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Intelligent fault diagnosis and
operation condition monitoring of
transformer based on multi-source
data fusion and mining

Jingping Cui**, Wei Kuang?, Kai Geng? & Pihua Jiao*

Transformers are important equipment in the power system and their reliable and safe operation is

an important guarantee for the high-efficiency operation of the power system. In order to achieve

the prognostics and health management of the transformer, a novel intelligent fault diagnosis of

the transformer based on multi-source data fusion and correlation analysis is proposed. Firstly,

data fusion for multiple components of transformer dissolved gases is performed by an improved
entropy weighting method. Then, the combination of bidirectional long short-term memory network,
attention mechanism, and convolution neural network is employed to predict the load rate, upper

oil temperature, winding temperature data, and the fusion indices of dissolved gas components

in the transformer. Furthermore, Apriori correlation analysis is performed on the transformer load
rate and upper oil layer, winding temperature, and fusion indices of gas components by support and
confidence levels to achieve a predictive assessment of the transformer state. Finally, the validity

of the algorithm is verified by applying actual data from a power system monitoring platform. The
results show that in the vicinity of sample point 88, the dissolved gas, upper oil temperature, and
winding temperature data are not within the normal range of intervals, and it is presumed that the arc
discharge phenomenon. Furthermore, the average correct fault diagnosis rate of 100 diagnoses of the
transformer fault diagnosis model proposed in this paper is 0.917, and the mean square error of the
correct rate is 0.018. The proposed model can achieve the prediction of the accident early warning, to
prevent further expansion of the accident.

Transformers are widely used in power systems and are the most important equipment in power supply and
distribution, assuming the role of electrical energy supply in residential electricity, industrial parks, and public
services?. Irregularities such as poor contact of the transformer tap changer, short circuits of winding turn-to-
turn, blockage of oil passages, and cooling system failures can lead to changes in the composition of dissolved
gases, oil temperature, and winding temperature of the internal transformer®=. The traditional method of
transformer governance and condition assessment is mainly based on the analysis of the problem of status quo
and real-time assessment, observing the transformer operating parameters through the monitoring platform and
setting alarm thresholds®’. Maintenance personnel can take appropriate measures after receiving the alarm for
sudden abnormal events without warning. Inversely, for the relatively gentle changes in the working conditions,
the performance of the early warning ability is insufficient®®. Therefore, how to effectively carry out the short-
term state predictive assessment of transformers realize the prediction and early warning, and take preventive
measures to avoid the occurrence of faults is a key issue in the construction of a strong smart grid'°.

There are some conventional approaches to predict the power transformer data, such as the autoregressive
integral moving average (ARIMA)'M2, random walk (RW)!%, generalized autoregressive conditional
heteroscedasticity (GARCH)!*!> and vectorial autoregression (VAR)!®. These conventional approaches have
satisfactory prediction performance for linear correlation variables, but they cannot capture the nonlinear
characteristics of data. Due to the limitations of conventional approaches, plentiful nonlinear artificial
intelligence and deep learning methods rise in response to the proper time and conditions'’~%, and can be
employed for data prediction based on the time series, such as artificial neural network (ANN)2!, support
vector machine (SVM)? and recurrent neural network (RNN)?%. However, aiming at the problems of gradient
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explosion and disappearance in RNN, the long short-term memory network (LSTM) has been developed based
on RNN?*25, The effective message can be extracted through the various gate structures of LSTM and gathered
in historical data during the training process. In addition, in contrast to LSTM, BiLSTM consists of two layers
of LSTM, which can take full advantage of both forward and reverse information?®. Therefore, it is especially
suitable for solving data forecasting problems based on the time series. Furthermore, considering that historical
data contribute differently to data at different points in time, while current neural network models (including
BiLSTM) contribute equally to each point in time to be predicted, attention mechanisms have been developed?’.
In order to further improve the prediction accuracy of the models, Attention mechanisms are usually introduced
in deep learning models. Attention mechanisms can obtain valid information and important spatiotemporal
features from new coding sequences. One of the drawbacks of conventional neural networks is the poor
scalability due to the complete connectivity of neurons, which is overcome by convolutional neural networks
(CNN). CNN enhances the efficiency of the algorithm and decreases the number of parameters. Many kinds
of literature have demonstrated that CNN has the advantage of extraction and reorganization?®%. Therefore,
based on the advantages of extracting effective information from the Attention mechanism layer and CNN
capturing the hierarchical structure, it is of great importance to study the combination model to predict the
power transformer data.

With the application and development of smart grids, transformers are also gradually developing in the
direction of intelligence®. Transformer online monitoring can provide real-time monitoring of transformer
operation data. Through the processing and analysis of big data, transformer failure can achieve early discovery
and early treatment, which is conducive to solving the problem of transformer condition evaluation and
prediction®. Therefore, judging and evaluating the transformer status based on data prediction and data
mining offers a different approach to online monitoring of transformer faults. Multi-source data fusion and data
extraction is an advanced data technology for data-driven insights and data correlation analysis, i.e. identifying
the relationships, trends, and linkages between massive and complicated datasets®2. Multiple factors hamper
the modeling and analysis of their interaction and complex relationships with the creation of data sources for
knowledge acquisition and, eventually, the process of decision finding. Consequently, leveraging the intellectual
properties of models that can handle massive and sophisticated datasets can lead to more acceptable results.
A wide range of investigations in the last two decades have taken advantage of the possibilities offered by data
excavation techniques in diverse fields, such as prediction of atmospheric pollutant levels®?, prediction of the
optical depth of aerosols*, and mapping of subsidence susceptibility*.

Apriori is a powerful approach based on information retrieval. It has been deployed for application in
learning exploration and forecasting, such as wind speed?®, landslides®” and road accidents®. Research in the
area of smart diagnostics for power devices typically utilizes various methods of machine learning, such as
ANN, Support Vector Machines (SVM), and Random Forests (RF), as well as data exploration techniques, such
as Boosted Generalized Additive Models (BGAM), which seek to determine correlations through modeling the
mathematical relationships among various performance properties®®*2. In spite of the established performance
of these techniques, they are not able to deliver connection patterns between the events and the contributory
factors. Thus, the approaches are not universal, and for implementation in other areas, complicated parameters
need to be reassigned and re-run. The primary strength of the Apriori approach is that, on the basis of the
patterns it produces for an occurrence, it is feasible to extrapolate these patterns to similar occurrences and
detect associations without having to re-run the procedure. The Apriori methodology, a powerful rule-based data
exploration technique, is deployed for the first time in the current work to detect faults through the detection of
association patterns by analyzing the complicated behavior of various factors in the transformer load rate and
the top oil layer, winding temperature and fusion indices of the gas components. Hence, concrete decisions can
be undertaken to enhance the applicability of transformer fault analysis methods by reducing handling costs,
decreasing data demands, and eliminating associated problems.

How to play the role of data mining methods to support the stable operation of transformers based on the
means of online monitoring of data, how to realize the intelligent diagnosis of transformer operation status by
using the constantly changing operation data, as well as to realize the predictive assessment and warning of
transformers are still the outstanding issues of the intelligent operation of transformers. To the best knowledge
of the authors of this paper, there are no works of literature on the application of the intelligent fault diagnosis of
transformers based on multi-source data fusion and data mining. Given the context discussed, the contribution
of this paper is fourfold:

(1) Intelligent fault diagnosis of the transformer based on multi-source data fusion and data mining is modeled
to realize the stable operation of the transformer under different operating conditions by predictive assess-
ment and early warning.

(2) The components of dissolved gas, upper oil temperature, winding temperature, and load rate of the trans-
former are selected as state characteristic parameters, and data fusion is performed on the multiple compo-
nents of dissolved gas of the transformer.

(3) The state characteristic parameters of the transformer are predicted by CNN-BiLSTM-Attention to ensure
the basis of data application and data accuracy in the predictive evaluation of the power transformer.

(4) The correlation analyses of dissolved gas composition, upper oil temperature, and winding temperature
under different load rates are achieved by multi-source data fusion and Apriori correlation analysis.The
remainder of the paper is organized as follows. Section “Transformer state characteristic parameter se-
lection and data fusion” gives the transformer state characteristic parameter selection and data fusion.
Section “Data prediction” deploys the data prediction model based on CNN-BiLSTM-Attention fusion.
Section “Intelligent fault diagnosis of transformers based on correlation analysis” further proposes the in-
telligent fault diagnosis of transformers based on correlation analysis. In “Experimental results” Section,
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experimental results are investigated to demonstrate the proposed method. Section “Conclusions” draws
the main conclusions.

Transformer state characteristic parameter selection and data fusion
In this paper, the condition assessment of the transformer is proposed to be related to the composition of
dissolved gases in the transformer, the upper oil temperature, the winding temperature, and the load rate,
where the composition of the transformer oil mainly contains Hz, CH4, C2Ha, C2Hy, C2Hg, CO and CO2
. The documented basis for fault diagnosis of dissolved gas in transformer oil mainly includes GB/T 7252-2001
Guidelines for Analysis and Judgement of Dissolved Gas in Transformer Oil and other related standards or
guidelines. These documents provide the framework of transformer fault diagnosis based on dissolved gas
analysis and the corresponding fault judgment basis. The content in the oil mainly includes Hz, CHy4, CO, CO2
, C2Hg, C2Hy, C2H2 and other gases. Different types of faults produce different changes in gas composition
and content. Therefore, The data fusion of multiple compositions of transformer dissolved gases, the upper oil
temperature, and the winding temperature are used as the characteristic parameters for condition assessment
in this paper.

The multiple components of the transformer dissolved gas are first normalized and the j-th component p;;
on the ¢-th time scale after normalization can be expressed as:

m
pej = vt/ thj (1)
j=1
where v¢; denotes the j-th component on the ¢-th time scale before normalization.
The entropy value e; of the j-th component can be denoted as:

e; = —KZ(pij X h’lpij) (2)
j=1

where K = 1/lnm. If p;; = 0, then limopij Inp;; = 0.

Pij—

Thus, the entropy weights can be expressed as follows.
wy=1-¢;/Y (1-¢) 3)
j=1
The expected value E of the weights is obtained by adaptive optimization, which can be defined as:

E = ijfutj (4)
j=1

A prediction error exists when the actual value REA and the predicted expected value are not equal, then the
prediction error can be shown as follows.

ERR =

N

> (REA; - Ey)° (5)
j=1
where ERR indicates the prediction error between the actual value and the predicted expected value.

The weights are continuously adjusted by using an error gradient descent algorithm, then the adjusted values of
weights can be defined as:

OERR
Awj = —n—5 = (6)
J

where the negative sign indicates a gradient decrease and 7 is the scaling factor.
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Therefore, based on the adjusted values of weights, the weights can be updated by iteration:

w; = wj—1 + Aw

The dissolved gas index on the #-th time scale is:

Fi=w1 X vy + w2 X V2 + -+ Wm X Vim

Data prediction
The network structure of the data prediction model based on CNN-BiLSTM-Attention fusion is shown in Fig. 1.
For the input data, firstly, the longitudinal feature extraction module with convolutional layer as the core is
passed, and on the basis of this, the horizontal feature extraction module with BiLSTM network as the core is
passed. These two modules are cascaded back and forth to fully explore the data features from both longitudinal
time points and horizontal time series perspectives. By adding the attention mechanism, the model pays more
attention to the feature change pattern of the data near the moment of fault occurrence. Compared with the
complex deep learning network structure, the model has a simple structure and faster speed, which can achieve
timely and accurate data prediction.

CNN network

)

CNN is a deep learning network with a convolutional structure that extracts detailed features of data and is
commonly used in the field of image classification. In the longitudinal feature extraction module, each CNN
layer includes three computations: convolution, normalization, and activation function. Taking the winding
temperature data as input, the formula for the convolution operation can be defined as:

m

1 -1, 1 [

z]-:E zj xky+b,5=1,...,n
i=1

(10)
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Fig. 1. Network structure of CNN, BiLSTM and Attention model.
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where zé represents the feature vector of the j-th feature surface of the convolutional output, z;_ ! represents the

winding temperature signal of the i-th input feature surface, k;; represents the parameter of the j-th convolution
kernel connected to the i-th input feature surface, and b; represents the bias of the j-th convolution kernel.

Convolution is able to extract linear features of the data by performing a linear computation of multiplying and
summing the elements of the input data with a convolution kernel, while the convolution operation moves over
the input sequence by sliding the convolution kernel in a way that captures structural features of local patterns
in the input data.

As the model is trained, the distribution of data will be shifted. Therefore, normalization is used to avoid the
problem of gradient disappearance caused by the data falling into the saturation region of the activation function
and to speed up the convergence of the model. The normalization formula is as follows:

_ z— E(z)
N Var(z) +e xath (an

where z is the result of the convolution operation on the winding temperature, E(z) is the mean, Var(z) is the
variance, € is a small amount greater than 0 to prevent the denominator from being zero, which is generally taken
as 1077, o and f3 are trainable parameters.

The essence of the activation function is to perform a nonlinear transformation of the input data to extract the
nonlinear features of the data and increase the fitting ability of the network. The activation function used in this
paper is the ReLU function:

if zLnv >0

if zon <0 (12)

2 =ReLU(zpn) = { o

Compared with other activation functions, the ReLU function solves the problem of vanishing gradient on
positive intervals. In addition, since it only needs to judge whether the input is greater than zero, its computational
speed and convergence speed are faster, which lays the foundation for the model to be able to achieve data
prediction quickly. The feature vectors are passed into the pooling layer, which calculates the average value of the
data for each output channel, increasing the robustness of the model and reducing the number of parameters,
which prevents model overfitting and speeds up model convergence. The next flattening layer unfolds the data of
each convolutional channel in one dimension for the transition between CNN and BiLSTM.

BiLSTM network
The BiLSTM network is a variant of the LSTM network and is formed by combining the forward LSTM network
and the backward LSTM network. LSTM network is an improvement of Recurrent Neural Network (RNN),
which improves the short-term memory problem of RNN due to the disappearance of gradient, which causes the
more distant information to have almost no effect on the current moment by adding three special gate structures
and memory units. The LSTM unit structure is shown in Fig. 2.

The input set is {z1,Z2,...,z:}, where z; = {x¢1,Z¢2,..., Ttk }, which denotes the k-dimensional
vector data at time t. The forgetting gate f, the candidate state of the memory cell &;, the input gate iy, the state
of the memory cell c;, the output gate o; and the hidden layer output value h; can be expressed as follows.

Gy

&
:

o| | o tanh 4
ht—l ht

Fig. 2. LSTM unit structure.
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Je=0Wyxs+Ushi1 + by)
¢t = tanh (Wexs + Uchi—1 + be)
it =0 (Wize + Ushi—1 + b;)

ot =0 (Woxt + Usht—1 + bo)

G =ft®@c—1Dit @&

ht = o¢ ® tanh (ct)

where W is the weight matrix of the oblivious gate, by is the bias of the oblivious gate, o and Tanh denote
the sigmoid and hyperbolic tangent activation function, We, W;, b. and b; denote the weight matrix and bias
corresponding to the candidate state ¢; and the input gate 4., respectively, W, and b, are the weight matrix and
bias of the output gate O;, @ and ® denote the add and multiply, respectively.

In addition, the activation functions of o and Tanh can be shown as:
o(xz) =1/ (1 + exp(—x)) (14)
Tanh(z) = (exp(z) — exp(—z)) / (exp(z) + exp(—z)) (15)

From the above, it can be seen that the network parameters of LSTM are trained on the data in the order from
front to back, which is low utilization of the data and cannot fully extract the intrinsic characteristics of the data
in the time series. BILSTM network combines forward LSTM and backward LSTM, which can simultaneously
extract the forward and backward historical transverse features of the data, and further explore the intrinsic
connection between the current data and the past and future data, so as to improve the utilization rate of the data
and the prediction accuracy of the model. The structure of the BiILSTM network is shown in Fig. 3.

— —
The hidden layer output value h; of BILSTM consists of forward vector h; and inverse vector h¢, where the
forward vector and inverse vector output are:

hy =LSTM(he—1, 2, co—1),t € [1, T (16)
77: :i;STM(hH.h Tt, (3154_1)7 te [T, 1] (17)

Therefore, the output of BILSTM at time ¢ can be expressed as:
ye = o(Wy - [I{;:}Tt]"'by) (18)

where W, and b, are the weight matrix and bias terms, respectively.

Fig. 3. BiLSTM structure.
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The forward transmission layer extracts the forward history of faults in the direction of the time series, from front
to back. The backward transmission layer traces the historical feature correlations of the faults from backward
to forward in the reverse direction of the time series. By fusing the two features, the horizontal features of the
data are obtained.

Attention mechanism
The Attention mechanism is an idea based on human visual attention that assigns different weights to different
input features to enhance important features and avoid irrelevant information from influencing the final result,
thus improving the performance and effectiveness of the model. The Attention mechanism is depicted in Fig. 4.
Specifically, the implementation of an Attention mechanism typically involves the following steps.

Step 1 A set of query vectors y = [y1, Y2, - - -, Yn), is obtained by encoding the input sequence g.

Step 2 Subsequently, using the scoring function s, the expression can be expressed as:

€ij = tanh(W1 * h; + Wa x h,} + b) (19)

where h; and h; are the hidden layer states, e;; indicates the correlation between the i-th state and the j-th state,
W is the weight, b represents the offset vector.

Step 3 Then, the Softmax function is used for normalization to convert the value of each correlation into a
probability weigh a;, which can be calculated as follows:

a;; = softmaz (ei;) = oxpley) (20)

>, exp(ei;)

where a;; is the attention weight of j to i, and Zj a;; = 1.
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Fig. 4. Attention mechanism.
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Step 4 The final Attention output value H; is calculated from the weight coefficients a;; input vector h; , which
is shown as following:

Hi=} ay+h 1)
J

Intelligent fault diagnosis of transformers based on correlation analysis
Based on the load rate of the transformer, the transient stability of the transformer is identified through the
multivariate data correlation analysis of the composition of dissolved gas, upper oil temperature, and winding
temperature, so as to avoid the situation of leakage and misjudgement of a single data source. Through the
correlation analysis of multivariate data, the causal pairs formed by the transformer load rate, the composition
of dissolved gases, the temperature of the upper layer of oil, and the temperature of the windings are taken into
account, and the correlation rules of support and confidence are used to determine the data ranges corresponding
to the correlated data.

The data is divided into # intervals based on the maximum and minimum values of the composition of
dissolved gases, upper oil temperature, winding temperature, and load rate data of the transformer, which can
be expressed as:

G = Giax — G/
OX = Ogax — Opin /10
Wg = Wrgax - Wrgin/n
LA = Liax — Lmin/n

(22)

where load rate L = (Srea1/Sratea) X 100%, Sreal represents the apparent power, Syatea denotes rated capacity
of transformer.

The intervals of the composition of dissolved gases, upper oil temperature, winding temperature, and load rate
for the transformer can be shown as follows:

[ miny mm + GA] 5 [Gmin + GA, Gmin + QGA] P [Gmin + (n - 1)GA7 Gmin + nGA}

[ min mm + OA] [ min 1 OA, Omin + QOA} PR [Omin + (n - 1)OA, Omin + nOA} (23)
[Wmm, Wmm + WA} [Wmin + WA, Wmin + QWA} PR [Wmin + (n - 1)WA7 Wmin + nWA}

[ min mm + LA] [ min + LA7 Lmin + QLA] )ttty [Lmin + (n - 1)LA7 Lmin + nLA}

In order to facilitate the presentation of the causal pairs of data, the composition of the dissolved gases, the
upper oil temperature, and the winding temperature intervals may be briefly described as {G1,Ga,...,Gn}
, {01,04,...,0,} and {W1, Ws,...,W,}. Similarly, the interval of the load rate of the transformer is
abbreviated as { L1, L2, ..., Ln }.

In addition, the load rate intervals, the dissolved gases, the upper oil temperature, and the winding temperature
intervals can be matched to form causal pairs of load rate and composition of dissolved gas, upper oil temperature,
and winding temperature, respectively, which can be expressed as follows.

{ [L1,G1],[L1,G2],...,[L2,G1],[L2,G2], ..., [Ln,Gx]

[L1,04],[L1,02] ... [L2,01] ,[L2, 03] ..., (L, Oy (24)
[le Wl] ) [le W2] geeey [L27 Wl} ; [L27 WQ} P [L”I?Wn]

Then, calculate the support level Sup and confidence level Con of each causal pair:

Sup| La NGy ) = count| Lo, NGy ) /Na
Sup| La NOyp | =count( Lo N Oy | /No (25)
Sup( Lo N Wb) = count (La N Wb) /Ny

Con|LaN Gy ) = count( Lo NGy | /count(Lq)
Con| Lo N Oy | = count| Ly N Oy | /count(Ly) (26)
Con|( L, N Wb> = count (La N Wb> /count (L)

where L, denotes the interval of a-th load rate, Gy, O and W, are the interval of b-th dissolved gas upper oil
temperature, and winding temperature, respectively, count (L, N Gp) represents the number of causal pairs
belonging to both the a-th load rate interval and the b-th interval of the dissolved gas, Nq indicates the total
number of causal pairs in the set of load rate and dissolved gases, count (Lo N Oyp) represents the number of
causal pairs belonging to both the a-th load rate interval and the b-th interval of the upper oil temperature, Ng
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indicates the total number of causal pairs in the set of load rate and the upper oil temperature, count (Lo N W)
represents the number of causal pairs belonging to both the a-th load rate interval and the b-th interval of
the winding temperature, Ng indicates the total number of causal pairs in the set of load rate and winding
temperature.

The causal pairs of the dissolved gases in the transformer, the upper oil temperature, and the winding temperature
need to be greater than or equal to the threshold of minimum support and confidence at the same time, and
the flowchart of correlation analysis for load rate, dissolved gas, oil temperature of upper layer and winding
temperature can be shown in Fig. 5.

Experimental results
In this paper, a three-phase oil-immersed amorphous alloy distribution transformer was chosen as the object
of study in the study of intelligent fault diagnosis of the transformer. The simulation corresponding to the
proposed model is implemented in MATLAB platform, on a PC with Intel Core i7, 5.4GHz processor, and 32
GB of memory. The transformer is equipped with a dissolved gas analyzer in oil, and a predictive assessment
of transformer condition is performed using the actual transformer load factor, the composition of dissolved
gases, upper oil temperature, and winding temperature from a transformer monitoring platform in this paper.
The data used are from one sampling point at 15-minute intervals from 1 May 2023 to 31 August 2023 at the
substation, and the sample of data sets are shown in Fig. 6. This transformer condition predictive assessment
involves multivariate feature inputs and provides a field application example reference for subsequent studies.
The algorithm of the transformer condition predictive assessment method based on correlation analysis is
as follows: (1) Data fusion of multiple components of dissolved gases in the transformer is carried out by the
improved entropy weight method, and the data after fusion with the dissolved gases, the upper oil temperature,
winding temperature, and load rate are selected as the characteristic parameters for condition assessment.
(2) Initial training and prediction based on BiLSTM neural network. Select the transformer load rate and the
dissolved gas, upper oil temperature, and winding temperature data after data fusion as inputs. Divide the
training set and test set, initialize the input dimension, output dimension, iterations, and activation function

Input load rate, transformer +
dissolved gas composition,
upper oil temperature, Find all causal pairs
winding temperature data in that are n.ot.less than
the transformer the minimum
+ Dynamically confidence
adjust
Data discretization, causation minimum
confidence

v

Calculate support and
confidence level

v

Set the minimum Caleulate the dissolved n
support level alculate the dissolved gas, upper oi

temperature and winding temperature range of
+ the transformer under the load ratio range

All the intervals
load rate ranges

Find all causal pairs

,—P that are not less than

Dynamically the minimum support
adjust
minimum | No No Yes
support + |

Issue early warning
information, and
indicate that the data is
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confidence level

| I

Issue normal
information
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Fig. 5. The flowchart for correlation analysis of load rate, dissolved gas, oil temperature of upper layer and
winding temperature.
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Fig. 6. The sample of data sets.

based on experience, supervise the training of the model according to the gradient descent algorithm, and get the
prediction value of the data. (3) Through the correlation analysis of multivariate data, the transformer load rate,
the composition of dissolved gas in the transformer, the upper oil temperature, and the winding temperature are
considered to form the causal pairs, and the correlation rules of support and confidence are used to determine
the data range corresponding to the correlated data. (4) If the predicted dissolved gas, upper oil temperature,
and winding temperature are not within the corresponding load ratio interval, the power system monitoring
platform will issue a warning signal. If the dissolved gas is not in the corresponding interval, you can check the
data in Table 2 to find the corresponding fault information. (5) For the purpose of evaluating the performance of
data prediction, the prediction results are evaluated using root mean square error (RMSE), mean absolute error
(MAE), and the coefficient of determination R2. The RMSE, MAE, and R2 can be computed by the following
formulas:

n

RMSE = | Y (Y, = Yu)* /n 27)

i=1

n
1
MAE = Z | Ypi — Vi | (28)
=1
Yo (Yo — Yu)?/n

R>=1- -
iy (Y —Y2)?/n

(29)

where 7 is the number of samples, Yy, is the i-th predicted value, Y3; is the i-th actual value, and Y; is the average
of the actual values. The closer R? is to 1, the better the prediction effect of the model is.

Data prediction

In this paper, the BiLSTM neural network uses the sigmoid function as the activation function of neurons. A
total of 122 days of data from 1st May 2023 to 30th August 2023 were used as the training set, data from 31st
August 2023 were used as the test set, and the RMSE, MAE, and R? are used as the evaluation index of data
prediction. The threshold r and the learning efficiency 7 of the error gradient are 0.1 and 0.05, respectively, and
the learning factors dec, and dec,, are 0.05 and 0.8, respectively. The training set and the test set are inputted
into the network after the completion of the training, and the prediction value Y3,qin of the training set and the
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Fig. 7. The result of the ten-fold cross-validation.

Algorithm MAE | RMSE | R? Training time (s)
BP 2.721 | 23.073 | 0.9547 | 35

SVM 5423 | 6.259 |0.9612 | 47

LSTM 0.717 | 0.891 |0.9785 | 51

CNN-LSTM 0.659 | 0.823 | 0.9871 |75
CNN-LSTM-Attention 0.553 | 0.694 | 0.9986 | 88
CNN-BiLSTM-Attention | 0.474 | 0.586 | 0.9994 | 102

Table 1. Prediction errors of different models.

prediction value Y, of the test set are computed to obtain the training set’s predicted value and the residuals are
calculated as Yo = Yo — Yirain.

In order to verify the reliability and superiority of the CNN-BiLSTM- Attention model used in this paper on
the prediction of the battery charge state of an electric loader, the data of winding temperature is selected for
prediction analysis, and experimental comparisons are also made with support vector machine (SVM), CNN-
LSTM and CNN-LSTM-Attention models. Using the ten-fold cross-validation method, the dataset is divided
into ten subsets, nine of which are used as the training set and the remaining one as the validation set in turn,
and the training is repeated ten times. The prediction results and errors of several models are shown in Table tab.
Prediction errors of different models, and the ten-fold cross-validation results of the CNN-BiLSTM-Attention
model are shown in Fig. 7. It can be seen that the model used in this paper has an accuracy of up to 0.9998
and down to 0.9989 in the ten-fold cross-validation experiments, with an average accuracy of 0.9994. It shows
that the model does not fall into the overfitting state under different data subsets and has some stability. In
addition, the average MAE of the model proposed in this paper is 0.474% and the average RMSE is 0.586%.
Compared with the CNN-LSTM model, the MAE and RMSE are improved by 28.07% and 28.80%, respectively,
and compared with the CNN-LSTM-Attention model, the MAE and RMSE are improved by 14.29 and 15.56%,
respectively, which are superior to some extent.

Combined with Fig. 7 and Table 1, it can be found that the CNN-BiLSTM-Attention model is significantly
better than the CNN-LSTM-Attention model. This is because the BiLSTM structure can read the data
information in the forward and backward direction respectively, mine the intrinsic connection between the
data, fit the current data, and improve the prediction accuracy. Hence, the proposed algorithm brings together
the advantages of multiple models and results in the highest accuracy, while at the same time the computational
speed is relatively slow. In summary, the CNN-BiLSTM-Attention model used in this paper can predict the
winding temperature data more accurately and has a certain generalization ability. Meanwhile, the CNN-
BiLSTM-Attention prediction model is applied to the composition of dissolved gas, upper oil temperature, and
winding temperature in this paper.
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Fault type H, |CH, |CH, | CH, | C,H, | CO | CO,
Partial discharge VARV, - - - - -
Arc discharge NERY: vV Vv - - -
Upper oil temperature 140 °C | - VA v v Vv - -
Solid material - |- - - - NV

Table 2. Fault type and corresponding gas composition.

Constituent | Prewarning value uL/L | Constituent | Prewarning value puL/L
H> 25.20 C2Hg 15.1

CHy4 11.40 coO 315

CoHa 1.55 CO» 1850

CoHy 5.60

Table 3. The residual values of gas composition prediction and warning values.

Load rates Dissolved gas index | Upper oil temperature (°C) | Winding temperature (°C)
0< L <12.610 [0.805, 0.837] [33.700, 41.016] [45.700, 53.017]
12.610 < L < 25.230 | [0.805, 0.837] [33.700, 41.016] [45.700, 53.017]
25.230 < L < 37.840 | [0.837,0.868] [41.016, 48.333] [45.700, 60.333]
37.840 < L < 50.450 | [0.868,0.900] [41.016, 48.333] [45.700, 67.651]
50.450 < L < 63.070 | [0.900, 0.963] [41.016, 70.283] [45.700, 67.651]
63.070 < L < 75.680 | [0.900, 0.994] [48.333, 77.600] [53.017, 67.651]

Table 4. Corresponding interval for correlation analysis under the different load rates.

Intelligent fault diagnosis

Upper oil temperature and winding temperature can directly reflect the oil overheating and winding overheating
in the transformer. The composition of dissolved gases in the oil is a condition assessment index reflecting the
specific faults inside the transformer. The transformer is in normal operation, and the dissolved gases in the oil
mainly include O, and N,. When the transformer fault occurs, the composition and concentration of dissolved
gases in the oil will change, and the characteristic gases of the fault may include Ha, CHy4, C2Ha, C2Hy, C2He,
CO and COs. Different fault types correspond to different components of the characteristic gas. The main types
of transformer faults and the corresponding gas composition are shown in Table 2, and the residual values of gas
composition prediction and warning values are shown in Table 3.

Through the correlation analysis of the transformer load rate and the data of transformer oil dissolved gas,
upper oil temperature, and winding temperature, the correspondence between the current load rate and the
data of dissolved gas, upper oil temperature, and winding temperature is obtained, and six data correspondence
intervals are divided at an environment temperature of 10 °C, as shown in Table 4. Based on the data in Table 4,
the curves of dissolved gas, upper oil temperature, and winding temperature data are obtained under different
loads, so as to carry out a short-term predictive assessment of the transformer. The three-phase winding
temperature rise intervals and predicted temperature rises are shown in Fig. 8.

As can be seen from Fig. 8, in the vicinity of sample point 88, the dissolved gas, upper oil temperature, and
winding temperature data are not within the normal range of intervals and have not returned to the normal
range until sample point 96, then it indicates that there may be a fault within the transformer. At the same
time, through the detection of gas composition found that CoH> and C2Hy exceeded the warning value, and
it is presumed that the arc discharge phenomenon. The power monitoring platform sends out an early warning
message and issues a notification for timely overhaul and maintenance. In addition, the cause of the transformer
fault was determined by realizing the field test on site, and the fault type was the same as that detected by the
method proposed in this paper. Through the field test to confirm the cause of the discharge and oil filtration,
degassing treatment processing, to achieve the prediction of the accident early warning, to prevent further
expansion of the accident.

From the analyses in Table 4 and Fig. 8, it can be seen that the composition of dissolved gases, the upper oil
temperature, and the winding temperature of the transformer are affected at different load rates. In addition
to this, the stable operation of the transformer is also affected by the environment temperature. The standard
regulations for oil-immersed transformer oil in direct contact with the atmosphere of the top oil temperature rise
shall not exceed 55 °C, and the average temperature rise of the windings shall not exceed 65 °C. The transformer
will often work at 80-1000 °C, long-term in the role of higher temperatures will gradually age brittle, in the
range of 80-140 °C, the transformer temperature rises 8 °C for each, and the shortening of its insulation life of
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Fig. 8. Intelligent fault diagnosis of transformer based on multi-source data fusion and correlation analysis.

about half. Normal environment amorphous alloy transformer is in rated operating conditions, the temperature
rise will not exceed the limit value, but due to the weather is too cold or hot, will cause the transformer to run
in harsh environments, so that the oil-immersed self-cooling transformer’s cooling capacity is weakened, the
cooling effect is reduced. Therefore, when the amorphous alloy transformer operates in harsh environmental
conditions, the temperature rise of the transformer’s high and low-voltage windings should be very careful.

In order to verify the validity of the model under different operating conditions of the transformer, the
amorphous alloy transformer temperature field under different environment temperatures is also studied,
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Environment temperatures (°C) | Dissolved gas index | Upper oil temperature (°C) | Winding temperature (°C)
-10 [0.356, 0.386] [29.856, 30.003] [39.310, 39.635]

0 [0.508,0.518] [39.017, 39.255] [39.268, 39.473]

10 [0.627,0.634] [48.135, 48.266] [50.364, 50.471]

20 [0.756,0.772] [59.024, 59.318] [61.087, 61.352]

30 [0.883,0.904] [71.267,73.586] [83.281, 85.636]

40 [0.991, 0.996] [95.558,98.215] [101.0386, 103.659]

Table 5. Corresponding interval for correlation analysis under the different environment temperatures.
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Fig. 9. The temperature rise of high and low voltage transformer winding under different environment
temperatures.

respectively, to analyze the corresponding interval for correlation analysis under — 10 °C, 0 °C, 10 °C, 20 °C, 30
°C, 40 °C environment temperatures at 50% load rate in Table 5.

Additionally, this section also analyzes the temperature field distribution of high and low-voltage windings
under —10 °C, 0 °C, 10 °C, 20 °C, 30 °C, 40 °C environment temperatures. Figure 9 gives the temperature rise
of high and low voltage transformer winding under different environment temperatures, as can be seen from
the figure, the environment temperature within 35 °C, the high and low voltage winding temperature rise rises
gently and does not exceed 65 °C temperature rise limit. When the environment temperature is more than 35 °C,
the slope of the curve increases sharply, the high and low-voltage winding temperature rise increases markedly
and has even exceeded the 65 °C limit value of the temperature rise, the normal operation of the transformer and
winding insulation pose a great threat to the normal operation of the transformer, so the transformer is easy to
be damaged when running in a high-temperature environment, especially when the environment temperature
exceeds 35 °C.

Comparative analysis of fault diagnosis for multiple models

Five mainstream supervised learning models, namely, Linear Discriminant Analysis (LDA), K-Nearest
Neighbour Algorithm (KNN), SVM, Random Forest (RF), and gradient boosting decision tree (GBDT), are
selected to be trained under empirical parameters, and the test results are compared with the proposed model,
and the results are shown in Table 6. As shown in the table, the diagnosis accuracy of the proposed model is the
highest among the six models.

In order to demonstrate and illustrate the computational stability of the proposed method in this paper, 100
consecutive random samples of the sample set are performed, each time 20% of the samples are taken as the test
set, and the remaining 80% of the samples are taken as the training set. The obtained training samples are used
to train different models and the diagnosis results are counted and the results are shown in Table 7. As can be
seen from the table, the average correct fault diagnosis rate of 100 diagnoses of the transformer fault diagnosis
model proposed in this paper is 0.917, and the mean square error of the correct rate is 0.018. Compared with five
mainstream supervised learning models, the transformer fault diagnosis model proposed in this paper has the
highest correct rate, and the mean square error of the correct rate is smaller compared with the RF and GBDT
models which have higher accuracy, which indicates that the method proposed in this paper is able to stably
maintain the computational output with high accuracy.
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Fault type LDA | KNN | SVM | RF GBDT | The proposed method
Partial discharge 0.692 | 0.818 | 0.753 | 0.955 | 0.923 | 0.936

Arc discharge 0.909 | 1 0.692 | 0.918 | 0.906 |1

Upper oil temperature 140 °C | 0.923 | 0.875 | 0.894 | 0.923 | 0.885 |1

Solid material 0.768 | 0.471 | 0.692 | 1 1 1

Table 6. Accuracy rate of fault diagnosis for different models.

Methods Highest correct rate | Lowest correct rate | Mean correct rate | Mean variance of correct rate
LDA 0.709 0.518 0.611 0.038
KNN 0.845 0.706 0.741 0.044
SVM 0.802 0.718 0.724 0.035
RF 0.936 0.855 0.873 0.032
GBDT 0.945 0.818 0.887 0.026
The proposed method | 0.982 0.891 0.917 0.018

Table 7. Diagnosis results of different models with repeated training.

Conclusions

In this paper, a novel intelligent fault diagnosis of transformers based on multi-source data fusion and data
mining has been developed to figure out issues of faults and realize the prognostics and health management under
multiple operation conditions in the power transformer. Above all, an improved entropy weighting method is
employed to achieve the data fusion of various components for transformer dissolved gases. Then, the load rate,
upper oil temperature, winding temperature data, and the fusion indices of dissolved gas components in the
transformer are predicted by the combination of a bidirectional long short-term memory network, attention
mechanism, and convolution neural network. In addition, for the purpose of the predictive assessment of the
transformer state, Apriori correlation analysis based on the support and confidence levels, is performed on the
transformer load rate, upper oil layer, winding temperature, and fusion indices of gas components. The specific
conclusions to be drawn are the following:

(1) Aiming at the problems of transformer operating conditions and loads, complicated parameters, and diffi-
culty in effectively achieving the state predictive assessment, the proposed method is the method based on
the data prediction and correlation analysis method to assess the health state of the transformer. Compared
with past research, the proposed method can include a variety of characteristic parameters. Effective match-
ing and correlation analysis of the characteristic parameters under different load rates of the predicted data
is based on real-time assessment to improve early warning capability. The results show that in the vicinity of
sample point 88, the dissolved gas, upper oil temperature, and winding temperature data are not within the
normal range of intervals, and it is presumed that the arc discharge phenomenon.

(2) By using the method of multi-source data fusion and data mining, the operating state of the transformer
can be preliminarily judged by the data change of upper oil temperature, winding temperature data, and
the fusion indices of dissolved gases components, which provides a simple and efficient intelligent online
monitoring method for transformers that have been put into use, and also an effective method to identify a
single phase fault. The experiment result shows that the transformer is easy to be damaged when running in
a high-temperature environment, especially when the environment temperature exceeds 35 °C.

(3) Compared with the method of setting thresholds, the method proposed in this paper can sense the oper-
ating situation of the equipment in advance and take corresponding measures to reduce the incidence of
accidents and improve the reliability of the power supply. Compared with five learning models, i.e., LDA,
KNN, SVM, RE and GBDT, the transformer fault diagnosis model proposed has the highest correct rate,
and the mean square error of the correct rate is smaller. The average correct fault diagnosis rate of 100 diag-
noses of the transformer fault diagnosis model proposed in this paper is 0.917, and the mean square error
of the correct rate is 0.018.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding
author (Jingping Cui) on reasonable request.
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