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The increasing reliance on global navigation satellite systems for diverse applications necessitates 
the development of efficient satellite selection methods to optimize positioning accuracy and system 
performance. In particular, low-cost global navigation satellite systems receivers face challenges in 
managing data from multiple visible satellites, often resulting in suboptimal performance due to high 
geometric dilution of precision values. Effective satellite selection is crucial for improving the accuracy 
and reliability of positioning solutions in these systems. Quantum computing and machine learning 
provide promising solutions by using data patterns for complex optimization problems. This work 
proposes the quantum convolutional autoencoder-based optimal satellite selection method. This new 
satellite selection method examined the data collected from the receiver located at latitude 16.33° N 
and longitude 80.62° E, collected on March 10, 2022. The main aim is to enhance the performance 
of low-cost receivers by minimizing the geometric dilution of precision values and optimizing the 
tetrahedron volume function. Quantum convolutional autoencoders process the satellite data to 
balance the navigational solution’s computational burden and the navigational algorithm’s accuracy. 
The model aims to identify the most optimal satellites for positioning by setting geometric dilution 
of precision as the cost function. The QCAE-based method achieves a CEP of 1.384 m and SEP of 
1.759 m for four selected satellites, compared to 5.937 m and 6.691 m for PSOSSM. For nine satellites, 
QCAE achieves a CEP of 1.287 m and SEP of 1.713 m, while PSOSSM results in 5.725 m and 6.385 m, 
respectively. Additionally, QCAE reduces computations by over 64%, requiring 730 multiplications 
and 713 additions, compared to 2034 multiplications and 2017 additions for all visible satellites. This 
proposed approach provides the optimal navigation solution for cost-effective implementations in a 
real-time environment. This research provides new insights into satellite selection strategies using 
machine learning approaches.

Keywords  Satellite selection, Quantum convolutional autoencoder, GNSS, Combined 
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Global Navigation Satellite Systems (GNSS) are useful for navigation, mapping, and surveying. The effectiveness 
in terms of accuracy of GNSS navigation depends on the position of satellites at the same time it is very important 
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to select optimal subset of satellites to ensure high positioning accuracy while managing computational efficiency 
for low cost GNSS receiver applications. As GNSS technology advances and the number of satellites increases, 
traditional methods of satellite selection face significant challenges related to computational complexity and 
real-time performance. Traditional methods for satellite selection predominantly involve mathematical and 
geometric criteria. The basic navigation solution, least squares approach consists solving a system of linear 
equations to estimate the receiver’s position based on satellite observations.

Though it is effective, the least squares method becomes computationally intensive with an increasing 
number of satellites. As the volume of geometry grows, the computational burden also increases and that affects 
the system’s ability to deliver real-time performance1–3. The least squares method is proved as a best method to 
minimize the sum of squared residuals between observed and predicted measurements, but the complexity of 
mathematical calculations can impede its practical application in high-density satellite environments4,5. GDOP 
decides the impact of satellite geometry on positioning accuracy, with lower GDOP values indicating better 
satellite configurations. Similarly, maximizing tetrahedron volume aims to select satellites that provide the 
most favourable geometric arrangement for accurate positioning6,7. However, these methods are not suitable 
when dealing with dynamic satellite configurations as the computational efficiency will increase the burden 
on navigational solution as well as on the GNSS receiver. They focus primarily on accuracy rather than the 
computational burden associated with processing of information associated with the satellites8,9. Various 
optimization algorithms like Genetic Algorithms (GAs) and Particle Swarm Optimization (PSO) have been 
explored. Genetic Algorithm utilises evolutionary techniques to iteratively select the best satellite configurations 
based on fitness functions, while PSO, inspired by swarm intelligence, optimizes configurations by evaluating 
potential solutions and adjusting based on collective swarm behaviour10–13. Although these algorithms provided 
the improved performance, but their effectiveness is limited by their inability to fully adapt to real-time changes 
in satellite visibility and the complexity of the optimization process14,15. The integration of machine learning, 
particularly quantum machine learning methods, introduces a new approach in satellite selection. Convolutional 
Autoencoders (CAEs) and Quantum Convolutional Autoencoders (QCAEs) proved their potential in modelling 
complex relationships and making predictions based on large datasets. Generally, QCAEs use the quantum 
computing features to handle high-dimensional data efficiently. By processing data through quantum layers, 
QCAEs can optimize satellite selection while maintaining high positioning accuracy16,17. In general, QCAEs 
used to learn from historical data to understand the dynamic conditions and to provide a flexible and efficient 
approach to satellite selection. Recent research studies are explaining the performance of quantum machine 
learning techniques in classification tasks and these are outer performing the traditional methods and 
optimization techniques in both accuracy and computational efficiency18. Neish et al.19 explored quantum-
resistant authentication algorithms for satellite‐based augmentation systems for predicting satellite visibility, 
achieving notable performance improvements. Duan et al.20 explained the quantum positioning, showing that 
quantum machine learning methods could provide superior results compared to conventional approaches in 
various scenarios. These studies underscore the potential of quantum machine learning in enhancing GNSS 
performance, addressing both accuracy and computational challenges. Further advancements have been 
made in this field. Calderaro et al.21 explored the quantum communication from global navigation satellite 
systems, focusing on reducing computational complexity while maintaining high accuracy. Feng, explained the 
quantumm navigation procedures and the application of quantum techniques to GNSS navigation, highlighting 
the advantages of these methods in addressing computational challenges22. Lesouple et al.23 investigated the 
use of quantum reinforcement learning for positioning and navigation applications, demonstrating improved 
performance over traditional optimization methods. These contributions show the effectiveness of quantum 
machine learning in GNSS navigation. The use of QCAEs may give the feasible solution for multi-constellation 
satellite navigation systems. QCAEs can learn from large datasets and adapt to dynamic satellite visibility 
changes, making satellite selection flexible and efficient. Unlike older approaches, QCAEs can reduce satellites 
needed for precise positioning without compromising performance. QCAEs can choose appropriate satellite 
subsets to maintain positioning accuracy by training on past data. This method decreases computational load 
and maintains positioning performance with all visible satellites. Based on this foundation, the proposed 
research implements QCAEs for satellite selection in GNSS systems to minimize computational burden and 
maintain performance. The study will use data from a GNSS receiver tracking GLONASS and GPS satellites to 
show that optimal satellite selection using QCAEs can achieve the same positioning performance as all visible 
satellites. Finally, adding QCAEs to satellite selection processes advances GNSS technology. QCAEs improve 
satellite selection efficiency and flexibility by addressing the constraints of previous approaches and optimization 
algorithms.

This work introduces a Quantum Convolutional Autoencoder (QCAE)-based satellite selection method 
that optimizes geometric dilution of precision (GDOP). The primary distinguishing factor of the Quantum 
Convolutional Autoencoder (QCAE)-based satellite selection method is its superior capability to maximize 
both the geometric dilution of precision (GDOP) and the Tetrahedron Volume function compared to current 
methodologies. Conventional approaches typically concentrate on a certain optimization metric or entail 
increased processing complexity. Conversely, the QCAE technique utilizes the intrinsic parallelism of quantum 
computing to alleviate the computational load while preserving or enhancing positioning precision. This 
method not only reduces GDOP but also facilitates effective satellite selection, rendering it very beneficial for 
economical GNSS receivers. This work also pioneers the use of quantum computing techniques like QCAE 
to pick satellites, presenting a possible solution for complicated GNSS optimization challenges. The suggested 
technique is validated with real-world GNSS data from a receiver at 16.33° N and 80.62° E on March 10, 2022, 
proving its practicality and performance enhancement. The QCAE-based technique balances computational 
burden and performance, making real-time satellite selection cost-effective.
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Further, section “Methodology” describes the methodology, including how the QCAE-based system processes 
GNSS data to reduce GDOP and optimize satellite selection. Section “Results” analyses the experimental results, 
which compare the suggested method’s accuracy, specificity, and computational efficiency to that of current 
procedures. Finally, section “Conclusion” concludes by reviewing the advantages of the proposed method and 
noting potential future applications with respect to multi-constellation GNSS systems.

Methodology
In general, to compute position, a GNSS receiver calculates its distance to visible satellites24. The receiver 
calculates the distance by measuring the time δt, it takes to travel from satellite to receiver and this distance is 
called as pseudo-range (P) in Eq. (1).

	 p = δt.c� (1)

Where, ‘c’ is the speed of light in free space. The range between user and ith satellite is calculated as given in 
Eq. (2).

	 p =
√

(Xsati − X)2 + (Ysati − Y )2 + (Zsati − Z)2� (2)

Where, (X, Y, Z) indicates the user position and (Xsati, Ysati, Zsati) gives the ith satellite position. The observed 
pseudo-range is the combination of modelled pseudo-range, process noise and system errors are expressed in 
Eq. (3).

	 pobserved = pComputed + Noise� (3)

= p (x, y, z, t) + v
The residual observation is given in Eq. (3), difference between the pobserved and pComputed can be represented 

in matrix form for ‘m’ number of satellites as shown in Eq. (4)
∆P = Pobserved − PComputed
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The Eq. (4) is often written in terms of matrix symbols (b- Residuals, Gd-Design matrix, v-Noise terms) as

	 b = G_d X + v� (5)

Observation matrix G_d is purely a function of the direction to each of the satellites as observed from the 
receiver.

	

Gd =




j1 k1 l1 −1
j2 k2 l2 −1
j3 k3 l3 −1
...

...
...

...
jn kn ln −1


� (6)

Ji, ki and li are three components of satellite Si. A least squares solution is as follows

	 X =
(
Gd

T Gd

)−1
Gd

T b� (7)

The error in estimation depends on residual measurement and clock bias errors and is considered as

	 ∆X =
[
∆rT ∆b

]T � (8)

The covariance of position is given by

	 E = ∆̂X∆̂XT = σ2(
Gd

T Gd

)−1� (9)

The matrix 
(
Gd

T Gd

)−1 represents GDOP matrix and scalar value of GDOP is obtained by taking square root 
of the trace of the GDOP matrix25,26.

	 GDOP =
√

trace
(
Gd

T Gd

)−1� (10)
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The accuracy of least square solution is decided by measurement quality and satellite receiver geometry. 
Measurement quality is investigated by the factor σ2 and geometry is given by values present in design matrix. 
The change of GDOP is always depends on number of satellites. The GDOP is always decreases in a nonlinear 
way when number satellites increase25–33.

And how the number of satellites is affecting the computations involved in a basic positioning navigation 
solution are discussed below. The relationship between the number of multiplications and additions and the 
number of satellites is given below (Eqs. 11 and 12).

Number of multiplications:

	 (1/3) I2
s + (N + 1) I2

s +
(
N2 + N − (1/3)

)
I2

s + 3N � (11)

Number of Additions:

	 (1/3) I2
s + (N + (1/2)) I2

s +
(
N2 + N − (11/6) Is

)
+ 3N � (12)

Where, N represents the number of selected satellites and Is = 3 + S where S is number of navigation systems. If 
the number of satellites used in position calculations increases, the computational burden also increases. Thus, 
navigation computation is related to number of selected satellites. Hence optimal satellite selection is essential 
for low cost GNSS receivers. The proposed technique, QACE, is analysed using data from an epoch on March 
10, 2022, at a location with a latitude of 16.33° N and longitude of 80.62° E. At that epoch the visible satellites 
are Satellite Numbers: 24, 14, 29, 20, 21, R20, R21, R05, R18, R19, R15, 15, 32, R06, 10, R04, 27, the number 
preceding with R is representing the GLONASS satellites. The GNSS receiver at these coordinates can receive 
data from both GPS and GLONASS satellites, as combined constellations enhance positioning accuracy. Each 
satellite provides information such as Satellite ID, Position (latitude, longitude, altitude), Signal strength (SNR), 
and Time of observation. In the data preprocessing stage, the satellite position data needs to be normalized to 
extract features such as Satellite position, SNR, and other relevant parameters. The QCAE model consists of 
quantum convolutional layers that extract spatial features from satellite data and quantum pooling layers that 
reduce dimensionality while preserving essential information. The training process employs the Adam optimizer 
with a learning rate of 0.001, batch size of 32, and 50 epochs. The detailed architecture is described as follows:

The Quantum Convolutional Autoencoder (QCAE) Architecture, as shown in Fig. 1, consists of Encoder 
and Decoder34. The encoder consists of quantum convolutional layer and quantum pooling layer. The quantum 
convolutional layer applies a set of quantum filters to the input data. The output of quantum convolutional layer 
can be represented as

	 Convolution Output = f (W.X + b))� (13)

Where, W represents the quantum convolutional weights, X is the input data and b is the bias term.
The input data matrix for the convolutional layer at the given epoch includes the visible satellites with the 

following Satellite Numbers: 24, 14, 29, 20, 21, R20, R21, R05, R18, R19, R15, 15, 32, R06, 10, R04, 27.

	

X =




x24 y24 z24 SNR24
x14 y14 z14 SNR14
...

x27

...
y27

...
z27

...
SNR27


� (14)

Where x, y & z are the position coordinates and SNR represents the Signal to Noise Ratio.
By combining the most important features identified by the convolutional layer, the Quantum Pooling layer 

lowers the number of dimensions in the data. The output of this layer can be represented as

Fig. 1.  Block diagram of QCAE.
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	 P ooled Output = max ( Convolutional Output)� (15)

The output of the quantum convolutional and pooling layers creates the latent space representation, which is a 
compressed version of the original input that maintains important information. This representation is a lower-
dimensional vector including the important properties required for optimal satellite selection. The latent space 
simplifies the incoming data, making it easier to handle and evaluate. By focusing on important parameters 
include the geometric configuration of satellites, signal strength, and visibility factors like elevation angles, all 
of which are essential for optimizing positioning accuracy, it eliminates duplicated or irrelevant data, increasing 
computing efficiency. The latent space captures the underlying patterns in satellite data, such as geometric 
configurations and signal levels, which are critical to location accuracy. It enables the QCAE to learn the ideal 
satellite configurations for various epochs. Using the latent space representation, the QCAE can determine the 
optimum subsets of satellites (e.g., sets of four or nine satellites) that reduce GDOP while increasing tetrahedron 
volume. This decision is based on compressed features, guaranteeing that the picked satellites deliver the highest 
positioning accuracy with the least computing burden.

The next critical component of the QCAE design is the decoder, which is responsible for reconstructing 
the original input data from the compressed latent space representation. The decoder consists of quantum 
deconvolutional layers and maybe extra layers that expand the latent space representation back to the original 
data dimensions. The decoder’s output is a reconstructed version of the original input data, with the goal of being 
as near to the original as possible. The deconvolutional layer reverses the action of the quantum convolutional 
layer, enlarging the latent space representation back to a higher-dimensional space. It then utilizes a set of learnt 
weights to project the latent features into the original data dimensions.

	 Deconvolution Output = f
(
W ′.Z + b′)� (16)

Where, Z is latent space representation, W’ is deconvolutional weights and b’ is the bias term. The reconstruction 
loss can be calculated as the difference between the original input data and the reconstructed output. Common 
loss functions include Mean Squared Error (MSE) or Mean Absolute Error (MAE)35.

	
Reconstruction Loss = 1

N

i=1∑
N

(Xi − X̂i)
2

� (17)

Where, Xi is the original input data and X̂i is the reconstructed data.
The training of a Quantum Convolutional Autoencoder (QCAE) starts with initializing the weights and 

biases34. In the forward pass, the input data is encoded to produce a latent space representation, which is 
subsequently decoded to reconstruct the original data. The reconstruction loss, which is the difference between 
the original input and the rebuilt output, is calculated next. During the backward pass, backpropagation is used 
to determine the loss gradients in relation to the model parameters.

These gradients are then used to update the model parameters via an optimization algorithm such as Adam 
or SGD, with the learning rate determining the step size for each update. This sequence of forward pass, loss 
calculation, backward pass, and parameter update is repeated iteratively for a set number of epochs or until 
the model converges. The proposed technique employs selection criteria that minimize GDOP and maximize 
tetrahedron volume to choose a subset of satellites. The comparison analysis requires GNSS accuracy measures, 
which are tabulated in Table 1 below.

To evaluate the performance of the proposed method, a novel satellite selection approach based on swarm 
intelligence, namely PSO-based Satellite Selection Method (PSOSSM), was implemented using the Particle 
Swarm Optimization (PSO) principle36–43. The PSOSSM involves six processing phases, which are as follows:

	1.	� Extraction of observed satellites from collected navigation data.
	2.	� Encoding: Binary encoding is preferred in PSOSSM for satellite selection.
	3.	� Initialization of particle population.

CEP (Circular Error Probable) ≈ 0.589 ⋅ σr
Where, σr is the standard deviation of the radial error

SEP (Spherical Error Probable) ≈ 0.526 ⋅ σ
Where, σ is the standard deviation of the 3D position error

2DRMS (2-Dimensional Root Mean Square) =

2 
√(

σ2
x + σ2

y

)
Where, σx and σy are the standard deviations of the position errors in the x and y coordinates, respectively

MRSE (Mean Radial Spherical Error) =
√(

σ2
x + σ2

y + σ2
z

)
Where, σx, σy, and σz are the standard deviations of the position errors in the x, y, and z coordinates, respectively

Table 1.  GNSS accuracy measures.
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In order to select satellites from dimensional solution space which consists of all visible satellites, search schemes 
need to be selected to generate initial population.

In order to select ′r′ satellites from ′N ′ dimensional solution space which consists of all visible satellites, ′Ss′ 
search schemes need to be selected to generate initial population.

	 Y d = Y d
i , i = 1, 2, . . . , Ss.� (18)

And the size of population is Ss.Y d
i =

[
Sd

i,1 Sd
i,2 . . . .Sd

i,r

]
, where Sd

i,k  is the kth satellite of particle ‘i’  in the 
dth search.

	4.	� Selection of suitable fitness function

In order to get more precise optimum combinations of satellites, the fitness function used is GDOP, which is also 
utilised for QACE.

F it =
√

T r((Gd × GT
d ))−1

	5.	� Updating the speed and position of particle

The particle’s speed vector is obtained from below Eq. (19). The position will be updated by using Eq. (20)

	 vd+1
i,k = wIvd

i,k + l1r1
(
Od

i,k − Sd
i,k

)
+ l2r2

(
gd

i,k − Sd
i,k

)
� (19)

	 Sd+1
i,k = Sd

i,k + vd+1
i,k � (20)

Where, wI  is inertial weight is in between 0.4 and 0.9, l1 and l2 are learning factors, r1, and r2 are random 
integers between [0 1], vd

i,k  , Od
i,k  and gd

i,k represents the velocity vector, local optimum value and global 
optimum value of kth satellite in dth search respectively.

Results
The data from a dual frequency GNSS receiver located at Vijayawada, on 10th March 2022 is used for GDOP 
estimation analysis. The data consists of two files which are observation and navigation data files. The total 
number of visible satellites are obtained from observation file and the position of satellites are estimated from 
navigation information. During the first hour, 17 satellites were visible, comprising 9 GPS satellites and 8 
GLONASS satellites. GDOP is a critical factor in determining satellite-receiver geometry, maintaining a low 
GDOP is essential for optimal positioning performance. GDOP computation was performed for three different 
scenarios: all visible satellites in a combined constellation, an optimal subset of 4 GPS satellites, and an optimal 
subset of 9 satellites from the combined GPS + GLONASS constellation. The optimal set of 9 satellites from the 
combined constellation offered the best solution, with a GDOP ranging from 1.2 to 1.7, which is close to the 
ideal value. In contrast, the GDOP for the optimal subset of 4 satellites was 2.1, significantly higher than the 
ideal value, potentially reducing positioning performance but not much deviated when compared to all visible 
satellites.

The study suggests that instead of using only four satellites or all visible satellites, selecting a number of 
satellites equal to those visible in a single constellation (i.e., 9 satellites) provides a better balance. If the receiver 
is not capable of handling the 9 satellites, then optimal set of four satellites given by QCAE method is the best 

Combinations Number of satellites GDOP_QCAE GDOP_PSOSSM GDOP_CAE
17c17 17 1.028 1.028 1.028
17c16 16 1.033 1.033 1.033
17c15 15 1.046 1.046 1.046
17c14 14 1.063 1.101 1.629
17c13 13 1.081 1.319 1.937
17c12 12 1.103 1.392 1.885
17c11 11 1.136 1.486 1.902
17c10 10 1.172 1.502 1.991
17c9 9 1.224 1.538 2.237
17c8 8 1.364 1.875 2.928
17c7 7 1.482 1.985 3.127
17c6 6 1.744 2.242 3.991
17c5 5 1.923 2.158 4.125
17c4 4 2.100 3.272 4.785

Table 2.  Comparison of GDOP between QCAE, CAE and PSOSSM methods based on satellite selection.
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solution as it is not much reducing the positioning performance. The GDOP comparison of QCAE, CAE, and 
PSOSSM methods is given in Table 2.

Figure 2. compares GDOP versus the number of satellites selected, revealing that as the number of satellites 
increases, the GDOP values generally decrease for both QCAE and PSOSSM methods. For a higher number of 
satellites, any conventional method may suffice and provide the same GDOP, but it increases the computational 
burden on low-cost GNSS receivers, making the optimal selection of satellites necessary. This trend indicates 
improved geometric configurations with more satellites, resulting in better positioning accuracy. However, 
QCAE consistently outperforms PSOSSM and CAE by producing lower GDOP values for each given a smaller 
number of satellites. This suggests that QCAE is more effective in selecting satellite sets that optimize geometric 
precision.

The Fig. 3. shows the comprehensive visualization of how GDOP fluctuates throughout the day, reflecting 
changes in satellite geometry and signal reception conditions.

The positioning accuracy obtained by selected satellites by QCAE and PSOSSM methods is analysed. The 
selected satellites are applied to navigational solution.

The Table 3 shows that QCAE consistently provides lower positioning errors in the x, y, and z directions 
compared to PSOSSM, indicating better accuracy in satellite selection. For instance, at SOW 524,280, QCAE’s 
errors are closer to those of the “All Visible Satellites” condition, although they still differ significantly. In general, 
QCAE’s errors are more stable and consistently lower, particularly for the 9 satellites condition, compared to 
PSOSSM, which exhibits higher and more variable errors. For example, at SOW 524,640, the errors for QCAE 
with 9 satellites (x = 6.27 m, y = 28.02 m, z = 15.22 m) are relatively close to those of the “All Visible Satellites” 
condition (x = 6.33 m, y = 28.27 m, z = 15.29 m). Overall, QCAE’s performance is closer to that of using all visible 
satellites, demonstrating its effectiveness in achieving accurate positioning. Figure 4 shows the position error 
values in the x-direction, Fig. 5 shows the position error values in the y-direction and Fig. 6 shows the position 
error values in the z-direction.

The error distribution plot reveals in Fig. 7a–c that QCAE consistently achieves lower positioning errors 
compared to PSOSSM. For QCAE, the distribution is concentrated around lower error values, indicating that 
it generally provides more accurate positioning with fewer large errors. This is evident as most of the errors are 
clustered within a narrower range of lower magnitudes, reflecting the method’s effectiveness in minimizing 
inaccuracies. In contrast, the plot for PSOSSM shows a wider spread of error values, including a higher frequency 
of larger errors. This suggests that while PSOSSM can occasionally produce low error values, it also results 
in more frequent larger errors, demonstrating less consistent performance. Overall, QCAE’s error distribution 
is more concentrated towards lower magnitudes, highlighting its superior accuracy and reliability. The GNSS 

Fig. 2.  Comparison of GDOP between QCAE and PSOSSM methods.
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measures were analysed and is shown in Fig.  8. The GNSS accuracy measures are listed in Table  4 and are 
calculated using the formulae specified in Table 1.

CEP measures the radius within which 50% of the positioning errors fall. Lower CEP values indicate 
better accuracy. QCAE shows significantly lower CEP values compared to PSOSSM for both 4 and 9 satellites, 
demonstrating better accuracy in positioning. The CEP values for QCAE are closer to the All-visible satellites’ 
condition, indicating that QCAE performs well in minimizing the median error radius. SEP is the radius of three-
dimensional positioning errors within 50%. Lower SEPs indicate better spatial precision. For 4 and 9 satellites, 
QCAE has lower SEP values than PSOSSM, indicating better three-dimensional positioning. QCAE’s SEP values 
are close to the all-visible criterion, indicating its correctness in all spatial dimensions. 2DRMS measures two-
dimensional root mean square error to estimate average positional error. QCAE consistently has lower 2DRMS 
values than PSOSSM, indicating better two-dimensional positioning performance. 2DRMS results for QCAE 
are close to the all-visible condition, confirming its ability to reduce average positional errors. The average error 

SOW
Time in
 Hrs

Optimal 4 
satellites selected 
by QCAE

Optimal 4 satellites 
selected by PSOSSM

Optimal 9 
satellites selected 
by QCAE

Optimal 9 satellites 
selected by PSOSSM

All Visible 
satellites

x
(m)

y
(m)

z
(m)

x
(m)

y
(m)

z
(m)

x
(m)

y
(m)

z
(m)

x
(m)

y
(m)

z
(m)

x
(m)

y
(m)

z
(m)

523,560 2 4.21 28.01 11.92 6.67 31.25 17.58 4.19 27.99 11.48 5.57 29.36 14.22 4.18 27.96 11.37

523,680 4 4.50 25.04 9.68 7.01 29.85 9.69 4.49 25.02 9.02 6.42 28.01 9.92 4.48 24.33 8.97

523,800 6 4.29 27.99 11.33 7.11 33.44 17.25 4.27 27.96 11.01 6.99 30.21 14.03 4.21 27.38 10.92

523,920 8 4.61 24.89 10.01 7.27 29.85 19.45 4.58 24.88 9.23 6.88 27.27 15.01 4.53 24.83 8.22

524,040 10 9.01 26.27 10.03 21.33 57.23 27.56 8.99 25.99 9.99 19.65 54.25 23.02 8.42 24.99 9.41

524,160 12 4.29 27.39 11.27 7.28 31.52 25.68 4.24 26.36 10.99 6.77 29.85 22.02 4.04 26.14 8.03

524,280 14 5.59 22.02 12.31 8.99 25.65 18.96 5.55 21.99 10.65 6.29 24.27 17.26 5.41 21.90 10.20

524,400 16 7.11 27.22 14.99 18.33 32.45 17.85 6.01 26.32 14.02 15.03 29.44 15.24 5.37 26.06 13.10

524,520 18 8.71 28.21 14.44 14.28 42.69 20.36 8.67 27.11 14.35 11.36 39.55 18.27 8.19 27.09 12.29

524,640 20 6.33 28.27 15.29 11.29 42.99 19.86 6.27 28.02 15.22 9.25 41.23 16.77 6.15 27.56 14.88

524,760 22 7.34 29.56 13.59 14.57 35.21 19.63 7.29 29.01 13.57 8.57 31.02 15.01 7.28 28.31 12.81

524,880 24 9.91 27.14 14.09 13.57 33.67 18.42 9.88 27.02 12.24 12.44 30.21 15.44 9.84 26.16 12.10

Table 3.  Position error values obtained by navigation algorithm for optimal combinations of satellites in 
combined constellation (i.e., GPS and GLONASS).

 

Fig. 3.  GDOP due to optimal set of 4 satellites (GPS + GLONASS) by QCAE and all visible satellites on 10th 
March 2022.
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between observed and estimated three-dimensional locations is measured by MRSE. QCAE has lower MRSE 
than PSOSSM for 4 and 9 satellites, indicating greater positioning accuracy. The MRSE values of QCAE are close 
to the all-visible condition, indicating that it approximates the accuracy of all visible satellites.

The performance of Quantum Convolutional Autoencoder (QCAE) by indicating the performance metrics 
for selecting optimal groups of 4 and 9 visible satellites is depicted in Fig. 9. The performance metrics used 
for the performance comparison are F1 Score, Accuracy, Precision, and Recall. For the F1 Score, the QCAE 
performs slightly better with 4 satellites (0.95) compared to 9 satellites (0.93), indicating a better balance between 
precision and recall. The accuracy is very high for both cases, with a marginal difference (0.975 for 4 satellites 
and 0.973 for 9 satellites), demonstrating the QCAE’s effectiveness in selecting optimal satellites. Precision 
is higher when selecting 4 satellites (0.94) compared to 9 satellites (0.92), suggesting that the model is more 
accurate in predicting relevant instances among the selected satellites. Similarly, recall is higher for 4 satellites 
(0.96) compared to 9 satellites (0.94), indicating the model’s efficiency in capturing most of the relevant instances 
from the visible satellites. Overall, the QCAE better performance metrics when selecting 4 optimal satellites 
compared to 9 optimal satellites.

This approach is useful for low cost GNSS receivers, and it reduces mathematical computations to 730 
multiplications and 713 additions, thereby decreasing the computational burden on the navigational solution 
significantly. Table 5 gives the computational information of a navigational solution. The proposed approach is 
examined with the data collected from the low-cost receiver, DL-V3-L1L2, located at Lat/Lon: 17.73° N/83.319° 
E. The proposed method QCAE based satellite selection method compared with various optimization and 
deep learning methods, including PSOSSM, hybrid optimization approaches, and deep learning models. While 
several methods showed competitive performance, the comparison demonstrated that PSOSSM and QCAE 
were the most effective. Among these, QCAE consistently outperformed all other methods, proving to be the 
best in terms of accuracy, computational efficiency, and scalability.

Conclusion
The proposed QCAE-based satellite selection method is designed to be compatible with low-cost GNSS receivers 
by using a hybrid quantum-classical approach. The classical pre-processing stage, including GNSS data filtering 
and feature extraction, can be efficiently executed on embedded processors. The quantum component, responsible 
for feature extraction and dimensionality reduction, can be executed on cloud-based quantum processors or 
simulated on classical GPUs for feasibility in real-world applications. Since real-time satellite selection is critical 
for GNSS receivers, the post-processing stage, involving optimization and decision-making, is designed to run 
efficiently on edge computing devices with moderate computational power. The quantum feature extraction can 

Fig. 4.  The position error values in the x-direction is observed for the combined GPS and GLONASS case 
using the optimal satellite combinations selected by the QCAE and PSOSSM methods.
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be precomputed and stored in lookup tables to reduce real-time computational demands. Thus, the proposed 
approach balances the computational efficiency with the advantages of quantum-enhanced satellite selection, 
making it practical for low-cost GNSS receivers. In this research, this work explores for selecting optimal 
satellites from a visible group of 17 to 20 satellites. The primary objective was to enhance the performance 
of GNSS receivers by efficiently selecting subsets of satellites that maintain high positioning accuracy while 
minimizing the computational burden. In situations when there are a greater number of satellites, traditional 
methods such as geometric criteria and tetrahedron volume-based models sometimes experience difficulties with 
their computing efficiency. Improvements can be made with optimization methods such as Genetic Algorithms 
(GAs) and Particle Swarm Optimization (PSO), although these algorithms still require a significant amount of 
computational speed and need to adapt the dynamic changes. Among these two optimization algorithms PSO is 
proved as the best method for satellite selection based on its convergence phenomenon. In this work, two satellite 
selection approaches, QCAE based satellite selection method and PSOSSM (Particle Swarm Optimization based 
Satellite Selection Method) were compared and the results demonstrate that there are considerable changes in 
the accuracy of location. The QCAE based satellite selection method displayed superior performance across 
a variety of metrics, such as the circular error probability (CEP), the spherical error probability (SEP), the 
two-dimensional root mean square (2DRMS), and the mean residual spherical error (MRSE). For example, 
optimal set of 4 satellites which were selected by QCAE, is able to reach a CEP of 1.384 m and a SEP of 1.759 m, 
which is significantly lower than PSOSSM’s CEP of 5.937 m and SEP of 6.691 m, respectively. The optimal set of 
nine satellites which were selected by QCAE, the CEP is 1.287 m, while the SEP is 1.713 m. This is in contrast 
to the CEP and SEP of PSOSSM, which are 5.725 m and 6.385 m, respectively. Having values that are lower 
indicates that the accuracy and precision are higher. The fact that the positioning errors for QCAE are more 
steady and closer to the “All Visible Satellites” condition is further evidence of the efficiency of this method in 
preserving positional accuracy. In addition, this method is very helpful for low-cost GNSS receivers because it 
considerably minimizes the number of mathematical computations that are required. When employing QCAE 
for optimal GPS + GLONASS 9 satellites, only 730 multiplications and 713 additions are required, in contrast 
to the 2034 multiplications and 2017 additions that are required when using all visible satellites. This reduction 
in computational requirements decreases the computational burden on the navigational solution significantly, 
making QCAE a more efficient and reliable method for satellite selection in low cost GNSS receiver applications.

Fig. 5.  The position error values in the y- direction is observed for the combined GPS and GLONASS case 
using the optimal satellite combinations selected by the QCAE and PSOSSM methods.
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Fig. 6.  The position error values in the z-direction is observed for the combined GPS and GLONASS case 
using the optimal satellite combinations selected by the QCAE and PSOSSM methods.
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Fig. 7.  Error distribution plot with the optimal combinations of satellites for the combined GPS and 
GLONASS case by QCAE and PSOSSM methods.
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Figure 7.  (continued)
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Measure QCAE_4 PSOSSM_4 QCAE_9 PSOSSM_9
All visible
 satellites

CEP 1.384 5.937 1.287 5.725 1.224

SEP 1.759 6.691 1.713 6.385 1.655

2DRMS 5.541 18.808 5.332 17.830 5.142

MRSE 30.42 43.262 29.83 39.144 29.11

Table 4.  GNSS measures comparison of QCAE and PSOSSM methods.

 

Fig. 8.  Comparison of GNSS accuracy measures.
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Data availability
The data used to support the findings of this study are included in the article.Data will be made available on 
request from Nalineekumari Arasavali, email:naliniarasavali@gmail.com . 
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