
Sub pico-second pulses in mono-
mode optical fibers with Triki-
Biswas model
Akhtar Hussain1, Tarek F. Ibrahim2,3, Faizah D. Alanazi4, Ariana Abdul Rahimzai5,  
Arafa A. Dawood6 & Waleed M. Osman7

This study explores the Triki-Biswas (TB) model, a novel model describing soliton dynamics in 
monomodal optical fibers with non-Kerr dispersion, to obtain optical solitons. Optical bright and 
singular solitons were derived using the generalized Jacobi elliptic function (gJEF) method and the 
tan

(
V (η)

2

)
−expansion method. Trigonometric, hyperbolic, exponential, polynomial, and rational 

functions are obtained. The physical dynamics of the obtained solutions confirmed the existence of 
known complex structures, such as shock waves, dark solitons, periodic waves, and singular periodic 
solutions. The simulations generated in Mathematica 11.3 are graphically presented to depict the 
nature of the acquired solutions. These results are novel and have not been reported previously in the 
literature.
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Solitons1,2 play a pivotal role in soliton transmission technology3–11, particularly in applications involving 
optical fibers12–15, telecommunications, and data transmission16–19 across transcontinental and transoceanic 
distances. Numerous mathematical models20–25, including but not limited to the complex Ginzburg-Landau 
model, Fokas-Lenells equation, Radhakrishnan-Kundu-Lakshmanan equation, Lakshmanan-Porsezian-Daniel 
model, Kundu-Eckhaus model, Kaup-Newell equation, nonlinear Schrödinger’s equation, and Gerdjikov-Ivanov 
equation, contribute to the comprehension and manipulation of solitons in these optical contexts26–37 and many 
others38–42. The TB equation is another crucial governing model employed in various techniques, such as chirped 
soliton solutions, the exp(V (η))-expansion technique, conservation laws, first integral technique, and traveling 
wave hypothesis43–45. Numerous46–48 other studies exist in the literature irrespective of conservation laws.

The TB equation represents a significant advancement and serves as a generalized form of the derivative 
nonlinear Schrödinger equation. This equation is specifically tailored to govern the dynamics of subpicosecond 
pulse propagation. Notably, the TB model is a promising candidate for describing the propagation of ultrashort 
pulses in optical fiber systems, particularly in scenarios where the Kerr effect imposes limitations. The 
incorporation of derivative quintic non-Kerr nonlinearity terms within this model plays a pivotal role, especially 
in facilitating the transmission of extremely brief pulses with widths of the order of sub-10 fs in highly nonlinear 
optical fibers. Given the challenges faced by the telecommunications industry, the TB equation has emerged as a 
valuable asset that significantly contributes to the generation of essential optical solitons. Numerous studies have 
been conducted on the TB model49–51.

The TB model is investigated by employing the generalized Jacobi elliptic function method52–54 and 
tan

(
V (η)

2

)
-expansion method55,56. The primary objective is to recover subpicosecond optical soliton solutions 

and ascertain the conditions that govern their existence. Additionally, the adopted methods led to the discovery 
of supplementary solutions, including shock waves, double periodic waves, and singular periodic solutions, 
facilitated by the reverse formulation of the constraints. A comprehensive analysis of the model’s intricacies 
is presented in subsequent sections of this article. None of the ansatz methods are so strong that they can deal 
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with all types of solutions for each NLPDE. The generalized Jacobi elliptic function method does not apply to 
nonlinear problems/PDEs, where the product of the even and odd terms appears as a single term. This section 
covers the remaining cases. In addition, it is very difficult to deal with some classes of variable coefficient 
NLPDEs using both techniques.

The remainder of this paper is organized as follows. In "Coordinated strategies" section, comprehensive 
methodologies for the gJEF method and tan

(
V (η)

2

)
-expansion method are presented. The application of these 

techniques to the TB equation is described in "Solitary wave solutions in the TB model (1)" section. In addition 
to the mathematical derivations, "Analysis of the physical implications of the obtainedresults" section provides 
a graphical representation of the outcomes, aiding the interpretation of their physical significance.Thee paper 
concludes with a discussion and concluding remarks in "Discussion and conclusions" section.

Formulation of the regulatory model
The model proposed by Triki and Biswas43–45 is presented as follows

	 Qt + iaQxx + b
(
|Q|2nQ

)
x

= 0.� (1)

The initial term in the equation governs the temporal evolution of pulses with the coefficient ‘a, ensuring the 
presence of group velocity dispersion in the model. The profile of subpicosecond optical solitons is represented 
by the complex-valued function Q(x, t). The non-Kerr dispersion effect is counteracted by coefficient ‘b’ when 
n > 2. When the nonlinearity parameter takes the value of n = 1, the model aligns with the Kaup-Newell 
model. Conversely, when n = 2, the significance of the derivative quintic non-Kerr nonlinearity terms becomes 
pronounced in the transmission of extremely short pulses, characterized by widths around sub-10 fs, within 
highly nonlinear optical fibers.

Coordinated strategies
Examine the nonlinear PDE expressed in the following form

	 E (Q, Qx, Qt, Qxx, Qxt, . . .) = 0,� (2)

where Q = Q(x, t) denotes the solution of the nonlinear PDE (2). Using this transformation, we obtain

	 Q(x, t) = Z(η)eiϕ, η = x ± ct, ϕ = µ1x − µ2t + µ3,� (3)

where the parameters µ1 represent the soliton frequency, µ2 denotes the soliton wave, µ3 signifies the soliton 
phase, and c represents the speed of the wave. Then the nonlinear PDE (2) can be transformed into an ordinary 
differential equation (ODE) as follows

	 W (Z, Z′, Z′′, ...) = 0,� (4)

where Z′ = dZ
dη

·

General procedure to the gJEF method.
In this scenario, the gJEF method was detailed using the following approach: To arrive at waveform solutions for 
Eq (2), it is essential to follow these specified steps;

Step 1: Take into account the subsequent structure as the solution for Eq (4);

	
Z(η) =

N∑
p=0

apV p(η),� (5)

where, the identification of the real parameters ap(p = 1, 2, · · · , N) is necessary and the function V (η) satisfies 
the solution

	
V ′(η) =

√
s1 + s2V 2(η) + s3

2 V 4(η),� (6)

where s1, s2 and s3 are parameters.
Step 2: The parameter N can be determined by using the homogeneous balancing principle.
Step 3: Upon substituting Eq (5) into Eq (4) and then using Eq (6), we derive an associated system of equations 

featuring various V (η) monomials. Solving this system yields a set of values for the required parameters.
Step 4: The constants s1, s2, and s3 values presented in Table 1 can be employed to deduce solutions for Eq 

(6).
As stated earlier, the elliptic functions sn(η), cn(η), and dn(η) conform to the prescribed relationships

	

sn2(η) + cn2(η) = 1, dn2(η) + Υ2 sn2(η) = 1, (sn(η))′ = cn(η) dn(η),
(cn(η))′ = − sn(η) dn(η), (dn(η))′ = −Υ2 sn(η) cn(η).

� (7)
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When Υ −→ 0, the Jacobi elliptic function degenerate to the triangular functions,

	
sn(η) → sin(η), cn(η) → cos(η),
cs(η) → cot(η), ds(η) → csc(η).

When Υ −→ 1, the Jacobi elliptic function degenerate to the hyperbolic functions,

	

sn(η) → tanh(η), cn(η) → sech(η), dn(η) → sech(η),
cs(η) → csch(η), ds(η) → csch(η).

In this context, the elliptic functions approach trigonometric functions as Υ → 0 and the hyperbolic functions 
for Υ → 1 are detailed in Table 2.

No. s1 s2 s3
V (η)

1 1 −2 2 tanh(η)

2 0 1 2 csch(η)

3 0 1 2 csch(η)

4 0 1 −2 sech(η)

5 0 1 −2 sech(η)

6
1
4

−1
2 1

2
tanh(η)

1±sech(η)

7
1
4

−1
2 1

2
tanh(η)

1±sech(η)

8 0 1 −1
2 sech(η) ± sech(η)

9 0 1 0 sech(η)
1±tanh(η)

10 0 0 0 sech(η)
1±tanh(η)

11
1
4 0 0 tanh(η)

sech(η)±sech(η)

12 0 0 2 F
η

13 0 1 0 F eη

Table 2.  When Υ �→ 1.

 

No. s1 s2 s3
V (η)

1 1 −(1 + Υ2) 2Υ2 sn(η)

2 −Υ2(1 − Υ2) 2Υ2 − 1 2 ds(η)

3 1 − Υ2 2 − Υ2 2 cs(η)

4 1 − Υ2 2Υ2 − 1 −2Υ2 cn(η)

5 Υ2 − 1 2 − Υ2 −2 dn(η)

6
1
4 (Υ2−2)

2
Υ2

2
sn(η)

1±dn(η)

7 Υ2
4

(Υ2−2)
2

Υ2
2

sn(η)
1±dn(η)

8 −(1−Υ2)2
4

(Υ2+1)
2

−1
2 ηcn(η) ± dn(η)

9 Υ2−1
4

(Υ2+1)
2

Υ2−1
2

dn(η)
1±sn(η)

10 1−Υ2
4

1−Υ2
2

1−Υ2
2

cn(η)
1±sn(η)

11
1
4 (1−Υ2)2

2
(1−Υ2)2

2
sn(η)

dn(η)±cn(η)

12 0 0 2 F
η

13 0 1 0 F eη

Table 1.  Types of solutions of (6).

 

Scientific Reports |        (2025) 15:32164 3| https://doi.org/10.1038/s41598-025-92387-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


tan
(

V (η)
2

)
-expansion method

The procedure is elucidated through the following steps;
Step: 1 Following this scheme, we posit the solution for ODE (4) as follows:

	
Z (η) =

N∑
p=0

ap

[
tan

(
V (η)

2

)]p

+
N∑

p=1

bp

[
tan

(
V (η)

2

)]−p

,� (8)

where the constants ap (where 0 ≤ p ≤ N ) and bp (where 1 ≤ p ≤ N ) have yet to be determined. Function 
V (η) complies with the ODE:

	 V ′ = θ1 sin(V (η)) + θ2 cos(V (η)) + θ3.� (9)

The following are the specific solutions to (9).
Case (1) For θ2

1 + θ2
2 − θ2

3 < 0 and θ2 − θ3 ̸= 0,

	
V (η) = 2 tan−1

[
θ1

θ2 − θ3
−

√
θ2

3 − θ2
2 − θ2

1

θ2 − θ3
tan

(√
θ2

3 − θ2
2 − θ2

1

2 (η + C)
)]

,� (10)

Case (2) For θ2
1 + θ2

2 − θ2
3 > 0 and θ2 − θ3 ̸= 0,

	
V (η) = 2 tan−1

[
θ1

θ2 − θ3
−

√
θ2

3 + θ2
2 − θ2

1

θ2 − θ3
tanh

(√
θ2

3 − θ2
2 − θ2

1

2 (η + C)
)]

.� (11)

Case (3) For θ2
1 + θ2

2 − θ2
3 > 0, θ2 ̸= 0 and θ3 = 0,

	
V (η) = 2 tan−1

[
θ1

θ2
−

√
θ2

2 + θ2
1

θ2
tanh

(√
θ2

2 + θ2
1

2 (η + C)
)]

.� (12)

Case (4) For θ2
1 + θ2

2 − θ2
3 < 0, θ3 ̸= 0 and θ2 = 0,

	
V (η) = 2 tan−1

[
− θ1

θ3
+

√
θ2

3 − θ2
1

θ3
tan

(√
θ2

3 − θ2
1

2 (η + C)
)]

.� (13)

Case (5) For θ2
1 + θ2

2 − θ2
3 > 0, θ2 − θ3 ̸= 0 and θ1 = 0,

	
V (η) = 2 tan−1

[√
θ2 + θ3

θ2 − θ3
tanh

(√
θ2

2 − θ2
3

2 (η + C)
)]

.� (14)

Case (6) For θ1 = 0 and θ3 = 0,

	
V (η) = tan−1

[
e2θ2(η+C) − 1
e2θ2(η+C) + 1

,
e2θ2(η+C)

e2θ2(η+C) + 1

]
.� (15)

Case (7) For θ2 = 0 and θ3 = 0,

	
V (η) = tan−1

[
e2θ1(η+C)

e2θ1(η+C) + 1
,

e2θ1(η+C) − 1
e2θ1(η+C) + 1

]
.� (16)

Case (8) For θ2
1 + θ2

2 = θ2
3 ,

	
V (η) = −2 tan−1

[
(θ2 + θ3)(θ1(η + C) + 2)

θ2
1(η + C)

]
.� (17)

Case (9) For θ1 = θ2 = θ3 = ic0,

	
V (η) = 2 tan−1

[
eic0(η+C) − 1

]
.� (18)

Case (10) For θ1 = θ3 = ic0 and θ2 = −ic0,

	
V (η) = −2 tan−1

[
eic0(η+C)

eic0(η+C) − 1

]
.� (19)
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Case (11) For θ3 = θ1,

	
V (η) = −2 tan−1

[
(θ1 + θ2)eθ2(η+C) − 1
(θ1 − θ2)eθ2(η+C) − 1

]
.� (20)

Case (12) For θ1 = θ3,

	
V (η) = 2 tan−1

[
(θ2 + θ3)eθ2(η+C) + 1
(θ2 − θ3)eθ2(η+C) − 1

]
.� (21)

Case (13) For θ3 = −θ1,

	
V (η) = 2 tan−1

[
eθ2(η+C) + θ2 − θ1

eθ2(η+C) − θ2 − θ1

]
,� (22)

Case (14) For θ2 = −θ3,

	
V (η) = −2 tan−1

[
θ1eθ1(η+C)

θ3eθ1(η+C)

]
.� (23)

Case (15) For θ2 = 0, θ1 = θ3,

	
V (η) = −2 tan−1

[
θ3(η + C) + 2

θ3(η + C)

]
.� (24)

Case (16) For θ1 = 0 and θ2 = θ3,

	
V (η) = 2 tan−1

[
θ3(η + C)

]
.� (25)

Case (17) For θ1 = 0 and θ2 = −θ3,

	
V (η) = −2 tan−1

[
1

θ3(η + C)

]
.� (26)

Case (18) For θ1 = 0 and θ2 = 0,

	 V (η) = θ3(η + C).� (27)

Balance index N can be determined using the homogeneous balance principle.
Step:  3 Upon obtaining the value of N in the previous step, substitute Eq (4), and the coefficients of 

tan
(

V (η)
2

)p

 and tan
(

V (η)
2

)−p

. A system of algebraic equations was derived by setting each coefficient to 

zero. When solved using Mathematica software, these equations allow for the determination of the values of a0, 
ap, bp (p = 1, 2, · · · , N), θ1, θ2, and θ3.

Step: 4 Substitute the values of a0, a1, b1, ..., ap, bp, and c into Eq (8), the solution for ODE (4) is obtained. 
The solution for PDE (2) follows by using the transformation (3).

Solitary wave solutions in the TB model (1)
The model proposed by TB is presented as follows

	 Qt + iaQxx + b
(
|Q|2nQ

)
x

= 0.

In order to obtain exact solution to Eq (1), we apply the traveling wave transformation (3), and subsequently 
separating real and imaginary parts results

	 − Z′c − aZ′µ1 − aZ′ + 2nbZ′Z2n + bZ′Z2n = 0, � (28)

	 − Z′ + aZ′ − aµ1Z′ + 2nbµ1Z2n+1 + µ1bZ2n+1 = 0. � (29)

Both the real and imaginary components describe the speed of the model through the medium by the relation 
Z = X

1
2n , so one can get

	 −4n2X2(µ2 + µ2
1a) + a(1 − 2n)(X ′)2 + 4n2aXX ′′ + 4n2bµ1X3 = 0.� (30)
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The homogeneous balancing principle suggests the index for Eq (30)

	 N = 2.� (31)

Soliton solutions using the gJEF method
In this section, the solitary wave and periodic solutions for the TB model (1) are calculated. We employ the gJEF 
method to handle these waveform solutions. For N = 2, the Eq (5) suggests

	 X(η) = a0 + a1V (η) + a2V 2(η).� (32)

We insert the values in (30) and subsequently use (6) to arrive at the system of equations. We solve this system 
using Mathematica and follow the results

	
b = −1

2
as3

µ1a2
, µ2 = −aµ2

1 + 2as2, a0 = −a2s2

s3
, a1 = 2

√
−s2

s3
, a2 = a2. � (33)

By substituting the values of parameters, the solution (32) becomes as

	
X(η) = −a2s2

s3
+ 2

√
−s2

s3
V (η) + a2V 2(η).� (34)

For different values of function V 2(η), (34) ascertains diverse soliton solutions.
Family: 1
When s1 = −(1 + Υ2), s2 = 2Υ2, s3 = 1.
We derive the periodic wave solution for (30) by adopting the Jacobi amplitude function as V (η) = sn(η, Υ).

	
X1(η) = −a2s2

s3
+ 2

√
−s2

s3
sn(η, Υ) + a2sn2(η, Υ),� (35)

and by the relationship, Z = X
1

2n , we follow

	
Z1(η) =

(
− a2s2

s3
+ 2

√
−s2

s3
sn(η, Υ) + a2sn2(η, Υ)

) 1
2n

.� (36)

In the scenario where Υ tends to 1, Eq (36) transforms into the shock wave solution for Eq (1) as indicated by

	
Q1(x, t) =

(
− a2s2

s3
+ 2

√
−s2

s3
tanh(x − ct) + a2 tanh2(x − ct)

) 1
2n

eι(µ1x−µ2t+µ3).� (37)

Family: 2
When s1 = 2Υ2 − 1, s2 = 2, s3 = −Υ2(1 − Υ2).
We derive the periodic wave solution for (30) by adopting the Jacobi amplitude function as V (η) = ds(η, Υ).

	
X2(η) = −a2s2

s3
+ 2

√
−s2

s3
ds(η, Υ) + a2ds2(η, Υ),� (38)

and

	
Z2(η) =

(
− a2s2

s3
+ 2

√
−s2

s3
ds(η, Υ) + a2ds2(η, Υ)

) 1
2n

.� (39)

In the scenario where Υ tends to 1, Eq (39) transforms into the singular soliton wave solution for Eq (1) as 
indicated by

	
Q2(x, t) =

(
− a2s2

s3
+ 2

√
−s2

s3
csch(x − ct) + a2csch2(x − ct)

) 1
2n

eι(µ1x−µ2t+µ3).� (40)

Family: 3
When s1 = 2 − Υ2, s2 = 2, s3 = 1 − Υ2.
We derive the periodic wave solution for (30) by adopting the Jacobi amplitude function as V (η) = cs(η, Υ).

	
X3(η) = −a2s2

s3
+ 2

√
−s2

s3
cs(η, Υ) + a2cs2(η, Υ),� (41)

and
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Z3(η) =

(
− a2s2

s3
+ 2

√
−s2

s3
cs(η, Υ) + a2cs2(η, Υ)

) 1
2n

.� (42)

In the scenario where Υ tends to 0, Eq (42) transforms into the singular soliton wave solution for Eq (1) as 
indicated by

	
Q3(x, t) =

(
− a2s2

s3
+ 2

√
−s2

s3
coth(x − ct) + a2 coth2(x − ct)

) 1
2n

eι(µ1x−µ2t+µ3).� (43)

Likewise, as Υ approaches 1, we obtain a singular soliton solution for Eq (1) given by

	
Q∗

3(x, t) =
(

− a2s2

s3
+ 2

√
−s2

s3
csch(x − ct) + a2csch2(x − ct)

) 1
2n

eι(µ1x−µ2t+µ3).� (44)

Family: 4
When s1 = 2Υ2 − 1, s2 = −2Υ2, s3 = 1 − Υ2.
We derive the periodic wave solution for (30) by adopting the Jacobi amplitude function as V (η) = cn(η, Υ).

	
X4(η) = −a2s2

s3
+ 2

√
−s2

s3
cn(η, Υ) + a2cn2(η, Υ),� (45)

and

	
Z4(η) =

(
− a2s2

s3
+ 2

√
−s2

s3
cn(η, Υ) + a2cn2(η, Υ)

) 1
2n

.� (46)

In the scenario where Υ tends to 1, Eq (46) transforms into the optical bright soliton wave for Eq (1) as indicated 
by

	
Q4(x, t) =

(
− a2s2

s3
+ 2

√
−s2

s3
sech(x − ct) + a2sech2(x − ct)

) 1
2n

eι(µ1x−µ2t+µ3).� (47)

Family: 5
When s1 = 2 − Υ2, s2 = −2, s3 = Υ2 − 1.
We derive the periodic wave solution for (30) by adopting the Jacobi amplitude function as V (η) = dn(η, Υ).

	
X5(η) = −a2s2

s3
+ 2

√
−s2

s3
dn2(η, Υ) + a2dn2(η, Υ),� (48)

and

	
Z5(x, t) =

(
− a2s2

s3
+ 2

√
−s2

s3
dn2(η, Υ) + a2dn2(η, Υ)

) 1
2n

.� (49)

In the scenario where Υ tends to 1, Eq (49) transforms into optical bright soliton solution for Eq (1) as indicated 
by

	
Q5(x, t) =

(
− a2s2

s3
+ 2

√
−s2

s3
sech(x − ct) + a2sech2(x − ct)

) 1
2n

eι(µ1x−µ2t+µ3).� (50)

Family: 6
When s1 = Υ2−2

2 , s2 = Υ2

2 , s3 = 1
4 .

We derive the double periodic wave solution for (30) by adopting the Jacobi amplitude function as 
V (η) = sn(η,Υ)

1±dn(η,Υ) .

	
X6(η) = −a2s2

s3
+ 2

√
−s2

s3

sn(η, Υ)
(1 ± dn(η, Υ)) + a2

sn2(η, Υ)
(1 ± dn(η, Υ))2 ,� (51)

and

	
Z6(x, t) =

(
− a2s2

s3
+ 2

√
−s2

s3

sn(η, Υ)
(1 ± dn(η, Υ)) + a2

sn2(η, Υ)
(1 ± dn(η, Υ))2

) 1
2n

.� (52)
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In the scenario where Υ tends to 1, Eq (52) transforms into

	
Q6(x, t) =

(
− a2s2

s3
+ 2

√
−s2

s3

tanh(x − ct)
(1 ± sech(x − ct)) + a2

tanh2(x − ct)
(1 ± sech(x − ct))2

) 1
2n

eι(µ1x−µ2t+µ3).� (53)

Family: 7
When s1 = Υ2−2

2 , s2 = Υ2

2 , s3 = Υ2

4 .
We derive the double periodic wave solution for (30) by adopting the Jacobi amplitude function as 

V (η) = sn(η,Υ)
1±dn(η,Υ) .

	
X7(η) = −a2s2

s3
+ 2

√
−s2

s3

sn(η, Υ)
(1 ± dn(η, Υ)) + a2

sn2(η, Υ)
(1 ± dn(η, Υ))2 ,� (54)

and

	
Z7(x, t) =

(
− a2s2

s3
+ 2

√
−s2

s3

sn(η, Υ)
(1 ± dn(η, Υ)) + a2

sn2(η, Υ)
(1 ± dn(η, Υ))2

) 1
2n

.� (55)

In the scenario where Υ tends to 1, Eq (55) transforms into

	
Q7(x, t) =

(
−a2s2

s3
+ 2

√
−s2

s3

tanh(x − sps)
(1 ± sech(x − ct)) + a2

tanh2(x − ct)
(1 ± sech(x − ct))2

) 1
2n

eι(µ1x−µ2t+µ3).� (56)

Family: 8
When s1 = Υ2+1

2 , s2 = − 1
2 , s3 = − (1−Υ2)2

4 .
We derive the double periodic wave solution for (30) by adopting the Jacobi amplitude function as 

V (η) = Υcn(η, Υ) ± dn(η, Υ).

	
X8(η) = −a2s2

s3
+ 2

√
−s2

s3
Υcn(η, Υ) ± dn(η, Υ) + a2(Υcn(η, Υ) ± dn(η, Υ))2,� (57)

along with

	
Z8(x, t) =

(
− a2s2

s3
+ 2

√
−s2

s3
Υcn(η, Υ) ± dn(η, Υ) + a2(Υcn(η, Υ) ± dn(η, Υ))2

) 1
2n

.� (58)

In the scenario where Υ tends to 1, Eq (58) transforms into

	
Q8(x, t) =

(
− a2s2

s3
+ 2

√
−s2

s3
(sech(x − ct) ± sech(x − ct)) + a2(sech(x − ct) ± sech(x − ct))2

) 1
2n

eι(µ1x−µ2t+µ3).� (59)

Family: 9
When s1 = 0, s2 = 2, s3 = 0.
We derive a rational solution for (30) by adopting the amplitude function as V (η) = F

η .

	
X9(η) = −a2s2

s3
+ 2

√
−s2

s3

(
D

η

)
+ a2

(
F

η

)2

,� (60)

and

	
Z9(x, t) =

(
− a2s2

s3
+ 2

√
−s2

s3

(
F

η

)
+ a2

(
F

η

)2) 1
2n

.� (61)

In the scenario where Υ tends to 0, Eq (61) transforms into

	
Q9(x, t) =

(
− a2s2

s3
+ 2

√
−s2

s3

(
F

x − ct

)
+ a2

(
F

x − ct

)2) 1
2n

eι(µ1x−µ2t+µ3).� (62)

Soliton solutions for TB model (1) using tan
(

V (η)
2

)
−expansion method

The solution (8) assumes the following mathematical expression
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X (η) = a0 + a1

[
tan

(
V (η)

2

)]
+ b1

[
tan

(
V (η)

2

)]−1

+ a2

[
tan

(
V (η)

2

)]2

+ b2

[
tan

(
V (η)

2

)]−2

.� (63)

We substitute Eq (63) into Eq (30), and then compare the polynomials of the type tan
(

V (η)
2

)
 results in the 

following system

	

(
tan

(
V (η)

2

))0

: 3b2θ2
2r − 3b2θ2

2Υ + 6b2θ2θ3r − 6b2θ2θ3Υ + 3b2θ2
3r − 3b2θ2

3Υ + 2b2p = 0,

(
tan

(
V (η)

2

))1

: b1θ2
2r − b1θ2

2Υ + 2b1θ2θ3r − 2b1θ2θ3Υ + b1θ2
3r − b1θ2

3Υ + 10b2θ1θ2r − 10b2θ1θ2Υ+

10b2θ1θ3r − 10b2θ1θ3Υ + 4b1b2p = 0,(
tan

(
V (η)

2

))2

: 3b1θ1θ2r − 3b1θ1θ2Υ + 3b1θ1θ3r − 3b1θ1θ3Υ + 8b2θ2
1r − 8b2θ2

1Υ + 2b2θ2
2r − 2b2θ2

2Υ

+ 12b2θ2θ3r − 12b2θ2θ3Υ + 10b2θ2
3r − 10b2θ2

3Υ + 4a0b2p + 2b2
1p + 4b2

2p

+ 2b2γ2 − 2b2k2 − 2b2w = 0,(
tan

(
V (η)

2

))3

: 2b1θ2
1r − 2b1θ2

1Υ + b1θ2
2r − b1θ2

2Υ + 4b1θ2θ3r − 4b1θ2θ3Υ + 3b1θ2
3r − 3b1θ2

3Υ

+ 14b2θ1θ2r − 14b2θ1θ2Υ + 26b2θ1θ3r − 26b2θ1θ3Υ + 4a0b1p + 4a1b2p

+ 8b1b2p + 2b1γ2 − 2b1k2 − 2b1w = 0,(
tan

(
V (η)

2

))4

: a1θ1θ2r − a1θ1θ2Υ + a1θ1θ3r − a1θ1θ3Υ + a2θ2
2r − a2θ2

2Υ + 2a2θ2θ3r − 2a2θ2θ3Υ

+ a2θ2
3r − a2θ2

3Υ + 5b1θ1θ2r − 5b1θ1θ2Υ + 7b1θ1θ3Υ − 7b1θ1θ3Υ + 16b2θ2
1r

− 16b2θ2
1Υ − 4b2θ2

2r + 4b2θ2
2Υ + 4b2θ2θ3r − 4b2θ2θ3Υ + 12b2θ2

3r − 12b2θ2
3Υ

+ 2a2
0p + 8a0b2p + 2a0γ2 − 2a0k2 + 4a1b1p + 4a2b2p + 4b2

1p

+ 4b2
2p + 4b2γ2 − 4b2k2 − 2a0w − 4b2w = 0,(

tan
(

V (η)
2

))5

: 2a1θ2
1r − 2a1θ2

1Υ − a1θ2
2r + a1θ2

2Υ + a1θ2
3r − a1θ2

3Υ + 6a2θ1θ2r

− 6a2θ1θ2Υ + 6a2θ1θ3r − 6a2θ1θ3Υ + 4b1θ2
1r − 4b1θ2

1Υ − b1θ2
2r + b1θ2

2Υ + 2b1θ2θ3r

− 2b1θ2θ3Υ + 3b1θ2
3r − 3b1θ2

3Υ − 2b2θ1θ2r + 2b2θ1θ2Υ + 22b2θ1θ3r − 22b2θ1θ3Υ
+ 4a0a1p + 8a0b1p + 8a1b2p + 2a1γ2 − 2a1k2 + 4a2b1p + 4b1b2p + 4b1γ2

− 4b1k2 − 2a1w − 4b1w = 0,(
tan

(
V (η)

2

))6

: −a1θ1θ2r + a1θ1θ2Υ + 5a1θ1θ3r − 5a1θ1θ3Υ + 8a2θ2
1r − 8a2θ2

1Υ − 2a2θ2
2r + 2a2θ2

2Υ

+ 4a2θ2θ3r − 4a2θ2θ3Υ + 6a2θ2
3r − 6a2θ2

3Υ + b1θ1θ2r − b1θ1θ2Υ + 5b1θ1θ3r − 5b1θ1θ3Υ
+ 8b2θ2

1r − 8b2θ2
1Υ − 2b2θ2

2r + 2b2θ2
2Υ − 4b2θ2θ3r + 4b2θ2θ3Υ + 6b2θ2

3r − 6b2θ2
3Υ

+ 4a2
0p + 4a0a2p + 4a0b2p + 4a0γ2 − 4a0k2 + 2a2

1p + 8a1b1p + 8a2b2p + 2a2γ2

− 2a2k2 + 2b2
1p + 2b2γ2 − 2b2k2 − 4a0w − 2a2w − 2b2w = 0,(

tan
(

V (η)
2

))7

: 4a1θ2
1r − 4a1θ2

1Υ − a1θ2
2r + a1θ2

2Υ − 2a1θ2θ3r + 2a1θ2θ3Υ + 3a1θ2
3r − 3a1θ2

3Υ

+ 2a2θ1θ2r − 2a2θ1θ3Υ + 22a2θ1θ3r − 22a2θ1θ3 Υ + 2b1θ2
1r − 2b1θ2

1Υ − b1θ2
2r + b1θ2

2Υ
+ b1θ2

3r − b1θ2
3Υ − 6b2θ1θ2r + 6b2θ1θ2Υ + 6b2θ1θ3r − 6b2θ1θ3Υ + 8a0a1p + 4a0b1p

+ 4a1a2p + 4a1b2p + 4a1γ2 − 4a1k2 + 8a2b1p + 2b1γ2 − 2b1k2 − 4a1w − 2b1w = 0,(
tan

(
V (η)

2

))8

: −5a1θ1θ2r + 5a1θ1θ2Υ + 7a1θ1θ3r − 7a1θ1θ3Υ + 16a2θ2
1r − 16a2θ2

1Υ − 4a2θ2
2r

+ 4a2θ2
2Υ − 4a2θ2θ3r + 4a2θ2θ3Υ + 12a2θ2

3r − 12a2θ2
3Υ − b1θ1θ2r + b1θ1θ2Υ

+ b1θ1θ3r − b1θ1θ3Υ + b2θ2
2r − b2θ2

2Υ − 2b2θ2θ3r + 2b2θ2θ3Υ + b2θ2
3r − b2θ2

3Υ
+ 2a2

0p + 8a0a2p + 2a0γ2 − 2a0k2 + 4a2
1p + 4a1b1p + 2a2

2p + 4a2b2p + 4a2γ2

− 4a2k2 − 2a0w − 4a2w = 0,

� (64)
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(
tan

(
V (η)

2

))9

: 2a1θ2
1r − 2a1θ2

1Υ + a1θ2
2r − a1θ2

2Υ − 4a1θ2θ3r + 4a1θ2θ3Υ + 3a1θ2
3r − 3a1θ2

3Υ

− 14a2θ1θ2r + 14a2θ1θ2Υ + 26a2θ1θ3r − 26a2θ1θ3Υ + 4a0a1p + 8a1a2p

+ 2a1γ2 − 2a1k2 + 4a2b1p − 2a1w = 0,(
tan

(
V (η)

2

))10

: −3a1θ1θ2r + 3a1θ1θ2Υ + 3a1θ1θ3r − 3a1θ1θ3Υ + 8a2θ2
1r − 8a2θ2

1Υ + 2a2θ2
2r − 2a2θ2

2Υ

− 12a2θ2θ3r + 12a2θ2θ3Υ + 10a2θ2
3r − 10b2θ2

3Υ + 4a0a2p + 2a2
1p + 4a2

2p

+ 2a2γ2 − 2a2k2 − 2a2w = 0.

� (65)

The following outcomes were acquired through the utilization of the Mathematica software

Set: 1 η = 1
5 (1 + 2i), θ2 = θ2, a0 = a0, a1 =

√
6a0a2θ2−6a0a2θ3+2a2

2θ2+2a2
2θ3

θ2−θ3
, a2 = a2, b1 = 0, b2 = 0, 

b = a(θ2
2−2θ2θ3+θ2

3)
−4a2k , µ2 = 3a0θ2

2−6a0θ2θ3+3a0θ2
3−8a2k2+3a2θ2

2−3a2θ2
3)

8a2
·

	
X (η) = a0 +

√
6a0a2θ2 − 6a0a2θ3 + 2a2

2θ2 + 2a2
2θ3

θ2 − θ3

[
tan

(
V (η)

2

)]
+ a2

[
tan

(
V (η)

2

)]2

,� (66)

where θ1, θ2, and θ3 represent arbitrary constants and η = x ± ct. By considering families 1 − 18 following 
solution families are obtained

	

Q10 (x, t) =
[

a0 +

√
6a0a2θ2 − 6a0a2θ3 + 2a2

2θ2 + 2a2
2θ3

θ2 − θ3

[
θ1

θ2 − θ3
−

√
θ2

3 − θ2
2 − θ2

1

θ2 − θ3
tan

(√
θ2

3 − θ2
2 − θ2

1

2

(η + C)
)]

+ a2

[
θ1

θ2 − θ3
−

√
θ2

3 − θ2
2 − θ2

1

θ2 − θ3
tan

(√
θ2

3 − θ2
2 − θ2

1

2 (η + C)
)]2] 1

2n

eι(µ1x−µ2t+µ3)

� (67)

	

Q11 (x, t) =
[

a0 +

√
6a0a2θ2 − 6a0a2θ3 + 2a2

2θ2 + 2a2
2θ3

θ2 − θ3

[
θ1

θ2 − θ3
−

√
θ2

3 + θ2
2 − θ2

1

θ2 − θ3
tanh

(√
θ2

3 − θ2
2 − θ2

1

2

(η + C)
)]

+ a2

[
θ1

θ2 − θ3
−

√
θ2

3 + θ2
2 − θ2

1

θ2 − θ3
tanh

(√
θ2

3 − θ2
2 − θ2

1

2 (η + C)
)]2] 1

2n

eι(µ1x−µ2t+µ3)

� (68)

	

Q12 (x, t) =
[

a0 +

√
6a0a2θ2 − 6a0a2θ3 + 2a2

2θ2 + 2a2
2θ3

θ2 − θ3

[
θ1

θ2
−

√
θ2

2 + θ2
1

θ2
tanh

(√
θ2

2 + θ2
1

2 (η + C)
)]

+ a2

[
θ1

θ2
−

√
θ2

2 + θ2
1

θ2
tanh

(√
θ2

2 + θ2
1

2 (η + C)
)]2] 1

2n

eι(µ1x−µ2t+µ3)

� (69)

	

Q13 (x, t) =
[

a0 +

√
6a0a2θ2 − 6a0a2θ3 + 2a2

2θ2 + 2a2
2θ3

θ2 − θ3

[
− θ1

θ3
+

√
θ2

3 − θ2
1

θ3
tan

(√
θ2

3 − θ2
1

2 (η + C)
)]

+ a2

[
− θ1

θ3
+

√
θ2

3 − θ2
1

θ3
tan

(√
θ2

3 − θ2
1

2 (η + C)
)]2] 1

2n

eι(µ1x−µ2t+µ3)

� (70)

	

Q14 (x, t) =
[

a0 +

√
6a0a2θ2 − 6a0a2θ3 + 2a2

2θ2 + 2a2
2θ3

θ2 − θ3

[√
θ2 + θ3

θ2 − θ3
tanh

(√
θ2

2 − θ2
3

2 (η + C)
)]

+ a2

[√
θ2 + θ3

θ2 − θ3
tanh

(√
θ2

2 − θ2
3

2 (η + C)
)]2] 1

2n

eι(µ1x−µ2t+µ3)

� (71)

	

Q15 (x, t) =
[

a0 +

√
6a0a2θ2 − 6a0a2θ3 + 2a2

2θ2 + 2a2
2θ3

θ2 − θ3
tan

(
1
2 tan−1

[
e2θ2(η+C) − 1
e2θ2(η+C) + 1

,
e2θ2(η+C)

e2θ2(η+C) + 1

])

+ a2

(
tan

(
1
2 tan−1

[
e2θ2(η+C) − 1
e2θ2(η+C) + 1

,
e2θ2(η+C)

e2θ2(η+C) + 1

]))2] 1
2n

eι(µ1x−µ2t+µ3)

� (72)

	

Q16 (x, t) =
[

a0 +

√
6a0a2θ2 − 6a0a2θ3 + 2a2

2θ2 + 2a2
2θ3

θ2 − θ3
tan

(
1
2 tan−1

[
e2θ1(η+C)

e2θ1(η+C) + 1
,

e2θ1(η+C) − 1
e2θ1(η+C) + 1

])

+ a2

(
tan

(
1
2 tan−1

[
e2θ1(η+C)

e2θ1(η+C) + 1
,

e2θ1(η+C) − 1
e2θ1(η+C) + 1

]))2] 1
2n

eι(µ1x−µ2t+µ3)

� (73)
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Q17 (x, t) =
[

a0 +

√
6a0a2θ2 − 6a0a2θ3 + 2a2

2θ2 + 2a2
2θ3

θ2 − θ3

[
(θ2 + θ3)(θ1(η + C) + 2)

θ2
1(η + C)

]

+ a2

[
(θ2 + θ3)(θ1(η + C) + 2)

θ2
1(η + C)

]2] 1
2n

eι(µ1x−µ2t+µ3)

� (74)

	

Q18 (x, t) =
[

a0 +

√
6a0a2θ2 − 6a0a2θ3 + 2a2

2θ2 + 2a2
2θ3

θ2 − θ3

[
eic0(η+C) − 1

]

+ a2

[
eic0(η+C) − 1

]2] 1
2n

eι(µ1x−µ2t+µ3)

� (75)

	

Q19 (x, t) =
[

a0 +

√
6a0a2θ2 − 6a0a2θ3 + 2a2

2θ2 + 2a2
2θ3

θ2 − θ3

[
eic0(η+C)

eic0(η+C) − 1

]

+ a2

[
eic0(η+C)

eic0(η+C) − 1

]2] 1
2n

eι(µ1x−µ2t+µ3)

� (76)

	

Q20 (x, t) =
[

a0 +

√
6a0a2θ2 − 6a0a2θ3 + 2a2

2θ2 + 2a2
2θ3

θ2 − θ3

[
(θ1 + θ2)eθ2(η+C) − 1
(θ1 − θ2)eθ2(η+C) − 1

]

+ a2

[
(θ1 + θ2)eθ2(η+C) − 1
(θ1 − θ2)eθ2(η+C) − 1

]2] 1
2n

eι(µ1x−µ2t+µ3)

� (77)

	

Q21 (x, t) =
[

a0 +

√
6a0a2θ2 − 6a0a2θ3 + 2a2

2θ2 + 2a2
2θ3

θ2 − θ3

[
(θ2 + θ3)eθ2(η+C) + 1
(θ2 − θ3)eθ2(η+C) − 1

]

+ a2

[
(θ2 + θ3)eθ2(η+C) + 1
(θ2 − θ3)eθ2(η+C) − 1

]2] 1
2n

eι(µ1x−µ2t+µ3)

� (78)

	

Q22 (x, t) =
[

a0 +

√
6a0a2θ2 − 6a0a2θ3 + 2a2

2θ2 + 2a2
2θ3

θ2 − θ3

[
eθ2(η+C) + θ2 − θ1

eθ2(η+C) − θ2 − θ1

]

+ a2

[
eθ2(η+C) + θ2 − θ1

eθ2(η+C) − θ2 − θ1

]2] 1
2n

eι(µ1x−µ2t+µ3)

� (79)

	

Q23 (x, t) =
[

a0 +

√
6a0a2θ2 − 6a0a2θ3 + 2a2

2θ2 + 2a2
2θ3

θ2 − θ3

[
θ1eθ1(η+C)

θ3eθ1(η+C)

]

+ a2

[
θ1eθ1(η+C)

θ3eθ1(η+C)

]2] 1
2n

eι(µ1x−µ2t+µ3)

� (80)

	

Q24 (x, t) =
[

a0 +

√
6a0a2θ2 − 6a0a2θ3 + 2a2

2θ2 + 2a2
2θ3

θ2 − θ3

[
θ3(η + C) + 2

θ3(η + C)

]

+ a2

[
θ3(η + C) + 2

θ3(η + C)

]2] 1
2n

eι(µ1x−µ2t+µ3)

� (81)

	
Q25 (x, t) =

[
a0 +

√
6a0a2θ2 − 6a0a2θ3 + 2a2

2θ2 + 2a2
2θ3

θ2 − θ3

[
θ3(η + C)

]
+ a2

[
θ3(η + C)

]2] 1
2n

eι(µ1x−µ2t+µ3) � (82)

	
Q26 (x, t) =

[
a0 +

√
6a0a2θ2 − 6a0a2θ3 + 2a2

2θ2 + 2a2
2θ3

θ2 − θ3

[
1

θ3(η + C)

]
+ a2

[
1

θ3(η + C)

]2] 1
2n

eι(µ1x−µ2t+µ3) � (83)

	

Q27 (x, t) =
[

a0 +

√
6a0a2θ2 − 6a0a2θ3 + 2a2

2θ2 + 2a2
2θ3

θ2 − θ3
tan

(
1
2θ3(η + C)

)

+ a2

(
tan

(
1
2θ3(η + C)

))2] 1
2n

eι(µ1x−µ2t+µ3)

� (84)

Set: 2 θ1 = −2
√

2θ2, b =
√

2θ2
2a

2a1k , θ3 = 0, a0 =
√

2a1, a1 = a1, a2 = 0, b1 = −a1, b2 = 0, n = 1
8 (1 +

√
7i), 

µ2 = −ak2.
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X (η) =

√
2a1 + a1

[
tan

(
V (η)

2

)]
− a1

[
tan

(
V (η)

2

)]−1

,� (85)

where θ1, θ2, and θ3 represent arbitrary constants and η = x ± ct. By considering families 1 − 18 one can the 
following solutions can be obtained:

	

Q28 (x, t) =
[√

2a1 + a1

[
θ1

θ2 − θ3
−

√
θ2

3 − θ2
2 − θ2

1

θ2 − θ3
tan

(√
θ2

3 − θ2
2 − θ2

1

2 (η + C)
)]

− a1

[
θ1

θ2 − θ3
−

√
θ2

3 − θ2
2 − θ2

1

θ2 − θ3
tan

(√
θ2

3 − θ2
2 − θ2

1

2 (η + C)
)]−1] 1

2n

eι(µ1x−µ2t+µ3)

� (86)

	

Q29 (x, t) =
[√

2a1 + a1

[
θ1

θ2 − θ3
−

√
θ2

3 + θ2
2 − θ2

1

θ2 − θ3
tanh

(√
θ2

3 − θ2
2 − θ2

1

2 (η + C)
)]

− a1

[
θ1

θ2 − θ3
−

√
θ2

3 + θ2
2 − θ2

1

θ2 − θ3
tanh

(√
θ2

3 − θ2
2 − θ2

1

2 (η + C)
)]−1] 1

2n

eι(µ1x−µ2t+µ3)

� (87)

	

Q30 (x, t) =
[√

2a1 + a1

[
θ1

θ2
−

√
θ2

2 + θ2
1

θ2
tanh

(√
θ2

2 + θ2
1

2 (η + C)
)]

− a1

[
θ1

θ2
−

√
θ2

2 + θ2
1

θ2
tanh

(√
θ2

2 + θ2
1

2 (η + C)
)]−1] 1

2n

eι(µ1x−µ2t+µ3)

� (88)

	

Q31 (x, t) =
[√

2a1 + a1

[
− θ1

θ3
+

√
θ2

3 − θ2
1

θ3
tan

(√
θ2

3 − θ2
1

2 (η + C)
)]

− a1

[
− θ1

θ3
+

√
θ2

3 − θ2
1

θ3
tan

(√
θ2

3 − θ2
1

2 (η + C)
)]−1] 1

2n

eι(µ1x−µ2t+µ3)

� (89)

	

Q32 (x, t) =
[√

2a1 + a1

[√
θ2 + θ3

θ2 − θ3
tanh

(√
θ2

2 − θ2
3

2 (η + C)
)]

− a1

[√
θ2 + θ3

θ2 − θ3
tanh

(√
θ2

2 − θ2
3

2 (η + C)
)]−1] 1

2n

eι(µ1x−µ2t+µ3)

� (90)

	

Q33 (x, t) =
[√

2a1 + a1 tan
(

1
2 tan−1

[
e2θ2(η+C) − 1
e2θ2(η+C) + 1

,
e2θ2(η+C)

e2θ2(η+C) + 1

])

− a1

(
tan

(
1
2 tan−1

[
e2θ2(η+C) − 1
e2θ2(η+C) + 1

,
e2θ2(η+C)

e2θ2(η+C) + 1

]))−1] 1
2n

eι(µ1x−µ2t+µ3)

� (91)

	

Q34 (x, t) =
[√

2a1 + a1 tan
(

1
2 tan−1

[
e2θ1(η+C)

e2θ1(η+C) + 1
,

e2θ1(η+C) − 1
e2θ1(η+C) + 1

])

− a1

(
tan

(
1
2 tan−1

[
e2θ1(η+C)

e2θ1(η+C) + 1
,

e2θ1(η+C) − 1
e2θ1(η+C) + 1

]))−1] 1
2n

eι(µ1x−µ2t+µ3)

� (92)

	
Q35 (x, t) =

[√
2a1 + a1

[
(θ2 + θ3)(θ1(η + C) + 2)

θ2
1(η + C)

]
− a1

[
(θ2 + θ3)(θ1(η + C) + 2)

θ2
1(η + C)

]−1] 1
2n

eι(µ1x−µ2t+µ3) � (93)

	
Q36 (x, t) =

[√
2a1 + a1

[
eic0(η+C) − 1

]
− a1

[
eic0(η+C) − 1

]−1] 1
2n

eι(µ1x−µ2t+µ3) � (94)

	
Q37 (x, t) =

[√
2a1 + a1

[
eic0(η+C)

eic0(η+C) − 1

]
− a1

[
eic0(η+C)

eic0(η+C) − 1

]−1] 1
2n

eι(µ1x−µ2t+µ3) � (95)

	
Q38 (x, t) =

[√
2a1 + a1

[
(θ1 + θ2)eθ2(η+C) − 1
(θ1 − θ2)eθ2(η+C) − 1

]
− a1

[
(θ1 + θ2)eθ2(η+C) − 1
(θ1 − θ2)eθ2(η+C) − 1

]−1] 1
2n

eι(µ1x−µ2t+µ3) � (96)

	
Q39 (x, t) =

[√
2a1 + a1

[
(θ2 + θ3)eθ2(η+C) + 1
(θ2 − θ3)eθ2(η+C) − 1

]
− a1

[
(θ2 + θ3)eθ2(η+C) + 1
(θ2 − θ3)eθ2(η+C) − 1

]−1] 1
2n

eι(µ1x−µ2t+µ3) � (97)
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Q40 (x, t) =

[√
2a1 + a1

[
eθ2(η+C) + θ2 − θ1

eθ2(η+C) − θ2 − θ1

]
− a1

[
eθ2(η+C) + θ2 − θ1

eθ2(η+C) − θ2 − θ1

]−1] 1
2n

eι(µ1x−µ2t+µ3) � (98)

	
Q41 (x, t) =

[√
2a1 + a1

[
θ1eθ1(η+C)

θ3eθ1(η+C)

]
− a1

[
θ1eθ1(η+C)

θ3eθ1(η+C)

]−1] 1
2n

eι(µ1x−µ2t+µ3) � (99)

	
Q42 (x, t) =

[√
2a1 + a1

[
θ3(η + C) + 2

θ3(η + C)

]
− a1

[
θ3(η + C) + 2

θ3(η + C)

]−1] 1
2n

eι(µ1x−µ2t+µ3) � (100)

	
Q43 (x, t) =

[√
2a1 + a1

[
θ3(η + C)

]
− a1

[
θ3(η + C)

]−1] 1
2n

eι(µ1x−µ2t+µ3) � (101)

	
Q44 (x, t) =

[√
2a1 + a1

[
1

θ3(η + C)

]
− a1

[
1

θ3(η + C)

]−1] 1
2n

eι(µ1x−µ2t+µ3) � (102)

	
Q45 (x, t) =

[√
2a1 + a1 tan

(
1
2θ3(η + C)

)
− a1

(
tan

(
1
2θ3(η + C)

))−1] 1
2n

eι(µ1x−µ2t+µ3) �(103)

Set: 3 θ1 = (θ2+θ3)a0
b1

, b = − (θ2
2+2θ2θ3+θ2

3)aa0
b2

1k
, a0 = a0, a1 = − b1(θ2−θ3)

θ2+θ3
, a2 = 0, b1 = b1, b2 = 0, c = 0.

	
X (η) = a0 − b1(θ2 − θ3)

θ2 + θ3

[
tan

(
V (η)

2

)]
+ b1

[
tan

(
V (η)

2

)]−1

,� (104)

where, θ1, θ2, and θ3 represent arbitrary constants, and η = x ± ct. We consider families 1 − 18 leading to

	

Q46 (x, t) =
[

a0 − b1(θ2 − θ3)
θ2 + θ3

[
θ1

θ2 − θ3
−

√
θ2

3 − θ2
2 − θ2

1

θ2 − θ3
tan

(√
θ2

3 − θ2
2 − θ2

1

2 (η + C)
)]

+ b1

[
θ1

θ2 − θ3
−

√
θ2

3 − θ2
2 − θ2

1

θ2 − θ3
tan

(√
θ2

3 − θ2
2 − θ2

1

2 (η + C)
)]−1] 1

2n

eι(µ1x−µ2t+µ3)

�(105)

	

Q47 (x, t) =
[

a0 − b1(θ2 − θ3)
θ2 + θ3

[
θ1

θ2 − θ3
−

√
θ2

3 + θ2
2 − θ2

1

θ2 − θ3
tanh

(√
θ2

3 − θ2
2 − θ2

1

2 (η + C)
)]

+ b1

[
θ1

θ2 − θ3
−

√
θ2

3 + θ2
2 − θ2

1

θ2 − θ3
tanh

(√
θ2

3 − θ2
2 − θ2

1

2 (η + C)
)]−1] 1

2n

eι(µ1x−µ2t+µ3)

�(106)

	

Q48 (x, t) =
[

a0 − b1(θ2 − θ3)
θ2 + θ3

[
θ1

θ2
−

√
θ2

2 + θ2
1

θ2
tanh

(√
θ2

2 + θ2
1

2 (η + C)
)]

+ b1

[
θ1

θ2
−

√
θ2

2 + θ2
1

θ2
tanh

(√
θ2

2 + θ2
1

2 (η + C)
)]−1] 1

2n

eι(µ1x−µ2t+µ3)

� (107)

	

Q49 (x, t) =
[

a0 − b1(θ2 − θ3)
θ2 + θ3

[
− θ1

θ3
+

√
θ2

3 − θ2
1

θ3
tan

(√
θ2

3 − θ2
1

2 (η + C)
)]

+ b1

[
− θ1

θ3
+

√
θ2

3 − θ2
1

θ3
tan

(√
θ2

3 − θ2
1

2 (η + C)
)]−1] 1

2n

eι(µ1x−µ2t+µ3)

� (108)

	

Q50 (x, t) =
[

a0 − b1(θ2 − θ3)
θ2 + θ3

[√
θ2 + θ3

θ2 − θ3
tanh

(√
θ2

2 − θ2
3

2 (η + C)
)]

+ b1

[√
θ2 + θ3

θ2 − θ3
tanh

(√
θ2

2 − θ2
3

2 (η + C)
)]−1] 1

2n

eι(µ1x−µ2t+µ3)

� (109)

	

Q51 (x, t) =
[

a0 − b1(θ2 − θ3)
θ2 + θ3

tan
(

1
2 tan−1

[
e2θ2(η+C) − 1
e2θ2(η+C) + 1

,
e2θ2(η+C)

e2θ2(η+C) + 1

])

+ b1

(
tan

(
1
2 tan−1

[
e2θ2(η+C) − 1
e2θ2(η+C) + 1

,
e2θ2(η+C)

e2θ2(η+C) + 1

]))−1] 1
2n

eι(µ1x−µ2t+µ3)

� (110)
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Q52 (x, t) =
[

a0 − b1(θ2 − θ3)
θ2 + θ3

tan
(

1
2 tan−1

[
e2θ1(η+C)

e2θ1(η+C) + 1
,

e2θ1(η+C) − 1
e2θ1(η+C) + 1

])

+ b1

(
tan

(
1
2 tan−1

[
e2θ1(η+C)

e2θ1(η+C) + 1
,

e2θ1(η+C) − 1
e2θ1(η+C) + 1

]))−1] 1
2n

eι(µ1x−µ2t+µ3)

� (111)

	
Q53 (x, t) =

[
a0 − b1(θ2 − θ3)

θ2 + θ3

[
(θ2 + θ3)(θ1(η + C) + 2)

θ2
1(η + C)

]
+ b1

[
(θ2 + θ3)(θ1(η + C) + 2)

θ2
1(η + C)

]−1] 1
2n

eι(µ1x−µ2t+µ3) �(112)

	
Q54 (x, t) =

[
a0 − b1(θ2 − θ3)

θ2 + θ3

[
eic0(η+C) − 1

]
+ b1

[
eic0(η+C) − 1

]−1] 1
2n

eι(µ1x−µ2t+µ3) � (113)

	
Q55 (x, t) =

[
a0 − b1(θ2 − θ3)

θ2 + θ3

[
eic0(η+C)

eic0(η+C) − 1

]
+ b1

[
eic0(η+C)

eic0(η+C) − 1

]−1] 1
2n

eι(µ1x−µ2t+µ3) � (114)

	
Q56 (x, t) =

[
a0 − b1(θ2 − θ3)

θ2 + θ3

[
(θ1 + θ2)eθ2(η+C) − 1
(θ1 − θ2)eθ2(η+C) − 1

]
+ b1

[
(θ1 + θ2)eθ2(η+C) − 1
(θ1 − θ2)eθ2(η+C) − 1

]−1] 1
2n

eι(µ1x−µ2t+µ3) �(115)

	
Q57 (x, t) =

[
a0 − b1(θ2 − θ3)

θ2 + θ3

[
(θ2 + θ3)eθ2(η+C) + 1
(θ2 − θ3)eθ2(η+C) − 1

]
+ b1

[
(θ2 + θ3)eθ2(η+C) + 1
(θ2 − θ3)eθ2(η+C) − 1

]−1] 1
2n

eι(µ1x−µ2t+µ3) �(116)

	
Q58 (x, t) =

[
a0 − b1(θ2 − θ3)

θ2 + θ3

[
eθ2(η+C) + θ2 − θ1

eθ2(η+C) − θ2 − θ1

]
+ b1

[
eθ2(η+C) + θ2 − θ1

eθ2(η+C) − θ2 − θ1

]−1] 1
2n

eι(µ1x−µ2t+µ3) �(117)

	
Q59 (x, t) =

[
a0 − b1(θ2 − θ3)

θ2 + θ3

[
θ1eθ1(η+C)

θ3eθ1(η+C)

]
+ b1

[
θ1eθ1(η+C)

θ3eθ1(η+C)

]−1] 1
2n

eι(µ1x−µ2t+µ3) � (118)

	
Q60 (x, t) =

[
a0 − b1(θ2 − θ3)

θ2 + θ3

[
θ3(η + C) + 2

θ3(η + C)

]
+ b1

[
θ3(η + C) + 2

θ3(η + C)

]−1] 1
2n

eι(µ1x−µ2t+µ3) � (119)

	
Q61 (x, t) =

[
a0 − b1(θ2 − θ3)

θ2 + θ3

[
θ3(η + C)

]
+ b1

[
θ3(η + C)

]−1] 1
2n

eι(µ1x−µ2t+µ3) � (120)

	
Q62 (x, t) =

[
a0 − b1(θ2 − θ3)

θ2 + θ3

[
1

θ3(η + C)

]
+ b1

[
1

θ3(η + C)

]−1] 1
2n

eι(µ1x−µ2t+µ3) � (121)

	
Q63 (x, t) =

[
a0 − b1(θ2 − θ3)

θ2 + θ3
tan

(
1
2θ3(η + C)

)
+ b1

(
tan

(
1
2θ3(η + C)

))−1] 1
2n

eι(µ1x−µ2t+µ3) �(122)

Set:  4 θ1 = θ1, b = − 2aθ1θ3
b1k , a0 = b1θ1

2θ3
, a1 = − b1

2 , a2 = 0, b1 = b1, b2 = 0, c = 0, k = k, θ2 = 3θ3, 

µ2 = −a(k2 + θ2
1 + 8θ2

3).

	
X (η) = b1θ1

2θ3
− b1

2

[
tan

(
V (η)

2

)]
+ b1

[
tan

(
V (η)

2

)]−1

,� (123)

where, θ1, θ2, and θ3 represent arbitrary constants, and η = x ± ct. By considering families 1 − 18 leads to 
following results

	

Q64 (x, t) =
[

b1θ1

2θ3
− b1

2

[
θ1

θ2 − θ3
−

√
θ2

3 − θ2
2 − θ2

1

θ2 − θ3
tan

(√
θ2

3 − θ2
2 − θ2

1

2 (η + C)
)]

+ b1

[
θ1

θ2 − θ3
−

√
θ2

3 − θ2
2 − θ2

1

θ2 − θ3
tan

(√
θ2

3 − θ2
2 − θ2

1

2 (η + C)
)]−1] 1

2n

eι(µ1x−µ2t+µ3)

�(124)

	

Q65 (x, t) =
[

b1θ1

2θ3
− b1

2

[
θ1

θ2 − θ3
−

√
θ2

3 + θ2
2 − θ2

1

θ2 − θ3
tanh

(√
θ2

3 − θ2
2 − θ2

1

2 (η + C)
)]

+ b1

[
θ1

θ2 − θ3
−

√
θ2

3 + θ2
2 − θ2

1

θ2 − θ3
tanh

(√
θ2

3 − θ2
2 − θ2

1

2 (η + C)
)]−1] 1

2n

eι(µ1x−µ2t+µ3)

�(125)
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Q66 (x, t) =
[

b1θ1

2θ3
− b1

2

[
θ1

θ2
−

√
θ2

2 + θ2
1

θ2
tanh

(√
θ2

2 + θ2
1

2 (η + C)
)]

+ b1

[
θ1

θ2
−

√
θ2

2 + θ2
1

θ2
tanh

(√
θ2

2 + θ2
1

2 (η + C)
)]−1] 1

2n

eι(µ1x−µ2t+µ3)

� (126)

	

Q67 (x, t) =
[

b1θ1

2θ3
− b1

2

[
− θ1

θ3
+

√
θ2

3 − θ2
1

θ3
tan

(√
θ2

3 − θ2
1

2 (η + C)
)]

+ b1

[
− θ1

θ3
+

√
θ2

3 − θ2
1

θ3
tan

(√
θ2

3 − θ2
1

2 (η + C)
)]−1] 1

2n

eι(µ1x−µ2t+µ3)

� (127)

	

Q68 (x, t) =
[

b1θ1

2θ3
− b1

2

[√
θ2 + θ3

θ2 − θ3
tanh

(√
θ2

2 − θ2
3

2 (η + C)
)]

+ b1

[√
θ2 + θ3

θ2 − θ3
tanh

(√
θ2

2 − θ2
3

2 (η + C)
)]−1] 1

2n

eι(µ1x−µ2t+µ3)

� (128)

	

Q69 (x, t) =
[

b1θ1

2θ3
− b1

2 tan
(

1
2 tan−1

[
e2θ2(η+C) − 1
e2θ2(η+C) + 1

,
e2θ2(η+C)

e2θ2(η+C) + 1

])

+ b1

(
tan

(
1
2 tan−1

[
e2θ2(η+C) − 1
e2θ2(η+C) + 1

,
e2θ2(η+C)

e2θ2(η+C) + 1

]))−1] 1
2n

eι(µ1x−µ2t+µ3)

� (129)

	

Q70 (x, t) =
[

b1θ1

2θ3
− b1

2 tan
(

1
2 tan−1

[
e2θ1(η+C)

e2θ1(η+C) + 1
,

e2θ1(η+C) − 1
e2θ1(η+C) + 1

])

+ b1

(
tan

(
1
2 tan−1

[
e2θ1(η+C)

e2θ1(η+C) + 1
,

e2θ1(η+C) − 1
e2θ1(η+C) + 1

]))−1] 1
2n

eι(µ1x−µ2t+µ3)

� (130)

	
Q71 (x, t) =

[
b1θ1

2θ3
− b1

2

[
(θ2 + θ3)(θ1(η + C) + 2)

θ2
1(η + C)

]
+ b1

[
(θ2 + θ3)(θ1(η + C) + 2)

θ2
1(η + C)

]−1] 1
2n

eι(µ1x−µ2t+µ3) �(131)

	
Q72 (x, t) =

[
b1θ1

2θ3
− b1

2

[
eic0(η+C) − 1

]
+ b1

[
eic0(η+C) − 1

]−1] 1
2n

eι(µ1x−µ2t+µ3) � (132)

	
Q73 (x, t) =

[
b1θ1

2θ3
− b1

2

[
eic0(η+C)

eic0(η+C) − 1

]
+ b1

[
eic0(η+C)

eic0(η+C) − 1

]−1] 1
2n

eι(µ1x−µ2t+µ3) � (133)

	
Q74 (x, t) =

[
b1θ1

2θ3
− b1

2

[
(θ1 + θ2)eθ2(η+C) − 1
(θ1 − θ2)eθ2(η+C) − 1

]
+ b1

[
(θ1 + θ2)eθ2(η+C) − 1
(θ1 − θ2)eθ2(η+C) − 1

]−1] 1
2n

eι(µ1x−µ2t+µ3) �(134)

	
Q75 (x, t) =

[
b1θ1

2θ3
− b1

2

[
(θ2 + θ3)eθ2(η+C) + 1
(θ2 − θ3)eθ2(η+C) − 1

]
+ b1

[
(θ2 + θ3)eθ2(η+C) + 1
(θ2 − θ3)eθ2(η+C) − 1

]−1] 1
2n

eι(µ1x−µ2t+µ3) �(135)

	
Q76 (x, t) =

[
b1θ1

2θ3
− b1

2

[
eθ2(η+C) + θ2 − θ1

eθ2(η+C) − θ2 − θ1

]
+ b1

[
eθ2(η+C) + θ2 − θ1

eθ2(η+C) − θ2 − θ1

]−1] 1
2n

eι(µ1x−µ2t+µ3) �(136)

	
Q77 (x, t) =

[
b1θ1

2θ3
− b1

2

[
θ1eθ1(η+C)

θ3eθ1(η+C)

]
+ b1

[
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2n
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Q78 (x, t) =

[
b1θ1

2θ3
− b1

2

[
θ3(η + C) + 2
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]
+ b1

[
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eι(µ1x−µ2t+µ3) � (138)

	
Q79 (x, t) =

[
b1θ1

2θ3
− b1

2

[
θ3(η + C)

]
+ b1

[
θ3(η + C)

]−1] 1
2n

eι(µ1x−µ2t+µ3) � (139)

	
Q80 (x, t) =

[
b1θ1

2θ3
− b1

2

[
1

θ3(η + C)

]
+ b1

[
1

θ3(η + C)
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2n
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Q81 (x, t) =

[
b1θ1

2θ3
− b1

2 tan
(

1
2θ3(η + C)

)
+ b1

(
tan

(
1
2θ3(η + C)

))−1] 1
2n
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Set: 5 θ1 = − (θ2+θ3)a1
a2

, b = − a(θ2
2−2θ2θ3+θ2

3)
4a2k , a0 = − (θ2+θ3)a2

θ2−θ3
, a1 = a1, a2 = a2, b1 = 0, b2 = 0, c = 0, 

n = 1
5 (1 + 2i).

	
X (η) = − (θ2 + θ3)a2

θ2 − θ3
+ a1

[
tan

(
V (η)

2

)]
+ a2

[
tan

(
V (η)

2

)]2

,� (142)

where, θ1, θ2, and θ3 represent arbitrary constants, and η = x ± ct. By considering families 1 − 18 leads to

	

Q82 (x, t) =
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Q83 (x, t) =
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[

− (θ2 + θ3)a2

θ2 − θ3
+ a1

[
θ1

θ2
−

√
θ2

2 + θ2
1

θ2
tanh

(√
θ2

2 + θ2
1

2 (η + C)
)]

+ a2

[
θ1

θ2
−

√
θ2

2 + θ2
1

θ2
tanh

(√
θ2

2 + θ2
1

2 (η + C)
)]2] 1

2n

eι(µ1x−µ2t+µ3)

� (145)
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Q86 (x, t) =
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Q87 (x, t) =
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Q89 (x, t) =
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Analysis of the physical implications of the obtained results
This section provides a concise summary of the outcomes derived in the preceding sections. The theory of 
periodic and soliton solutions constitutes a fundamental and well-established domain in the modern theory 
of differential equations. These solutions play a crucial role in the analysis of dynamical systems and find 
applications across various fields, including mathematical biology, social sciences, and other nonlinear sciences, 
where phenomena are modeled with diverse parameters. Hence, it is essential to explore the conditions associated 
with these arbitrary parameters that give rise to periodic wave and soliton solutions. Graphical representations 
were used to elucidate the physical characteristics of the obtained solutions. In Fig. 1, the 3D and 2D plots 
illustrate the solution Q1(x, t), featuring both real and imaginary components. This solution portrays a sub-
picosecond shock wave within the intervals −10 ≤ x ≤ 10 and −5 ≤ t ≤ 5, with the parameter values set 
as s2 = −1, n = 2, and all other arbitrary parameters set to unity. Figure 2 depicts the 3D and 2D plots of the 
solution Q2(x, t), showing both real and imaginary aspects. These graphs illustrate a singular soliton solution 
within the intervals −10 ≤ x ≤ 20 and −10 ≤ t ≤ 10, where the parameter values are specified as s2 = −1 
and n = 2, and all other arbitrary parameters are set to unity. Figure 3 displays the profiles of the solution 
Q3(x, t), illustrating sub-picosecond singular wave solutions with ranges −10 ≤ x ≤ 20 and −10 ≤ t ≤ 10. 
The parameter values were set as s2 = −1 and n = 2, and all other arbitrary parameters were assigned a value 
of unity. Figure 4 illustrates the 3D and 2D plots of the solution Q4(x, t), showing a sub-picosecond bright 
soliton solution over the spatial and temporal intervals −10 ≤ x ≤ 20 and −10 ≤ t ≤ 10. The parameters 
are specified as s2 = −1 and n = 2, and the remaining units. The plots in Fig. 5 correspond to the solution 
Q6(x, t), depicting a double periodic wave solution within the intervals −10 ≤ x ≤ 20 and −10 ≤ t ≤ 10. 
The parameters were set as s2 = −1 and n = 2, and all other parameters were assigned a value of unity. Figure 
6 illustrates the periodic wave solutions over the ranges −10 ≤ x ≤ 10 and −5t ≤ 5, derived from the solution 
Q27(x, t). The parameters were set to n = 2, θ2 = 2, and all other arbitrary elements were set to unity.

Fig. 1.  Profile of sub-pico-second shock wave solution Q1(x, t) by setting parameters 
s3 = θ1 = θ2 = θ3 = a2 = c = 1, n = 2 and s2 = −1.
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Discussion and conclusions
This study explored subpicosecond optical soliton solutions within the TB model. By leveraging advanced 
techniques, specifically the gJEF method and the tan

(
V (η)

2

)
-expansion method, a diverse range of wave 

solutions, including sub-picosecond shock wave solitons, sub-picosecond optical bright and singular solitons, 
and double periodic waves, were systematically derived. Distinct from previous works by Yıldırım50 and Ghazala 
and Sayed51, our results introduce novel solution classes such as shock waves and double periodic wave solutions.

Fig. 4.  Profile of sub-pico-second bright soliton Q4(x, t) by setting parameters 
s3 = θ1 = θ2 = θ3 = a2 = c = 1, n = 2 and s2 = −1.

 

Fig. 3.  Profile of sub-pico-second singular soliton waves Q3(x, t) by setting parameters 
s3 = θ1 = θ2 = θ3 = a2 = c = 1, n = 2 and s2 = −1.

 

Fig. 2.  Profile of singular soliton solution Q2(x, t) by setting parameters 
s3 = θ1 = θ2 = θ3 = a2 = c = 1, n = 2 and s2 = −1.
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Furthermore, for the sake of novelty, a rigorous exploration of periodic wave solutions for the TB model 
(1) was undertaken. Nine periodic wave solutions, expressed in terms of Jacobi amplitude symbols and others, 
were obtained using the tan

(
V (η)

2

)
-expansion method. This novel contribution enriches our theoretical 

understanding of the TB model (1). The outcomes of this study underscore the necessity for a more intricate 
examination of the model. Future investigations may extend the TB equation relevant to birefringent fibers 
and Dense Wavelength Division Multiplexing (DWDM) technology, employing robust methodologies such as 
extended Kudryashov’s methodology, trial equation procedures, and Lie symmetry analysis. The comprehensive 
findings of these studies will be presented in subsequent publications.
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All data generated or analyzed during this study are included in this published article.
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