulations.

AI methods serve a critical role in optimizing geoengineering strategies since they can rapidly analyze 
massive numbers of scenarios to help identify the strategies that minimize risks and unintended consequences. 
However, AI introduces its own uncertainties, such as biases in feature selection and interpretability challenges​, 
necessitating a balanced approach to integrating AI into decision-making processes. Additionally, the integration 
of AI into geoengineering playbooks presents inherent risks that are not yet fully understood35. These unknown 
risks and impacts may originate from a flawed optimization question, deploying imperfect algorithms in haste, 
or applying imperfect toolkits to an incomplete feature space with a flawed understanding of the Earth system. In 
light of persistent knowledge gaps, a dearth of observations, and industry standardized uncertainty quantification 
methodologies falling short, AIO strategies help address these areas of improvement while enhancing model 
performance. AI provides a powerful optimization tool, and the decision to implement a particular AIO 
algorithm is intrinsically an optimization question void of equifinality that concerns quality, performance, cost, 
and tractability50. We advocate for continued research into the efficacy, limitations, and implications of various 
climate intervention methods, emphasizing the need for a more comprehensive understanding of climate 
dynamics and calling for more refined models and international collaboration to mitigate the exacerbation of 
existing climate risks and strategically manage the potential irreversible impacts of global climate change.

Methods
We utilized ERA5 reanalysis data as well as mitigation (i.e., CDRMIP) and intervention (i.e., GeoMIP) 
simulations first to examine baseline conditions to gain a retrospective understanding of climate warming and 
then prognosticating climate response patterns under a variety of mitigation and climate engineering scenarios. 
We compared observation-based ERA5 reanalysis data with simulation outputs from the CDRMIP and GeoMIP 
experiments. The temporal bounds of the simulation experiments were constrained to the observational period 
(i.e., 1950–2022) for Tsurf and P intercomparisons (i.e., 1pctCO2-cdr), 1950–2022 (i.e., esm-1pct-brch-1000PgC), 
and 2020–2022 (i.e., G6Solar; G6Sulfur; G7Cirrus).

The UKESM1-0-LL model (i.e., r1i1p1f2 ensemble member) was selected for this study because it is one of 
only six projects involved with simulating both mitigation and climate engineering scenarios (i.e., CDRMIP, 
GeoMIP) while offering a breadth of ensemble variants and surface variables at various temporal resolutions 
on a Native N96 grid. For sensitivity analyses, P simulations derived from these simulations were converted 
to P (i.e., kg m−2 s−1 to mm day−1) based on temporal windowing and the global surface basin. In addition, the 
subtropospheric multilevel mean of [CH4] was converted to parts per billion (i.e., mol mol−1 to ppb).

ERA5 Reanalysis
ERA5 Reanalysis observations (e.g., Tsurf, P) were regridded from (721, 1440) at 0.25° resolution with 3.88B 
samples to (143, 191) at 2.348° resolution with 16.03M observations (i.e., 27320 global observations per annum). 
The standard reference period as defined by the WMO identifies climate normal (i.e., 1991–2020); however, 
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ERA5 Reanalysis data utilizes 1981–2010 as a base period; therefore, we selected this time period, i.e., 1981–2010. 
ERA5 monthly averaged high-dimensional reanalysis datasets were extracted from the European Centre for 
Medium-Range Weather Forecasts Climate Data Store portal generated by Copernicus Climate Change Service. 
The CDS API tool was utilized to efficiently query the database with appropriate parameters in place, i.e., global 
coverage over a 73-year period. Following regridding and scaling, these datasets were loaded, concatenated, and 
restructured into a dataframe.

CMIP6 Simulations
In addition, 699.72 M modeling outputs including abiotic measurements, e.g., Tsurf, P, and [CH4] derived from 
CMIP6 projects including the Geoengineering Model Intercomparison Project (i.e., GeoMIP) and the Carbon 
Dioxide Removal Model Intercomparison Project (i.e., CDRMIP) experiments (i.e., concluding NaN dropping 
via bilinear interpolation, backfilling, and forward-filling, 341.40 M and 358.32 M, respectively). Subsets of these 
experiments were searched and downloaded from the LLNL metagrid node with the ESGF PyClient API.

Many geoengineering and CO2 removal intercomparison scenarios adopt sophisticated architectures 
and assessment protocols (e.g., CDRMIP, GeoMIP). However, mitigation efforts are limited in scope and 
often formulate uninformed strategies based on single high-emissions pathways inconsistent with near-term 
projections. The CDRMIP project aims to consolidate Earth system models within a unified framework to 
evaluate the feasibility, effects, and challenges associated with CDR technologies. The GeoMIP project aims to 
meet this research need by standardizing sub-experiments across participating climate models. This initiative 
will enable the identification of both commonalities and discrepancies of climate response to mitigation and 
intervention in model predictions, thereby contributing vital insights into potential outcomes of significant 
global efforts.

We examined mitigation and intervention strategies employed by assessment protocols and SSP scenarios to 
identify global historical and future relationships and climate change indicators from 1850–2149 (e.g., Tsurf, P, 
and [CH4]). Due to escalating extreme events and more support growing for weather modification tactics, it was 
necessary not only to examine anomalies, trends, and bounds of the datasets but to also constrain the temporal 
look-forward period to 2050 in the interest of expedient mitigation and policy implementation. We examined 
these experimental runs from 1850 to 2149, with careful scrutiny given to periods of data misalignment and 
natural disturbance events (e.g., Pinatubo), and further examination during the years 2020 and 2050, notating 
critical information that may prove useful in terms of deployment and policymaking.

A more comprehensive list of results distributed by experiment, period, covariate, and uncertainty is provided 
in the Data Availability Statement. GeoMIP simulations were analyzed to understand the historical and future 
implications of current strategies and the potential consequences of implementing geoengineering practices. 
Baselines were established to provide historical lenses (i.e., G1) and real-world atmospheric forcing (i.e., ERA5) 
to determine the feasibility of contemporary geoengineering proposals and the associated impacts on the Earth 
system over time. Concluding initial baseline runs, we extended the temporal retrospection period by 100 years 
with historical simulations (i.e., 1850–1949, G1) and the prognostication period by 77–128 years with forward 
projections of intervention (i.e., 2023–2100, G6Solar, G6Sulfur, G7Cirrus) and mitigation experiments (i.e., 
2023–2149, 1pctCO2-cdr, esm-1pct-brch-1000PgC).

Data preprocessing
These data products were loaded, appended, scaled, and reframed in each experiment-specific sequencing of 
the dataframe (i.e., CDRMIP: (199065600, 5)1PCT), GeoMIP: (80621568, 5)G1, (159252480, 5)GSSC) prior to 
assimilating with observation-derived ERA5 data with a bilinear periodic regridding algorithm (i.e., xESMF 
Regridder) to improve performance, compatibility, and interpretability. CMIP6 experiments yield daily outputs, 
prompting monthly mean resampling across these simulation datasets to align with ERA5 reanalysis monthly 
observations. These dataframes were concatenated along the temporal dimension, resulting in a (23951989, 93) 
dataframe with 93 variables obtained from ERA5 reanalysis data across 1950–2022 (i.e., Tsurf, P), CDRMIP 
1pctCO2-cdr and esm-1pct-brch-1000PgC experiments from 1950–2022 and 1990–2022 respectively (i.e., Tsurf, 
P, [CH4]), GeoMIP G1 spin-up simulations from 1850–1949 (i.e., Tsurf, P, [CH4]), and GeoMIP G6 and G7 
geoengineering experiments from 1850–2100.

•	 ERA5 global monthly averaged observations (e.g., Tsurf, P): 24.25 M regridded data points from 1950–2022.
•	 CRU TS4.08 (Climatic Research Unit Time-Series version 4.08) high-resolution global monthly observations 

(e.g., tmp, pre): 118.12 M gridded data points from 1950–2022.
•	 1pctCO2-cdr: In the wake of 4×CO2 preindustrial baseline, one percent CO2 reduction per year is prescribed 

until preindustrial control is reached and maintained (1990–2149)
•	 esm-1pct-brch-1000PgC: After 1000 Pg cumulative emissions threshold is achieved, zero emissions are simu-

lated after 1pctCO2-cdr run (1950–2149)
•	 G1: 4×CO2 mitigation via solar radiation management (1850–1949)
•	 G6Solar: High forcing scenario reduction to medium forcing via solar radiation management, i.e., solar irra-

diance reduction (2020–2100)
•	 G6Sulfur: High-to-medium forcing scenario reduction; sulfate aerosol injection, SAI (2020–2100)
•	 G7Cirrus: High forcing scenario baseline mitigation via increases in rate and magnitude of cirrus ice crystal-

lization, i.e., cloud seeding (2020–2100)

Intrinsic biases within the ERA5 reanalysis dataset were addressed with temporal resampling, weighted 
climatological mean deviations from the baseline, climatological departures and anomalies, and bias-corrected 
uncertainty quantification. Global mean products, regional variability patterns, data-driven biases, and coincident 
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trending impacts were inferred from CRU TS4.08, ERA5, and CMIP6 intercomparisons (e.g., elevated Tsurf in 
Greenland v. cooling anomalies in central Africa). To address the potential intrinsic, aleatoric, and empirical 
biases affecting the baseline Tsurf and P in the ERA5 reanalysis dataset, we compared resampled ERA5 reanalysis 
data, including 2 m Tsurf and P against globally gridded in situ observations extracted from the CEDA archive 
(CRU TS4.08). Biases were quantified utilizing cost functions - more specifically, mean square error (MAE), root 
mean square error (RMSE), and other statistical testing (MAPE, R) - while discrepancies and uncertainties were 
corrected by aligning ERA5 with observed distributions via sorting, ranking, smooth interpolation, and quantile 
mapping (i.e., 1950–2022). These corrections to ERA5 data were validated through cross-validation methods 
resulting in an improved agreement between Tsurf and P variability from ERA5 reanalysis data and CRU TS4.08 
observations (i.e., for Tsurf, MAE was reduced by 13.55% [3.03°C to 2.62°C] and RMSE was reduced by 13.78% 
[3.86°C to 3.33°C] while validation metrics for P vastly improved: MAE was reduced by 98.07% [60.68 mm day−1 
to 1.17 mm day−1] and RMSE was reduced by 97.76% [103.73 mm day−1 to 2.327 mm day−1]).

Concluding bias quantification, correction, and validation, ERA5 was used as the observational baseline 
to compare mitigation and intervention sub-experiments  To ensure temporal consistency, monthly means of 
Tsurf and P derived from ERA5 reanalysis data were resampled and regridded to align with temporal windows 
characterizing the CMIP6 sub-experiments. Each of the six sub-experiments contains set-specific biases and 
errors wherein uncertainties in the CMIP6 multi-model ensemble were quantified by utilizing validated ERA5 
reanalysis bias-corrected Tsurf and P data, and the combined six sub-experiment aggregations of regridded 
interquartile-ranged bias-corrected validated weighted mean of Tsurf and P. From 1950–2022, after reconciling 
mismatched lengths due to missing values, partial temporal overlaps, and interpolation artifacts, the multi-
model ensemble uncertainties computed from observation-model metrics (i.e., Root Mean Square Error, RMSE; 
Mean Absolute Error, MAE; Nash-Sutcliffe Efficiency, NSE; Pearson’s Correlation, r) resulted in 276.08 K, 
276.03 K, −233.75, and 96.80 respectively for Tsurf and 2.65 mm month−1, 1.40 mm month−1, 0.05, and 59.57 
respectively for P.
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Ongoing work examines these covariates with retrospective and prognostic purviews, i.e., G6 and G7 experiments 
(2023–2149) and OSCAR v3.3 modeling output (2023–2100) will serve as proxies for testing the prediction 
abilities of the model (i.e., seasonal, annual, decadal, semicentennial) while accounting for model drift anomalies 
that exhibits the potential to propagate in space and time. In addition, employing testing data helps identify key 
temporal relationships that may provide a more comprehensive understanding of local-to-regional effects of 
disaggregation and down-sampling methods to further disentangle anomaly detection (i.e., localizing trend and 
feedback dynamics that require data-informed scenario-based decision-making).

Datasets
Repositories, data archives, simulation results, and synthesis work are publicly available (GitHub, JPL DOI). 
Many of the state, diagnostic, and prognostic variables are inferred and/or derived from global annual mean 
mixing ratios, harmonized emissions, global annual mean radiative forcing, SSP-based simulations and 
scenario projections (i.e., SSPs), and subsequent geoengineering experiments (e.g., GeoMIP, CDRMIP). The 
corresponding models, variables, and frequencies are enumerated in the Supplementary Information.

Observations and reanalysis datasets
CRU TS4.08: Independent observations derived from CRU TS4.08 were used for validation purposes: University 
of East Anglia Climatic Research Unit; Harris, I.C.; Jones, P.D.; Osborn, T. (2024): CRU TS4.08: Climatic Research 
Unit (CRU) Time-Series (TS) version 4.08 of high-resolution gridded data of month-by-month variation in 
climate (Jan. 1901- Dec. 2023). NERC EDS  Centre for Environmental Data Analysis, 1 December 2024 ​h​t​t​p​s​:​​/​/​
c​a​t​a​​l​o​g​u​e​.​​c​e​d​a​.​a​​c​.​u​k​/​​u​u​i​d​/​7​​1​5​a​b​c​e​​1​6​0​4​a​4​​2​f​3​9​6​f​8​1​d​b​8​3​a​e​b​2​a​4​b​/

•	 CRU TS4.08 temperature: ​h​t​t​p​s​:​​/​/​d​a​t​a​​.​c​e​d​a​.​​a​c​.​u​k​/​​b​a​d​c​/​​c​r​u​/​d​a​​t​a​/​c​r​u​​_​t​s​/​c​r​​u​_​t​s​_​4​.​0​8​/​d​a​t​a​/​t​m​p
•	 CRU TS4.08 precipitation: ​h​t​t​p​s​:​​/​/​d​a​t​a​​.​c​e​d​a​.​​a​c​.​u​k​/​​b​a​d​c​/​​c​r​u​/​d​a​​t​a​/​c​r​u​​_​t​s​/​c​r​​u​_​t​s​_​4​.​0​8​/​d​a​t​a​/​p​r​e

ERA5: Hersbach, H., Bell, B., Berrisford, P., et al. The ERA5 global reanalysis. Q J R Meteorol Soc. 2020; 146: 
1999–2049. https://doi.org/10.1002/qj.3803

Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, 
R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., Thépaut, J-N. (2023): ERA5 monthly averaged 
data on single levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store 
(CDS), DOI: https://doi.org/10.24381/cds.f17050d7 (Accessed on 24-Mar-2024).

Activity nodes
CMIP5 Scenarios (RCPs): https://www.pik-potsdam.de/~mmalte/rcps 

CMIP6 Scenarios (SSPs): ScenarioMIP: https://aims2.llnl.gov/search
CMIP6 Experiments (MIPs): CDRMIP, GeoMIP: https://aims2.llnl.gov/search
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Models
ScenarioMIP (59 Models): ACCESS-CM2, ACCESS-ESM1-5, AWI-CM-1-1-MR, BCC-CSM2-MR, CAMS-
CSM1-0, CAS-ESM2-0, CESM2, CESM2-FV2, CESM2-WACCM, CIESM, CMCC-CM2-SR5, CMCC-ESM2, 
CNRM-CM6-1, CNRM-CM6-1-HR, CNRM-ESM2-1, CanESM5, CanESM5-1, CanESM5-CanOE, E3SM-1-
0, E3SM-1-1,E3SM-1-1-ECA, E3SM-2-0, EC-Earth3, EC-Earth3-AerChem, EC-Earth3-CC, EC-Earth3-Veg, 
EC-Earth3-Veg-LR, FGOALS-f3-L, FGOALS-g3, FIO-ESM-2-0, GFDL-CM4, GFDL-ESM4, GISS-E2-1-G, 
GISS-E2-1-G-CC, GISS-E2-1-H, GISS-E2-2-G, HadGEM3-GC31-LL, HadGEM3-GC31-MM, IITM-ESM, 
INM-CM4-8, INM-CM5-0, IPSL-CM5A2-INCA, IPSL-CM6A-LR, KACE-1-0-G, KIOST-ESM, MCM-UA-1-0, 
MIROC-ES2H, MIROC-ES2L, MIROC6, MPI-ESM-1-2-HAM, MPI-ESM1-2-HR, MPI-ESM1-2-LR, MRI-
ESM2-0, NESM3, NorESM2-LM, NorESM2-MM, TaiESM1, UKESM1-0-LL, UKESM1-1-LL, ​h​t​t​p​s​:​​/​/​p​c​m​d​​i​.​l​l​n​l​​
.​g​o​v​/​C​​M​I​P​6​/​​A​r​c​h​i​v​​e​S​t​a​t​i​​s​t​i​c​s​/​​e​s​g​f​_​​d​a​t​a​_​h​​o​l​d​i​n​g​​s​/​S​c​e​n​​a​r​i​o​M​I​P​/

 CDRMIP (12 Models): ACCESS-ESM1-5, CanESM5, CanESM5-CanOE, CAS-ESM2-0, CESM2, CNRM-
ESM2-1, GFDL-ESM4, GISS-E2-1-G-CC, MIROC-ES2L, MPI-ESM1-2-LR, NorESM2-LM, and UKESM1-0-
LL, ​h​t​t​p​s​:​​/​/​p​c​m​d​​i​.​l​l​n​l​​.​g​o​v​/​C​​M​I​P​6​/​​A​r​c​h​i​v​​e​S​t​a​t​i​​s​t​i​c​s​/​​e​s​g​f​_​d​a​t​a​_​h​o​l​d​i​n​g​s​/​C​D​R​M​I​P​/

GeoMIP (8 Models): CanESM5, CESM2-WACCM, CNRM-ESM2-1, IPSL-CM6A-LR, MIROC-ES2H, MPI-
ESM1-2-HR, MPI-ESM1-2-LR, and UKESM1-0-LL, ​h​t​t​p​s​:​​/​/​p​c​m​d​​i​.​l​l​n​l​​.​g​o​v​/​C​​M​I​P​6​/​​A​r​c​h​i​v​​e​S​t​a​t​i​​s​t​i​c​s​/​​e​s​g​f​_​d​a​t​a​
_​h​o​l​d​i​n​g​s​/​G​e​o​M​I​P​/

CDRMIP Experiments | UKESM1-0-LL r1i1p1f2 member
1pctCO2-cdr: 1 percent per year decrease in CO2 from 4×CO2 https://doi.org/10.22033/ESGF/CMIP6.12183

CMIP6.CDRMIP.MOHC.UKESM1-0-LL.1pctCO2-cdr.r1i1p1f2.Amon.ts.gn.v20200425|esgf.ceda.ac.ukpr
CMIP6.CDRMIP.MOHC.UKESM1-0-LL.1pctCO2-cdr.r1i1p1f2.Amon.pr.gn.v20200425|esgf.ceda.

ac.uk[CH4]
CMIP6.CDRMIP.MOHC.UKESM1-0-LL.1pctCO2-cdr.r1i1p1f2.Amon.ch4.gn.v20200425|esgf.ceda.ac.uk
esm-1pct-brch-1000PgC: Zero emissions simulation branched from 1 percent run after 1000 PgC cumulative 

emission https://doi.org/10.22033/ESGF/CMIP6.10785
CMIP6.C4MIP.MOHC.UKESM1-0-LL.esm-1pct-brch-1000PgC.r1i1p1f2.Amon.ts.gn.v20200210|esgf.ceda.

ac.ukpr
CMIP6.C4MIP.MOHC.UKESM1-0-LL.esm-1pct-brch-1000PgC.r1i1p1f2.Amon.pr.gn.v20200210|esgf.

ceda.ac.uk[CH4]
CMIP6.C4MIP.MOHC.UKESM1-0-LL.esm-1pct-brch-1000PgC.r1i1p1f2.Amon.ch4.gn.v20200210|esgf.

ceda.ac.uk
GeoMIP Experiments | UKESM1-0-LL r1i1p1f2 ensemble member: 
G1
Abrupt quadrupling of CO2 plus a reduction in total solar irradiancehttps://doi.org/10.22033/ESGF/

CMIP6.5812 ts
CMIP6.GeoMIP.MOHC.UKESM1-0-LL.G1.r1i1p1f2.Amon.ts.gn.v20190916|esgf.ceda.ac.uk pr
CMIP6.GeoMIP.MOHC.UKESM1-0-LL.G1.r1i1p1f2.Amon.pr.gn.v20190916|esgf.ceda.ac.uk[CH4]
CMIP6.GeoMIP.MOHC.UKESM1-0-LL.G1.r1i1p1f2.Amon.ch4.gn.v20190916|esgf.ceda.ac.uk
G6Solar: Total solar irradiance reduction to reduce the net forcing from SSP585 to SSP245 ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​

0​.​2​2​0​3​3​/​E​S​G​F​/​C​M​I​P​6​.​5​8​2​0​​​​ ts
CMIP6.GeoMIP.MOHC.UKESM1-0-LL.G6solar.r1i1p1f2.Amon.ts.gn.v20191031|esgf.ceda.ac.uk, pr
CMIP6.GeoMIP.MOHC.UKESM1-0-LL.G6solar.r1i1p1f2.Amon.pr.gn.v20191031|esgf.ceda.ac.uk[CH4]
CMIP6.GeoMIP.MOHC.UKESM1-0-LL.G6solar.r1i1p1f2.Amon.ch4.gn.v20191031|esgf.ceda.ac.uk
G6Sulfur: Stratospheric sulfate aerosol injection to reduce the net forcing from SSP585 to SSP245 ​h​t​t​p​s​:​/​/​d​o​

i​.​o​r​g​/​1​0​.​2​2​0​3​3​/​E​S​G​F​/​C​M​I​P​6​.​5​8​2​2​​​​ ts
CMIP6.GeoMIP.MOHC.UKESM1-0-LL.G6sulfur.r1i1p1f2.Amon.ts.gn.v20191113|esgf.ceda.ac.uk, pr
CMIP6.GeoMIP.MOHC.UKESM1-0-LL.G6sulfur.r1i1p1f2.Amon.pr.gn.v20191113|esgf.ceda.ac.uk[CH4]
CMIP6.GeoMIP.MOHC.UKESM1-0-LL.G6sulfur.r1i1p1f2.Amon.ch4.gn.v20191113|esgf.ceda.ac.uk
G7Cirrus: Increasing the cirrus ice crystal fall speed to reduce the net forcing in SSP585 by 1 W m−2 ​h​t​t​p​s​:​/​

/​d​o​i​.​o​r​g​/​1​0​.​2​2​0​3​3​/​E​S​G​F​/​C​M​I​P​6​.​5​8​2​8​​​​ ts
CMIP6.GeoMIP.MOHC.UKESM1-0-LL.G7cirrus.r1i1p1f2.Amon.ts.gn.v20191125|esgf.ceda.ac.uk, pr
CMIP6.GeoMIP.MOHC.UKESM1-0-LL.G7cirrus.r1i1p1f2.Amon.pr.gn.v20191125|esgf.ceda.ac.uk[CH4]
CMIP6.GeoMIP.MOHC.UKESM1-0-LL.G7cirrus.r1i1p1f2.Amon.ch4.gn.v20191125|esgf.ceda.ac.uk

Data availability
Data availability statementA comprehensive list of the datasets and code supporting the findings of this study 
is available in the Data Citations subsection below and openly accessible through the JPL Open Repository 
(JOR). Additional long-form background and methods are provided in the Supporting Information and in wiki 
format. The Jupyter Notebook used for preprocessing, synthesis, and analysis in the paper alongside an execut-
able version in the cloud hosted on GitHub is made available at the links below. The codebase will be preserved 
on GitHub, JOR, and NASA Data: ​h​t​t​p​s​:​​/​/​g​i​t​h​​u​b​.​c​o​m​​/​b​r​a​d​​l​e​y​g​a​y​​/​g​e​o​e​n​​g​a​i​/​t​r​​e​e​/​m​a​​i​n​h​t​t​p​s​:​/​/​m​u​s​i​c​a​l​-​x​y​l​o​p​h​o​n​
e​-​g​5​v​4​7​g​x​j​r​7​g​2​w​9​4​v​.​g​i​t​h​u​b​.​d​e​v​/​.​D​a​t​a​s​e​t​s​R​e​p​o​s​i​t​o​r​i​e​s​, data archives, simulation results, and synthesis work are 
publicly available (GitHub, JPL DOI). Many of the state, diagnostic, and prognostic variables are inferred and/
or derived from global annual mean mixing ratios, harmonized emissions, global annual mean radiative forcing, 
SSP-based simulations and scenario projections (i.e., SSPs), and subsequent geoengineering experiments (e.g., 
GeoMIP, CDRMIP). The corresponding models, variables, and frequencies are enumerated in the Supplemen-
tary Information.
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