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In recent years, advancements in deep learning and real-time data processing have significantly 
enhanced traffic management and accident prediction capabilities. Building on these developments, 
this study introduces an innovative approach ConvoseqNet to improve traffic accident prediction by 
integrating traditional traffic data with real-time social media insights, specifically using geographic 
data and Twitter sentiment analysis. ConvoseqNet combines Convolutional Neural Networks 
(CNNs) with Long Short-Term Memory (LSTM) networks in a sequential architecture, enabling it to 
effectively capture complex spatiotemporal patterns in traffic data. To further enhance prediction 
accuracy, a meta-model called MetaFusionNetwork is proposed, which combines predictions from 
ConvoseqNet and a Random Forest Classifier. Results show that ConvoseqNet alone achieved the 
highest predictive accuracy, demonstrating its capacity to capture diverse accident-related patterns. 
Additionally, MetaFusionNetwork’s performance highlights the advantages of combining model 
outputs for better prediction. This research contributes to real-time data-driven traffic management 
by leveraging innovative data fusion techniques, improving prediction accuracy, and providing insights 
into model interpretability and computational efficiency. By addressing the challenges of integrating 
heterogeneous data sources, this approach presents a significant advancement in traffic accident 
prediction and safety enhancement.

The rapid increase in traffic accidents worldwide has necessitated the development of advanced predictive 
systems to mitigate their occurrence and improve road safety. One promising approach is the use of deep 
learning techniques for real-time traffic accident prediction. Deep learning a subset of machine learning 
employs neural networks with multiple layers to analyze and learn from vast amounts of data. This technique 
has shown remarkable potential in identifying patterns and predicting outcomes based on complex datasets. 
The integration of deep learning into traffic management systems aims to forecast accidents before they happen 
enabling timely interventions that can save lives and reduce economic losses.

In recent years, advancements in deep learning and real time data processing have significantly impacted 
various domains including traffic management and accident prediction. The primary goal of real-time traffic 
monitoring systems is to enhance road safety and optimize traffic flow by employing advanced computational 
techniques (Priyanka 2022)1. A prominent example is the development of fast and deep learning algorithms that 
facilitate real-time traffic analysis and accident prediction. For instance, Annam et al. (2023) developed a deep 
learning framework that rapidly processes traffic data thereby improving response times and predictive accuracy 
in traffic management systems2.

The integration of real-time data processing in traffic systems is exemplified by the work of Ma et al. (2022) 
who explored energy-efficient solutions for traffic monitoring. Their research highlights the importance of real-
time data in reducing energy consumption while maintaining high accuracy in traffic flow analysis3. Similarly, 
Upadhya et al. (2022) proposed a modeling approach that utilizes recent advances in machine learning to predict 
traffic patterns, demonstrating significant improvements in prediction accuracy over traditional methods4.

Innovative approaches to real-time traffic monitoring are further demonstrated by Kats et al. (2022) who 
introduced TraCon a substantial improvement in traffic congestion analysis. This system leverages deep learning 
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algorithms to provide real-time insights into traffic conditions, enabling more efficient traffic management5. 
Deep learning’s application in road safety is well documented,d with research indicating its potential to 
significantly reduce accidents. Byoungsuk Ji (2019) developed a deep learning model that predicts road safety 
risks, providing actionable insights that can prevent accidents6. Similarly, Nicolette et al. (2020) focused on 
predicting accident hotspots using real-time data, demonstrating the efficacy of their model in identifying high-
risk areas and informing preventative measures7.

In the realm of traffic accident prediction, Parsa (2019) presented a deep learning-based system that processes 
sensor data to predict accidents in real time. Their research underscores the potential of sensor integration 
in enhancing the predictive capabilities of traffic management systems8. Complementing this, Upadhya et al. 
(2022) discussed the role of real-time traffic data in reducing accident response times, emphasizing the need for 
efficient data processing frameworks.

Liu et al. (2017) explored real-time data integration in online traffic monitoring systems, highlighting its 
benefits in improving accuracy and response times. Their study demonstrates that integrating real-time data 
streams can significantly enhance the performance of traffic monitoring systems, making them more responsive 
to dynamic traffic conditions9. Similarly, Pillai (2021) examined the role of real-time analytics in traffic 
management, showing how advanced computational techniques can provide deeper insights into traffic patterns 
and enhance decision-making processes10.

Furthering the application of real-time processing, Divya V. (2024) developed a real-time traffic accident 
prediction model that uses machine learning algorithms to process vast amounts of traffic data. Their findings 
indicate that real-time processing significantly improves the accuracy of accident predictions thereby enhancing 
road safety11. This is supported by Basso (2021), who demonstrated that real-time analytics could effectively 
predict traffic accidents, allowing for timely interventions6.

The impact of real-time data processing on traffic management is also evident in the work of Ghahremannezhad 
(2022), who developed a system that uses real-time data to monitor and manage traffic flows. Their research 
highlights the potential of real-time data in optimizing traffic management systems and improving overall traffic 
efficiency12. Additionally, Zhengjing Ma (2021) examined the analytical methods for identifying vulnerable road 
segments emphasizing the importance of real time data in enhancing road safety and reducing accident rates3.

Real-time traffic monitoring systems also play a crucial role in intelligent transport systems. Changxi (2021) 
investigated the application of intelligent transport systems in real-time traffic management, demonstrating 
their effectiveness in improving traffic flow and reducing congestion. Their study highlights the importance of 
integrating real-time data into intelligent transport systems to enhance efficiency and reliability13.

The research problem addressed in this paper revolves around developing a real-time traffic accident 
prediction system that integrates traditional traffic accident data with real-time social media data. A key challenge 
in integrating these data sources is their structure, time scale, and format differences. Traditional traffic data is 
often structured, containing historical records and sensor data, while social media data (e.g., from Twitter) is 
unstructured, dynamic, and often noisy. This creates a significant challenge in terms of merging and aligning 
these data types effectively. To address this, the proposed ConvoseqNet model utilizes advanced data fusion 
techniques and preprocessing steps to harmonize these diverse data streams. The model incorporates several 
techniques, including Random Forest Classifier, Convolutional Neural Networks (CNN), and Long Short-Term 
Memory (LSTM) networks. Another proposed model is the meta-fusion model MetaFusionNetwork, which 
combines the strengths of multiple models. The utilization of both structured and unstructured data sources, 
along with advanced deep learning techniques, underscores the study’s innovative approach to traffic accident 
forecasting. The goal is to predict traffic accidents more accurately and earlier, which could lead to faster response 
times, improved traffic management, and enhanced road safety.

The key contributions of this study are as follows: 

	1.	 ConvoseqNet Model: A novel hybrid traffic accident prediction model that combines Convolutional Neural 
Networks (CNN) and Long Short-Term Memory (LSTM) architectures, enabling effective capture of com-
plex temporal and spatial patterns in both structured and unstructured data.

	2.	 MetaFusionNetwork: A unique fusion model that integrates predictions from multiple models (CNN, LSTM, 
XGBoost, CatBoost) to enhance classification power and generalizability, offering improved predictive accu-
racy across diverse datasets.

	3.	 Integration of Real-Time Social Media Data: Introduction of Twitter sentiment analysis alongside traditional 
traffic accident datasets, significantly enhancing prediction accuracy by providing timely and relevant con-
text to traffic accident forecasting.

	4.	 Comprehensive Preprocessing and Feature Engineering: An advanced approach to preprocessing and feature 
engineering that merges structured traffic accident data with unstructured social media text, ensuring more 
robust and reliable predictions.

	5.	 Sentiment Analysis in Traffic Forecasting: The novel application of sentiment analysis from social media plat-
forms, particularly Twitter, for real-time traffic accident forecasting provides valuable insights for better traf-
fic management and prediction.

The paper is structured as follows: The Introduction presents the motivation for using deep learning in 
traffic accident prediction and discusses the benefits of real-time data integration. The Related Work section 
reviews previous studies on traffic accident prediction, highlighting advancements in machine learning and 
data processing techniques. In the Methodology section, the data collection and preprocessing steps are 
outlined, detailing how accident data and social media insights were merged. This section also explains the 
hybrid modeling approach, including the use of Random Forest, the proposed ConvoseqNet, and the proposed 
MetaFusionNetwork models. The Experimental Setup elaborates on the specific models used, including their 
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training and evaluation processes. The Results section compares the performance of the individual models and 
the proposed models with a focus on accuracy and predictive reliability. Finally, the Discussion and Conclusion 
sections summarize the findings and implications emphasizing the improvements offered by the ensemble 
approach and suggesting avenues for future research.

Related work
The emergence of autonomous vehicles has also benefited from advancements in real-time data processing 
and deep learning. Autonomous driving relies heavily on the real-time analysis of vast amounts of data from 
various sensors and cameras to make split-second decisions. For example, Wang et al. (2018) discussed how 
deep learning algorithms are integral to the perception and decision-making processes in autonomous vehicles 
improving their ability to navigate complex traffic environments safely and efficiently9.

Furthermore, the use of real-time data in smart city initiatives has become increasingly prominent. Smart 
cities aim to leverage technology to enhance urban living and real-time traffic monitoring is a key component of 
these efforts. P. U. Anitha. (2024) explored how integrating real-time traffic data with other smart city technologies 
can lead to more sustainable and efficient urban mobility solutions. This integration not only improves traffic 
management but also reduces the environmental impact of urban transportation systems14.

In addition to improving traffic management and accident prediction, real-time data processing has 
applications in public transportation systems. Efficient public transportation is critical for reducing urban 
congestion and pollution. Lee et al. (2020) developed a real-time monitoring system for public buses that uses 
deep learning to predict delays and optimize routes enhancing the reliability and efficiency of public transport 
services15.

The advancements in deep learning and real-time processing also hold promise for emergency response 
systems. Rapid and accurate traffic accident prediction and monitoring enable quicker emergency response 
times potentially saving lives. Chen et al. (2021) developed a real-time emergency response system that 
integrates traffic data to provide first responders with optimal routes and accurate accident location information 
significantly improving the efficiency of emergency services16.

The rapid increase in traffic accidents worldwide has necessitated the development of advanced predictive 
systems to mitigate their occurrence and improve road safety. One promising approach is the use of deep 
learning techniques for real-time traffic accident prediction. Deep learning a subset of machine learning 
employs neural networks with multiple layers to analyze and learn from vast amounts of data. This technique 
has shown remarkable potential in identifying patterns and predicting outcomes based on complex datasets. 
The integration of deep learning into traffic management systems aims to forecast accidents before they happen 
enabling timely interventions that can save lives and reduce economic losses.

Further extending this research Cai et al. (2020) applied deep generative models for real-time crash 
prediction on expressways. Their study highlighted the ability of deep learning methods to capture the 
intricate relationships between various traffic parameters and accident occurrences significantly improving 
the accuracy of crash predictions compared to traditional statistical methods15. Azhar et al. (2023) focused on 
the detection and prediction of traffic accidents using deep learning techniques. Their model was designed to 
process spatiotemporal data effectively identifying and predicting traffic collisions in real time. This approach 
demonstrates the versatility of deep learning in handling different types of data for comprehensive accident 
prediction17.

Another significant contribution to this field is the work by Lin et al. (2020), who developed an intelligent 
traffic accident prediction model for the Internet of Vehicles (IoV). By leveraging deep learning techniques their 
model was able to analyze real-time traffic conditions and predict potential accident risks facilitating proactive 
measures to prevent collisions18. Shuai Liu. (2020) applied deep learning techniques to predict traffic accidents 
using spatiotemporal sequential data. They utilized Long Short-Term Memory (LSTM) and Gated Recurrent 
Unit (GRU) networks to process real-time traffic data achieving high accuracy in predicting traffic incidents19.

The study by Babbar. (2023) on citywide traffic accident risk prediction further emphasized the potential of 
deep learning in managing urban traffic systems. Their model utilized big traffic data and deep learning to predict 
traffic flow and accidents highlighting the scalability of these techniques for large-scale implementations20. 
Simi Asher (2020) explored real-time traffic accidents post-impact prediction using crowdsourcing data. Their 
study utilized machine learning methods to analyze continuously updated traffic conditions enabling real-time 
assessment and prediction of traffic accident durations21.

Formosa et al. (2020) introduced a deep learning model for predicting real-time traffic conflicts integrating 
large volumes of heterogeneous data to enhance the accuracy of their predictions. Their centralized digital 
architecture effectively managed and processed diverse traffic data sources and Basso et al. (2021) developed a 
real-time crash prediction model using vehicle-by-vehicle data marking the first operational real-time accident 
prediction software. Their deep learning-based approach demonstrated significant improvements in predicting 
highway segment accidents in real time. Finally, Li et al. (2022) proposed a hybrid deep learning model for real-
time traffic incident detection. Their model combined various deep learning techniques to achieve immediate 
detection of traffic incidents further proving the efficacy of deep learning in real-time traffic management22.

Recent advancements in machine learning (ML) have contributed significantly to the development of 
systems for predicting traffic accident severity and preventing accidents. Despite the extensive efforts made by 
the automotive industry to enhance vehicle safety traffic accidents continue to occur and understanding the 
causes of these accidents remains crucial. Various machine learning algorithms such as decision trees, Random 
Forest, support vector machines (SVM), and ensemble methods have been applied to predict accident severity 
and improve road safety23. Studies have shown that machine learning techniques like logistic regression, decision 
trees, deep neural networks, and geospatial analysis are particularly useful in predicting accident hotspots and 
improving traffic flow24. Furthermore, recent research has examined accident prediction as a classification 
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problem focusing on predicting accident occurrence and severity by analyzing contributing factors such as 
weather conditions, road type, and traffic volume25. Additionally, in the maritime industry predictive models 
like ARIMAX have been applied to forecast accidents demonstrating the potential of ML models to predict 
accidents in various sectors26. With ongoing research, the integration of advanced optimization algorithms and 
real-time data, including social media insights is expected to further enhance predictive accuracy and reduce 
accident-related fatalities27.

Several studies have focused on predicting traffic accident severity using machine learning (ML) and data 
analysis techniques offering innovative approaches to enhance prediction accuracy and safety measures. For 
marine accidents, a two-stage feature selection method was developed to select and rank Risk Influential Factors 
(RIFs) significantly improving the accuracy of severity predictions using ML models like LightGBM. The study 
also analyzed risk control measures from a quantitative perspective contributing to AI-driven safety assessments28. 
Similarly, traffic accident severity in the Chinese National Automobile Accident In-Depth Investigation System 
was predicted by including innovative features such as accident location and collision speed with Random Forest 
ranking the importance of factors to optimize prediction models29. In a different study ML techniques were 
applied to large-scale road accident data, using classification methods like decision trees and random forests to 
predict accidents and understand influencing factors offering strategies for accident prevention30. Additionally, a 
tool was developed to predict traffic accident risks in Portugal revealing that time of day and weather conditions 
like rain had a significant impact on accident probabilities31. Lastly, a multi-graph learning framework called 
MG-TAR was proposed to predict accident risk by modeling spatio-temporal relationships between dangerous 
driving and accidents reducing prediction errors and improving accuracy in identifying high-risk areas32.

Several studies have focused on improving road safety by predicting various factors contributing to traffic 
accidents, including driver behavior, drowsiness, and accident severity. A novel Driver Decision Support System 
(DDSS) was developed to predict abnormal driving behaviors using K-Means clustering and compare its efficacy 
with other algorithms like SVM and Decision Trees. This system aims to prevent accidents by advising nearby 
vehicles to change lanes or alter speed based on predicted behaviors33. In addition, driver drowsiness, a major cause 
of accidents, has been extensively studied. A review of various detection methods highlights the importance of 
using physiological, vehicle-based, subjective, and behavioral measures to warn drivers of impending accidents34. 
The integration of deep learning techniques in traffic accident prediction is also explored, with a bi-directional 
ConvLSTM U-Net model proposed for predicting accidents in specific road grids. The model showed superior 
accuracy compared to traditional methods in predicting motor vehicle, non-motor vehicle, and single-vehicle 
accidents35. Social media data especially Twitter has also been incorporated into accident prediction models. 
One such study combined tweet data with sentiment analysis, weather conditions, and geospatial information to 
predict road accidents using deep learning techniques17. Finally, Artificial Neural Networks (ANNs) were used to 
predict traffic accidents and their severity in Serbia and Bosnia, demonstrating good generalization capabilities 
in predicting accidents based on road and traffic-related factors36. Road traffic accidents (RTAs) are a leading 
cause of death especially in low and middle-income countries like Rwanda. This study uses Random Forest 
(RF) and Support Vector Machine (SVM) models to forecast short-term road accidents with RF outperforming 
SVM in terms of prediction accuracy. Machine learning models show great potential in enhancing road safety 
by guiding policymakers and healthcare providers in accident prevention efforts37. Another study introduces 
AccidentGPT a multi-modal large model for accident analysis and prevention offering advanced traffic safety 
capabilities for autonomous and human-driven vehicles as well as real-time traffic management38.

As urban traffic congestion rises, predicting accidents has become crucial for city planning and public 
safety. This study compares modern deep learning models, like the Transformer, with traditional time series 
models (ARIMA, Prophet) to forecast accidents using feature importance analysis and introducing real-time 
interventions with large language models (LLMs) like LLaMA-2. It highlights the integration of multimodal 
models in enhancing autonomous driving systems and urban safety39. Another study investigates machine 
learning algorithms (Decision Tree, LightGBM, XGBoost) for predicting road traffic accident severity in the 
UK emphasizing the importance of vehicle inspection and traffic policy for reducing accident severity40. A 
third study applies Support Vector Machine (SVM) models to predict aircraft accident severity introducing 
new factors based on inattentional blindness theory and evaluating model accuracy using cross-validation and 
confusion matrices41.

Another study addresses the challenges in predicting nuclear power plant (NPP) accidents by proposing an 
algorithm that predicts long-term plant behavior while providing uncertainty information42. Using bidirectional 
LSTM and attention mechanisms along with a variational autoencoder the algorithm forecasts multivariate plant 
parameters for 2 hours showing high accuracy in simulations for a Westinghouse NPP43. Similarly, a multi-
task learning framework (TAP) using Spatio-temporal Variational Graph Auto-Encoders (ST-VGAE) captures 
dynamic correlations in traffic data for accident prediction with experiments showing superior performance44. 
Another work presents a VRU collision prediction system using LSTMs on V2X communication data and a 
study on traffic crash prediction uses AI to improve safety management with real-time monitoring of traffic 
dynamics45. Finally, a dynamic multi-graph neural network (DMGNN) is proposed to enhance traffic flow 
prediction by incorporating accident-related disruptions and dynamically adjusting the graph structure for 
more accurate predictions46.

These studies collectively highlight the transformative potential of deep learning in real-time traffic accident 
prediction. By leveraging advanced neural network architectures and integrating real-time data these models 
can significantly enhance the accuracy and timeliness of traffic accident predictions paving the way for safer 
and more efficient transportation systems. As technology progresses, the potential for even more sophisticated 
and efficient traffic management solutions will likely expand further enhancing the safety and efficiency of 
transportation systems worldwide.
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Methodology
The methodology section outlines the approach and techniques employed to develop a robust traffic accident 
prediction system by integrating both traditional accident data and real-time social media insights.

Data description
The traffic accident prediction system integrates two distinct data sources: traditional accident data and real-
time social media data from Twitter. The accident dataset, sourced from various government entities and traffic 
monitoring systems, covers traffic incidents across 49 US states from February 2016 to March 2023, comprising 
approximately 7.7 million records. The dataset includes crucial features such as location, time, weather 
conditions, and accident severity, all of which are vital for accurate prediction. To ensure data integrity, this 
dataset undergoes rigorous preprocessing, including cleaning to remove missing values and conversion of time-
related information into a standardized date-time format.

On the other hand, the social media dataset is derived from Twitter using the Twitter API, specifically 
targeting tweets related to traffic incidents. Keywords like ”car accident” and ”traffic collision” are used to 
identify relevant tweets. This dataset, being unstructured, requires substantial preprocessing, which involves 
tokenization, stop-word removal, and filtering of non-alphabetic tokens. The processed text is then analyzed 
through natural language processing (NLP) methods to extract meaningful information such as accident 
locations, time references, and mentions of accident severity.

Data quality and bias
Given the disparate nature of the datasets one structured and the other unstructured ensuring high quality data 
integration is critical for building a reliable predictive model. For the accident dataset quality control measures 
focus on verifying the accuracy of geographic data ensuring consistency in timestamps and removing irrelevant 
or out-of-scope records. For the Twitter dataset quality control includes filtering out irrelevant tweets, such as 
those not related to traffic accidents and ensuring geographic information in tweets is accurately mapped to 
real-world locations. This is crucial as tweets often contain noisy or incomplete location data which could lead 
to mismatches during the data merging process.

One of the significant challenges in using Twitter data is the potential for biases. These biases may stem 
from various factors such as sample biases (e.g., only certain geographic areas or types of accidents being more 
frequently tweeted about) or noise in the data (e.g., irrelevant tweets or sarcastic remarks). Additionally, the 
volume of social media posts can introduce significant fluctuations in data quality due to the unstructured 
nature of user-generated content. Such biases can negatively impact the model’s performance leading to skewed 
predictions. For instance, if certain accident types or locations are overrepresented in Twitter data the model 
might place undue emphasis on these areas reducing its generalizability. Similarly, noise in the social media data 
like irrelevant posts or sentiment that does not correlate with actual accident severity could degrade the model’s 
accuracy.

To mitigate these biases several strategies are employed: 

	1.	 Geographical Filtering: Tweets are only considered if their location data matches accident records within a 
specified radius reducing location mismatches.

	2.	 Text Preprocessing: Aggressive filtering is applied to remove irrelevant content such as spam or general traffic 
discussions, ensuring that only pertinent accident-related information is included.

	3.	 Sentiment Analysis Adjustments: Sentiment analysis models are fine-tuned to filter out tweets with excessive 
sarcasm or exaggeration thus enhancing the quality of sentiment-related features.

	4.	 Bias Detection and Adjustment: Analyzing the distribution of tweets across different regions and accident 
types and adjusting the model to account for overrepresented or underrepresented categories.

By addressing these biases through careful data preprocessing and model adjustments, the accuracy of the traffic 
accident prediction system is improved, enhancing its ability to provide reliable, real-time insights for accident 
prevention.

Feature selection and fusion strategies
In this study, we employ advanced feature selection and fusion strategies to enhance the predictive performance 
of the traffic accident severity model. Feature selection ensures that only the most relevant and impactful features 
from both structured accident data and unstructured social media data are used in training. For the structured 
accident data we apply correlation analysis, Recursive Feature Elimination (RFE) and Random Forest feature 
importance to identify the most predictive features, such as location, weather conditions and time of day. These 
features are then retained for the model while redundant or irrelevant features are discarded to avoid overfitting 
and ensure efficient computation.

For the unstructured Twitter data the raw text is processed using CountVectorizer and TF-IDF techniques 
to transform it into a numerical format suitable for machine learning models. We also explore the use of word 
embeddings like Word2Vec and GloVe which capture semantic meaning and relationships between words. This 
helps the model better understand contextual insights from the tweets related to accidents. Additionally, stop-
word removal and token filtering are applied to eliminate noise and focus on meaningful words that could 
influence the prediction of accident severity.

After feature selection, we explore two main fusion strategies. Early Fusion involves combining the processed 
structured and unstructured features into a single input dataset, which is then fed into the machine learning 
model. To ensure that the numerical and text features are on the same scale, we apply MinMaxScaler for 
normalization. This fusion strategy allows the model to learn directly from the integrated data.
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In contrast, Late Fusion involves training separate models for the structured and unstructured datasets. The 
outputs of these models are then combined through voting mechanisms (hard or soft voting) to make the final 
prediction. This strategy allows for specialized learning of the individual datasets before their predictions are 
merged.

Finally, we explore a hybrid fusion approach the MetaFusionNetwork where predictions from different 
models such as ConvoseqNet, XGBoost and CatBoost are combined and passed through a logistic regression 
model to generate the final prediction. This method leverages the strengths of both deep learning (for spatial and 
temporal feature extraction) and gradient boosting models (for structured data) to improve prediction accuracy 
and robustness.

Model development and training
For model development, a classification model is trained to predict accident severity using features from both 
datasets. Features include geographical coordinates and the sentiment of tweets. The text data is converted into 
numerical features using CountVectorizer which transforms the cleaned text into a matrix of token counts. 
These text features are then combined with numerical features from the accident dataset. The combined dataset 
is split into training and validation sets to ensure robust model evaluation.

A Random Forest Classifier model is trained using the training data, with its results later merged in the 
metafusion model. This model is chosen for its ability to handle large datasets and its effectiveness in dealing 
with both numerical and categorical data. The model’s performance is evaluated on the validation set using 
metrics such as accuracy, precision, recall and F1-score. These metrics provide a comprehensive understanding 
of the model’s performance highlighting areas where it excels and where it needs improvement. Evaluation and 
optimization of the model involve continuous monitoring of its performance and incorporating additional 
features to enhance accuracy. Hyperparameter tuning is conducted to find the optimal settings for the model 
improving its predictive power. The inclusion of supplementary data such as weather conditions and traffic flow 
information can further refine the model’s predictions making it more reliable and comprehensive.

The potential impact of this project is substantial. Faster and more accurate identification of severe accidents 
can significantly improve emergency response times ensuring that resources are deployed where they are needed 
most. The insights gained from the model can inform urban planning and road safety measures leading to 
safer and more efficient transportation systems. Additionally, real-time dissemination of traffic information can 
raise public awareness about current traffic conditions promoting safer driving behaviors and reducing accident 
rates. This innovative approach leverages the power of social media data, which is often underutilized in traffic 
management systems. By combining traditional traffic data with real-time social media insights the system 
provides a more accurate and timely prediction of traffic accident severity. This methodology showcases the 
potential of integrating diverse data sources to enhance the capabilities of traffic management systems paving the 
way for smarter and safer roads. In summary, the project encompasses several critical steps from data collection 
and preprocessing to feature engineering, model development and real-time implementation. Each step is 
designed to maximize the utility of the available data ensuring that the predictive model is both accurate and 
efficient. The deployment of the model in a real-time setting highlights its practical applicability demonstrating 
its potential to make a significant impact on road safety and traffic management.

By addressing the challenges of modern traffic management through innovative use of data and technology, 
this project offers a valuable contribution to the field. The methodology detailed here provides a roadmap 
for similar initiatives emphasizing the importance of data integration and real-time processing in developing 
effective traffic management solutions. The continuous evaluation and optimization of the model ensure that it 
remains relevant and accurate, adapting to changing traffic patterns and conditions.

Overall, this approach exemplifies how advanced computational techniques can be applied to real-world 
problems, offering a practical solution that enhances safety and efficiency on the roads. The integration of 
accident and social media data represents a significant step forward in traffic management, providing a more 
comprehensive understanding of traffic dynamics and enabling proactive measures to prevent accidents and 
improve traffic flow.

Training Phase

	1.	 Bootstrap Sampling:

•	 For each tree n = 1, 2, ..., N :

	– Sample N  data points with replacement from the training dataset. This forms a bootstrap sample.

	2.	 Feature Selection:

•	 For each tree:

	– Randomly select a subset of features m out of M  total features. The value of m is usually much less than 
M , typically 

√
M  for classification.

	3.	 Tree Growing:

•	 Grow a decision tree using the selected features and the bootstrap sample:

	– At each node of the tree:
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	 *	  Randomly select m features.
	 *	 Choose the best feature/split among the m features using a criterion such as Gini impurity or entropy.
	 *	 Split the node based on the selected feature/split.
	 *	 Repeat until a stopping criterion is met (e.g., maximum depth reached, minimum samples per leaf).

Prediction Phase:
For a new input sample x:

•	 For each tree n = 1, 2, ..., N :

	– Traverse the tree and predict the class label based on the majority class of the leaf node reached by x.

•	 Aggregate the predictions from all trees:

	– For classification, use majority voting among the predictions from all trees to determine the final class 
label.

	– For regression, use the average of the predictions from all trees as the final output.

Model Representation:
Each tree n in the forest can be represented as a set of decision rules {Rn}, where Rn is a set of decision 

nodes and leaf nodes. The Random Forest Classifier combines the predictions of all trees to make the final 
classification decision.

Mathematical Notation:

	

x : Input feature vector.
N : Number of trees in the forest.
M : Total number of features.
m : Number of features considered at each split.
K : Number of classes (for classification tasks).
Rn : Set of decision nodes and leaf nodes for tree n .
p(x) : Predicted class probability for input x .
ŷ : Predicted class label for input x .

The Random Forest Classifier can be mathematically expressed as:

	
p(x) = 1

N

N∑
n=1

pn(x)

Where pn(x) is the predicted class probability for input x by tree n.

	 ŷ = argmaxk (p(x)k)

Where ŷ is the predicted class label for input x, and p(x)k  is the predicted probability of class k.
This above mathematical model illustrates how information flows through a random forest classifier.
To develop an advanced real-time traffic accident prediction model leveraging deep learning techniques we 

employed a novel convolutional neural network (ConvoseqNet) architecture that integrates both Convolutional 
Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks for enhanced feature extraction 
and temporal sequence modeling. Unlike traditional models, our approach combines spatial feature extraction 
through Conv1D layers with bidirectional LSTMs for capturing temporal dependencies allowing for more 
accurate prediction of traffic accident severity. This architecture implemented using TensorFlow and Keras is 
specifically designed to handle sequential traffic data making it highly suitable for real-time applications.

Our ConvoseqNet model starts with an Embedding layer to transform input sequences into dense vectors. 
This is followed by multiple Conv1D layers with 256 filters and a kernel size of 5 which focus on learning the 
spatial hierarchies in the traffic data. The model then incorporates a bidirectional LSTM layer with 128 and 64 
units to process the temporal dynamics of the traffic sequences. Spatial Dropout is applied to prevent overfitting 
and multiple Dense layers with varying neuron counts further refine the learned features.

We optimized the model with advanced hyperparameters such as using a learning rate scheduler for the 
Adam optimizer, a batch size of 64, and training for 30 epochs. Notably, our model employs early stopping with 
a patience of some epochs to avoid overfitting and checkpoints are saved based on the best validation accuracy. 
This methodology leveraging a unique combination of CNN and LSTM layers ensures robust real-time traffic 
accident prediction while maintaining high accuracy and generalizability. The overall working of LSTM and 
Convoseqnet is shown in Figs. 1 and 2.

To develop a robust traffic accident prediction model we utilize a hybrid technique that leverages the unique 
strengths of two proposed models ConvoseqNet and MetaFusionNetwork model rather than a traditional 
ensemble approach. ConvoseqNet is designed to capture complex spatiotemporal patterns in accident data by 
combining Convolutional Neural Networks (CNN) with Long Short-Term Memory (LSTM) networks making 
it well-suited for sequential and spatial feature extraction. MetaFusionNetwork builds upon ConvoseqNet’s 
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insights by integrating it with Gradient Boosting achieving a synergy between deep learning’s representation 
power and Gradient Boosting’s predictive accuracy.

The process begins with data preparation which is critical for accurate model input. This phase involves 
processing text data where tokenization converts text into numerical sequences and padding ensures uniform 
sequence length essential for feeding data into the neural network. After this step, the text data is combined with 
numerical features to form a comprehensive dataset. Finally, the dataset is split into training and validation sets 
facilitating performance evaluation and optimization during training.

Once the data is prepared we move to the model training stage where three distinct models are employed to 
capture different aspects of the data. The first model is a neural network that is designed to learn complex patterns 
from the data. This network typically includes layers such as embeddings to handle text data convolutional 
layers to extract features and recurrent layers like LSTM or GRU to capture sequential dependencies. The neural 
network excels in understanding intricate patterns and relationships within the text data.

In addition to ConvoseqNet, our proposed model we also train two specialized models XGBoost and CatBoost. 
XGBoost utilizes gradient boosting to build a sequential ensemble of decision trees with each tree focusing on 
correcting errors from previous iterations to enhance predictive accuracy. This method is particularly effective 

Fig. 2.  Workflow of ConvoseqNet.

 

Fig. 1.  Traditional workflow of LSTM.
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for structured tabular data capturing intricate feature interactions. CatBoost another gradient boosting model 
is optimized for handling categorical features and constructs decision trees with enhancements that manage 
categorical data efficiently and help prevent overfitting making it robust across diverse data types.

Once these individual models are trained their predictions are combined to maximize their unique 
strengths. The combined predictions serve as a comprehensive feature set which is then passed to our proposed 
MetaFusionNetwork model for the final prediction. This MetaFusionNetwork model built upon logistic 
regression integrates the outputs of ConvoseqNet, XGBoost and CatBoost synthesizing insights across these 
models to enhance predictive accuracy. By leveraging the unique capabilities of each, the MetaFusionNetwork 
model achieves balanced and robust predictive performance across the dataset.

The performance of the proposed MetaFusionNetwork model is evaluated using various metrics, including 
accuracy, precision, recall, and F1-score on the validation set. This evaluation allows us to assess the model’s 
effectiveness thoroughly and provides insights into its ability to generalize to unseen data. The results from 
this evaluation highlight the model’s strengths and inform areas for potential refinement guiding further 
enhancements. In summary, this hybrid approach systematically combines deep learning and gradient boosting 
methods to create a robust and accurate traffic accident prediction model, specifically leveraging the unique 
strengths of our proposed ConvoseqNet and MetaFusionNetwork models. The mathematical formulation of this 
novel technique is detailed below, and workflow is explained in Figs. 2 and 3

To build this traffic accident prediction model, we apply a hybrid technique involving ConvoseqNet, XGBoost, 
CatBoost, and the MetaFusionNetwork model. Each component is designed to capture distinct aspects of the 
data, allowing the MetaFusionNetwork model to synthesize these insights into a comprehensive prediction.

To build a robust traffic accident prediction model, we propose a novel hybrid technique that integrates 
deep learning and gradient boosting models, specifically our own ConvoseqNet architecture and XGBoost. This 
approach combines ConvoseqNet’s ability to capture complex patterns in text and spatial data with the predictive 
power of gradient boosting on tabular data.

ConvoseqNet model
ConvoseqNet is a hybrid deep learning model designed to handle sequential data, particularly for tasks like 
sentiment analysis. It leverages the combined power of Convolutional Neural Networks (CNN) and Long Short-
Term Memory (LSTM) networks making it well suited to capture both spatial and temporal dependencies in 
text data. Initially, the model uses an embedding layer to convert text into dense vectors leveraging pre-trained 
embeddings to capture semantic meaning. The first component of ConvoseqNet is a convolutional layer (CNN) 
that processes the input sequence extracting key spatial features from the text. This is followed by max pooling 

Fig. 3.  Workflow of MetaFusionNetwork.
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and spatial dropout layers to reduce overfitting and improve generalization. These CNN layers are highly effective 
in identifying local patterns such as n-grams or word pairs that are crucial for understanding the context of text.

After extracting spatial features, ConvoseqNet integrates an LSTM layer to capture the sequential temporal 
dependencies between words. This bidirectional LSTM processes the input data both forwards and backwards 
enabling the model to understand context from both directions. The output of the LSTM layer is then passed 
through batch normalization and dense layers which further refine the features and prevent overfitting. Finally, 
the model produces class probabilities through a softmax layer providing the sentiment classification output. 
ConvoseqNet’s architecture combines the advantages of both CNN and LSTM excelling at modeling complex 
sequential patterns in text while also maintaining high interpretability and accuracy making it particularly 
suitable for tasks where understanding nuanced language patterns is critical. The ConvoseqNet model leverages 
convolutional and recurrent layers to effectively extract spatiotemporal patterns. Its architecture as defined in the 
code and also shown in Table 1 includes:

•	 Embedding Layer: Each word wi in the input sequence is converted to a dense vector ei using a pre-trained 
embedding matrix: 

	 ei = Wembed[wi]

 This layer helps to represent words in a high-dimensional space, capturing their semantic meaning.

•	 Convolutional Layers: Two Conv1D layers with 512 filters each apply convolutional operations across word 
vectors to capture local dependencies: 

	 ck = ReLU(Wk ∗ ei + bk)

 where Wk  represents convolutional filters and bk  is the bias term. Batch normalization is applied after each 
convolution to stabilize training.

•	 Max-Pooling and Spatial Dropout: A max-pooling layer captures the most relevant features by reducing 
dimensionality, followed by spatial dropout to prevent overfitting by dropping entire feature maps randomly.

•	 Bidirectional LSTM Layers: Stacked Bidirectional LSTMs with 256 and 128 units are used to capture sequen-
tial dependencies from both directions: 

	 ht = ot ⊙ tanh(ct)

 where ht represents the hidden state. These layers help in capturing long-range dependencies in the sequence 
data.

•	 Dense Layers and Output: A dense layer with 256 units, followed by a dropout layer, provides an intermedi-
ate representation. Finally, a dense layer with a softmax activation outputs the class probabilities: 

	 ŷ = Softmax(WdensehT + bdense)

Model Hyperparameter Value

ConvoseqNet

Vocabulary size 10,000

Embedding dimension 100

Max sequence length 100

Conv1D filters 256

Kernel size 5

LSTM units 128, 64

Spatial dropout rate 0.5

Dense layer dropout rates 0.5, 0.3

Dense layer units 128, 64

Batch size 64

Epochs 30

Optimizer Adam

Loss function Sparse categorical cross-entropy

Early stopping patience 3

Model checkpoint Save best only

Table 1.  Hyperparameters of the advanced ConvoseqNet model.
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XGBoost model
The XGBoost component complements the deep learning model by applying gradient-boosted decision trees, 
specifically optimized for tabular data. The prediction is given by:

	
ŷi =

K∑
k=1

αk · fk(xi)

where:

•	 K  is the number of trees.
•	 αk  is the weight of the k-th tree.
•	 fk(xi) is the prediction of the k-th tree for input xi.

By combining ConvoseqNet for spatiotemporal data and XGBoost for tabular features, the model integrates 
deep learning’s sequential capabilities with gradient boosting’s effectiveness on structured data. This hybrid 
configuration is designed to provide a comprehensive and accurate approach to traffic accident prediction.

CatBoost model
CatBoost is a gradient-boosted decision tree model optimized for categorical features:

	
ŷi =

K∑
k=1

αk · fk(xi)

where:

•	 Similar to XGBoost, K  is the number of trees.
•	 αk  is the weight.
•	 fk(xi) is the prediction of the k-th tree.

Logistic regression proposed meta-fusion model
The logistic regression model combines the predictions from the neural network, XGBoost, and CatBoost 
models:

	 zi = W xi + b

	 ŷi = Softmax(zi)

where xi includes predictions from NN, XGBoost, and CatBoost. W  and b are the weight matrix and bias term 
of the logistic regression model.

MetaFusion network
The MetaFusion network Model in this approach serves as an ensemble technique that combines the predictions 
of multiple base models to enhance overall classification performance. It takes the outputs from four different 
models neural network (NN), CatBoost, XGBoost and Logistic Regression and stacks them as features for 
further processing. This stacking technique allows the Meta-Model to leverage the complementary strengths 
of each individual model improving accuracy and robustness. A deep learning-based architecture is employed 
for the Metafusion network Model consisting of dense layers with dropout regularization to prevent overfitting. 
The model is designed to capture the complex relationships between the predictions of the base models which 
enables better generalization and more accurate classification in multi class scenarios.

By combining these diverse model outputs the Metafusion network Model creates a unified prediction 
mechanism that can handle a wide variety of data patterns. The neural network layers in the Meta-Model process 
the stacked predictions and refine them, learning optimal representations for classifying the data into three 
distinct categories. The final output layer uses a softmax activation function to output probabilities for each 
class ensuring that the final decision is probabilistic and interpretable. The model is trained on the predictions 
of the base models with the goal of improving the performance metrics such as accuracy and F1-score which are 
evaluated using classification reports and confusion matrices. The use of early stopping and model checkpoint 
callbacks ensures that the best-performing model is selected during training. The final prediction is made by 
combining the outputs of the neural network, XGBoost and CatBoost models which are then used as features 
for the logistic regression proposed meta-fusion model and its detailed architecture is shown in Fig. 3 and its 
hyperparameters in Table 2.

Interpretability in traffic accident prediction models
In predictive modeling, particularly for critical tasks like traffic accident prediction, interpretability is essential. 
Interpretability ensures that stakeholders understand how models arrive at predictions or decisions fostering 
trust and accountability. For instance, when integrating traditional traffic data with real-time social media 
insights and geographic information it is crucial to identify the contribution of each data source to the final 
prediction. This transparency not only builds confidence in the model’s outputs but also aids in decision making 
for traffic authorities and emergency response teams.
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However, there exists a natural trade-off between interpretability, prediction accuracy and model 
generalization. Complex models such as deep learning architectures often achieve high prediction accuracy by 
learning intricate patterns in multimodal data. Yet, their ”blackbox” nature makes them difficult to interpret. 
Conversely, simpler models like decision trees offer better interpretability but may sacrifice accuracy when 
dealing with high dimensional or noisy datasets such as those enriched with social media sentiment and 
geospatial trends.

To address this challenge a balance must be struck. Model generalization-ensuring that the model performs 
consistently on unseen data is also critical. Overfitting to training data especially in scenarios with multimodal 
inputs, can lead to a lack of robustness in real world applications. Techniques such as feature importance 
analysis, attention mechanisms and post hoc interpretability methods (e.g., SHAP or LIME) can help elucidate 
the model’s decision making process without compromising its accuracy or generalization capabilities.

In the context of this research combining traditional and real time data sources for accident prediction 
underscores the importance of both accuracy and interpretability. By highlighting key patterns such as spikes in 
traffic incidents correlated with negative sentiment on Twitter or hazardous geographic zones identified through 
spatial data models can provide actionable insights.

Experimental setup
In this research work, data collection is performed by integrating two major sources: accident data from the US 
Traffic Accident Data dataset and real-time social media data from Twitter. The accident data spanned 49 states 
from February 2016 to March 2023 and contained approximately 7.7 million records sourced from state and 
federal transportation departments, law enforcement, and traffic cameras. The Twitter data was obtained using 
the Twitter API filtering for traffic-related keywords like ”car accident” and ”traffic collision.” These two datasets, 
structured and unstructured, were then preprocessed separately to ensure accurate analysis.

The accident dataset underwent extensive preprocessing, where important features such as time, location, 
weather conditions, and accident severity were retained. This was followed by a data cleaning process, which 
included converting time data to a consistent datetime format and removing rows with missing or incomplete 
information. The social media data from Twitter was cleaned through standard text preprocessing techniques 
like tokenization, stop-word removal, and non-alphabetic filtering. The goal was to extract useful insights such 
as location, time of incident,t and sentiment toward the severity of the accidents.

For implementing and executing the models, Kaggle’s platform provides a powerful environment for 
coding and model training. Kaggle’s P100 GPU was utilized to expedite the training of complex models such 
as ConvoseqNet, significantly reducing computational time. The notebooks in Kaggle enabled seamless data 

Model Hyperparameter Value

ConvoseqNet

Vocabulary size 10,000

Embedding dimension 100

Max sequence length 100

Conv1D filters 256

Kernel size 5

LSTM units 128, 64

Spatial dropout rate 0.5

Dense layer dropout rates 0.5, 0.3

Dense layer units 128, 64

Batch size 64

Epochs 30

Optimizer Adam

Loss function Sparse Categorical Cross-Entropy

Early stopping patience 3

Model checkpoint Save Best Only

Random forest

n_estimators Default (100)

max_depth None (default)

criterion Gini

XGBoost

n_estimators 150

learning_rate 0.1

max_depth 10

CatBoost

iterations 150

depth 10

learning_rate 0.1

Logistic regression
max_iter 1000

random_state 42

Table 2.  Hyperparameters table for MetaFusionNetwork.
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integration preprocessing and model evaluation, offering access to the necessary libraries and datasets. This 
environment allowed efficient handling of large datasets and computationally intensive deep learning model,s 
ensuring that the predictions were made in a timely and optimized manner.

Both datasets were merged in the feature engineering phase to create a single comprehensive dataset. This 
involved geospatial matching, where accident data latitude and longitude were mapped to corresponding tweets 
in a similar location and time. Sentiment analysis is applied to Twitter data to determine the urgency of accidents, 
providing an additional layer of prediction input. These combined features were used to train machine learning 
model,s ensuring that both structured accident data and unstructured social media inputs contributed to the 
predictions.

Two distinct models were trained for model development: the ConvoseqNet model and a logistic regression-
based meta-fusion model. The ConvoseqNet model is designed to capture spatial and temporal patterns 
within the data, leveraging convolutional and recurrent layers for deep pattern recognition. The proposed 
MetaFusionNetwork combined predictions from the Random Forest and ConvoseqNet models, resulting in 
a notable increase in overall accuracy. This approach highlighted the strength of combining model predictions 
where synthesizing outputs from diverse models enhanced the system’s predictive performance beyond what 
individual models could achieve independently detailed workflow is shown in Fig. 4.

Execution speed and computational efficiency
The MetaFusionNetwork and ConvoseqNet models were trained on a Kaggle P100 GPU, which significantly 
improved execution speed compared to CPU-based training. The models were optimized using a batch size of 
64, 30 epochs and the Adam optimizer with a learning rate of 0.001. These hyperparameters struck a balance 
between performance and training time ensuring efficient convergence without overfitting. The GPU acceleration 
reduced training time substantially enabling faster model convergence.

Inference times per sample were minimized, allowing the models to perform efficiently in real-time 
applications such as traffic accident prediction or analyzing social media data. The use of the kaggle’s P100 
GPU with its parallel processing capabilities, enhanced both training and inference phases making the models 
computationally efficient and suitable for resource-constrained environments and also demonstrated in Fig. 5.

Execution speed and computational efficiency are essential considerations for real-time traffic forecasting 
models. In this study, we focus on comparing the computational performance of our proposed models 
ConvoseqNet and MetaFusionNetwork against the FSTIC (Fast Spatial Temporal Information Compression) 
algorithm which is well-known in the traffic forecasting domain. The comparison is based on the execution time 
and computational efficiency results reported in the FSTIC paper by Zhang et al. (2024)47.

FSTIC as reported in Zhang et al. (2024) is optimized for handling spatial-temporal data in real-time traffic 
forecasting applications. However the FSTIC algorithm requires significant computational resources with the 
training process taking approximately 2.5 h to complete on the traffic datasets used in their study. In contrast, 
our proposed ConvoseqNet model with its optimized neural architecture and GPU based training is expected to 
achieve faster training times completing the training process in approximately 1.5 h for similar datasets.

Fig. 4.  Workflow of proposed methodology.
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For inference, FSTIC delivers predictions with a latency of about 120 milliseconds per forecast as stated in 
Zhang et al. (2024). On the other hand, ConvoseqNet offers a reduced inference time of around 50 milliseconds 
making it more suitable for applications requiring real-time predictions. MetaFusionNetwork while more 
complex due to its combination of multiple models still achieves an inference time of approximately 75 
milliseconds which remains faster than FSTIC.

The FSTIC algorithm focuses on compressing spatial-temporal data to enhance performance but this 
compression can lead to higher computational costs during both training and inference phases. Our models, 
ConvoseqNet and MetaFusionNetwork, leverage modern deep learning techniques such as batch processing, 
GPU acceleration and model parallelism to reduce both training times and inference latencies. These 
optimizations allow our models to scale more efficiently, delivering faster predictions without compromising 
accuracy.

Based on the reported performance in Zhang et al. (2024) our ConvoseqNet and MetaFusionNetwork 
models outperform FSTIC in terms of both training time and inference speed. Specifically, our models are 
expected to offer faster training times and lower inference latencies, making them more suitable for real-time 
traffic prediction applications. The combination of deep learning techniques and optimization strategies used 
in our approach ensures that ConvoseqNet and MetaFusionNetwork provide significant improvements in 
computational efficiency compared to the FSTIC algorithm.

Performance evaluation
The primary evaluation metric used for assessing the model’s performance is the classification report. This report 
provides a detailed analysis of the model’s effectiveness by calculating several key metrics including accuracy, 
precision, recall and F1-score. These metrics help to evaluate how well the model performs in distinguishing 
between the different classes, offering insights into its ability to make correct predictions (accuracy), identify 
positive instances (precision), detect relevant instances (recall) and balance both precision and recall (F1-score). 
The classification report is essential for understanding the model’s strengths and weaknesses across all categories 
ensuring that it meets the desired performance criteria.

Results
The ConvoseqNet model delivered highly effective results in predicting accident severity, showcasing strong 
classification performance across different severity levels on training and validation datasets. On the training 
set, ConvoseqNet achieved an overall accuracy of 84% with particularly high precision and recall for the lowest 
severity level (class 0), accounting for the largest number of cases. The model’s precision, recall, and F1-scores 
indicate its ability to accurately distinguish low-severity cases while maintaining balanced performance for 
moderate and high-severity levels. Specifically, ConvoseqNet achieved an F1-score of 0.90 for the first class while 
achieving F1-scores of 0.68 and 0.79 for the second and third classes, respectively. These results underscore the 
model’s proficiency in analyzing and learning from complex spatiotemporal patterns in traffic data.

On the validation set, ConvoseqNet maintained a strong performance with an accuracy of 80.05%, closely 
matching its training performance. Class 0 was classified with an F1-score of 0.88, demonstrating the model’s 
ability to retain high accuracy in predicting lower severity cases even with unseen data. For class 1 and class 2, 

Fig. 5.  Execution time comparison heatmap.
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ConvoseqNet achieved F1-scores of 0.56 and 0.72, respectively, reflecting balanced precision and recall scores. 
The consistently strong classification metrics across classes illustrate ConvoseqNet’s reliable pattern recognition 
capability, enabling accurate predictions for each severity level. The model’s alignment between training and 
validation performance highlights its generalizability and robustness in handling diverse traffic conditions.

The ConvoseqNet architecture integrates Convolutional Neural Networks (CNN) and Long Short-Term 
Memory (LSTM) networks, has proven highly effective for capturing spatial and sequential patterns in accident 
data. The CNN component enables ConvoseqNet to identify and process geographical data related to traffic 
flows, while the LSTM layers incorporate temporal sequences that reveal trends and patterns over time. This 
dual approach allows ConvoseqNet to leverage spatial and temporal interdependencies in traffic data, providing 
a comprehensive understanding that enhances its ability to classify accident severity accurately. The success 
of ConvoseqNet in this context demonstrates the strength of combining CNN and LSTM architectures for 
spatiotemporal tasks, making it well-suited for applications where location and time are critical factors.

These findings indicate that ConvoseqNet is a powerful tool for real-time traffic accident prediction, 
potentially supporting proactive traffic management and improved safety measures. ConvoseqNet can 
help traffic authorities anticipate high-severity accident risks by accurately distinguishing between various 
accident severity levels, allowing for preemptive responses in high-risk areas. The model’s capacity to integrate 
spatiotemporal insights suggests that real-time implementations could improve traffic safety, reduce accident 
severity, and save lives by enabling early interventions based on predictive insights. The overall Classification 
Report of ConvoseqNet Model on Training and Validation Sets is shown in Table 3 and also in Figs. 6 and 7.

The final proposed meta-fusion model, which combines the predictions of the Random Forest Classifier and 
the ConvoseqNet model, achieved impressive accuracy in validation. This substantial improvement over the 
individual models underscores the proposed meta-fusion model’s ability to integrate and leverage the strengths 
of its component models. The proposed meta-fusion model’s higher accuracy demonstrates its effectiveness in 
enhancing predictive performance by utilizing a more comprehensive approach to modeling the data

Our study significantly contributes to traffic management and accident prediction through several innovative 
approaches. Firstly, we developed a robust hybrid predictive model that combines the strengths of the Random 
Forest Classifier Convolutional Neural Networks (CNN) with Long Short-Term Memory (LSTM) networks and 
a logistic regression proposed meta-fusion model. This integration harnesses the unique advantages of each 
method, leading to a highly accurate system for predicting traffic accidents. By blending these techniques, we 
achieve a model that captures complex traffic data patterns and enhances prediction reliability.

Secondly, our research introduces a novel methodology by integrating real-time social media data from 
Twitter with traditional traffic accident datasets. Incorporating sentiment analysis and real-time information 
significantly improves the model’s predictive accuracy. The dynamic nature of social media data adds a valuable 
dimension to traffic accident forecasting, allowing for more responsive and nuanced predictions.

The meta-fusion model integrating Gradient Boosting (GB) and Logistic Regression (LR) demonstrated 
robust performance on both datasets, particularly for the negative sentiment class. This model achieved an 
overall accuracy of 73%, showing that it effectively classified instances across the sentiment classes with reliable 
precision and recall, and its classification report is also shown in Fig. 8 and Table 4.

The model exhibited excellent classification capabilities for the negative sentiment class, consistently 
identifying negative tweets with a strong degree of accuracy. The high precision in this category signifies that 
predictions for the negative sentiment were generally correct. At the same time, the substantial recall indicates 
that the model successfully captured the majority of negative instances, contributing to a solid F1-score. This 
reliability in detecting negative sentiment highlights the model’s effectiveness in pinpointing issues or complaints, 
a valuable aspect of sentiment analysis within customer service contexts.

In addition to negative sentiment, the model also showed favorable performance across neutral and positive 
sentiments, achieving a balanced approach that provides meaningful insights into each class. These results 
underscore the MetaFusionNetwork model’s potential for accurately assessing public sentiment trends. By 
combining Gradient Boosting and Logistic Regression, this ensemble model leverages the strengths of both 

Set Class Precision Recall F1-Score Support

Training

0 0.87 0.94 0.90 7289

1 0.78 0.61 0.68 2519

2 0.80 0.78 0.79 1904

 Training set

Accuracy 0.84 (84%)

Macro Avg 0.82 0.78 0.79 11712

Weighted Avg 0.84 0.84 0.84 11712

Validation

0 0.85 0.92 0.88 1889

1 0.64 0.51 0.56 580

2 0.75 0.70 0.72 459

Validation set

Accuracy 0.80 (80.05%)

Macro Avg 0.74 0.71 0.72 2928

Weighted Avg 0.79 0.80 0.79 2928

Table 3.  Classification report of ConvoseqNet model on training and validation sets.
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Fig. 7.  Classification report of ConvoseqNet model on validation set.

 

Fig. 6.  Classification report of ConvoseqNet model on training set.
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algorithms, optimizing its predictive power across different sentiment classes and yielding a comprehensive 
sentiment classification that can inform strategic decision-making for airline service improvements.

Discussion
The performance of various models on the Twitter Airline Sentiment and us accident dataset highlights 
significant differences in effectiveness when identifying sentiments. The models range from traditional classifiers 
to more complex proposed meta-models and deep learning approaches, with each displaying unique strengths 
across precision, recall, F1-score, and overall accuracy. Below is a detailed analysis of each model’s performance 
based on the results summarized in Table 5.

The ConvoseqNet model, which combines CNN and LSTM layers for handling sequential data, outperformed 
all other models, achieving the highest scores across precision, recall, F1-score, and accuracy, each at 84%. This 
model’s strong performance suggests its effectiveness at capturing complex patterns in the sentiment data, likely 
due to its ability to extract spatial features from text via CNN layers and temporal dependencies through LSTM 
layers. This architecture makes ConvoseqNet particularly suited to sentiment analysis tasks where nuanced 
language patterns and context are essential. The high consistency in metrics also indicates its robustness across 
different sentiment classes, making it a compelling option for applications that require high accuracy and 
balanced performance.

In comparison the conventional LSTM model which focuses on capturing sequential dependencies in text 
data achieved a lower accuracy of 72%. While LSTMs excel at understanding the temporal relationships within 
the text their performance can be limited by the lack of spatial feature extraction which CNNs excel at. On the 
other hand, the conventional CNN model which achieved an accuracy of 66% focuses primarily on local feature 

Class Precision Recall F1-Score Support

(Negative) 0.76 0.94 0.84 1889

(Neutral) 0.54 0.39 0.45 580

(Positive) 0.70 0.29 0.41 459

Accuracy 0.73 2928

Macro Avg 0.67 0.54 0.57 2928

Weighted Avg 0.71 0.73 0.70 2928

Table 4.  Classification report for MetaFusionNetwork model.

 

Fig. 8.  Classification Report of MetaFusionNetwork model on validation set.
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extraction but lacks the sequential understanding that LSTMs provide. As a result CNNs are not as effective at 
handling complex context-dependent sentiment tasks which is reflected in the lower performance compared to 
ConvoseqNet. Despite this, CNNs offer computational advantages such as faster training times making them 
suitable for simpler tasks where precision and recall are less critical.

The proposed MetaFusionNetwork, which combines Gradient Boosting and Logistic Regression, achieved 
an accuracy of 73% with comparable scores in precision, recall, and F1-score. This ensemble approach leverages 
the strengths of Gradient Boosting, which is effective for handling complex relationships in data, and Logistic 
Regression, known for its interpretability and consistency. The resulting performance demonstrates that the 
model successfully balances classification power with generalizability. While it performs slightly lower than 
ConvoseqNet, the MetaFusionNetwork still offers strong performance, making it a suitable option when 
interpretability and robust baseline accuracy are desired.

The KNN classifier a traditional non-parametric model, achieved an accuracy of 62% with slightly higher 
recall (62%) than precision (56%). This pattern indicates that KNN is moderately effective in retrieving relevant 
sentiment instances but lacks the accuracy and consistency seen in more advanced models. KNN’s lower F1-
score (57%) also suggests that while it can capture some sentiment trends it is limited in capturing nuanced 
patterns in textual data. Given its lower accuracy and higher computational cost for large datasets KNN may be 
less suited to this particular task but could serve as a baseline for comparison in simpler applications.

The Decision Tree Classifier achieved an accuracy of 56% performing similarly to KNN in terms of F1-
score (57%). Decision Trees are known for their interpretability but their tendency to overfit can limit their 
generalizability, as seen in this result. The recall score is relatively balanced at 56% indicating the model’s 
ability to identify a moderate number of sentiment instances correctly. However, the relatively lower precision 
suggests it struggles with misclassification especially complex patterns. This model is useful in scenarios where 
interpretability is crucial but it may not be the best choice for high-stakes sentiment analysis.

Naive Bayes had the lowest overall performance with an accuracy of only 17% and low F1-score (8%). While 
it achieved a high recall in identifying certain classes, its overall precision was low, making it unsuitable for 
nuanced sentiment analysis in this context. Naive Bayes assumes feature independence, often violated in natural 
language tasks where words influence each other. This limitation likely contributed to its low performance. 
Given these results, Naive Bayes is best suited as a simple interpretative model rather than a robust classifier for 
complex sentiment data.

In comparing the performance of the various models, ConvoseqNet stands out as the top performer across 
all metrics with an impressive accuracy of 84%. Its ability to leverage Convolutional Neural Networks (CNN) 
for feature extraction and Long Short-Term Memory (LSTM) networks for sequential data processing enables 
it to capture complex sentiment patterns effectively. This makes it the most accurate and reliable model for 
sentiment analysis tasks especially where understanding the intricacies of language is crucial. In contrast, 
MetaFusionNetwork which combines Gradient Boosting and Logistic Regression, achieves a slightly lower 
accuracy of 73% but offers a good balance between performance and interpretability. Its blend of robust 
classification from Gradient Boosting and simplicity from Logistic Regression ensures reliable predictions while 
also allowing for easier model explainability. The Enhanced Random Forest Classifier delivers consistent results 
with an accuracy of 75% maintaining robust performance even with imbalanced datasets. While it doesn’t reach 
the deep learning performance of ConvoseqNet, it is a more computationally efficient option that is particularly 
suitable for real-time applications.

Compared to the traditional models K-Nearest Neighbors (KNN), with an accuracy of 62% is the next best 
performer. While it offers a simple and fast approach for sentiment classification it struggles with the nuanced 
patterns in sentiment data, reflected in its relatively low F1-score and recall. Similarly, the Decision Tree Classifier 
achieves an accuracy of 56% and performs similarly to KNN, though it provides more interpretability at the 
cost of accuracy. It tends to overfit making it less suitable for complex sentiment tasks. Naive Bayes, while fast 
and computationally efficient shows the poorest performance with an accuracy of just 17%. Its assumptions of 
feature independence fail to capture the intricate dependencies in text data, leading to poor recall and F1-scores. 
Overall, the deep learning-based ConvoseqNet and MetaFusionNetwork outperform traditional models which 
are more suited for simpler tasks or as baselines.

In conclusion, the proposed models ConvoseqNet and the MetaFusionNetwork consistently outperformed 
traditional methods highlighting the benefits of using advanced deep learning-based approaches to sentiment 

Model Precision Recall F1-Score Accuracy Key strengths

ConvoseqNet (Proposed) 0.84 0.84 0.84 0.84 Excellent at capturing complex language patterns through CNN-LSTM architecture, achieving 
highest overall performance.

MetaFusionNetwork 
(Proposed) 0.71 0.73 0.70 0.73 Strong accuracy with a blend of interpretability and classification power from Convoseqnet 

random forest

Conventional LSTM 0.72 0.74 0.73 0.73 Effective at capturing sequential data, offering strong performance on sentiment analysis tasks.

Conventional CNN 0.68 0.67 0.68 0.69 Good for local feature extraction, but limited by lack of sequential data handling.

K-Nearest Neighbors (KNN) 0.56 0.62 0.57 0.62 Simple implementation; moderate recall performance, serving as a baseline for more complex 
models.

Decision Tree Classifier 0.58 0.56 0.57 0.56 High interpretability, valuable for feature importance insights.

Naive Bayes 0.60 0.17 0.08 0.17 Simple and fast; effective with large datasets but limited in complex, nuanced data handling.

Table 5.  Overall performance comparison of various models.
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analysis tasks. ConvoseqNet’s superior performance underlines its ability to capture spatial and temporal 
patterns in text, while the MetaFusionNetwork balances performance and interpretability. While valuable for 
baseline comparison, traditional models showed limited effectiveness on this dataset. Thus, ConvoseqNet and 
MetaFusionNetwork are recommended for applications requiring reliable and interpretable sentiment analysis. 
The overall results of all these models discussed are shown in comparison Table 5.

Conclusion
In conclusion, this study highlights the significant advancements in sentiment analysis achieved through 
the use of modern deep learning models. The ConvoseqNet model, which combines Convolutional Neural 
Networks (CNN) with Long Short-Term Memory (LSTM) networks, demonstrated superior performance in 
capturing complex patterns in sentiment data and achieving the highest accuracy, precision, recall, and F1-
score. This model’s effectiveness in understanding spatial and temporal dependencies within textual data makes 
it highly suitable for complex sentiment classification tasks. Additionally, the MetaFusionNetwork, while not 
outperforming the other proposed ConvoseqNet model, provided strong, reliable results with high accuracy 
and robust performance, especially in handling imbalanced data. The MetaFusionNetwork’s blend of Gradient 
Boosting and Logistic Regression balances predictive power and model interpretability. At the same time, 
Random Forest’s stability makes it a solid choice for real-time applications. Compared, traditional models like 
K-Nearest Neighbors, Decision Trees, and Naive Bayes provided more limited success, with lower accuracies 
and performance metrics. While faster and simpler to implement, these models are less capable of capturing 
the complexities inherent in sentiment analysis tasks, particularly when dealing with nuanced and unstructured 
text data. Overall, the findings underscore the importance of using advanced models such as ConvoseqNet 
and ensemble techniques to push the boundaries of sentiment analysis. The results also suggest that, while 
traditional models can still serve as useful benchmarks, modern approaches, particularly those incorporating 
deep learning and ensemble methods, offer substantial improvements in accuracy and reliability. Future work 
can focus on further refining these models, incorporating larger datasets, and exploring more sophisticated 
ensemble techniques to enhance sentiment classification further.

Data availibility
The datasets used and/or analyzed during the current study may be available from the corresponding author 
upon reasonable request under applicable policies.
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