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The increasing reliance on global navigation satellite systems for diverse applications necessitates
the development of efficient satellite selection methods to optimize positioning accuracy and system
performance. In particular, low-cost global navigation satellite systems receivers face challenges in
managing data from multiple visible satellites, often resulting in suboptimal performance due to high
geometric dilution of precision values. Effective satellite selection is crucial for improving the accuracy
and reliability of positioning solutions in these systems. Quantum computing and machine learning
provide promising solutions by using data patterns for complex optimization problems. This work
proposes the quantum convolutional autoencoder-based optimal satellite selection method. This new
satellite selection method examined the data collected from the receiver located at latitude 16.33° N
and longitude 80.62° E, collected on March 10, 2022. The main aim is to enhance the performance

of low-cost receivers by minimizing the geometric dilution of precision values and optimizing the
tetrahedron volume function. Quantum convolutional autoencoders process the satellite data to
balance the navigational solution’s computational burden and the navigational algorithm’s accuracy.
The model aims to identify the most optimal satellites for positioning by setting geometric dilution
of precision as the cost function. The QCAE-based method achieves a CEP of 1.384 m and SEP of
1.759 m for four selected satellites, compared to 5.937 m and 6.691 m for PSOSSM. For nine satellites,
QCAE achieves a CEP of 1.287 m and SEP of 1.713 m, while PSOSSM results in 5.725 m and 6.385 m,
respectively. Additionally, QCAE reduces computations by over 64%, requiring 730 multiplications
and 713 additions, compared to 2034 multiplications and 2017 additions for all visible satellites. This
proposed approach provides the optimal navigation solution for cost-effective implementations in a
real-time environment. This research provides new insights into satellite selection strategies using
machine learning approaches.

Keywords Satellite selection, Quantum convolutional autoencoder, GNSS, Combined
constellation, Sustainable Development Goal (SDG) 9:Industry, Innovation, and Infrastructure, SDG 11:
Sustainable Cities and Communities

Global Navigation Satellite Systems (GNSS) are useful for navigation, mapping, and surveying. The effectiveness
in terms of accuracy of GNSS navigation depends on the position of satellites at the same time it is very important
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to select optimal subset of satellites to ensure high positioning accuracy while managing computational efficiency
for low cost GNSS receiver applications. As GNSS technology advances and the number of satellites increases,
traditional methods of satellite selection face significant challenges related to computational complexity and
real-time performance. Traditional methods for satellite selection predominantly involve mathematical and
geometric criteria. The basic navigation solution, least squares approach consists solving a system of linear
equations to estimate the receiver’s position based on satellite observations.

Though it is effective, the least squares method becomes computationally intensive with an increasing
number of satellites. As the volume of geometry grows, the computational burden also increases and that affects
the system’s ability to deliver real-time performance!-3. The least squares method is proved as a best method to
minimize the sum of squared residuals between observed and predicted measurements, but the complexity of
mathematical calculations can impede its practical application in high-density satellite environments*>. GDOP
decides the impact of satellite geometry on positioning accuracy, with lower GDOP values indicating better
satellite configurations. Similarly, maximizing tetrahedron volume aims to select satellites that provide the
most favourable geometric arrangement for accurate positioning®”. However, these methods are not suitable
when dealing with dynamic satellite configurations as the computational efficiency will increase the burden
on navigational solution as well as on the GNSS receiver. They focus primarily on accuracy rather than the
computational burden associated with processing of information associated with the satellites®®. Various
optimization algorithms like Genetic Algorithms (GAs) and Particle Swarm Optimization (PSO) have been
explored. Genetic Algorithm utilises evolutionary techniques to iteratively select the best satellite configurations
based on fitness functions, while PSO, inspired by swarm intelligence, optimizes configurations by evaluating
potential solutions and adjusting based on collective swarm behaviour!?-'*. Although these algorithms provided
the improved performance, but their effectiveness is limited by their inability to fully adapt to real-time changes
in satellite visibility and the complexity of the optimization process'*!>. The integration of machine learning,
particularly quantum machine learning methods, introduces a new approach in satellite selection. Convolutional
Autoencoders (CAEs) and Quantum Convolutional Autoencoders (QCAEs) proved their potential in modelling
complex relationships and making predictions based on large datasets. Generally, QCAEs use the quantum
computing features to handle high-dimensional data efficiently. By processing data through quantum layers,
QCAEs can optimize satellite selection while maintaining high positioning accuracy'®!”. In general, QCAEs
used to learn from historical data to understand the dynamic conditions and to provide a flexible and efficient
approach to satellite selection. Recent research studies are explaining the performance of quantum machine
learning techniques in classification tasks and these are outer performing the traditional methods and
optimization techniques in both accuracy and computational efficiency'®. Neish et al.!'® explored quantum-
resistant authentication algorithms for satellite-based augmentation systems for predicting satellite visibility,
achieving notable performance improvements. Duan et al.?’ explained the quantum positioning, showing that
quantum machine learning methods could provide superior results compared to conventional approaches in
various scenarios. These studies underscore the potential of quantum machine learning in enhancing GNSS
performance, addressing both accuracy and computational challenges. Further advancements have been
made in this field. Calderaro et al.?! explored the quantum communication from global navigation satellite
systems, focusing on reducing computational complexity while maintaining high accuracy. Feng, explained the
quantumm navigation procedures and the application of quantum techniques to GNSS navigation, highlighting
the advantages of these methods in addressing computational challenges®. Lesouple et al.>* investigated the
use of quantum reinforcement learning for positioning and navigation applications, demonstrating improved
performance over traditional optimization methods. These contributions show the effectiveness of quantum
machine learning in GNSS navigation. The use of QCAEs may give the feasible solution for multi-constellation
satellite navigation systems. QCAEs can learn from large datasets and adapt to dynamic satellite visibility
changes, making satellite selection flexible and efficient. Unlike older approaches, QCAEs can reduce satellites
needed for precise positioning without compromising performance. QCAEs can choose appropriate satellite
subsets to maintain positioning accuracy by training on past data. This method decreases computational load
and maintains positioning performance with all visible satellites. Based on this foundation, the proposed
research implements QCAE:s for satellite selection in GNSS systems to minimize computational burden and
maintain performance. The study will use data from a GNSS receiver tracking GLONASS and GPS satellites to
show that optimal satellite selection using QCAEs can achieve the same positioning performance as all visible
satellites. Finally, adding QCAEs to satellite selection processes advances GNSS technology. QCAEs improve
satellite selection efficiency and flexibility by addressing the constraints of previous approaches and optimization
algorithms.

This work introduces a Quantum Convolutional Autoencoder (QCAE)-based satellite selection method
that optimizes geometric dilution of precision (GDOP). The primary distinguishing factor of the Quantum
Convolutional Autoencoder (QCAE)-based satellite selection method is its superior capability to maximize
both the geometric dilution of precision (GDOP) and the Tetrahedron Volume function compared to current
methodologies. Conventional approaches typically concentrate on a certain optimization metric or entail
increased processing complexity. Conversely, the QCAE technique utilizes the intrinsic parallelism of quantum
computing to alleviate the computational load while preserving or enhancing positioning precision. This
method not only reduces GDOP but also facilitates effective satellite selection, rendering it very beneficial for
economical GNSS receivers. This work also pioneers the use of quantum computing techniques like QCAE
to pick satellites, presenting a possible solution for complicated GNSS optimization challenges. The suggested
technique is validated with real-world GNSS data from a receiver at 16.33° N and 80.62° E on March 10, 2022,
proving its practicality and performance enhancement. The QCAE-based technique balances computational
burden and performance, making real-time satellite selection cost-effective.
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Further, section “Methodology” describes the methodology, including how the QCAE-based system processes
GNSS data to reduce GDOP and optimize satellite selection. Section “Results” analyses the experimental results,
which compare the suggested method’s accuracy, specificity, and computational efficiency to that of current
procedures. Finally, section “Conclusion” concludes by reviewing the advantages of the proposed method and
noting potential future applications with respect to multi-constellation GNSS systems.

Methodology

In general, to compute position, a GNSS receiver calculates its distance to visible satellites®’. The receiver
calculates the distance by measuring the time 8t, it takes to travel from satellite to receiver and this distance is
called as pseudo-range (P) in Eq. (1).

p = dt.c (1)

Where, €’ is the speed of light in free space. The range between user and ith satellite is calculated as given in
Eq. (2).

p= \/ (Xsati = X)* + (Yeati = Y)* + (Zaati = Z)° @)

Where, (X, Y, Z) indicates the user position and (Xsati, Ysati, Zsati) gives the ith satellite position. The observed
pseudo-range is the combination of modelled pseudo-range, process noise and system errors are expressed in
Eq. (3).

Pobserved = PComputed + Noise (3)

=p(z,y,2,t) +v

The residual observation is given in Eq. (3), difference between the p_, .. ., and Pcomputed S0 be represented
in matrix form for ‘m’ number of satellites as shown in Eq. (4)

AP = Povserved — PComputed
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The Eq. (4) is often written in terms of matrix symbols (b- Residuals, Gd-Design matrix, v-Noise terms) as
b=G dX +v (5)

Observation matrix G_d is purely a function of the direction to each of the satellites as observed from the
receiver.

g1 ki L -1
jo k2 la -1
Gy= | 73 ks s -1 ©6)
o ke b1
J> k; and |, are three components of satellite Si. A least squares solution is as follows
X = (Gd"Ga) ' Gd"b (7)
The error in estimation depends on residual measurement and clock bias errors and is considered as
AX = [ArTAb]" ®)
The covariance of position is given by
1

E= AXAXT = 0*(Ga"Ga)~ ©)

The matrix (G dTGd) - represents GDOP matrix and scalar value of GDOP is obtained by taking square root
of the trace of the GDOP matrix?>2.

GDOP = trace (GdTGd)_l (10)
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Input Layer

The accuracy of least square solution is decided by measurement quality and satellite receiver geometry.
Measurement quality is investigated by the factor 02 and geometry is given by values present in design matrix.
The change of GDOP is always depends on number of satellites. The GDOP is always decreases in a nonlinear
way when number satellites increase>*.

And how the number of satellites is affecting the computations involved in a basic positioning navigation
solution are discussed below. The relationship between the number of multiplications and additions and the
number of satellites is given below (Eqgs. 11 and 12).

Number of multiplications:

(1/3) I3+ (N + 1) I7 + (N*+ N — (1/3)) I + 3N (11)
Number of Additions:

(1/3) I3 + (N + (1/2)) I + (N? + N — (11/6) I,) + 3N (12)

Where, N represents the number of selected satellites and Is =3 + S where S is number of navigation systems. If
the number of satellites used in position calculations increases, the computational burden also increases. Thus,
navigation computation is related to number of selected satellites. Hence optimal satellite selection is essential
for low cost GNSS receivers. The proposed technique, QACE, is analysed using data from an epoch on March
10, 2022, at a location with a latitude of 16.33° N and longitude of 80.62° E. At that epoch the visible satellites
are Satellite Numbers: 24, 14, 29, 20, 21, R20, R21, R05, R18, R19, R15, 15, 32, R06, 10, R04, 27, the number
preceding with R is representing the GLONASS satellites. The GNSS receiver at these coordinates can receive
data from both GPS and GLONASS satellites, as combined constellations enhance positioning accuracy. Each
satellite provides information such as Satellite ID, Position (latitude, longitude, altitude), Signal strength (SNR),
and Time of observation. In the data preprocessing stage, the satellite position data needs to be normalized to
extract features such as Satellite position, SNR, and other relevant parameters. The QCAE model consists of
quantum convolutional layers that extract spatial features from satellite data and quantum pooling layers that
reduce dimensionality while preserving essential information. The training process employs the Adam optimizer
with a learning rate of 0.001, batch size of 32, and 50 epochs. The detailed architecture is described as follows:

The Quantum Convolutional Autoencoder (QCAE) Architecture, as shown in Fig. 1, consists of Encoder
and Decoder!. The encoder consists of quantum convolutional layer and quantum pooling layer. The quantum
convolutional layer applies a set of quantum filters to the input data. The output of quantum convolutional layer
can be represented as

Convolution Output = f (W.X + b)) (13)

Where, W represents the quantum convolutional weights, X is the input data and b is the bias term.
The input data matrix for the convolutional layer at the given epoch includes the visible satellites with the
following Satellite Numbers: 24, 14, 29, 20, 21, R20, R21, R05, R18, R19, R15, 15, 32, R06, 10, R04, 27.

T24 Yoa 224 SNRay
T14 Y14 z14 SNRug

X = . . . . (14)
Ta7 Yo7 Z27 SN Rar

Where x, y & z are the position coordinates and SNR represents the Signal to Noise Ratio.
By combining the most important features identified by the convolutional layer, the Quantum Pooling layer
lowers the number of dimensions in the data. The output of this layer can be represented as

Quantum

»  Convolutional > Quantum Ll Latent Space

Pooling Layer Representation

¢

Quantum Deconvolutional
Layer

Layer

Reconstructed Output e

Fig. 1. Block diagram of QCAE.
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Pooled Output = max ( Convolutional Output) (15)

The output of the quantum convolutional and pooling layers creates the latent space representation, which is a
compressed version of the original input that maintains important information. This representation is a lower-
dimensional vector including the important properties required for optimal satellite selection. The latent space
simplifies the incoming data, making it easier to handle and evaluate. By focusing on important parameters
include the geometric configuration of satellites, signal strength, and visibility factors like elevation angles, all
of which are essential for optimizing positioning accuracy, it eliminates duplicated or irrelevant data, increasing
computing efficiency. The latent space captures the underlying patterns in satellite data, such as geometric
configurations and signal levels, which are critical to location accuracy. It enables the QCAE to learn the ideal
satellite configurations for various epochs. Using the latent space representation, the QCAE can determine the
optimum subsets of satellites (e.g., sets of four or nine satellites) that reduce GDOP while increasing tetrahedron
volume. This decision is based on compressed features, guaranteeing that the picked satellites deliver the highest
positioning accuracy with the least computing burden.

The next critical component of the QCAE design is the decoder, which is responsible for reconstructing
the original input data from the compressed latent space representation. The decoder consists of quantum
deconvolutional layers and maybe extra layers that expand the latent space representation back to the original
data dimensions. The decoder’s output is a reconstructed version of the original input data, with the goal of being
as near to the original as possible. The deconvolutional layer reverses the action of the quantum convolutional
layer, enlarging the latent space representation back to a higher-dimensional space. It then utilizes a set of learnt
weights to project the latent features into the original data dimensions.

Deconvolution Output = f (W’.Z + b') (16)

Where, Z is latent space representation, W’ is deconvolutional weights and b’ is the bias term. The reconstruction
loss can be calculated as the difference between the original input data and the reconstructed output. Common
loss functions include Mean Squared Error (MSE) or Mean Absolute Error (MAE)?>.

— 2

i=1
. 1
Reconstruction Loss = i Z(Xl - Xi) (17)
N

Where, X, is the original input data and Xj; is the reconstructed data.

The training of a Quantum Convolutional Autoencoder (QCAE) starts with initializing the weights and
biases®. In the forward pass, the input data is encoded to produce a latent space representation, which is
subsequently decoded to reconstruct the original data. The reconstruction loss, which is the difference between
the original input and the rebuilt output, is calculated next. During the backward pass, backpropagation is used
to determine the loss gradients in relation to the model parameters.

These gradients are then used to update the model parameters via an optimization algorithm such as Adam
or SGD, with the learning rate determining the step size for each update. This sequence of forward pass, loss
calculation, backward pass, and parameter update is repeated iteratively for a set number of epochs or until
the model converges. The proposed technique employs selection criteria that minimize GDOP and maximize
tetrahedron volume to choose a subset of satellites. The comparison analysis requires GNSS accuracy measures,
which are tabulated in Table 1 below.

To evaluate the performance of the proposed method, a novel satellite selection approach based on swarm
intelligence, namely PSO-based Satellite Selection Method (PSOSSM), was implemented using the Particle
Swarm Optimization (PSO) principle**~4>. The PSOSSM involves six processing phases, which are as follows:

1. Extraction of observed satellites from collected navigation data.
2. Encoding: Binary encoding is preferred in PSOSSM for satellite selection.
3. Initialization of particle population.

CEP (Circular Error Probable) = 0.589 - ¢,
‘Where, o, is the standard deviation of the radial error

SEP (Spherical Error Probable) ~0.526 - ¢
Where, ¢ is the standard deviation of the 3D position error

2DRMS (2-Dimensional Root Mean Square) =

2 (a’?r + 012/)

Where, o_and o, are the standard deviations of the position errors in the x and y coordinates, respectively

MRSE (Mean Radial Spherical Error) =4 / (0‘3 + o‘% + 0'3)

Where, o, Oy and o, are the standard deviations of the position errors in the x, y, and z coordinates, respectively

Table 1. GNSS accuracy measures.
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In order to select satellites from dimensional solution space which consists of all visible satellites, search schemes
need to be selected to generate initial population.

In order to select /r/ satellites from /N7 dimensional solution space which consists of all visible satellites, /Ss/
search schemes need to be selected to generate initial population.

vi=v* i=1,2,...,5. (18)

And the size of population is S Y = [S’Z 1 Sffz e .Sﬁr] , where S{i’ & is the kth satellite of particle " in the
dth search.

4. Selection of suitable fitness function

In order to get more precise optimum combinations of satellites, the fitness function used is GDOP, which is also
utilised for QACE.

5. Updating the speed and position of particle
The particle’s speed vector is obtained from below Eq. (19). The position will be updated by using Eq. (20)
vitl :wwf’k—l—llrl (Oﬁk —Sgk) + laro (ggk —Sgk) (19)
S =St + ot (20)

Where, wy is inertial weight is in between 0.4 and 0.9, [ and [2 are learning factors, 71, and r2 are random
integers between [0 1], vf & ,O;{ x and gﬁ « represents the velocity vector, local optimum value and global

optimum value of kth satellite in dth search respectively.

Results
The data from a dual frequency GNSS receiver located at Vijayawada, on 10th March 2022 is used for GDOP
estimation analysis. The data consists of two files which are observation and navigation data files. The total
number of visible satellites are obtained from observation file and the position of satellites are estimated from
navigation information. During the first hour, 17 satellites were visible, comprising 9 GPS satellites and 8
GLONASS satellites. GDOP is a critical factor in determining satellite-receiver geometry, maintaining a low
GDOP is essential for optimal positioning performance. GDOP computation was performed for three different
scenarios: all visible satellites in a combined constellation, an optimal subset of 4 GPS satellites, and an optimal
subset of 9 satellites from the combined GPS+ GLONASS constellation. The optimal set of 9 satellites from the
combined constellation offered the best solution, with a GDOP ranging from 1.2 to 1.7, which is close to the
ideal value. In contrast, the GDOP for the optimal subset of 4 satellites was 2.1, significantly higher than the
ideal value, potentially reducing positioning performance but not much deviated when compared to all visible
satellites.

The study suggests that instead of using only four satellites or all visible satellites, selecting a number of
satellites equal to those visible in a single constellation (i.e., 9 satellites) provides a better balance. If the receiver
is not capable of handling the 9 satellites, then optimal set of four satellites given by QCAE method is the best

Combinations | Number of satellites | GDOP_QCAE | GDOP_PSOSSM | GDOP_CAE
e, 17 1.028 1.028 1.028
Ve 16 1.033 1.033 1.033
e, 15 1.046 1.046 1.046
e, 14 1.063 1.101 1.629
Ve, 13 1.081 1.319 1.937
e, 12 1.103 1.392 1.885
Ve, 11 1.136 1.486 1.902
e, 10 1172 1.502 1.991
e, 9 1.224 1.538 2.237
e, 8 1.364 1.875 2.928
e, 7 1.482 1.985 3.127
Yeg 6 1.744 2.242 3.991
e, 5 1.923 2.158 4.125
e, 4 2.100 3.272 4.785

Table 2. Comparison of GDOP between QCAE, CAE and PSOSSM methods based on satellite selection.
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solution as it is not much reducing the positioning performance. The GDOP comparison of QCAE, CAE, and
PSOSSM methods is given in Table 2.

Figure 2. compares GDOP versus the number of satellites selected, revealing that as the number of satellites
increases, the GDOP values generally decrease for both QCAE and PSOSSM methods. For a higher number of
satellites, any conventional method may suffice and provide the same GDODP, but it increases the computational
burden on low-cost GNSS receivers, making the optimal selection of satellites necessary. This trend indicates
improved geometric configurations with more satellites, resulting in better positioning accuracy. However,
QCAE consistently outperforms PSOSSM and CAE by producing lower GDOP values for each given a smaller
number of satellites. This suggests that QCAE is more effective in selecting satellite sets that optimize geometric
precision.

The Fig. 3. shows the comprehensive visualization of how GDOP fluctuates throughout the day, reflecting
changes in satellite geometry and signal reception conditions.

The positioning accuracy obtained by selected satellites by QCAE and PSOSSM methods is analysed. The
selected satellites are applied to navigational solution.

The Table 3 shows that QCAE consistently provides lower positioning errors in the x, y, and z directions
compared to PSOSSM, indicating better accuracy in satellite selection. For instance, at SOW 524,280, QCAE’s
errors are closer to those of the “All Visible Satellites” condition, although they still differ significantly. In general,
QCAE'’s errors are more stable and consistently lower, particularly for the 9 satellites condition, compared to
PSOSSM, which exhibits higher and more variable errors. For example, at SOW 524,640, the errors for QCAE
with 9 satellites (x=6.27 m, y=28.02 m, z=15.22 m) are relatively close to those of the “All Visible Satellites”
condition (x=6.33 m, y=28.27 m, z=15.29 m). Overall, QCAE’s performance is closer to that of using all visible
satellites, demonstrating its effectiveness in achieving accurate positioning. Figure 4 shows the position error
values in the x-direction, Fig. 5 shows the position error values in the y-direction and Fig. 6 shows the position
error values in the z-direction.

The error distribution plot reveals in Fig. 7a—c that QCAE consistently achieves lower positioning errors
compared to PSOSSM. For QCAE, the distribution is concentrated around lower error values, indicating that
it generally provides more accurate positioning with fewer large errors. This is evident as most of the errors are
clustered within a narrower range of lower magnitudes, reflecting the method’s effectiveness in minimizing
inaccuracies. In contrast, the plot for PSOSSM shows a wider spread of error values, including a higher frequency
of larger errors. This suggests that while PSOSSM can occasionally produce low error values, it also results
in more frequent larger errors, demonstrating less consistent performance. Overall, QCAE’s error distribution
is more concentrated towards lower magnitudes, highlighting its superior accuracy and reliability. The GNSS

Comparison of GDOP between QCAE, PSOSSM, and CAE Methods

—e— GDOP QCAE
GDOP PSOSSM
451 —e— GDOP CAE
4.0
3.5 4
[«
S 3.0 -
(@]
O
2.5 1
2.0 1
1.5 1
1.0 4
- 6 8 10 12 14 16
Number of Satellites
Fig. 2. Comparison of GDOP between QCAE and PSOSSM methods.
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GDOP Values Over 24 Hours
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Fig. 3. GDOP due to optimal set of 4 satellites (GPS+ GLONASS) by QCAE and all visible satellites on 10th
March 2022.

Optimal 4 Optimal 9

satellites selected | Optimal 4 satellites | satellites selected | Optimal 9 satellites | All Visible

by QCAE selected by PSOSSM | by QCAE selected by PSOSSM | satellites

Timein | x y z X Yy z X y z X Yy z X y z

SOW | Hrs (m) |(m) |(m) |(m) |(m) |(m) |(m) |(m) |(m) |(m) |[(m) |(m) |(m) |(m) |(m)
523,560 | 2 421 |28.01 | 11.92 | 6.67 | 31.25 | 17.58 | 4.19 | 27.99 | 11.48 | 5.57 |29.36 | 14.22 | 4.18 | 27.96 | 11.37
523,680 | 4 4.50 | 25.04 | 9.68 | 7.01 |[29.85 | 9.69 | 449 | 25.02 | 9.02 | 6.42 |28.01 | 9.92 | 448 | 2433 | 8.97
523,800 | 6 429 |27.99 | 11.33 | 7.11 | 33.44 | 17.25 | 427 | 27.96 | 11.01 | 6.99 | 30.21 | 14.03 | 4.21 | 27.38 | 10.92
523,920 | 8 4.61 | 24.89 | 10.01 | 7.27 | 29.85 | 19.45 | 4.58 | 24.88 | 9.23 | 6.88 |27.27 | 15.01 | 4.53 | 24.83 | 8.22
524,040 | 10 9.01 | 26.27 | 10.03 | 21.33 | 57.23 | 27.56 | 8.99 | 25.99 | 9.99 | 19.65 | 54.25 | 23.02 | 8.42 | 24.99 | 9.41
524,160 | 12 429 |27.39 | 11.27 | 7.28 | 31.52 | 25.68 | 4.24 | 26.36 | 10.99 | 6.77 | 29.85 | 22.02 | 4.04 | 26.14 | 8.03
524,280 | 14 559 |22.02 | 12.31 | 8.99 | 25.65 | 18.96 | 5.55 | 21.99 | 10.65 | 6.29 |24.27 | 17.26 | 5.41 | 21.90 | 10.20
524,400 | 16 711 | 27.22 | 14.99 | 18.33 | 32.45 | 17.85 | 6.01 | 26.32 | 14.02 | 15.03 | 29.44 | 15.24 | 5.37 | 26.06 | 13.10
524,520 | 18 8.71 | 28.21 | 14.44 | 14.28 | 42.69 | 20.36 | 8.67 | 27.11 | 14.35 | 11.36 | 39.55 | 18.27 | 8.19 | 27.09 | 12.29
524,640 | 20 6.33 | 28.27 | 1529 | 11.29 | 42.99 | 19.86 | 6.27 | 28.02 | 15.22 | 9.25 | 41.23 | 16.77 | 6.15 | 27.56 | 14.88
524,760 | 22 7.34 | 29.56 | 13.59 | 14.57 | 35.21 | 19.63 | 7.29 | 29.01 | 13.57 | 8.57 | 31.02 | 15.01 | 7.28 | 28.31 | 12.81
524,880 | 24 9.91 | 27.14 | 14.09 | 13.57 | 33.67 | 18.42 | 9.88 | 27.02 | 12.24 | 12.44 | 30.21 | 15.44 | 9.84 | 26.16 | 12.10

Table 3. Position error values obtained by navigation algorithm for optimal combinations of satellites in
combined constellation (i.e., GPS and GLONASS).

measures were analysed and is shown in Fig. 8. The GNSS accuracy measures are listed in Table 4 and are
calculated using the formulae specified in Table 1.

CEP measures the radius within which 50% of the positioning errors fall. Lower CEP values indicate
better accuracy. QCAE shows significantly lower CEP values compared to PSOSSM for both 4 and 9 satellites,
demonstrating better accuracy in positioning. The CEP values for QCAE are closer to the All-visible satellites’
condition, indicating that QCAE performs well in minimizing the median error radius. SEP is the radius of three-
dimensional positioning errors within 50%. Lower SEPs indicate better spatial precision. For 4 and 9 satellites,
QCAE has lower SEP values than PSOSSM, indicating better three-dimensional positioning. QCAE’s SEP values
are close to the all-visible criterion, indicating its correctness in all spatial dimensions. 2DRMS measures two-
dimensional root mean square error to estimate average positional error. QCAE consistently has lower 2DRMS
values than PSOSSM, indicating better two-dimensional positioning performance. 2DRMS results for QCAE
are close to the all-visible condition, confirming its ability to reduce average positional errors. The average error
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X-Position Error Comparison
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Fig. 4. The position error values in the x-direction is observed for the combined GPS and GLONASS case
using the optimal satellite combinations selected by the QCAE and PSOSSM methods.

between observed and estimated three-dimensional locations is measured by MRSE. QCAE has lower MRSE
than PSOSSM for 4 and 9 satellites, indicating greater positioning accuracy. The MRSE values of QCAE are close
to the all-visible condition, indicating that it approximates the accuracy of all visible satellites.

The performance of Quantum Convolutional Autoencoder (QCAE) by indicating the performance metrics
for selecting optimal groups of 4 and 9 visible satellites is depicted in Fig. 9. The performance metrics used
for the performance comparison are F1 Score, Accuracy, Precision, and Recall. For the F1 Score, the QCAE
performs slightly better with 4 satellites (0.95) compared to 9 satellites (0.93), indicating a better balance between
precision and recall. The accuracy is very high for both cases, with a marginal difference (0.975 for 4 satellites
and 0.973 for 9 satellites), demonstrating the QCAE’s effectiveness in selecting optimal satellites. Precision
is higher when selecting 4 satellites (0.94) compared to 9 satellites (0.92), suggesting that the model is more
accurate in predicting relevant instances among the selected satellites. Similarly, recall is higher for 4 satellites
(0.96) compared to 9 satellites (0.94), indicating the model’s efficiency in capturing most of the relevant instances
from the visible satellites. Overall, the QCAE better performance metrics when selecting 4 optimal satellites
compared to 9 optimal satellites.

This approach is useful for low cost GNSS receivers, and it reduces mathematical computations to 730
multiplications and 713 additions, thereby decreasing the computational burden on the navigational solution
significantly. Table 5 gives the computational information of a navigational solution. The proposed approach is
examined with the data collected from the low-cost receiver, DL-V3-L1L2, located at Lat/Lon: 17.73° N/83.319°
E. The proposed method QCAE based satellite selection method compared with various optimization and
deep learning methods, including PSOSSM, hybrid optimization approaches, and deep learning models. While
several methods showed competitive performance, the comparison demonstrated that PSOSSM and QCAE
were the most effective. Among these, QCAE consistently outperformed all other methods, proving to be the
best in terms of accuracy, computational efficiency, and scalability.

Conclusion

The proposed QCAE-based satellite selection method is designed to be compatible with low-cost GNSS receivers
by using a hybrid quantum-classical approach. The classical pre-processing stage, including GNSS data filtering
and feature extraction, can be efficiently executed on embedded processors. The quantum component, responsible
for feature extraction and dimensionality reduction, can be executed on cloud-based quantum processors or
simulated on classical GPUs for feasibility in real-world applications. Since real-time satellite selection is critical
for GNSS receivers, the post-processing stage, involving optimization and decision-making, is designed to run
efficiently on edge computing devices with moderate computational power. The quantum feature extraction can
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Fig. 5. The position error values in the y- direction is observed for the combined GPS and GLONASS case
using the optimal satellite combinations selected by the QCAE and PSOSSM methods.

be precomputed and stored in lookup tables to reduce real-time computational demands. Thus, the proposed
approach balances the computational efficiency with the advantages of quantum-enhanced satellite selection,
making it practical for low-cost GNSS receivers. In this research, this work explores for selecting optimal
satellites from a visible group of 17 to 20 satellites. The primary objective was to enhance the performance
of GNSS receivers by efficiently selecting subsets of satellites that maintain high positioning accuracy while
minimizing the computational burden. In situations when there are a greater number of satellites, traditional
methods such as geometric criteria and tetrahedron volume-based models sometimes experience difficulties with
their computing efficiency. Improvements can be made with optimization methods such as Genetic Algorithms
(GAs) and Particle Swarm Optimization (PSO), although these algorithms still require a significant amount of
computational speed and need to adapt the dynamic changes. Among these two optimization algorithms PSO is
proved as the best method for satellite selection based on its convergence phenomenon. In this work, two satellite
selection approaches, QCAE based satellite selection method and PSOSSM (Particle Swarm Optimization based
Satellite Selection Method) were compared and the results demonstrate that there are considerable changes in
the accuracy of location. The QCAE based satellite selection method displayed superior performance across
a variety of metrics, such as the circular error probability (CEP), the spherical error probability (SEP), the
two-dimensional root mean square (2DRMS), and the mean residual spherical error (MRSE). For example,
optimal set of 4 satellites which were selected by QCAE, is able to reach a CEP of 1.384 m and a SEP of 1.759 m,
which is significantly lower than PSOSSM’s CEP of 5.937 m and SEP of 6.691 m, respectively. The optimal set of
nine satellites which were selected by QCAE, the CEP is 1.287 m, while the SEP is 1.713 m. This is in contrast
to the CEP and SEP of PSOSSM, which are 5.725 m and 6.385 m, respectively. Having values that are lower
indicates that the accuracy and precision are higher. The fact that the positioning errors for QCAE are more
steady and closer to the “All Visible Satellites” condition is further evidence of the efficiency of this method in
preserving positional accuracy. In addition, this method is very helpful for low-cost GNSS receivers because it
considerably minimizes the number of mathematical computations that are required. When employing QCAE
for optimal GPS+ GLONASS 9 satellites, only 730 multiplications and 713 additions are required, in contrast
to the 2034 multiplications and 2017 additions that are required when using all visible satellites. This reduction
in computational requirements decreases the computational burden on the navigational solution significantly,
making QCAE a more efficient and reliable method for satellite selection in low cost GNSS receiver applications.
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Fig. 6. The position error values in the z-direction is observed for the combined GPS and GLONASS case
using the optimal satellite combinations selected by the QCAE and PSOSSM methods.
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Fig. 7. Error distribution plot with the optimal combinations of satellites for the combined GPS and
GLONASS case by QCAE and PSOSSM methods.
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Comparison of GNSS Accuracy Measures
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Fig. 8. Comparison of GNSS accuracy measures.

CEP 1.384 5.937 1.287 5.725 1.224
SEP 1.759 6.691 1.713 6.385 1.655
2DRMS | 5.541 18.808 5.332 17.830 5.142
MRSE 30.42 43.262 29.83 39.144 29.11

Table 4. GNSS measures comparison of QCAE and PSOSSM methods.
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Performance Metrics Comparison for QCAE
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Fig. 9. Performance metrics comparison of the proposed method QCAE in optimal 4 satellites and optimal 9
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Optimal
GPS + GLONASS 9Satellites | /-0 713
Al GPS + GLONASS 2034 o1
satellites

Table 5. Computations of navigation solution.
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