
Intelligent fault diagnosis and 
operation condition monitoring of 
transformer based on multi-source 
data fusion and mining
Jingping Cui1, Wei Kuang2, Kai Geng3 & Pihua Jiao4

Transformers are important equipment in the power system and their reliable and safe operation is 
an important guarantee for the high-efficiency operation of the power system. In order to achieve 
the prognostics and health management of the transformer, a novel intelligent fault diagnosis of 
the transformer based on multi-source data fusion and correlation analysis is proposed. Firstly, 
data fusion for multiple components of transformer dissolved gases is performed by an improved 
entropy weighting method. Then, the combination of bidirectional long short-term memory network, 
attention mechanism, and convolution neural network is employed to predict the load rate, upper 
oil temperature, winding temperature data, and the fusion indices of dissolved gas components 
in the transformer. Furthermore, Apriori correlation analysis is performed on the transformer load 
rate and upper oil layer, winding temperature, and fusion indices of gas components by support and 
confidence levels to achieve a predictive assessment of the transformer state. Finally, the validity 
of the algorithm is verified by applying actual data from a power system monitoring platform. The 
results show that in the vicinity of sample point 88, the dissolved gas, upper oil temperature, and 
winding temperature data are not within the normal range of intervals, and it is presumed that the arc 
discharge phenomenon. Furthermore, the average correct fault diagnosis rate of 100 diagnoses of the 
transformer fault diagnosis model proposed in this paper is 0.917, and the mean square error of the 
correct rate is 0.018. The proposed model can achieve the prediction of the accident early warning, to 
prevent further expansion of the accident.

Transformers are widely used in power systems and are the most important equipment in power supply and 
distribution, assuming the role of electrical energy supply in residential electricity, industrial parks, and public 
services1,2. Irregularities such as poor contact of the transformer tap changer, short circuits of winding turn-to-
turn, blockage of oil passages, and cooling system failures can lead to changes in the composition of dissolved 
gases, oil temperature, and winding temperature of the internal transformer3–5. The traditional method of 
transformer governance and condition assessment is mainly based on the analysis of the problem of status quo 
and real-time assessment, observing the transformer operating parameters through the monitoring platform and 
setting alarm thresholds6,7. Maintenance personnel can take appropriate measures after receiving the alarm for 
sudden abnormal events without warning. Inversely, for the relatively gentle changes in the working conditions, 
the performance of the early warning ability is insufficient8,9. Therefore, how to effectively carry out the short-
term state predictive assessment of transformers realize the prediction and early warning, and take preventive 
measures to avoid the occurrence of faults is a key issue in the construction of a strong smart grid10.

There are some conventional approaches to predict the power transformer data, such as the autoregressive 
integral moving average (ARIMA)11,12, random walk (RW)13, generalized autoregressive conditional 
heteroscedasticity (GARCH)14,15 and vectorial autoregression (VAR)16. These conventional approaches have 
satisfactory prediction performance for linear correlation variables, but they cannot capture the nonlinear 
characteristics of data. Due to the limitations of conventional approaches, plentiful nonlinear artificial 
intelligence and deep learning methods rise in response to the proper time and conditions17–20, and can be 
employed for data prediction based on the time series, such as artificial neural network (ANN)21, support 
vector machine (SVM)22 and recurrent neural network (RNN)23. However, aiming at the problems of gradient 
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explosion and disappearance in RNN, the long short-term memory network (LSTM) has been developed based 
on RNN24,25. The effective message can be extracted through the various gate structures of LSTM and gathered 
in historical data during the training process. In addition, in contrast to LSTM, BiLSTM consists of two layers 
of LSTM, which can take full advantage of both forward and reverse information26. Therefore, it is especially 
suitable for solving data forecasting problems based on the time series. Furthermore, considering that historical 
data contribute differently to data at different points in time, while current neural network models (including 
BiLSTM) contribute equally to each point in time to be predicted, attention mechanisms have been developed27. 
In order to further improve the prediction accuracy of the models, Attention mechanisms are usually introduced 
in deep learning models. Attention mechanisms can obtain valid information and important spatiotemporal 
features from new coding sequences. One of the drawbacks of conventional neural networks is the poor 
scalability due to the complete connectivity of neurons, which is overcome by convolutional neural networks 
(CNN). CNN enhances the efficiency of the algorithm and decreases the number of parameters. Many kinds 
of literature have demonstrated that CNN has the advantage of extraction and reorganization28,29. Therefore, 
based on the advantages of extracting effective information from the Attention mechanism layer and CNN 
capturing the hierarchical structure, it is of great importance to study the combination model to predict the 
power transformer data.

With the application and development of smart grids, transformers are also gradually developing in the 
direction of intelligence30. Transformer online monitoring can provide real-time monitoring of transformer 
operation data. Through the processing and analysis of big data, transformer failure can achieve early discovery 
and early treatment, which is conducive to solving the problem of transformer condition evaluation and 
prediction31. Therefore, judging and evaluating the transformer status based on data prediction and data 
mining offers a different approach to online monitoring of transformer faults. Multi-source data fusion and data 
extraction is an advanced data technology for data-driven insights and data correlation analysis, i.e. identifying 
the relationships, trends, and linkages between massive and complicated datasets32. Multiple factors hamper 
the modeling and analysis of their interaction and complex relationships with the creation of data sources for 
knowledge acquisition and, eventually, the process of decision finding. Consequently, leveraging the intellectual 
properties of models that can handle massive and sophisticated datasets can lead to more acceptable results. 
A wide range of investigations in the last two decades have taken advantage of the possibilities offered by data 
excavation techniques in diverse fields, such as prediction of atmospheric pollutant levels33, prediction of the 
optical depth of aerosols34, and mapping of subsidence susceptibility35.

Apriori is a powerful approach based on information retrieval. It has been deployed for application in 
learning exploration and forecasting, such as wind speed36, landslides37 and road accidents38. Research in the 
area of smart diagnostics for power devices typically utilizes various methods of machine learning, such as 
ANN, Support Vector Machines (SVM), and Random Forests (RF), as well as data exploration techniques, such 
as Boosted Generalized Additive Models (BGAM), which seek to determine correlations through modeling the 
mathematical relationships among various performance properties39–42. In spite of the established performance 
of these techniques, they are not able to deliver connection patterns between the events and the contributory 
factors. Thus, the approaches are not universal, and for implementation in other areas, complicated parameters 
need to be reassigned and re-run. The primary strength of the Apriori approach is that, on the basis of the 
patterns it produces for an occurrence, it is feasible to extrapolate these patterns to similar occurrences and 
detect associations without having to re-run the procedure. The Apriori methodology, a powerful rule-based data 
exploration technique, is deployed for the first time in the current work to detect faults through the detection of 
association patterns by analyzing the complicated behavior of various factors in the transformer load rate and 
the top oil layer, winding temperature and fusion indices of the gas components. Hence, concrete decisions can 
be undertaken to enhance the applicability of transformer fault analysis methods by reducing handling costs, 
decreasing data demands, and eliminating associated problems.

How to play the role of data mining methods to support the stable operation of transformers based on the 
means of online monitoring of data, how to realize the intelligent diagnosis of transformer operation status by 
using the constantly changing operation data, as well as to realize the predictive assessment and warning of 
transformers are still the outstanding issues of the intelligent operation of transformers. To the best knowledge 
of the authors of this paper, there are no works of literature on the application of the intelligent fault diagnosis of 
transformers based on multi-source data fusion and data mining. Given the context discussed, the contribution 
of this paper is fourfold: 

	(1)	� Intelligent fault diagnosis of the transformer based on multi-source data fusion and data mining is modeled 
to realize the stable operation of the transformer under different operating conditions by predictive assess-
ment and early warning.

	(2)	� The components of dissolved gas, upper oil temperature, winding temperature, and load rate of the trans-
former are selected as state characteristic parameters, and data fusion is performed on the multiple compo-
nents of dissolved gas of the transformer.

	(3)	� The state characteristic parameters of the transformer are predicted by CNN-BiLSTM-Attention to ensure 
the basis of data application and data accuracy in the predictive evaluation of the power transformer.

	(4)	� The correlation analyses of dissolved gas composition, upper oil temperature, and winding temperature 
under different load rates are achieved by multi-source data fusion and Apriori correlation analysis.The 
remainder of the paper is organized as follows. Section  “Transformer state characteristic parameter se-
lection and data fusion” gives the transformer state characteristic parameter selection and data fusion. 
Section  “Data prediction” deploys the data prediction model based on CNN-BiLSTM-Attention fusion. 
Section “Intelligent fault diagnosis of transformers based on correlation analysis” further proposes the in-
telligent fault diagnosis of transformers based on correlation analysis. In “Experimental results” Section, 
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experimental results are investigated to demonstrate the proposed method. Section “Conclusions” draws 
the main conclusions.

Transformer state characteristic parameter selection and data fusion
In this paper, the condition assessment of the transformer is proposed to be related to the composition of 
dissolved gases in the transformer, the upper oil temperature, the winding temperature, and the load rate, 
where the composition of the transformer oil mainly contains H2, CH4, C2H2, C2H4, C2H6, CO and CO2
. The documented basis for fault diagnosis of dissolved gas in transformer oil mainly includes GB/T 7252-2001 
Guidelines for Analysis and Judgement of Dissolved Gas in Transformer Oil and other related standards or 
guidelines. These documents provide the framework of transformer fault diagnosis based on dissolved gas 
analysis and the corresponding fault judgment basis. The content in the oil mainly includes H2, CH4, CO, CO2
, C2H6, C2H4, C2H2 and other gases. Different types of faults produce different changes in gas composition 
and content. Therefore, The data fusion of multiple compositions of transformer dissolved gases, the upper oil 
temperature, and the winding temperature are used as the characteristic parameters for condition assessment 
in this paper.

The multiple components of the transformer dissolved gas are first normalized and the j-th component pij  
on the t-th time scale after normalization can be expressed as:

	
ptj = vtj/

m∑
j=1

vtj � (1)

where vtj  denotes the j-th component on the t-th time scale before normalization.

The entropy value ej  of the j-th component can be denoted as:

	
ej = −K

m∑
j=1

(
pij × ln pij

)
� (2)

where K = 1/lnm. If pij = 0, then lim
pij →0

pij ln pij = 0.

Thus, the entropy weights can be expressed as follows.

	
wj = 1 − ej/

m∑
j=1

(1 − ej)� (3)

The expected value E of the weights is obtained by adaptive optimization, which can be defined as:

	
E =

m∑
j=1

wjvtj � (4)

A prediction error exists when the actual value REA and the predicted expected value are not equal, then the 
prediction error can be shown as follows.

	
ERR = 1

2

m∑
j=1

(REAj − Ej)2� (5)

where ERR indicates the prediction error between the actual value and the predicted expected value.

The weights are continuously adjusted by using an error gradient descent algorithm, then the adjusted values of 
weights can be defined as:

	
∆wj = −η

∂ERR

∂wj
� (6)

where the negative sign indicates a gradient decrease and η is the scaling factor.
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)
∂

∂wj

(
REAj − Ej

)

=
m∑

j=1

(
REAj − Ej

)
∂

∂wj

(
REAj − wjzj

)

=
m∑

j=1

[(REAj − Ej) × (−zj)]

� (7)

Therefore, based on the adjusted values of weights, the weights can be updated by iteration:

	 wj = wj−1 + ∆w� (8)

The dissolved gas index on the t-th time scale is:

	 Ft=w1 × νt1 + w2 × νt2 + · · · wm × νtm� (9)

Data prediction
The network structure of the data prediction model based on CNN-BiLSTM-Attention fusion is shown in Fig. 1. 
For the input data, firstly, the longitudinal feature extraction module with convolutional layer as the core is 
passed, and on the basis of this, the horizontal feature extraction module with BiLSTM network as the core is 
passed. These two modules are cascaded back and forth to fully explore the data features from both longitudinal 
time points and horizontal time series perspectives. By adding the attention mechanism, the model pays more 
attention to the feature change pattern of the data near the moment of fault occurrence. Compared with the 
complex deep learning network structure, the model has a simple structure and faster speed, which can achieve 
timely and accurate data prediction.

CNN network
CNN is a deep learning network with a convolutional structure that extracts detailed features of data and is 
commonly used in the field of image classification. In the longitudinal feature extraction module, each CNN 
layer includes three computations: convolution, normalization, and activation function. Taking the winding 
temperature data as input, the formula for the convolution operation can be defined as:

	
zl

j =
m∑

i=1

zl−1
j ∗ kl

ij + bl
j , j = 1, . . . , n� (10)

Fig. 1.  Network structure of CNN, BiLSTM and Attention model.

 

Scientific Reports |         (2025) 15:7606 4| https://doi.org/10.1038/s41598-025-91862-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


where zl
j  represents the feature vector of the j-th feature surface of the convolutional output, zl−1

j  represents the 
winding temperature signal of the i-th input feature surface, kij  represents the parameter of the j-th convolution 
kernel connected to the i-th input feature surface, and bl

j  represents the bias of the j-th convolution kernel.

Convolution is able to extract linear features of the data by performing a linear computation of multiplying and 
summing the elements of the input data with a convolution kernel, while the convolution operation moves over 
the input sequence by sliding the convolution kernel in a way that captures structural features of local patterns 
in the input data.

As the model is trained, the distribution of data will be shifted. Therefore, normalization is used to avoid the 
problem of gradient disappearance caused by the data falling into the saturation region of the activation function 
and to speed up the convergence of the model. The normalization formula is as follows:

	
zLN = z − E(z)√

V ar(z) + ϵ
× α + β� (11)

where z is the result of the convolution operation on the winding temperature, E(z) is the mean, Var(z) is the 
variance, ϵ is a small amount greater than 0 to prevent the denominator from being zero, which is generally taken 
as 10−5, α and β are trainable parameters.

The essence of the activation function is to perform a nonlinear transformation of the input data to extract the 
nonlinear features of the data and increase the fitting ability of the network. The activation function used in this 
paper is the ReLU function:

	
x = Re LU(zLN ) =

{
zLN if zLN ≥ 0
0 if zLN < 0 � (12)

Compared with other activation functions, the ReLU function solves the problem of vanishing gradient on 
positive intervals. In addition, since it only needs to judge whether the input is greater than zero, its computational 
speed and convergence speed are faster, which lays the foundation for the model to be able to achieve data 
prediction quickly. The feature vectors are passed into the pooling layer, which calculates the average value of the 
data for each output channel, increasing the robustness of the model and reducing the number of parameters, 
which prevents model overfitting and speeds up model convergence. The next flattening layer unfolds the data of 
each convolutional channel in one dimension for the transition between CNN and BiLSTM.

BiLSTM network
The BiLSTM network is a variant of the LSTM network and is formed by combining the forward LSTM network 
and the backward LSTM network. LSTM network is an improvement of Recurrent Neural Network (RNN), 
which improves the short-term memory problem of RNN due to the disappearance of gradient, which causes the 
more distant information to have almost no effect on the current moment by adding three special gate structures 
and memory units. The LSTM unit structure is shown in Fig. 2.

The input set is {x1, x2, . . . , xt}, where xt = {xt,1, xt,2, . . . , xt,k}, which denotes the k-dimensional 
vector data at time t. The forgetting gate ft, the candidate state of the memory cell c̃t, the input gate it, the state 
of the memory cell ct, the output gate ot and the hidden layer output value ht can be expressed as follows.

Fig. 2.  LSTM unit structure.
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


ft = σ (Wf xf + Uf ht−1 + bf )
c̃t = tanh (Wcxt + Ucht−1 + bc)
it = σ (Wixt + Uiht−1 + bi)
ot = σ (Woxt + Uoht−1 + bo)
ct = ft ⊗ ct−1 ⊕ it ⊗ c̃t

ht = ot ⊗ tanh (ct)

� (13)

where Wf  is the weight matrix of the oblivious gate, bf  is the bias of the oblivious gate, σ and Tanh denote 
the sigmoid and hyperbolic tangent activation function, Wc, Wi, bc and bi denote the weight matrix and bias 
corresponding to the candidate state c̃t and the input gate it, respectively, Wo and bo are the weight matrix and 
bias of the output gate Ot, ⊕ and ⊗ denote the add and multiply, respectively.

In addition, the activation functions of σ and Tanh can be shown as:

	 σ(x) =1/ (1 + exp(−x)) � (14)

	 Tanh(x) = (exp(x) − exp(−x)) / (exp(x) + exp(−x)) � (15)

From the above, it can be seen that the network parameters of LSTM are trained on the data in the order from 
front to back, which is low utilization of the data and cannot fully extract the intrinsic characteristics of the data 
in the time series. BiLSTM network combines forward LSTM and backward LSTM, which can simultaneously 
extract the forward and backward historical transverse features of the data, and further explore the intrinsic 
connection between the current data and the past and future data, so as to improve the utilization rate of the data 
and the prediction accuracy of the model. The structure of the BiLSTM network is shown in Fig. 3.

The hidden layer output value ht of BiLSTM consists of forward vector 
−→
ht  and inverse vector 

−→
ht , where the 

forward vector and inverse vector output are:

	
−→
ht =−−−−→

LSTM(ht−1, xt, ct−1), t ∈ [1, T ] � (16)

	
←−
ht =←−−−−

LSTM(ht+1, xt, ct+1), t ∈ [T, 1] � (17)

Therefore, the output of BiLSTM at time t can be expressed as:

	 yt = σ(Wy · [h⃗t, ht] + by)� (18)

where Wy  and by  are the weight matrix and bias terms, respectively.

Fig. 3.  BiLSTM structure.
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The forward transmission layer extracts the forward history of faults in the direction of the time series, from front 
to back. The backward transmission layer traces the historical feature correlations of the faults from backward 
to forward in the reverse direction of the time series. By fusing the two features, the horizontal features of the 
data are obtained.

Attention mechanism
The Attention mechanism is an idea based on human visual attention that assigns different weights to different 
input features to enhance important features and avoid irrelevant information from influencing the final result, 
thus improving the performance and effectiveness of the model. The Attention mechanism is depicted in Fig. 4. 
Specifically, the implementation of an Attention mechanism typically involves the following steps.

Step 1 A set of query vectors y = [y1, y2, . . . , yn], is obtained by encoding the input sequence q.
Step 2 Subsequently, using the scoring function s, the expression can be expressed as:

	 eij = tanh(W1 ∗ hi + W2 ∗ hj + b)� (19)

where hi and hj  are the hidden layer states, eij  indicates the correlation between the i-th state and the j-th state, 
W is the weight, b represents the offset vector.

Step 3 Then, the Softmax function is used for normalization to convert the value of each correlation into a 
probability weigh ai, which can be calculated as follows:

	
aij = softmax (eij) = exp(eij)∑

j
exp(eij) � (20)

where aij  is the attention weight of j to i, and 
∑

j
aij = 1.

Fig. 4.  Attention mechanism.
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Step 4 The final Attention output value Hi is calculated from the weight coefficients aij  input vector hj  , which 
is shown as following:

	
Hi =

∑
j

aij ∗ hj � (21)

Intelligent fault diagnosis of transformers based on correlation analysis
Based on the load rate of the transformer, the transient stability of the transformer is identified through the 
multivariate data correlation analysis of the composition of dissolved gas, upper oil temperature, and winding 
temperature, so as to avoid the situation of leakage and misjudgement of a single data source. Through the 
correlation analysis of multivariate data, the causal pairs formed by the transformer load rate, the composition 
of dissolved gases, the temperature of the upper layer of oil, and the temperature of the windings are taken into 
account, and the correlation rules of support and confidence are used to determine the data ranges corresponding 
to the correlated data.

The data is divided into n intervals based on the maximum and minimum values of the composition of 
dissolved gases, upper oil temperature, winding temperature, and load rate data of the transformer, which can 
be expressed as:

	




GA
∆ = GA

max − GA
min/n

OB
∆ = OB

max − OB
min/n

W C
∆ = W C

max − W C
min/n

L∆ = Lmax − Lmin/n

� (22)

where load rate L = (Sreal/Srated) × 100%, Sreal represents the apparent power, Srated denotes rated capacity 
of transformer.

The intervals of the composition of dissolved gases, upper oil temperature, winding temperature, and load rate 
for the transformer can be shown as follows:

	




[Gmin, Gmin + G∆] , [Gmin + G∆, Gmin + 2G∆] , · · · ; [Gmin + (n − 1)G∆, Gmin + nG∆]
[Omin, Omin + O∆] , [Omin + O∆, Omin + 2O∆] , · · · ; [Omin + (n − 1)O∆, Omin + nO∆]
[Wmin, Wmin + W∆] , [Wmin + W∆, Wmin + 2W∆] , · · · ; [Wmin + (n − 1)W∆, Wmin + nW∆]
[Lmin, Lmin + L∆] , [Lmin + L∆, Lmin + 2L∆] , · · · ; [Lmin + (n − 1)L∆, Lmin + nL∆]

� (23)

In order to facilitate the presentation of the causal pairs of data, the composition of the dissolved gases, the 
upper oil temperature, and the winding temperature intervals may be briefly described as {G1, G2, . . . , Gn}
, {O1, O2, . . . , On} and {W1, W2, . . . , Wn}. Similarly, the interval of the load rate of the transformer is 
abbreviated as {L1, L2, . . . , Ln}.

In addition, the load rate intervals, the dissolved gases, the upper oil temperature, and the winding temperature 
intervals can be matched to form causal pairs of load rate and composition of dissolved gas, upper oil temperature, 
and winding temperature, respectively, which can be expressed as follows.

	

{
[L1, G1] , [L1, G2] , . . . , [L2, G1] , [L2, G2] , . . . , [Ln, Gn]
[L1, O1] , [L1, O2] , . . . , [L2, O1] , [L2, O2] , . . . , [Ln, On]
[L1, W1] , [L1, W2] , . . . , [L2, W1] , [L2, W2] , . . . , [Ln, Wn]

� (24)

Then, calculate the support level Sup and confidence level Con of each causal pair:

	




Sup
(

La ∩ Gb

)
= count

(
La ∩ Gb

)
/NG

Sup
(

La ∩ Ob

)
= count

(
La ∩ Ob

)
/No

Sup
(

La ∩ Wb

)
= count

(
La ∩ Wb

)
/Nw

� (25)

	




Con
(

La ∩ Gb

)
= count

(
La ∩ Gb

)
/count(La)

Con
(

La ∩ Ob

)
= count

(
La ∩ Ob

)
/count(La)

Con
(

La ∩ Wb

)
= count

(
La ∩ Wb

)
/count(La)

� (26)

where La denotes the interval of α-th load rate, Gb, Ob and Wb are the interval of b-th dissolved gas upper oil 
temperature, and winding temperature, respectively, count (La ∩ Gb) represents the number of causal pairs 
belonging to both the a-th load rate interval and the b-th interval of the dissolved gas, NG indicates the total 
number of causal pairs in the set of load rate and dissolved gases, count (La ∩ Ob) represents the number of 
causal pairs belonging to both the a-th load rate interval and the b-th interval of the upper oil temperature, NG 

Scientific Reports |         (2025) 15:7606 8| https://doi.org/10.1038/s41598-025-91862-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


indicates the total number of causal pairs in the set of load rate and the upper oil temperature, count (La ∩ Wb) 
represents the number of causal pairs belonging to both the a-th load rate interval and the b-th interval of 
the winding temperature, NG indicates the total number of causal pairs in the set of load rate and winding 
temperature.

The causal pairs of the dissolved gases in the transformer, the upper oil temperature, and the winding temperature 
need to be greater than or equal to the threshold of minimum support and confidence at the same time, and 
the flowchart of correlation analysis for load rate, dissolved gas, oil temperature of upper layer and winding 
temperature can be shown in Fig. 5.

Experimental results
In this paper, a three-phase oil-immersed amorphous alloy distribution transformer was chosen as the object 
of study in the study of intelligent fault diagnosis of the transformer. The simulation corresponding to the 
proposed model is implemented in MATLAB platform, on a PC with Intel Core i7, 5.4GHz processor, and 32 
GB of memory. The transformer is equipped with a dissolved gas analyzer in oil, and a predictive assessment 
of transformer condition is performed using the actual transformer load factor, the composition of dissolved 
gases, upper oil temperature, and winding temperature from a transformer monitoring platform in this paper. 
The data used are from one sampling point at 15-minute intervals from 1 May 2023 to 31 August 2023 at the 
substation, and the sample of data sets are shown in Fig. 6. This transformer condition predictive assessment 
involves multivariate feature inputs and provides a field application example reference for subsequent studies.

The algorithm of the transformer condition predictive assessment method based on correlation analysis is 
as follows: (1) Data fusion of multiple components of dissolved gases in the transformer is carried out by the 
improved entropy weight method, and the data after fusion with the dissolved gases, the upper oil temperature, 
winding temperature, and load rate are selected as the characteristic parameters for condition assessment. 
(2) Initial training and prediction based on BiLSTM neural network. Select the transformer load rate and the 
dissolved gas, upper oil temperature, and winding temperature data after data fusion as inputs. Divide the 
training set and test set, initialize the input dimension, output dimension, iterations, and activation function 

Fig. 5.  The flowchart for correlation analysis of load rate, dissolved gas, oil temperature of upper layer and 
winding temperature.
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based on experience, supervise the training of the model according to the gradient descent algorithm, and get the 
prediction value of the data. (3) Through the correlation analysis of multivariate data, the transformer load rate, 
the composition of dissolved gas in the transformer, the upper oil temperature, and the winding temperature are 
considered to form the causal pairs, and the correlation rules of support and confidence are used to determine 
the data range corresponding to the correlated data. (4) If the predicted dissolved gas, upper oil temperature, 
and winding temperature are not within the corresponding load ratio interval, the power system monitoring 
platform will issue a warning signal. If the dissolved gas is not in the corresponding interval, you can check the 
data in Table 2 to find the corresponding fault information. (5) For the purpose of evaluating the performance of 
data prediction, the prediction results are evaluated using root mean square error (RMSE), mean absolute error 
(MAE), and the coefficient of determination R2. The RMSE, MAE, and R2 can be computed by the following 
formulas:

	

RMSE =

√√√√
n∑

i=1

(Ypi − Yti)2 /n � (27)

	
MAE = 1

n

n∑
i=1

| Ypi − Yti | � (28)

	
R2 =1 −

∑n

i=1(Ypi − Yti)2/n∑n

i=1(Yti − Yt)2/n
� (29)

where n is the number of samples, Ypi is the i-th predicted value, Yti is the i-th actual value, and Yt is the average 
of the actual values. The closer R2 is to 1, the better the prediction effect of the model is.

Data prediction
In this paper, the BiLSTM neural network uses the sigmoid function as the activation function of neurons. A 
total of 122 days of data from 1st May 2023 to 30th August 2023 were used as the training set, data from 31st 
August 2023 were used as the test set, and the RMSE, MAE, and R2 are used as the evaluation index of data 
prediction. The threshold r and the learning efficiency η of the error gradient are 0.1 and 0.05, respectively, and 
the learning factors decr  and decη  are 0.05 and 0.8, respectively. The training set and the test set are inputted 
into the network after the completion of the training, and the prediction value Ytrain of the training set and the 

Fig. 6.  The sample of data sets.
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prediction value Ya of the test set are computed to obtain the training set’s predicted value and the residuals are 
calculated as Ye = Ya − Ytrain.

In order to verify the reliability and superiority of the CNN-BiLSTM-Attention model used in this paper on 
the prediction of the battery charge state of an electric loader, the data of winding temperature is selected for 
prediction analysis, and experimental comparisons are also made with support vector machine (SVM), CNN-
LSTM and CNN-LSTM-Attention models. Using the ten-fold cross-validation method, the dataset is divided 
into ten subsets, nine of which are used as the training set and the remaining one as the validation set in turn, 
and the training is repeated ten times. The prediction results and errors of several models are shown in Table tab.
Prediction errors of different models, and the ten-fold cross-validation results of the CNN-BiLSTM-Attention 
model are shown in Fig. 7. It can be seen that the model used in this paper has an accuracy of up to 0.9998 
and down to 0.9989 in the ten-fold cross-validation experiments, with an average accuracy of 0.9994. It shows 
that the model does not fall into the overfitting state under different data subsets and has some stability. In 
addition, the average MAE of the model proposed in this paper is 0.474% and the average RMSE is 0.586%. 
Compared with the CNN-LSTM model, the MAE and RMSE are improved by 28.07% and 28.80%, respectively, 
and compared with the CNN-LSTM-Attention model, the MAE and RMSE are improved by 14.29 and 15.56%, 
respectively, which are superior to some extent.

Combined with Fig. 7 and Table 1, it can be found that the CNN-BiLSTM-Attention model is significantly 
better than the CNN-LSTM-Attention model. This is because the BiLSTM structure can read the data 
information in the forward and backward direction respectively, mine the intrinsic connection between the 
data, fit the current data, and improve the prediction accuracy. Hence, the proposed algorithm brings together 
the advantages of multiple models and results in the highest accuracy, while at the same time the computational 
speed is relatively slow. In summary, the CNN-BiLSTM-Attention model used in this paper can predict the 
winding temperature data more accurately and has a certain generalization ability. Meanwhile, the CNN-
BiLSTM-Attention prediction model is applied to the composition of dissolved gas, upper oil temperature, and 
winding temperature in this paper.

Algorithm MAE RMSE R2 Training time (s)

BP 2.721 23.073 0.9547 35

SVM 5.423 6.259 0.9612 47

LSTM 0.717 0.891 0.9785 51

CNN-LSTM 0.659 0.823 0.9871 75

CNN-LSTM-Attention 0.553 0.694 0.9986 88

CNN-BiLSTM-Attention 0.474 0.586 0.9994 102

Table 1.  Prediction errors of different models.

 

Fig. 7.  The result of the ten-fold cross-validation.
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Intelligent fault diagnosis
Upper oil temperature and winding temperature can directly reflect the oil overheating and winding overheating 
in the transformer. The composition of dissolved gases in the oil is a condition assessment index reflecting the 
specific faults inside the transformer. The transformer is in normal operation, and the dissolved gases in the oil 
mainly include O2 and N2. When the transformer fault occurs, the composition and concentration of dissolved 
gases in the oil will change, and the characteristic gases of the fault may include H2, CH4, C2H2, C2H4, C2H6, 
CO and CO2. Different fault types correspond to different components of the characteristic gas. The main types 
of transformer faults and the corresponding gas composition are shown in Table 2, and the residual values of gas 
composition prediction and warning values are shown in Table 3.

Through the correlation analysis of the transformer load rate and the data of transformer oil dissolved gas, 
upper oil temperature, and winding temperature, the correspondence between the current load rate and the 
data of dissolved gas, upper oil temperature, and winding temperature is obtained, and six data correspondence 
intervals are divided at an environment temperature of 10 °C, as shown in Table 4. Based on the data in Table 4, 
the curves of dissolved gas, upper oil temperature, and winding temperature data are obtained under different 
loads, so as to carry out a short-term predictive assessment of the transformer. The three-phase winding 
temperature rise intervals and predicted temperature rises are shown in Fig. 8.

As can be seen from Fig. 8, in the vicinity of sample point 88, the dissolved gas, upper oil temperature, and 
winding temperature data are not within the normal range of intervals and have not returned to the normal 
range until sample point 96, then it indicates that there may be a fault within the transformer. At the same 
time, through the detection of gas composition found that C2H2 and C2H4 exceeded the warning value, and 
it is presumed that the arc discharge phenomenon. The power monitoring platform sends out an early warning 
message and issues a notification for timely overhaul and maintenance. In addition, the cause of the transformer 
fault was determined by realizing the field test on site, and the fault type was the same as that detected by the 
method proposed in this paper. Through the field test to confirm the cause of the discharge and oil filtration, 
degassing treatment processing, to achieve the prediction of the accident early warning, to prevent further 
expansion of the accident.

From the analyses in Table 4 and Fig. 8, it can be seen that the composition of dissolved gases, the upper oil 
temperature, and the winding temperature of the transformer are affected at different load rates. In addition 
to this, the stable operation of the transformer is also affected by the environment temperature. The standard 
regulations for oil-immersed transformer oil in direct contact with the atmosphere of the top oil temperature rise 
shall not exceed 55 °C, and the average temperature rise of the windings shall not exceed 65 °C. The transformer 
will often work at 80–1000 °C, long-term in the role of higher temperatures will gradually age brittle, in the 
range of 80–140 °C, the transformer temperature rises 8 °C for each, and the shortening of its insulation life of 

Load rates Dissolved gas index Upper oil temperature (°C) Winding temperature (°C)

0 ≤ L ≤ 12.610 [0.805, 0.837] [33.700, 41.016] [45.700, 53.017]

12.610 ≤ L ≤ 25.230 [0.805, 0.837] [33.700, 41.016] [45.700, 53.017]

25.230 ≤ L ≤ 37.840 [0.837, 0.868] [41.016, 48.333] [45.700, 60.333]

37.840 ≤ L ≤ 50.450 [0.868, 0.900] [41.016, 48.333] [45.700, 67.651]

50.450 ≤ L ≤ 63.070 [0.900, 0.963] [41.016, 70.283] [45.700, 67.651]

63.070 ≤ L ≤ 75.680 [0.900, 0.994] [48.333, 77.600] [53.017, 67.651]

Table 4.  Corresponding interval for correlation analysis under the different load rates.

 

Constituent Prewarning value μL/L Constituent Prewarning value μL/L

H2 25.20 C2H6 15.1

CH4 11.40 CO 315

C2H2 1.55 CO2 1850

C2H4 5.60

Table 3.  The residual values of gas composition prediction and warning values.

 

Fault type H2 CH4 C2H2 C2H4 C2H6 CO CO2

Partial discharge
√ √

– – – – –

Arc discharge
√ √ √ √

– – –

Upper oil temperature 140 °C –
√ √ √ √

– –

Solid material – – – – –
√ √

Table 2.  Fault type and corresponding gas composition.
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about half. Normal environment amorphous alloy transformer is in rated operating conditions, the temperature 
rise will not exceed the limit value, but due to the weather is too cold or hot, will cause the transformer to run 
in harsh environments, so that the oil-immersed self-cooling transformer’s cooling capacity is weakened, the 
cooling effect is reduced. Therefore, when the amorphous alloy transformer operates in harsh environmental 
conditions, the temperature rise of the transformer’s high and low-voltage windings should be very careful.

In order to verify the validity of the model under different operating conditions of the transformer, the 
amorphous alloy transformer temperature field under different environment temperatures is also studied, 

Fig. 8.  Intelligent fault diagnosis of transformer based on multi-source data fusion and correlation analysis.
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respectively, to analyze the corresponding interval for correlation analysis under − 10 °C, 0 °C, 10 °C, 20 °C, 30 
°C, 40 °C environment temperatures at 50% load rate in Table 5.

Additionally, this section also analyzes the temperature field distribution of high and low-voltage windings 
under − 10 °C, 0 °C, 10 °C, 20 °C, 30 °C, 40 °C environment temperatures. Figure 9 gives the temperature rise 
of high and low voltage transformer winding under different environment temperatures, as can be seen from 
the figure, the environment temperature within 35 °C, the high and low voltage winding temperature rise rises 
gently and does not exceed 65 °C temperature rise limit. When the environment temperature is more than 35 °C, 
the slope of the curve increases sharply, the high and low-voltage winding temperature rise increases markedly 
and has even exceeded the 65 °C limit value of the temperature rise, the normal operation of the transformer and 
winding insulation pose a great threat to the normal operation of the transformer, so the transformer is easy to 
be damaged when running in a high-temperature environment, especially when the environment temperature 
exceeds 35 °C.

Comparative analysis of fault diagnosis for multiple models
Five mainstream supervised learning models, namely, Linear Discriminant Analysis (LDA), K-Nearest 
Neighbour Algorithm (KNN), SVM, Random Forest (RF), and gradient boosting decision tree (GBDT), are 
selected to be trained under empirical parameters, and the test results are compared with the proposed model, 
and the results are shown in Table 6. As shown in the table, the diagnosis accuracy of the proposed model is the 
highest among the six models.

In order to demonstrate and illustrate the computational stability of the proposed method in this paper, 100 
consecutive random samples of the sample set are performed, each time 20% of the samples are taken as the test 
set, and the remaining 80% of the samples are taken as the training set. The obtained training samples are used 
to train different models and the diagnosis results are counted and the results are shown in Table 7. As can be 
seen from the table, the average correct fault diagnosis rate of 100 diagnoses of the transformer fault diagnosis 
model proposed in this paper is 0.917, and the mean square error of the correct rate is 0.018. Compared with five 
mainstream supervised learning models, the transformer fault diagnosis model proposed in this paper has the 
highest correct rate, and the mean square error of the correct rate is smaller compared with the RF and GBDT 
models which have higher accuracy, which indicates that the method proposed in this paper is able to stably 
maintain the computational output with high accuracy.

Fig. 9.  The temperature rise of high and low voltage transformer winding under different environment 
temperatures.

 

Environment temperatures (°C) Dissolved gas index Upper oil temperature (°C) Winding temperature (°C)

− 10 [0.356, 0.386] [29.856, 30.003] [39.310, 39.635]

0 [0.508, 0.518] [39.017, 39.255] [39.268, 39.473]

10 [0.627, 0.634] [48.135, 48.266] [50.364, 50.471]

20 [0.756, 0.772] [59.024, 59.318] [61.087, 61.352]

30 [0.883, 0.904] [71.267, 73.586] [83.281, 85.636]
40 [0.991, 0.996] [95.558, 98.215] [101.0386, 103.659]

Table 5.  Corresponding interval for correlation analysis under the different environment temperatures.
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Conclusions
In this paper, a novel intelligent fault diagnosis of transformers based on multi-source data fusion and data 
mining has been developed to figure out issues of faults and realize the prognostics and health management under 
multiple operation conditions in the power transformer. Above all, an improved entropy weighting method is 
employed to achieve the data fusion of various components for transformer dissolved gases. Then, the load rate, 
upper oil temperature, winding temperature data, and the fusion indices of dissolved gas components in the 
transformer are predicted by the combination of a bidirectional long short-term memory network, attention 
mechanism, and convolution neural network. In addition, for the purpose of the predictive assessment of the 
transformer state, Apriori correlation analysis based on the support and confidence levels, is performed on the 
transformer load rate, upper oil layer, winding temperature, and fusion indices of gas components. The specific 
conclusions to be drawn are the following:

	(1)	� Aiming at the problems of transformer operating conditions and loads, complicated parameters, and diffi-
culty in effectively achieving the state predictive assessment, the proposed method is the method based on 
the data prediction and correlation analysis method to assess the health state of the transformer. Compared 
with past research, the proposed method can include a variety of characteristic parameters. Effective match-
ing and correlation analysis of the characteristic parameters under different load rates of the predicted data 
is based on real-time assessment to improve early warning capability. The results show that in the vicinity of 
sample point 88, the dissolved gas, upper oil temperature, and winding temperature data are not within the 
normal range of intervals, and it is presumed that the arc discharge phenomenon.

	(2)	� By using the method of multi-source data fusion and data mining, the operating state of the transformer 
can be preliminarily judged by the data change of upper oil temperature, winding temperature data, and 
the fusion indices of dissolved gases components, which provides a simple and efficient intelligent online 
monitoring method for transformers that have been put into use, and also an effective method to identify a 
single phase fault. The experiment result shows that the transformer is easy to be damaged when running in 
a high-temperature environment, especially when the environment temperature exceeds 35 °C.

	(3)	� Compared with the method of setting thresholds, the method proposed in this paper can sense the oper-
ating situation of the equipment in advance and take corresponding measures to reduce the incidence of 
accidents and improve the reliability of the power supply. Compared with five learning models, i.e., LDA, 
KNN, SVM, RF, and GBDT, the transformer fault diagnosis model proposed has the highest correct rate, 
and the mean square error of the correct rate is smaller. The average correct fault diagnosis rate of 100 diag-
noses of the transformer fault diagnosis model proposed in this paper is 0.917, and the mean square error 
of the correct rate is 0.018.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author (Jingping Cui) on reasonable request.
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