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The shear strength characteristics of rock materials, specifically internal friction angle and cohesion, 
are critical parameters for the design of rock structures. Accurate strength prediction can significantly 
reduce design time and costs while minimizing material waste associated with extensive physical 
testing. This paper utilizes experimental data from rock samples in the Himalayas to develop a novel 
machine learning model that combines the improved sparrow search algorithm (ISSA) with Extreme 
Gradient Boosting (XGBoost), referred to as the ISSA-XGBoost model, for predicting the shear strength 
characteristics of rock materials. To train and validate the proposed model, a dataset comprising 199 
rock measurements and six input variables was employed. The ISSA-XGBoost model was benchmarked 
against other models, and feature importance analysis was conducted. The results demonstrate that 
the ISSA-XGBoost model outperforms the alternatives in both training and test datasets, showcasing 
superior predictive accuracy (R² = 0.982 for cohesion and R² = 0.932 for internal friction angle). Feature 
importance analysis revealed that uniaxial compressive strength has the greatest influence on 
cohesion, followed by P-wave velocity, while density exerts the most significant impact on internal 
friction angle, also followed by P-wave velocity.

Keywords  Rock materials, Machine learning, Shear strength, Internal friction angle, Cohesion, Extreme 
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The mechanical properties of rock materials are a fundamental focus for geotechnical engineers and geologists 
involved in rock engineering1–3. Among these properties, the internal friction angle (φ) and cohesion (c) are 
the primary parameters defining the shear strength of rock materials4,5. They are critical for the rational design 
and safe operation of engineering applications, including rock slopes, underground chambers, and foundations 
(see Fig. 1). For example, using the wrong internal friction angle and cohesion can lead to overestimation or 
underestimation of the failure probability of rock materials6. Therefore, reasonable and accurate prediction of 
shear strength characteristics is helpful to reduce the construction risk and provide sufficient countermeasures 
for the design of engineering7–9.

Traditionally, cohesion and internal friction angle are obtained by testing standard specimens using triaxial 
compression equipment10. This method is widely regarded as the most accurate and is universally accepted. Over 
the years, numerous experts have significantly advanced the understanding of cohesion and internal friction 
angle in rock materials11–13. Through extensive experiments, numerical analyses, and theoretical approaches, 
researchers have explored the mechanical behavior of rock materials, resulting in a wealth of published 
studies14–21. For instance, Gu et al.22 investigated the evolution of mechanical parameters such as deformation 
modulus, internal friction angle and cohesion of Shuangjiangkou granite under different stress paths. Similarly, 
Hashiba and Fukui23 examined the loading-rate dependence of force and internal friction angle from a small 
amount of rock sample. However, experimentalists often face safety risks from close observation, and test results 
are susceptible to biases caused by unfavorable field conditions. In practice, due to the associated cost and time 
requirements (such as the early stages of a project), geotechnical engineers need to evaluate φ and c without triaxial 
test results24,25. To address these limitations, researchers have sought to develop inexpensive and efficient indirect 
estimation methods. Many researchers26–33 have explored the use of parameters such as uniaxial compressive 
strength (UCS), uniaxial tensile strength (UTS), sound velocity, gamma-ray data, and porosity to estimate φ and 
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c in the absence of triaxial test results. Nevertheless, the complex and highly nonlinear relationships between 
these influencing factors and strength characteristics pose significant challenges. Traditional regression models, 
constrained by their reliance on fitting methods, can only account for a limited number of variables and fail to 
capture the intricate interdependencies among multiple factors.

Machine learning (ML) technologies offer high efficiency and precision, making them well-suited for 
analyzing the nonlinear and complex relationships among multiple input parameters34–39. ML-based predictive 
models not only substantially reduce experimental workload but also outperform regression methods in handling 
regression problems with significantly higher accuracy40–44. The application of ML in modeling complex 
problems has been extensively validated45–49. For example, based on the genetic programming (GP), Shen and 
Jimenez24 applied GP to predict the internal friction angle and cohesion of sandstone in the absence of triaxial 
data. The results show that the proposed ML model can provide good prediction performance. Taking the P-wave 
velocity of rock samples as the input parameter, Kainthola et al.15 applied linear regression analysis and adaptive 
neurofuzzy inference system (ANFIS) technology to establish an ML model of rock materials. Similarly, Hiba 
et al.50 employed a neural network model to predict φ and c from the logging data of two existing wells. Their 
study also included sensitivity analyses for three input parameters—neutron porosity (NPHI), compressional 
time (DTC), and bulk density (ROHB)—to assess their relative importance. Table 1 summarizes studies on the 
initial applications of ML methods for predicting cohesion and internal friction angle. Nonetheless, ML-based 
methods have not yet been widely used to predict cohesion and internal friction angle51. In limited research, 
scholars have adopted ML technologies such as artificial neural network (ANN), particle swarm optimization 
(PSO) and ANFIS to establish ML models and preliminarily prove their feasibility. However, existing research 
has mainly used some straightforward and ML algorithms, while the applicability of more advanced algorithms, 
such as the integrated algorithms of XGBoost and improved sparrow search algorithm (ISSA), in evaluating 
internal friction angle and cohesion has not been explored.

Using the triaxial test data from the Himalayan region, this study proposes a novel ML model combining 
the ISSA with XGBoost to predict internal friction angle and cohesion. The proposed model’s performance 
was evaluated by comparison with the XGBoost model (without ISSA tuning) and four other ML models. 
Furthermore, a feature importance analysis was conducted to support geotechnical engineers with limited ML 
expertise in interpreting the results. This study aims to provide a more efficient and reliable prediction of internal 
friction angle and cohesion, which is also the key to improve the quality of related building design.

Fig. 1.  Photograph of (a) slope of mining surface, (b) slope of mountainous highway, (c) underground cavern 
rock engineering, (d) underground mining engineering in China, (photograph by Daxing Lei).
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Dataset and preprocessing
Data collection
The Himalayas are one of the youngest structurally active complex geological chains, and the physical and 
mechanical properties of the rock materials there show high uncertainty. A large number of rock engineering 
activities have been developed in the Himalayan region. Therefore, it is necessary to study the cohesion and 
internal friction angle of rock materials in this area to guide the design of rock structures.

This paper collected experimental results from the literature54 as the dataset for developing ML models. As 
presented in Fig. 2, the rock materials tested in this dataset include limestone, quartzite, slate, and quartz mica 
schist collected from the Luhri area, Himanchal Pradesh, India. A total of 597 rock samples underwent tests, 
including uniaxial compression, tensile strength, triaxial testing, and longitudinal wave velocity measurements. 
The average of the three test results was analyzed as a single value, and finally 199 sets of valid data were obtained. 
Further details of these tests and rock samples can be found in the literature54. Previous study57 has demonstrated 
that incorporating four key mechanical properties—P-wave velocity, density, uniaxial compressive strength, and 
tensile strength (TS)—as input variables significantly enhances the predictive performance of ML models for 
shear strength parameters. Accordingly, these four properties were used as input variables in this study, with the 
shear strength parameters of rock materials (φ and c) designated as output variables.

Data preprocessing
In general, the application of ML modeling requires data analysis and pre-processing. The statistical analysis of 
input and output variables in the dataset is shown in Fig. 3 and Table 2. The box diagram provides a comprehensive 
visual analysis of the input and output parameters (P-wave velocity, density, UCS, TS, c, φ) of the four rock types 
included in the dataset, showing the corresponding distribution characteristics. Table 2 complements this with 
detailed statistical metrics for each parameter. The analysis reveals that the six input and output variables across 
the four rock materials cover a wide value range, with no significant outliers detected.

The preprocessing of dataset mainly consists of normalized and segmented datasets. Normalization is the 
primary process for standardizing data in a dataset58. This step guarantees that all input variables are treated 
fairly when modeling and that no one parameter is overestimated or underestimated. Similar to unifying 
measurements of length—converting yards, inches, or feet to the standard unit of meters—normalization scales 
all input variables to a common range. This process enables the ML model to more effectively and efficiently 
capture complex nonlinear relationships. Normalization methods commonly used in ML include the minimum-
maximum normalization method59, the Z-score normalization method60 and the robust scaling method61. In 
this paper, the minimum-maximum normalization method is used to re-scale the data to a range between 0 
and 1. The mathematical formula for this method is provided in Eq. 1. The impact of alternative normalization 
techniques on model predictions is further investigated in the following section.

	
X̄ = X − Xmin

Xmax − Xmin
� (1)

where X  and X̄  represent the original and normalized values respectively. Xmax and Xmin represent the maximum 
and minimum values of the original values, respectively.

Following is the data splitting of dataset. As a popular method for model validation, data splitting method 
randomly divides datasets into training set and test set62. The ML model is used on the training set to learn 
the training, by separating another part of the dataset independent of the training process (i.e., the test set) for 
validation63. Currently, there is no industry standard or specification for data segmentation ratio. Common 

Model Parameters Rock materials Performance

ANN52
Drilling rate of penetration ROP;
Weight on bit WOB; Drill pipe pressure SPP; 
Torque; Drilling fluid pumping rate

/
Correlation coefficient (R) values 
were 0.85 and 0.89 for friction angle 
and cohesion respectively

ANN50 Bulk density (ROHB), compressional time 
(DTC), and neutron porosity (NPHI) Carbonate

Average absolute percentage error 
(AAPE) = 1.1% for the friction angle 
and AAPE = 2.4% for the cohesion.

Genetic algorithm 
(GA)-ANN53

P-wave velocity, uniaxial compressive strength 
and brazilian tensile strength Limestone R2 0.967 (c)

GP24 UCS, UTS, σ3 Sandstone /

ANFIS54 P-wave velocity Limestone, quartzite, slate and quartz mica schist. /

ANFIS-PSO55 Drilling specific energy (DSE) features Dolomite, shale, marl R2 0.8724 (c)
R2 0.8142 (φ)

ANFIS- GA55 Drilling specific energy (DSE) features Dolomite, shale, marl R2 0.8154 (c)
R2 0.6914 (φ)

Support vector machine 
(SVM)56 P-wave velocity, Density, UCS, UTS Limestone, quartzite, slate and quartz mica schist. : (R2 = 0.977) and  (R2 = 0.916)

Lasso regression (LR)56 P-wave velocity, Density, UCS, UTS Limestone, quartzite, slate and quartz mica schist. : R2 = 0.928 and : R2 = 0.606

Ridge regression (RR)56 P-wave velocity, Density, UCS, UTS Limestone, quartzite, slate and quartz mica schist. : R2 = 0.961 and : R2 = 0.822

Decision tree (DT)56 P-wave velocity, Density, UCS, UTS Limestone, quartzite, slate and quartz mica schist. : R2 = 0.934 and : R2 = 0.607

Table 1.  ML models for the estimation of cohesion and internal friction angle.
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Fig. 3.  Violin plot of each parameter.

 

Fig. 2.  Four rock materials taken from the Luhri area, Himanchal Pradesh, India. (a) quartz mica schist (b) 
quartzite (c) slate (d) limestone54.
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data splitting ratios include 70:30 and 80:20. This represents 70 (80) percent of the dataset used for training and 
30 (20) percent for testing. The predictive performance of the model can be effectively evaluated through data 
segmentation, which ensures that ML models are trained on representative samples while still being rigorously 
tested on new data that has never been seen before64. Therefore, in this paper, the data splitting ratio of 70:30 is 
used to randomly extract 139 data points and 60 data points from the dataset to create training and testing ML 
models respectively.

The data splitting method has potential shortcomings and biases in evaluating model prediction performance. 
In order to overcome these challenges, a 5-fold cross-validation method is implemented in this paper. As a 
popular statistical method, it provides a comprehensive and robust way to evaluate the predictive performance 
of ML models65. It not only reduces computation time, but also avoids any bias due to random data splitting (i.e. 
avoids underfitting and overfitting)66. In each fold, specify a different part for training and the rest for testing. 
This process is repeated in all folds until each part is utilized. Such a cross-validation process ensures that the ML 
model can fully learn on the training set. In the end, the best performing ‘optimal parameters’ are selected and 
passed on to the ML model to help it avoid overfitting.

Performance evaluation is an important part of the ML model67. Statistical evaluation indices are indispensable 
for quantifying the accuracy and reliability of model predictions. To evaluate the prediction performance, four 
commonly used statistical indices, defined in Eqs. 2–4 were used. Definitions and detailed statistical significance 
of these indicators can be found in the literatures68,69. In general, the prediction performance of the model is the 
best when these statistical evaluation indices reach the corresponding ideal value (R2 = 1, RMSE = 0, MAE = 0)70.

	
R2=1 −

∑N

i=1 (So − Sp)2

∑N

i=1

(
So − So

)2 � (2)

	
MAE = 1

N

N∑
i=1

|So − Sp|� (3)

	
RMSE =

√∑N

i=1 (So − Sp)2

N
� (4)

where N denotes the number of data. So and SP are the actual and predicted results, respectively. So is the average 
of So.

Methodology
Extreme gradient boosting
XGBoost is an advanced variant of gradient boosted decision tree (GBDT) proposed by Chen and Guestrin71. 
The algorithm reduces the error of the prediction of the previous step by continuously generating new regression 
trees, gradually reduces the error between the predicted value and the true value, and then improves the 
prediction effect of the model72. By providing parallel tree boosting, the model can solve nonlinear problems 
rapidly and accurately in an effective way, and has been widely used in several fields. In recent years, the concept 
of XGBoost has been introduced to nonlinear problems that require high precision. Details about the XGBoost 
can be easily found in the following papers73–75.

The schematic of XGBoost is presented in Fig.  4. XGBoost uses a regression tree (CART) as the base 
learner. CART is a binary tree where each leaf node represents a numerical prediction, and each internal node 
signifies a conditional judgment based on eigenvalues. During the training process, XGBoost iteratively corrects 
model errors by adding new regression trees. The introduction of regularization and second-order gradient 
optimization enhances both the training efficiency and prediction accuracy of the model. Through continuous 
iterations, multiple low-precision trees are combined to form a high-precision predictive model.

The principle of the XGBoost algorithm is briefly described below and its prediction function is shown in 
Eq. 5.

	

∧
yi =

K∑
k=1

fk (xi), fk ∈ Γ� (5)

Skewness Kurtosis Coefficient of Variation Minimum Median Maximum

P-wave velocity −0.0683 −0.9759 0.2541 2209.34 4240.93 6328.14

Density −0.2039 −0.2480 0.0368 2.41 2.67 2.89

UCS 0.2974 −0.8894 0.4336 40.97 120.9 237.76

TS 0.2911 −0.8727 0.4340 5.2 15.13 29.85

c 0.4770 −0.2314 0.2679 9.96 18.7 32.11

φ −0.1208 −0.8783 0.129 24.57 34.55 43.35

Table 2.  The detailed statistics of the input and output parameters.
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where 
∧
yi is the predicted result value of the ith sample in the dataset, K is the total number of regression trees, xi 

is the ith sample, and Γ is the space of regression trees.
As shown in Eq. 6, the XGBoost adds a regular term Ω (fk) (i.e., penalty function) to the objective function 

Obj to reduce overfitting and increase variety. Term 
∑n

i=1 l
(

yi,
∧
yi

)
 in Eq. 6 characterizes the fit of the model, 

i.e. how well the predictions match the actual results, while term Ω (fk) measures the complexity of the model.

	
Obj =

n∑
i=1

l
(

yi,
∧
yi

)
+

K∑
k=1

Ω (fk)� (6)

where yi represents the true result value of the ith sample.
The penalty function can be rewritten as:

	
Ω (fk) = 1

2λ

T∑
j=1

w2
j + γT � (7)

where γ is the complexity cost of introducing additional leaf nodes, w2
j  is the weight of the jth leaf node, λ is the 

regular term, and T is the number of leaf nodes.
The model was trained using the additive training method, as shown in Eq. 8. Additive training refers to 

the process of model training in which new tree models are gradually added to improve the overall model’s 
prediction ability by adjusting the prediction results of existing models. This process can also be understood as 
the gradient boosting method and is one of the core training ideas used by XGBoost.

Fig. 4.  Graphical representation of XGBoost model.
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Obj(t) =

n∑
i=1

l
(

yi,
∧(t−1)

yi +fk (xi)
)

+ Ω (fk)� (8)

where 
∧(t−1)

yi  is the prediction for the (t-1)th sample at the ith iteration and ft is used to reduce the loss function.
Equation 8 is optimized with a 2nd-order Taylor expansion to obtain the final objective function as shown in 

Eq. 9. The parameters are continuously updated through Eq. 9 until the conditions are satisfied.

	
Obj(t) =

K∑
k=1

[
gifk (xi) + 1

2hi(fk (xi))2
]

+ Ω (fk)� (9)

where gi and hi denote the first and second derivatives obtained from the loss function, respectively.

Improved sparrow search algorithm
The sparrow search algorithm (SSA), a meta-heuristic machine learning algorithm, represents an innovative 
development in population intelligence optimization techniques76. SSA achieves parameter optimization 
by emulating natural sparrow behaviors, such as foraging and anti-predation strategies. Compared to other 
population intelligence algorithms, SSA is distinguished by its robust optimization capabilities and exceptional 
stability, making it widely applicable across diverse fields, including engineering, mathematics, and computer 
science77–79.

Depending on the classification, sparrow populations contain both producers and scroungers. As shown in 
Fig. 5, producers are responsible for locating food and guiding the population to food sources, while scroungers 
depend on the producers to access these resources. The process is outlined as follows:

As shown in Eq. 10, a sparrow population can be mathematically represented as a two-dimensional matrix 
of size N x D. Each element in Eq. 10 represents the decision variable at the jth position of the ith sparrow, and 
each row vector represents the set of sparrows at the ith position.

	

Population =




x1,1 x1,2 · · · x1,D

x2,1 x2,2 · · · x2,D

· · · · · · · · · · · ·
xM,1 xM,2 · · · xM,D


� (10)

where M is the population size and D is the dimension of the search space.
Each xi, j is given a random value within the specified upper and lower bound. The fitness function is employed 

to compute the fitness value for each sparrow location in the population and determine the location of the best 
sparrow (e.g., xGbest) in the population. The sparrow with the better fitness value is prioritized for food and acts 
as a producer to lead the entire population to run to the food source.

As shown in Eq. 11, the location of producers is updated to80:

Fig. 5.  Graphical representation of sparrow search algorithm (SSA), modified from77.
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xg+1

i,j =
{

xg
i,j + Q × L r ⩾ ST

xg
i,j × e

−i
α×Gmax r < ST

� (11)

where g represents the current number of iterations, Gmax is the maximum number of iterations considered in 
the search process; Q is a random number obeying a normal distribution, α is a uniform random number in (0, 
1); the alarm threshold r belongs to [0, 1], the safety threshold ST belongs to [0.5, 1], and L is a matrix that is 1 
× d and has elements assigned to value 1.

As shown in Eq. 12, the location of scroungers is updated to:

	
xg+1

i,j =

{
xP best

j −
∣∣xg

i,j − xP best
j

∣∣ × A+ × L i ⩽ M
2

Qe
xworst

j
−x

g
i,j

i2 i > M
2

� (12)

where xP best
j and xWorst

j  are the best and worst positions of the discoverer, respectively, and A+ is a 1 × d matrix 
whose elements are randomly assigned values − 1 and 1.

When the sparrow is foraging, a randomly selected portion of the population (usually taken as 10–20%) of 
sparrows will be responsible for vigilance. In a dangerous situation, either the producer or the scrounger will 
abandon the current food and fly to a new safe location. The positions of these scouters are updated as shown 
in Eq. 13.

	

xg+1
i,j =




xg
i,j + K

( ∣∣x
g
i,j−xworst

j

∣∣
(f(x

g
i )−f(xworst))+ε

)
f (xg

i ) =f
(
xGbest

)

xGbest
j + β ×

∣∣xg
i,j − xGbest

j

∣∣ f (xg
i ) > f

(
xGbest

) � (13)

where f (xg
i ) is the fitness value of the ith sparrow at the gth iteration, and f

(
xworst

)
 is the fitness value of the 

worst sparrow in the population; β is a step control parameter; K is a random number ranging from − 1 to 1, 
and ε is a small random value to avoid the denominator to be 0. xGbest is the best-positioned sparrow in the 
population.

Although the SSA algorithm has significant advantages in terms of search accuracy, stability and convergence 
speed, it still has some serious flaws. For example, the convergence strategy of SSA is to jump directly to the 
neighborhood of the current optimal solution, which will be underpowered at the late stage of the search for 
optimality and underpowered for local search. To solve this problem, the Lévy flight strategy is introduced 
into the location of scroungers to improve the global search capability. As shown in Eq. 14, the introduction 
of the Lévy flight strategy modifies Eq. 12. This optimized algorithm is known as the Improved sparrow search 
algorithm (ISSA).

	
xg+1

i,j =

{
xP best

j + H
∣∣xg

i,j − xP best
j

∣∣ × A+ × L i ⩽ M
2

Qe
xworst

j
−x

g
i,j

i2 i > M
2

� (14)

where H is a random number determined by Eqs. 15–17.

	
H = µ/|v|1/δ, δ = 3

2
� (15)

	 µ ∼ N
(
0, σ2

µ

)
, v ∼

(
0, σ2

v

)
� (16)

	
σµ =

{
Γ (1 + δ) sin

(
πδ
2

)

δΓ
[

1+δ
2

]
2

δ−1
2

}1/δ

, σv = 1� (17)

Model development
Generally, ML models that do not incorporate optimization algorithms often have convergence problems. 
Moreover, the artificial determination of model hyperparameters is subjective and unfavorable for application. 
XGBoost model improves the computing speed and accuracy to the extreme on the basis of efficient 
implementation of the gradient boosting decision tree algorithm, but the step-by-step growth strategy leads 
to unnecessary consumption of computer operating resources. The construction process of the ML model 
essentially lies in the determination of hyperparameters81. In this section, the ISSA algorithm is used to optimize 
the hyperparameters of the XGBoost model. Accordingly, a new hybrid ML model (i.e., ISSA-XGBoost model) 
is established. To the best of the authors’ knowledge, the application of the ISSA algorithm in improving hybrid 
ML models for predicting cohesion and internal friction angle has not been reported yet.

The modeling steps of the hybrid ISSA-XGBoost model are outlined in Fig. 6. After collecting the raw dataset, 
the raw data are processed using a suitable normalization method (e.g., Eq. 1). Randomly divide the dataset into 
the test set and training set. Then, the ISSA algorithm is initialized and the search space as well as the model 
hyperparameters are set. Set the range of parameters to be optimized in the XGBoost model to generate the 
initial population of sparrows. Next, based on the resulting sparrow population, iterate with statistical evaluation 
indices such as R2 or RMSE as the fitness function to calculate the positional fitness of each sparrow. The obtained 
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fitness values are sorted and the current global best position is localized. The sparrow position is continuously 
updated according to Eqs. 10–17. Finally, when the number of iterations satisfies the termination condition, 
terminate the iteration and output the parameters corresponding to the best sparrow position.

Results and analysis
Model performance
For comparison, the predictions of the XGBoost model are also presented. In this case, the XGBoost model 
was only validated with 5-fold cross-validation method and did not use any optimization algorithm for 
hyperparameter optimization. The prediction performance of the proposed hybrid ML model and the XGBoost 
model for both the training and test sets is illustrated in Figs. 7 and 8.

Each point in Figs. 7 and 8 represents a predicted sample, with the X-axis denoting the data index and the 
Y-axis representing either the cohesion or internal friction angle. From these figures, it can be seen that the 
prediction results of the ISSA-XGBoost model are closer to the experimental results both on the training set 
and the test set. Compared with the XGBoost model, the ISSA-XGBoost model is closer to the experimental 
results. This indicates that the ISSA-XGBoost model is very accurate in modeling the internal friction angle and 
cohesion. Table 3 shows the statistical evaluation indices of the two ML models on the training set and test set, 
respectively. It can be seen that for both cohesion and internal friction angle, the R2 values on the training set are 
very close to the R2 values on the test set. This result indicates that the ISSA-XGBoost model is well-trained. It 
is reasonable that the R2 values on the test set are slightly lower. Regarding cohesion and internal friction angle, 
the ISSA-XGBoost model significantly outperforms the XGBoost model (on both the training and test sets). The 
excellent prediction accuracy, as demonstrated in Table 3, underscores the potential of the proposed hybrid ML 
model as a reliable tool for predicting cohesion and the internal friction angle.

Comparison with previous studies
In this section, the proposed ML model is evaluated against four other ML models: the lasso regression (LR), 
the ridge regression (RR), the support vector machine (SVM), and the decision tree (DT). After training on a 
dataset split into 70% training and 30% test sets, the models were evaluated on the test set. The three statistical 
evaluation indices of each model are shown in Table 4. For cohesion, the differences in prediction performance 
among the models are relatively small. The best performer is the proposed model of this paper, whose three 
statistical evaluation indices are RMSE = 0.322, MAE = 0.450, R2 = 0.982. For the internal friction angle, the 
proposed model significantly outperforms the other four models. Compared with the worst-performing LR 
model (R2 = 0.606, RMSE = 2.7255, MAE = 2.3064), the three statistical indicators of the proposed model are 

Fig. 6.  Framework example of the proposed ISSA-XGBoost model.
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as high as R2 = 0.932, RMSE = 0.920, MAE = 0.625. In conclusion, the proposed model demonstrates superior 
performance, not only compared to the four alternative ML models but also relative to the XGBoost model.

Discussion
Data preprocessing methods
Data preprocessing methods play a critical role in maintaining data consistency and integrity, enabling ML 
models to achieve optimal predictive performance. The effectiveness of ML models depends heavily on the 

Fig. 7.  Comparisons between the predicted and measured internal friction angles.
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chosen algorithm and dataset. Once these factors are established, data preprocessing becomes a decisive element 
in influencing model performance. Proper data preprocessing not only eliminates magnitude discrepancies in 
raw data—avoiding issues such as the “big numbers eat decimals” phenomenon—but also significantly enhances 
the computational efficiency of ML models82. In this section, we will discuss the effect of three common data 
preprocessing methods on the ML model performance.

The minimum-maximum normalization method, zero-mean normalization method, and arctangent 
normalization method were selected to evaluate the effects of different data preprocessing techniques on the 

Fig. 8.  Comparisons between the predicted and measured cohesions.
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predictive performance of the ISSA-XGBoost model. The formula for the minimum-maximum normalization 
method is presented in Eq. 1, while the zero-mean normalization and arctangent normalization methods are 
detailed in Eqs. 18 and 19. Equation 18 transforms the raw dataset into a standard normal distribution with unit 
standard deviation and zero mean. And Eq. 19 transforms the raw dataset to range [−1,1].

	
X̄ = X − µ

σ
� (18)

	
X̄ = 2

arctan X

π
� (19)

where µ and σ are the mean and standard deviation of the dataset, respectively.
The original dataset was processed using Eqs.  18 and 19 before undergoing the same modeling process. 

The statistical evaluation indices for each model are presented in Fig.  9. The results indicate that all three 
data preprocessing methods achieve predictions closely aligned with the actual values, demonstrating the 
ISSA-XGBoost model’s capability to accurately simulate the shear strength parameters of rocks. Among the 
preprocessing methods, Eq. 1 delivers significantly higher accuracy compared to Eqs. 18 and 19. Notably, even 
the method with the lowest prediction accuracy (Eq. 18 in Fig. 9) outperforms the four ML models listed in 
Table 4 in predicting both internal friction angle and cohesion.

Feature importance score
Feature importance analysis serves as a critical reference for assessing the contribution of input parameters to 
the model’s predictions83,84. Figure 10 shows the feature importance score of each input variable in the developed 
model to cohesion and internal friction angle. A higher feature importance score indicates a relatively greater 
influence of the corresponding input variable on the output variable85. The results reveal that the input variables 
exert different impacts on the two properties. For the cohesion, the effects of the four input variables are 0.96 
(P-wave velocity), −0.036 (density), 0.97 (UCS), 0.96 (TS). For the internal friction angle, the scores 0.33 (P-wave 
velocity), 0.69 (density), 0.3 (UCS), 0.27 (TS). Among the input parameters, UCS demonstrates the greatest 
relative importance for cohesion, whereas density has the highest relative importance for the internal friction 
angle.

Limitations
Internal friction angle and cohesion hold significant potential for economic benefits such as cost optimization 
and reduced time investment when determined using ML techniques. This paper introduces a novel ML model 
that integrates the strengths of XGBoost and ISSA, providing a reliable hybrid approach for predicting internal 
friction angle and cohesion. Although this paper has yielded valuable insights, its limitations should not be 

Model RMSE MAE R2

LR
Internal friction angle 2.7255 2.3064 0.606

Cohesion 1.4896 1.1454 0.928

RR
Internal friction angle 2.7256 2.3003 0.607

Cohesion 1.2412 1.0335 0.934

SVM
Internal friction angle 1.2906 0.9094 0.916

Cohesion 0.8253 0.5577 0.977

DT
Internal friction angle 2.2963 1.7655 0.822

Cohesion 1.0560 0.8389 0.961

ISSA-XGBoost model
Internal friction angle 0.920 0.625 0.932

Cohesion 0.322 0.450 0.982

Table 4.  Prediction performances for each model.

 

Parameters Model Dataset R2 RMSE MAE

Internal friction angle

ISSA-XGBoost
Training set 0.957 0.943 0.770

Test set 0.932 0.920 0.625

XGBoost
Training set 0.931 1.192 0.922

Test set 0.919 1.002 0.831

Cohesion

ISSA-XGBoost
Training set 0.985 0.473 0.639

Test set 0.982 0.322 0.450

XGBoost
Training set 0.953 0.895 1.135

Test set 0.964 0.549 0.642

Table 3.  Prediction performances for each model.
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overlooked. For example, errors inherent to ML models and the variability introduced by experimental results are 
unavoidable86,87. In practical engineering, moisture content has a great influence on internal friction angle and 
cohesion88,89. However, due to the absence of moisture content data in the compiled dataset, it was not included 
as an input variable in the proposed ML model. Despite this omission, the model still achieves satisfactory 
predictive performance. A possible explanation is that, within the selected dataset described in Sect.  2, the 
moisture content of the samples is consistent. Consequently, the ML model delivers reliable predictions even 
without moisture content as an input.

Fig. 9.  Predictive indicator results for different data preprocessing method.
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Furthermore, as more data becomes available, the generalization ability and prediction accuracy of the 
constructed ML model can be further enhanced90. In future research, expanding the dataset to include data 
from various types of rock materials will be a valuable step. Additionally, the input variables, such as uniaxial 
compressive strength and tensile strength, currently have a limited value range. Expanding these ranges could 
improve the model’s generalization capability. Lastly, to bridge the gap between computational predictions and 
practical applications, we aim to develop a user-friendly graphical user interface.

Conclusions

	1)	� Utilizing ML technology, cohesion and internal friction angle of rock materials can be accurately estimated 
using extensive historical data. The proposed model, built on four input variables, demonstrates strong gen-
eralization ability and high prediction accuracy. Compared with the actual observed values, the new model 
gives reliable prediction results with R2, RMSE and MAE values of 0.932(φ), 0.982(c), 0.920(φ), 0.322(c), 
0.625(φ), 0.450(c), respectively.

	2)	� The proposed ISSA-XGBoost model was compared with five other ML models. For parameter internal fric-
tion angle, the performance ranking is ordered as ISSA-XGBoost > XGBoost > SVM > DT > RR > LR. For pa-
rameter cohesion, the ranking is slightly different: ISSA-XGBoost > SVM > XGBoost > DT > RR > LR.

	3)	� The feature importance analysis shows that the four input parameters affect cohesion in the following order 
from strongest to weakest: UCS > P-wave velocity = TS > density. The four input parameters affect the internal 
friction angle in the following order from strongest to weakest: density > P-wave velocity > UCS > TS.

Data availability
The data used to support the findings of this study are available from the corresponding author upon request.
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Fig. 10.  Feature importance score of inputs.
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