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Sub pico-second pulses in mono-
mode optical fibers with Triki-
Biswas model

Akhtar Hussain?, Tarek F. Ibrahim?3, Faizah D. Alanazi*, Ariana Abdul Rahimzai**,
Arafa A. Dawood® & Waleed M. Osman’

This study explores the Triki-Biswas (TB) model, a novel model describing soliton dynamics in
monomodal optical fibers with non-Kerr dispersion, to obtain optical solitons. Optical bright and
singular solitons were derived using the generalized Jacobi elliptic function (gJEF) method and the
tan (@) —expansion method. Trigonometric, hyperbolic, exponential, polynomial, and rational

functions are obtained. The physical dynamics of the obtained solutions confirmed the existence of
known complex structures, such as shock waves, dark solitons, periodic waves, and singular periodic
solutions. The simulations generated in Mathematica 11.3 are graphically presented to depict the
nature of the acquired solutions. These results are novel and have not been reported previously in the
literature.
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Solitons"? play a pivotal role in soliton transmission technology®™!!, particularly in applications involving
optical fibers!>"!>, telecommunications, and data transmission'®"!? across transcontinental and transoceanic
distances. Numerous mathematical models?*-?, including but not limited to the complex Ginzburg-Landau
model, Fokas-Lenells equation, Radhakrishnan-Kundu-Lakshmanan equation, Lakshmanan-Porsezian-Daniel
model, Kundu-Eckhaus model, Kaup-Newell equation, nonlinear Schrédinger’s equation, and Gerdjikov-Ivanov
equation, contribute to the comprehension and manipulation of solitons in these optical contexts?*>” and many
others®*~42, The TB equation is another crucial governing model employed in various techniques, such as chirped
soliton solutions, the exp(V (n))-expansion technique, conservation laws, first integral technique, and traveling
wave hypothesis®*~%*. Numerous*®-#® other studies exist in the literature irrespective of conservation laws.

The TB equation represents a significant advancement and serves as a generalized form of the derivative
nonlinear Schrodinger equation. This equation is specifically tailored to govern the dynamics of subpicosecond
pulse propagation. Notably, the TB model is a promising candidate for describing the propagation of ultrashort
pulses in optical fiber systems, particularly in scenarios where the Kerr effect imposes limitations. The
incorporation of derivative quintic non-Kerr nonlinearity terms within this model plays a pivotal role, especially
in facilitating the transmission of extremely brief pulses with widths of the order of sub-10 fs in highly nonlinear
optical fibers. Given the challenges faced by the telecommunications industry, the TB equation has emerged as a
valuable asset that significantly contributes to the generation of essential optical solitons. Numerous studies have
been conducted on the TB model*->.

The TB model is investigated by employing the generalized Jacobi elliptic function metho
tan (@) -expansion method®>%. The primary objective is to recover subpicosecond optical soliton solutions

d52—54 and

and ascertain the conditions that govern their existence. Additionally, the adopted methods led to the discovery
of supplementary solutions, including shock waves, double periodic waves, and singular periodic solutions,
facilitated by the reverse formulation of the constraints. A comprehensive analysis of the model’s intricacies
is presented in subsequent sections of this article. None of the ansatz methods are so strong that they can deal
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with all types of solutions for each NLPDE. The generalized Jacobi elliptic function method does not apply to
nonlinear problems/PDEs, where the product of the even and odd terms appears as a single term. This section
covers the remaining cases. In addition, it is very difficult to deal with some classes of variable coefficient
NLPDE:s using both techniques.
The remainder of this paper is organized a? gollows. In "Coordinated strategies” section, comprehensive
Vn

methodologies for the gJEF method and tan (T) -expansion method are presented. The application of these

techniques to the TB equation is described in "Solitary wave solutions in the TB model (1)" section. In addition
to the mathematical derivations, "Analysis of the physical implications of the obtainedresults" section provides
a graphical representation of the outcomes, aiding the interpretation of their physical significance.Thee paper
concludes with a discussion and concluding remarks in "Discussion and conclusions" section.

Formulation of the regulatory model
The model proposed by Triki and Biswas*3~4

Qi +1aQu +b (IQ"Q) = 0. (1)

is presented as follows

The initial term in the equation governs the temporal evolution of pulses with the coeflicient ‘a, ensuring the
presence of group velocity dispersion in the model. The profile of subpicosecond optical solitons is represented
by the complex-valued function Q(x, t). The non-Kerr dispersion effect is counteracted by coeflicient ‘b’ when
n > 2. When the nonlinearity parameter takes the value of n = 1, the model aligns with the Kaup-Newell
model. Conversely, when n = 2, the significance of the derivative quintic non-Kerr nonlinearity terms becomes
pronounced in the transmission of extremely short pulses, characterized by widths around sub-10 fs, within
highly nonlinear optical fibers.

Coordinated strategies
Examine the nonlinear PDE expressed in the following form

E(Qva:Qthmextw") =0, 2
where Q = Q(z, t) denotes the solution of the nonlinear PDE (2). Using this transformation, we obtain
Qz,t)=Z(n)e'’, n=axkct, ¢=mz— pot+ps, (3)

where the parameters 11 represent the soliton frequency, p2 denotes the soliton wave, 13 signifies the soliton
phase, and ¢ represents the speed of the wave. Then the nonlinear PDE (2) can be transformed into an ordinary
differential equation (ODE) as follows

w(z,z',z",..)=0, (4)

) _ dz,
where Z' = n

General procedure to the gJEF method.
In this scenario, the gJEF method was detailed using the following approach: To arrive at waveform solutions for
Eq (2), it is essential to follow these specified steps;

Step 1: Take into account the subsequent structure as the solution for Eq (4);

N
Zm) = aV' (1), 5)
p=0
where, the identification of the real parameters a,(p = 1,2, - - - , N) is necessary and the function V (n) satisfies
the solution
V() = 51+ s2V2 () + 5 V(). ®)

where s1, sz and s3 are parameters.

Step 2: The parameter N can be determined by using the homogeneous balancing principle.

Step 3: Upon substituting Eq (5) into Eq (4) and then using Eq (6), we derive an associated system of equations
featuring various V' (1) monomials. Solving this system yields a set of values for the required parameters.

Step 4: The constants s1, 2, and s3 values presented in Table 1 can be employed to deduce solutions for Eq
(6).

As stated earlier, the elliptic functions sn(7), cn(n), and dn(n) conform to the prescribed relationships

sn’(n) +en’(n) = 1, du’(n) + Y*sn’(n) = 1, (su(n))’ = en(n) du(n),
(en(m)' = —sn(n)dn(n), (dn(n)) = ~Tsn(n)en(n).
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No. | g4 So s3 V(n)
11 —(1+7?) | 2y2 sn(n)
2 | -T2 -71?) jor2 o1 |2 ds(n)
3 1-7? 2 -2 2 cs(n)
4 1—7? 272 —1 —272 cn(n)
5 T2 -1 2712 —2 dn(n)
1 2 . s
1 (r2—2 2 sn(n)
6 1 Gl = TEdn(n)
x2 T2_2 2 sn(n)
7 a ¢ p) ! = TEdn (1)
2,2 2
8 7<174T ) €S 2+1) _Tl nen(n) £ dn(n)
21 (r241) 2_ dn(n)
A = = TEsn(n)
1-12 2 _y2 cn(n)
10 1 L QT L QT 1Esn(n)
1 2,2 2,2 ;
+ a-r?) (1-12) __sn(n)
1 E e | T2 | TmEeam
12 |o 0 2 £
13 o 1 0 Fel

Table 1. Types of solutions of (6).

No. |s; |sg |8z | V(M
1 1 -2 |2 tanh(n)

2 0 |1 2 csch(n)

3 0 |1 2 csch(n)
4 0 1 —2 | sech(n)
5 0 1 —2 | sech(n)
1 =1 tanh(n)
6 1 7 |3 TEsech(n)
1 -1 tanh(n)
7 4 2 % 1+sech(n)
8 0 |1 %l sech(n) =+ sech(n)

sech(n)
1£tanh(n)

o
(=}
—
(=}

sech(n)
TXtanh(n)

tanh(n)
Sech(n) Esech(n)

£
n

13 |0 |1 |0 |pen

Table 2. When T +— 1.

When T — 0, the Jacobi elliptic function degenerate to the triangular functions,

sn(n) — sin(n), cn(n) — cos(n),
cs(n) — cot(n), ds(n) — csc(n).

When T — 1, the Jacobi elliptic function degenerate to the hyperbolic functions,
sn(n) — tanh(n), cn(n) — sech(n), dn(n) — sech(1),
cs(n) — csch(n), ds(n) — csch(n).

In this context, the elliptic functions approach trigonometric functions as Y — 0 and the hyperbolic functions
for Y — 1 are detailed in Table 2.
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tan g@) -expansion method
The procedure is elucidated through the following steps;
Step: 1 Following this scheme, we posit the solution for ODE (4) as follows:

Z(n)zzap{tan (Vg")ﬂpjtsz[tan (Vé")ﬂ_p (8)
p=0 p=1

where the constants a, (where 0 < p < N) and b, (where 1 < p < N) have yet to be determined. Function
V' (n) complies with the ODE:

V' = 61 sin(V(n)) + 02 cos(V(n)) + 65. 9)

The following are the specific solutions to (9).
Case (1) For 7 + 03 — 03 < 0and 62 — 03 # 0,

/02 — 02 — 92 /02 — 02 — 62
V(n) =2tan™" { o1 52 L tan ( 32 Lin+ C))], (10)

0y — 03 02— 03 2

Case (2) For 87 4+ 62 — 03 > 0and 9, — 03 # 0,

NGEY R 62 — 03 — 02
V(n) = 2tan |: 0 st 0 ! tanh (321(77 + C)>} (11)

0, —0s 03— 03 2
Case (3) For@f—i—@% —0§ > 0,02 # 0and 03 = 0,

/02 1 p2 /02 1+ 2
V(n) = 2tan " [91 — Mtanh (M(n + C)>:| . (12)

02 [ 2

Case (4) For 9% + 95 — 032, < 0,03 #0and 62 =0,

272 /02— p2
V(n)—Ztanl{elertan( & 91(17+C))]. (13)

03 03 2

Case (5) For #2 + 602 — 02 > 0,02 — 03 # 0and 61 =0,

/02 _ g2
V(n) =2tan™" [” 22 + zg tanh ( 922 % (n+ C))] . (14)
2 — 03

Case (6) Forf; = 0and 03 = 0,

. [202(n+C) _ 1 e202(n+C)
V(n) = tan e202(n+C) 17 e202(n+C) 41 |° (15)
Case (7) Forf2 = 0and 63 = 0,
261 (n+C) 201(n+C) _ 1]
o —1 € €
V(n) = tan BT 11 2O 11 (16)
Case (8) For 67 + 6% = 62,
—1 | (024 05)(61(n + C) +2)
V(n) = —2tan* ( . (17)
" { 021 +C)
Case (9) For §; = 05 = 03 = ico»
V(n) =2tan"! |:eiC°("+C) - 1} . (18)
Case (10) For 01 = 03 = ico and 02 = —ico,
. etco(n+C)
V(n) = —2tan ST =1 |- (19)

Scientific Reports |

(2025) 15:32164 | https://doi.org/10.1038/s41598-025-92387-w nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Case (11) For 95 = 6,,

o o [6n + 92)692(U+C) -1
V(n) = —2tan [(91 — 02)ef2(n+C) — 1 (20)
Case (12) For 9, = 65,
B [ (62 + 93)692(W+C) +1
V(T]) = 2tan |:(92 _ 93)692(77+C) —1 (21)
Case (13) For 95 = —0,,
02(n+C)
. _1]e + 62 — 61
V(n) = 2tan |:e<92(n+0) _92_91} (22)
Case (14) For 9, = —0s,
= 91691(n+0)
V(n) = —2tan |:€3€01("+C) . (23)
Case (15) For 03 = 0, 61 = 03,
_ 03 (7] + C) +2
=_92 ol AR N
V(n) tan [ Bs(1 £ O) (29)
Case (16) For #; = 0 and 62 = 03,
V(n) =2tan™" [93(77 + C):| . (25)
Case (17) For 1 = 0 and 02 = —03,
V(n) = —2tan"' 1 . (26)
03(n+ C)
Case (18) For /1 = 0and 62 = 0,
Vi(n) =03(n+C). (27)

Balance index N can be determined using the homogeneous balance principle.
Step: 3 Upon obtaining the value of N in the previous step, substitute Eq (4), and the coefficients of
P -p
tan <Vg")) and tan (@) . A system of algebraic equations was derived by setting each coefficient to

zero. When solved using Mathematica software, these equations allow for the determination of the values of ao,
ap,bp (p=1,2,--- | N), 01,02, and 05.

Step: 4 Substitute the values of ao, a1, b1, ..., ap, bp, and ¢ into Eq (8), the solution for ODE (4) is obtained.
The solution for PDE (2) follows by using the transformation (3).

Solitary wave solutions in the TB model (1)
The model proposed by TB is presented as follows

Qt + ianx + b (‘Q‘QnQ)I =0.

In order to obtain exact solution to Eq (1), we apply the traveling wave transformation (3), and subsequently
separating real and imaginary parts results

—Z'c—aZ'p —aZ +2nbZ' Z°" +bZ' 27" =0, (28)

—Z' +aZ —am Z' + by 2" + b 22" = 0. (29)

Both the real and imaginary components describe the speed of the model through the medium by the relation
Z = X 2=, s0 one can get

—4n’ X7 (2 + pia) + a1 — 2n)(X')? + 4n’aX X" + 4n’bp X* = 0. (30)
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The homogeneous balancing principle suggests the index for Eq (30)
N =2. (31)
Soliton solutions using the gJEF method

In this section, the solitary wave and periodic solutions for the TB model (1) are calculated. We employ the gJEF
method to handle these waveform solutions. For N = 2, the Eq (5) suggests

X(n) = ao + a1V (n) + a2V?(n). (32)

We insert the values in (30) and subsequently use (6) to arrive at the system of equations. We solve this system
using Mathematica and follow the results

1
h=_=9% , M2 = —a,u? + 2as2, ag = _a2527 a; =2 —5—2, az = as. (33)
2 Hiaz S3 S3
By substituting the values of parameters, the solution (32) becomes as
azs s
X(n) = - 232 +2 fivm) + a2V (n). (34)

For different values of function V2 (n), (34) ascertains diverse soliton solutions.
Family: 1
When s1 = —(1 + T?), s2 =2T?, s3=1.
We derive the periodic wave solution for (30) by adopting the Jacobi amplitude functionas V' () = sn(n, ).

Xi(n) = =22 42, [~ 2en(n, X) + azsn® (3, ), (35)

and by the relationship, Z = X o , we follow

azs2 S2 2 an
Zi(n) = — o +2 fgsn(n, T) + azsn”(n, T) . (36)

In the scenario where T tends to 1, Eq (36) transforms into the shock wave solution for Eq (1) as indicated by

L

2n
Qi(z,t) = (— ? +2 —2—2 tanh(z — ct) + az tanh®(z — ct)) eH(mm—patius), (37)
3 V' ss
Family: 2
When s1 = 2Y2 — 1, sy =2, s3 = 7T2(1 - 1?).
We derive the periodic wave solution for (30) by adopting the Jacobi amplitude functionas V' (n) = ds(n, T).

Xo(n) = — 222 49, /—Z—zds(n, T) + azds?(n, 1), (38)

S3

azs2 S2 2 an
Zo(m) = — o +2 fgds(n,'r)+a2ds (n,T) . (39)

In the scenario where Y tends to 1, Eq (39) transforms into the singular soliton wave solution for Eq (1) as

and

indicated by
1
Q252 52 2 ” t(prz—pot+pug)
Q2(z,t) = — S +2 —S—csch(:n — ct) + ascsch™(x — ct) e . (40)
3 3
Family: 3

Whens; =2 -T2, s5=2, sg=1— T2
We derive the periodic wave solution for (30) by adopting the Jacobi amplitude functionas V(1) = cs(n, T).

Xa() = =22 424 [ Zes(n, T) + azes(n, 1), (41)

and
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1
azS2 S2 2 an 0
Zz(n) = — o +2 —gcs(mT) + azcs”(n, Y) . (42)

In the scenario where Y tends to 0, Eq (42) transforms into the singular soliton wave solution for Eq (1) as
indicated by

1

3
Qs(z,t) = ( — azj +2 —iﬁ coth(z — ¢t) 4 as coth® (z — ct)) gr(me—pzttus) (43)
3 V' ss

Likewise, as T approaches 1, we obtain a singular soliton solution for Eq (1) given by

1

b
Qi(z,t) = (— azSQ +2 —S—C&.ch(x — ¢t) + agesch®(z — ct)) emo—mattus) (44)
3 V' ss

Family: 4
When s; = 2Y2 — 1, sy = —2Y2, s3=1— T2
We derive the periodic wave solution for (30) by adopting the Jacobi amplitude function as V' (n) = cn(n, T).

Xa(n) = =22 42 [ Zen(n, ¥) + azen®(n, ), (45)

S3

and

1

a282 52 2 % 46
Zs(n)=| — o + 2 —gcn(mT)—ﬁ—agcn (n,T) . (46)

In the scenario where Y tends to 1, Eq (46) transforms into the optical bright soliton wave for Eq (1) as indicated

by
L
a252 52 2 ” (prz—pot+ps)
Qa(z,t) = — + 2,/ ——=sech(z — ct) + agsech”(z — ct) e . (47)
S3 S3

Family: 5
Whens; =2 — T2, so=—-2, s3="T2—1.
We derive the periodic wave solution for (30) by adopting the Jacobi amplitude functionas V() = dn(n, T).

Xs(n) = =22 42 [ =2’ (0, T) + azdn®(n, ), (48)

and

1

Zg,(x,t)z(—“z:%rz,/ 22 4n%(n, T) + asdn?(n, ))2 (49)

In the scenario where T tends to 1, Eq (49) transforms into optical bright soliton solution for Eq (1) as indicated

by
%
Qs(z,t) = ( - azsz +2 —s—sech(m — ct) + agsech’ (z — ct)) etz —pattus), (50)
3 V' oss

Family: 6

When s1 = %, S2 = %27 83 = i.

We derive the double periodic wave solution for (30) by adopting the Jacobi amplitude function as
Vin) = 128

1+dn(n,Y)"
_ a282 52 Sn(n7 T) Sn2 (775 T)
Xl = A TN T G ) T T a1 e
and
1
, _ [ a2 sz sn(n,T) sn?(n, 1) 2 52
%@”< ss 2 s G EdnGo) TP TR 0R) 2
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In the scenario where T tends to 1, Eq (52) transforms into

R
a282 s2  tanh(z — ct) tanh?(x — ct) 2 a—pattus)
t) = _ 2 _°2=& t(pr1x—pot+pug . (53)
@s(w,t) ( s3 + \/  s3 (1 £sech(z — ct)) ta (1 + sech(z — ct))? ¢

Family: 7

When s1 = ﬁ, S2 = %27 83 = %2.

We derive the double periodic wave solution for (30) by adopting the Jacobi amplitude function as
Vin) = 22D

1+dn(n,Y)"
_ _a252 _Si Sn(n7 T) Sn2(na T)
Xrln) === *2\/: T dn(n, 1)) (0% dnln, 1) 4
and
1
_ _ a282 _372 Sn(% T) Sn2(777 T) n 55
Zrlet) = ( s “ﬁ(lidn(w)) SR CETTE ) A o3

In the scenario where T tends to 1, Eq (55) transforms into

1
a2 82 sz tanh(x — sps) tanh?(x — ct) 2 (uio—pattus)
P 9 [_52 pwiz—p2ttus)  (56)
Qr(w,?) ( s3 + \/  s3 (1 +sech(x — ct)) ta (1 £ sech(z — ct))? ¢

Family: 8 N
When s1 = 155, 5o = 1, 55 = — =10
We derive the double periodic wave solution for (30) by adopting the Jacobi amplitude function as
V(n) = Yen(n, T) £ dn(n, T).

Xg(n) = — a;jQ +2,/ —z—iTcn(n, Y) £ dn(n, T) + az(Yen(n, T) £ dn(n, 1))?, (57)
along with
1
a252 S2 2\ 2" 58
Zg(z,t) = — o +2 —chn(n, T) £ dn(n, T) + az(Yen(n, T) £ dn(n, 1)) . (58)

In the scenario where T tends to 1, Eq (58) transforms into

a282

Qs(z,t) = <_ 53 +

1
2 —z—z(sech(x — ct) & sech(z — ct)) + aa(sech(z — ct) £ sech(z — ct))z> etlmzmmattua) - (59)
3

Family: 9
Whens; =0, s2 =2, s3=0.
We derive a rational solution for (30) by adopting the amplitude function as V'(n) = £.

n

2
D F
Xo(n) = ——“232 12 f<n> +a2<n) , (60)
3 3

2\ 2%
zg(x,t)_<_agsz+z _<§)+(f;>> | (61)
3 3

In the scenario where Y tends to 0, Eq (61) transforms into

2\ L
Qo(a,t) = — %2 4o [ 2 F + as F o i (m1e—pattus) (62)
’ S3 ss\x—ct x —ct

Soliton solutions for TB model (1) using tan g@) —expansion method

The solution (8) assumes the following mathematical expression

and
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X(n)=ao+a {tan <@)} + b |:tan (@)] - + a2 {tan (Vg]))r + b2 {tan (@)] 72. (63)

We substitute Eq (63) into Eq (30), and then compare the polynomials of the type tan <V;">) results in the

following system
v |\
(tan (Tn)) H 3b29§r - 3()29;T -+ 6b292937‘ — 6b20293T + 3b29§r - 3629§T -+ 2b2p = 0,

1
(tan (@)) : b19§r — b19§T + 2b192937‘ — 2b19293’r + b19§7‘ — b19§T + 10b29192T — 10b29192T+
1062601637 — 10026103 + 4b1b2p = 07
vip\\
(tan (T”>> - 301016027 — 30161027 + 30101057 — 3010103 + 862037 — 8282 + 262621 — 202037

+ 1217292037“ — 12b29295T =+ 10b29§T — 10b29§'I‘ + 4agb2p + 2b§p + 4b§p
+ 20972 — 2b2k* — 2byw = 0,

3
(tan (V—”)>> 201077 — 20107 + b1031 — b105Y + 4b1 62037 — 4b102605Y + 3b1037 — 36165

+ 14b291627“ — 14b29102T + 26b29193r — 26629193T + 4(lob1p + 4a1b2p
+ 8b1bop + 2177 — 2b1k? — 2b1w = 0,

4
14
(tan (771)>> 101021 — 10102 + a1016037 — 1601037 + az@%r — az@;T + 2a202031 — 2020203

+ 42037 — a203Y + 5b10102r — 5b16102 + 710105 — 7b10,03Y + 16b2677
— 16b202T — 4bo02r + 4b203Y + 4bo02037 — 4bs0205Y + 12b2037 — 12b202 Y
+ 2a2p + 8aobap + 2a07* — 2a0k” + 4arbip + dasbop + 4b3p

+ 4b3p + 4bay? — 4bok? — 2aw — 4byw = 0,

5
(tan (V—n))) 201021 — 20102 — a10%7 + a102Y + a19§r - a19§T + 6a201 6021

— 6a26102Y + 6a201057 — 6420105 + 4b1 051 — 4b10T Y — by O3 + b105T + 2b102057 (64)

— 2b10203T + 3b19§7‘ — 3b19§T — 2b291927‘ + 21)20192T + 221)261937‘ — 22b29163T
+ 4aoaip + 8aobip + 8aibap + 2a172 —2a1k% + 4a2b1p + 4b1b2p + 41)172
— 4bik® = 2a1w — 4byw = 0,

6
(tan (M>) :—a160102r + a10102Y + 5a160103r — 5a101603Y + 8&29%7‘ — 8(129%T — 2&2957‘ + QGQQST

+ 44202037 — 4a20205T + 6a205T — 60203 + b101027 — b10102Y + 5b101037 — 5b10105Y
+ 8207 — 8b203Y — 2b2021 + 2b202Y — 4by02037 + 4baB205Y + 6ba03r — 6ba63 Y

+ 4a3p + 4aoasp + 4aobap + 4a072 — daok® + 2a3p + 8arbip + 8azbap + 2a2'~/2

— 2a2k® + 2b3p + 2b2y? — 2bok® — daow — 2asw — 2bow = 0,

7
1%
(tan (J)>> c4a103r — 44103 — a1057 + @103 — 2a102057 + 2016203 + 3a105r — 3a102Y

+ 2(1291927‘ — 2a29193T + 22(1291937‘ — 22&29193 T + 2b19127‘ — 2b1912T — b]@%T‘ + b19§T
+ 01037 — 0103 — 6b261 027 + 6b20102T + 6b2b1 037 — 66201031 + Sagarp + 4aobip
+ 4ajazp + 4ai1bap + 4a1'yz —da kK + 8axbip + 2b1'y2 —2b1k* — dayw — 2byw = 0,

8
(tan (M>> H 75&10192’!“ + 50,10192T + 70,191937‘ — 7a101€3T + 160,29%7‘ - 160,29%’1‘ - 4(12957‘

+4a203Y — 4a202037 + 4a20205Y + 12a2037T — 12a203Y — b1616021 + b16162Y
+ b101057 — b10105Y + bof2r — ba02Y — 2b202037 + 2b20205Y + by0ar — by02 T
+ 2a3p + 8agasp + 2ao'yz — 2a0k® + 4a3p + darbip + 2a3p + dasbop + 4a272

— dazk? — 2a0w — dazw = 0,
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9
<tan (@)) :2a10%r — 201077 + a10%r — a102Y — 4a102037 + 401602057 + 3a19§7‘ — 3a10§T

— 14a261027r + 14a20102 + 260201031 — 26020103 + dapaip + 8aiazp
+ 2(1172 —2a1k* + 4asb1p — 2a1w = 0,

10 (65)
(tan (@)) : 73(1101927‘ + 3a10102T + 3(119193’!“ — 3(119193T + 8&2‘9%7‘ — SQQQ%T + 2029%7‘ — 20,29%’1‘
— 12a2602037 + 12020205 + 10a2021 — 10b202Y + dapasp + 2a>p + da3p
+2a27” — 2a2k” — 2a2w = 0.
The following outcomes were acquired through the utilization of the Mathematica software
. 6 62—6 03+2a202-+2a26
Set: 17 = %(1 +2i),02 = 02, a0 = ap, a1 = \/ agaz 6z aog;)fg: a3 602+2a3 S 4y = as, by =0, by =0,

a(02—20203+02) _ 3a003—6ag0203+3a002 —8azk?+3a203 —3a2603)
“dask s H2 = Sas )

2
X (77) — ao + \/6&0&202 — 6a0(61,293 ;— 2a 92 =+ 2a 93 |:tan (Véﬁ))] + as |:tan (‘/(277)>:| 7 (66)
2 — U3

where 61, 02, and 63 represent arbitrary constants and 1 = x £ ct. By considering families 1 — 18 following
solution families are obtained

_ 2 02 — 62 — 62 02 — 02 — 62
Quo (w,8) = {ao " \/6(10@292 6aoaz03 + 2a202 + 2a203 |: 01 \/ 3 2 L tan (\/ 5 5 7

b=

02 — 03 02—93_ 0> — 03 2
6 VBE-0-01 \/02 02 23 (67)
(n+ C)>:| + a2 |:9 ) 0 o ( 3 ( + C)>:| :| et(piz—p2t+us)
2 — 03 > — 03
Qur (t) = |ap + 1 | 8208202 = bavats + 2030 +2030s [ 61 /03 +03-63 o V0E =02 =02
B 05 — 03 02 — 05 02 — 05 2
0 NCEY T NG ko (©9
(7I+C)):| + az {9 16 _ 39 2@ 1ioanh ( . o +C))} } e —pat+us)
> — 03 > — 03
o 6apazlz — 6apazfs + 2(1%92 + 20,%93 01 \/ 92 + 92 \/m
Q12 (z,t) =|ao + — — tanh (n+C)
02 — 03 02 02 2 (69)
69
/92 2 2 2 27 54
+ as {21 - 09+6 tanh ( 62;_ b (77+C))} } ’ etmz—n2ttus)
p) p)
— 2 2 02 — 62 02 02
Qus (2,1) :{aw \/6“0“292 Baodbe } 2usf + 2uite {— o VA (\/7( +c>)}
70)
/ 27 2 (
+ a2 l: - % + 629_ i an (\/952_79%(77 + C’)):| } ’ etz —pat+pus)
3 3
6agasfz — 6agas03 + 2a202 + 2a20 02 + 0 02 — 02
Qua (1) = | a0 + 0a202 0a203 502 503 2 5 tanh m(n-l—c)
02 — 03 Oy — 03 2
1 (71)
/62 — 62 2
+ as { 22 + 23 tanh <722 5 (n+ C))} } g1z —p2ttus)
2 — 03
_ 6aoaz0z — 6aoazls + 2a302 + 2a§93 £202(n+0) £202(n+C)
Q15 (z,t) = [ao + \/ 7 — 05 tan 6292(n+C . 1 P GTO T
72
1 -1 2020t 1 2021t a b(nw pot+pz) ( )
+ a2 (tan <§tan sz(nﬂ-c) 11 202010 1} )) }
_ 6apaz02 — 6agaz0s + 2a302 + 2(1293 e201(1+0)  201(n+C) _
Q6 (z,t) = [ao + \/ 2 — 05 tan ST 11 2O 1 -
73

1
1 [ ente)  p2nmro) g T amriaten)
+az (tan <§ tan |:5291(W+C) T 1 6201t 0) 4 1
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02 — 63

Q17 (2,1) _[ + \/6a0a202 — 6agaz0s + 2a202 + 2a20s {(92 +63)(01(n+C)+2)

QQO

Q21

Q2

24 L
. (624 63)(0:1(n+C)+2) 7| Bzt tns)
03 (n+C)

i (n+C) }

Qs (z,t) = {ao + \/6a0a202 — Gaoazfs + 236, + 20305 [em’(’”C) - 1]

02 — 63

24 L
+as [eico(n+0) _ 1] :| ? 'eb(mz*wtﬂta)

62 — 0 2a20 2a20
ng(m)_[aﬁ\/mm 2 6@0;2 3; a3fs + 2a3 3[
2 — U3

ic c 2135
s etco(n+C) 2 i —patag)
eiCO(U+C) —1

etco(n+C) ]

eiCO (n+C) — 1

(m t) B |:a0 I \/6&00,202 — 6agas03 + 20,292 + 20,593 |:(191 —+ 02)682(n+0) — 1:|

02 — 03

0 c 29 5
+a ( 1+ 62)e 2@ : et(miz—p2ttus)
2101 — 02)e%2(n0) — 1

(61 — 02)e?2(ntC) — 1

(.T t) . |:a0 I \/6(10&292 — 6agas03 + 20,%92 + 2a?2 93 |:(l92 + 93)692(n+c) + 1:|

02 — 63

L
+ (02 + 93) f2(n+ @) +1 o L(1L11—/L2t+#3)
(02 — 03)692(7I+0) —1

(02 — 03)ef2(1+C) — 1

02 — 03

692(7I+c> — 02 — 01

) (Lt t) . |:a0 n \/6@0&202 — 6aga203 + 2(1%092 + 2(1%93 |:692(77+C) + 605 — 91:|

) c 2735
i 2+ 49, — 0, 2 oo —pat+ua)
02(1+C) — g, — 0,

0o — 03 + 2a20 2a20-
Q23 (z,t) = [ao + \/6a0a2 2 6a032 3 ;— age + 2050
> — 03

01(n+C) 127 3
4 an 1 (1+C) 2 ot (H1o—pat+us)
0391 (n+C)

|

01 ef1(n+C)
936‘91 (n+C)

02 — 03

n+C)

Q24 (217 t) _ |:a0 n \/60,0(1292 — 6agaz03 + 2a292 =+ 20%93 |:93(77 + O) + 2:|
) 0 (

Q25 (1) ={ao+

Qa6 (x,t) = {ao +

24 L
Os(n+C) +2 - t(pre—pat+ps)
T { Os3(n+C) ¢

6agaz02 — 6agazbs + 2(1,%92 =+ 2()%93

273
{gg(nJrC)] +as |:93(7]+C)} ] et(prz—pzttus)

ettt
%

02 — 03 93(7}+C)

6 02 —6 03 + 2a302 + 2a20
Qor (x,t)—|:a0+\/ apa202 aoa203 + 2a502 4 2a5 3 tan

Set: 20, =

02 — 03

277
+ a2 <tan <;0d (77 + C))) } eb(i"11*#2t+#3)

1
6aoaz02 — 6aoazls + 2a302 + 2a303 1 1 17 ot (m1m—pattps)
0s(n+ C)

<;03(77 + C’))

(74)

(75)

(79)

(80)

(81)

(82)

(83)

(84)

2
—2v/202,b = ?07612,:,93 =0,a0 = V2a1,a1 = a1, a2 = 0,b1 = —a1, b2 = 0,n = (1 + V7i),

po = —ak?.
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X(n)—\/icn—i-al[tan (@)} —al[tan <Vén)>}l7 (85)

where 01, 02, and 03 represent arbitrary constants and 7 = x =+ ct. By considering families 1 — 18 one can the
following solutions can be obtained:

ng(x,t):|:\/§a1+a1|: it Y 05 — 05 — 6% tan< v 0§6§6%(7}+0)>}

02— 05 03— 0 2

—14 L
—a |: 01 _ \ 92 02 — 02 tan <\/9§ - 0% - 9% (7] + C)>:| :| 2 eL(MlI*M2t+H3)

0, — 05 0 — 03 2

(86)

0 NEY s 20— 0
Q29(337t):|:\/§a1+041|: L 2 —— L tanh ( ~——2—1(n+C)

N 2

—a |: 01 v 9§ + 93 — 0% tanh ( 92 )] :| an et(H1e—p2ttps)
2

(87)

Yoy —05 02— 05

02 02

—a {91 v 93 + 9% tanh < v 62 + 92( + C))} B ] = et(m1z—pat+us)

05 09 2

Q31 (z,t) = [\[a1+a1|: 01—1— 0202tn( 030%(?7+C)>:|

\/ 02 + 62 92 92
Q30 (7,1) = [\/im +ai [91 VETO ( * }

03 03 2

—1+ L
—a |: zl + 9% — 9% tan ( \% 052_ 0% (77 + C)>:| } ” et(mx—uzt-&-us)
3

(89)

03

0 0 92792
Q32 (z,t) = [fa1+a1{ 02+02tanh( 22 3(77+C)

-1
o 02 + 63 tanh 9% - 0?2) (n+C) o et(miz—p2ttus)
62 — 63 2

1 3 202(n+C) _ 1 202(n+C)
Q33 (x,t) —|:\@a1—|—a1 tan <2tan ! |:€ ¢

e202(n+C) 4 17 ¢202(n+C) 4+ 1

205 (n+C 204 (n+C —17 5
—a1| tan ltaurfl et — 1 202070 ’ et(m1z—p2ttusz)
2 e202(n+C) 4 17 ¢202(n+C) 4 1

6291(n+C) 6291 (n+C) _ 1
e201(n+C) 4 17 200(n+C) ]

201 (n+C 201 (n+C 1755
—a1| tan l‘caun71 RIS et — 1 ’ et(miz—pzt+us)
2 e201(n+C) 17 200(n+C) 4 1

Q35 («737t) = |:\/§al + a1 {(92 + 93)(91(77 + C) + 2):| —a {(02 + 93)(91 (7] + C) + 2)} 71} ﬁeb(mac—uzt-%—m) (93)

(90)

Q34 (z,t) = |:\@a1 + a1 tan <; tan ! [
(92)

0i(n+C) 03 (n+C)
- 1A
Qse (z,1) = {\/ﬁal +ap {ewo(Wrc) 1| - { ico(n+C) _ :| } et(r1@—p2ttpus) (94)
V2 I B N R T, (95)
Q37 (z,t) =|V2a1 + a1 e S TO) 1 e
14 L
(61 + 03)e”1 T — 1] (61 + 02)e” () —1 P ua—pattus)
Qss (z,t) = I:\fa1+a1|:(9 Ba)c20+0) 1| (01 = 02)emr 0 — 1 e (96)
—1q L
(‘92+93) 02(n+C) +1 02+9 92(7]+C) +1 2n 17—t is)
Qo (2,8) = [\[al o [(02 03)ef20ntC) — 1 | (02 — 03)e2(170) — 1 ¢ ©7)

Scientific Reports|  (2025) 15:32164 | https://doi.org/10.1038/541598-025-92387-w nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

1
692(7I+C)+92_91' '692(71+C)+92_01 135 (ot pa)
Qao (v,1) = |:\/§a1 + a1 |:392(n+0) 0, —0,| Y |mmro—g, —0, e (98)
- - 1
0,01 (1+C) 9,01 ()71 2w (5 pgtiss)
Qu (”):{ﬂ‘“”l [ageemm “a|gaee| | < )
. - 14 L
Os(n+C) +2 Os(n+C) +2 T (ure—pattus)
) =|v2a a | BTG T2y (B O)F 2 Upra—pattpus (100)
Qaz (z,1) [ a“ a1[ 0s(n + C) “ Os(n+C) €
- _ —1q 5
Qa3 (x,t) = [\/5@1 + a1 {93(77 +C)| —a1|0s3(n+ C’)} ] gt m1m—pattus) (101)
. - 14 L
Qua (z,t) =|V2a1 +a _ —a _ MeL(“lE*Mtﬂts) (102)
44 (z, ) = 1+ a1 G0 1 0) | 1 %507+ 0)

—1 i
Qas (z,t) = {\/ial + a; tan <;93(77 + C)) - (tan (;03(77 + C’)>) :| etz nattua) - (103)

2 2
Set:391 = W,b:—wwi%—sg%)aao,ao = Qop, A1 :—%,azzo,bl :bl,bQZO,C:O.
-1
b1 (62 — 63) Vi(n) Vn)
X e -t — bi|t — 104
(n) =ao 9> 4 0 an 5 + b1 | tan 5 , (104)

where, 01, 02, and 03 represent arbitrary constants, and n = x % ct. We consider families 1 — 18 leading to

Q%(%t):[%_m(ereg{ 0, \/925—9%—9%tan<\/9§—9§—0%(n+0))]

0s+05 |02—605  62—0; B
6 JB-GG-0F (-0 A (105)
+ b1 e 00 tan : 5 (n+C) et (B E—pattps
2 — U3 2 — U3
[ b-o)[ 6 JEEE-® g
Qa7 (z,t) = {ao B 10 {92 — 0 PR tanh 5 (n+C)
0, \/92—0-072—92 092 — 92 — 92 —1q 5L (106)
+ bl |:9 ) — 36 29 1 tanh < 3 5 2 1 (77 + c)>j| :| eL(p117H2t+H3)
2 — U3 2 — U3
bi(62—0s) [0 /O3+6% NCEY
Qus (1) = a0 = B tanh (Y=L 5+ C)
62 +93 92 92 2
(107)
14 L
+ b1 |:Z1 — \/@ tanh <\/9§2T9%(77 + C))} ] - etz —pzttus)
2 2
. 92 _ 02 92 _ 02
Q49((E,t): aO—M _ﬁ_’_\/itan \/i(n+c)
02 + 03 05 0 2 o)
108
—1+ L
+ by |:— % + @ tan (@(n + C)>:| :| - et(ﬂw—uzt-&-us)
3 3
_ b1(62 — 63) 02 + 03 \/m
Qso(m,t)—[o— b 10 5. g, tanh 57— n+0)
1
02 + 03 \/M 1755 . (109)
+h - tanh ) (n+0) et(p1e—pattus)
2 — 03
_ b1(62 — 63) 1 _, [e202tC) 2020
Q51 (xyt) = |:a0 - W tan 5 tan 0202(n+0) n 1 £202(n+C) 1
(110)

202 (n+C 205 (n+C —17 3%
+ b1 | tan ltaun_1 D) —1 et ’ et(H1e—pattus)
2 e202(n+C) + 1’ e202(n+C) +1
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7 b1 (62 — 63) 1 . e201(n+C) e201(n+C) _q
Qs2 (z,t) = {ao 0, 10, tan Etan PO GTO 11 20O 1

201 (n+C 201 (n+C 1755
+b1| tan 1 tan ™" SRS e — 1 ’ eH(mz—p2ttus)
2 e201(n+C) 4 17 201 (n+C) 4 1

(02— 00) [0+ )01+ ) +2)] |, [(B2+ 0010+ C) + 2] 1™ i sarnnr (112)
92 +03 9%(7]+C) ! 9f(n+c)

(111)

Qs3 (z,1) = {au b

. —19 <L
_ b1 (62 — 0s) ico(n+C) ico(n+C) ” t(prz—pot+ps)
Qs4 (z,t) = ao—w e — 1| +b1le -1 e (113)
2 3

. - . 14 L
bl (92 _ 03) 6zc0(n+C) ezco(n+C) 2n (41— pat-tis)
) I e 114
Qss (z,t) {ao b 105 | ceomror 1| 0| Gemror =1 e (114)

- ” —1 %
 bi(6> — 63) {(91 + 0,)e?2 (1) _ 1 oy [(91 + 62)e?2 (10 _ 1] } 7 nia—pattus)  (115)

56 (T,t) =
Qs6 (CE ) |:(lo 0y + 05 (9] _ 92)6‘92<"7+C) _ 1_ (91 — 32)692(71+C) —1

—14 L
(02 + 93)692(n+c) + 1] } 27,,eb<mwﬂt2t+w) (116)

C ) — by (62 — 03) [ (B2 + 03)e?>+) 1]
Qs7 (z,t) = {ao - b et s

02 + 03 (92 — 03)602(U+C) — 1_ +h |:

_ o1
Qss () = |:a0 _ b1(02 — 03) {eez(wc) + 60> — 61 b {eoz(mc) + 6y — 01} } o ezt (117)

02 + 03 ef2(n+C) — g, — 6, ] e02(1+C) _ g, — 0,

Qs9 (z,t) = {ao _ b1é§2+—0§3) [g;i:f:g; i Zi::i:izi] _1} ﬁeb(mz—uzwus) (118)
oo A2 [l 2] [
Qo1 (z,1) = {ao - bléf%jofg) {93(77 + C): + b1 :93(77 + C)] ] ﬁe“m*“?“%) (120)

Qoz 0:1) = [ao - bl(gfte(jg) {93(?71+ C): o :93(771+ C)} _1] ﬁe“m_uwm 12y

_ 1

b1 (62 — 05) 1 1 N7 s o—patnn)

Qes (z,1) =|ao — ———"tan [ =0s(n+C) | + by [ tan [ =6s(n+ C) ertimemiattis) - (122)
02 + 03 2 2

Set: 4 61 =04, b= —2%011:3, ag = b216931, ay = —%, a2 =0, by =b1, bo=0, c=0, k =k, 0 = 3053,

p2 = —a(k* + 07 + 863).

X (n) = b;g; — b;[tan (V;n)>:| +b |:tan (Vén))] ) , (123)

where, 61,02, and 03 represent arbitrary constants, and 7 = x =+ ct. By considering families 1 — 18 leads to
following results

[t b [ 6 N VE-Z -6
Qo4 (z,1) = [7293 -5 {92 S tan 5 (n+C) -
1 124
6 VB -0-6 <\/9§939§ A
+ b1 [ - tan (n+0C) etrie—pattus
02 — 03 02 — 03 2
| bibs by 01 9% + 9% - 9% (93) _ 9% _ 9%
Qes(m,t)—{%)g *5{92_037 Fa— tanh 5 (n+0) .
1 125
o IR (VTR )] F i
+ b1 { - tanh (n+0C) et(rri@—pzttus
02 — 03 0> — 03 2
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o)
)] ]

2n
et(H1e—pattus)

e202(n+C)

o)

1 ﬁ
+C)>:| :| et(uw—uzt-&-us)
0 0
: 3(77+C)>}

—1+4 L
I L

)

Qo6 (2,1) = b191_b71 0—1—\/0§+6%tanh \/95"_0%
064 205 2 |0, 0o 2
01 /03 +07 V03 + 0%
+ by ?—Ttanh #(U"’
2 2
0 (mt)_blal_bil —ﬁ—l—v%ie%tan \/6?%70%
TR Y T 90, T 2| 05 03 2
01, /03— 0% V03— 0%
+b1| -+ tan (n
03 03 2
- b161 b1 02 + 03 5—03
es (1) = [293 T2 {\/: tanh ( 2
[02 4 03 5 — 03
h
+b1|: 02_93tan < 5
B b6, by 1 1 e202(n+C) _ 1
Qo (20 { 2, 2" (2tan [e?@z(nw) 1 e200r0) 1 1
1 _, [e202tO) _q e202(n+C)
+b1<tal’l <2 tan |:6292("7+C) +17 6292("I+C) +1

e201(n+C)

e201(n+C) _q

-1 ﬁ
:|)> :| et(H1e—pattus)

<;tan1 [

201 (n+C)

€201(n+C) 1 17 201 (n+C) 4 1

6201 (n+C)

)

-1

1
+ b1 (tan (2 tan ™! |:

(02 + 605)(01(n + C) +2)

(b6 by
Qi (z,1) *[%*5{

b161
203

(b6 b
Q3 (z,1) = {205 2{

(01 + 62)e?2(1tO) 1
(61 — 62)ef2(n+C) — 1

03 (n+C)

by

Q72 (.Z‘, t) 2

_ |:eico(7l+c) -1
eico (n+C)

o b101 b1
Q”(‘r’t)’{% 2[

b1 by

_ by (02 + 93)692(7I+C) +1
Qs (% t) = {7203 2 [

(62 — 63)ef2(n+C) — 1

Qre (z,t) = {blel _h [602<n+0) + 6> — 61 ]
203 2 | ef2(n+C) — 9y — 6y
Qro (z,1) = {l;f; - %1 {eg(n +0)
Qo1 (,1) = {’;f; ~

|

+b1

+ b1

+ b1

+ b1

+ b1

+ b1

+ b

+ b1

+ b1

201 (n+C) + 1’ e201(n+C) +1

(02 4 05)(01(n + C

1 %n
:|>> ] et(ulzﬂmtﬂts)

@i50<77+c) —_ 1

-602("+C) + 02 — 04
ef2(n+C) — g, — 0,

'91691(n+0)
03691 (n+C)

[03(n+C) +2

03 (n+C)

eico(ntC)

e

'(01 + 92)692(n+0) -1

ico(n+C)

1 %
-1 :| et (m1z—pat+ps)

1
—173n
6L(mrfu2t+u3)

| (61 — 02)en20r10) — 1

_(92 + 93)692(77+C) +1

—19 L
3n
} :| eL(mﬂﬂ—qu—#s)

| (62 — 05)ef2(n+C) — 1

19 L
2n
:| :| eb(mzfuztﬂis)

03(n +

14 L
2n
:| :| et(H1@—pattus)
1
eL<H1 T—pottpus)

—1 i
eb(mﬂc—uzt-ﬁ-ua)
C)

1 ﬁ
93(7I+C)] ] eb(mszﬂrw)

1

O3(n+C

1

1725
):| ] eb(mz—uzt-&-us)

1 %
O

—1q 4
)+2):| :|Z et(miw—pattus)

(126)

(127)

(128)

(129)

(130)

(131)

(132)

(133)

(134)

(135)

(136)

(137)

(138)

(139)

(140)

(141)

Scientific Reports|  (2025) 15:32164

| https://doi.org/10.1038/s41598-025-92387-w

nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

2 2
Set;591:_(eztzgm’b:_%;ze‘»wﬂo:_%,al:al,agza%bl:o,(h:o,czo)
n = £(1+ 2i).
2
(% (7 1% Vv
X(U):—M+a1 tan (YUY | 1 g, | tan (Y0 , (142)
0o — 03 2 2

where, 01, 02, and 03 represent arbitrary constants, and n = x % ct. By considering families 1 — 18 leads to

02 — 62 — 9?2 \/0% — 02 — 92
Qse (SU,t)_|:— (02 + 03)as Ta { 01 3 2 1 tan( 3 2 1(77+C)>:|

0s — 03 Y0, —6s 65— 06 2

24 L
0 02— 62 — 92 . (, /0% — 03 — 02 (n+ C))] } on ST

02 — 03 02 — 053 2

(62 + 63)a2 0, Y 0§ + 9% - 9% V 9% 0 - 92
R ey 6, —p, b 7 +0)
24 L
6, /02 + 02 — 02 o (\/92 —202 — 92( N C))} } " na—pa )

02— 05 0y —05

Qui o) =| - 50y |00 VIR i (VEE 40|

(143)

+az[

Q83 (:L’, t) = [ -
(144)

+a2{

0> — 03 0 02 2

/02 2 /02 21 5
91 92 + 01 tanh < 922+ 0% (77 + C)>:| :| 2 eL(ulzfugtﬁ»pg)

+a2{—

(2 02
22 22
Qg5(x,t)—[(92+93)a2+a1{ 91+\/93 eltan(v(% 91(n+c))}

02 — 63 03 03 2

24 L
01 + \V 9% - 9% tan < eg - 0% (77 + C)>:| :| o eL(ulzfp,gt#»p,g)

93 03 2

\/02 — 62
Qse (z,t) = —M—Fa 02+93tanh AAL NERL) 3(77+C’)
02 — 03 02 — 03 2
24 L
T as 02 + 03 tanh 9% - 9% (77 + C) 2 eL(leflJ‘Z’H’HB)
0 — 03 2

202 (n+C) _ 202(n+C)
Q87($,t)_|:_(02+03)a2+a1tan <;tan1 [e LI ])

(145)

(146)

+a2{

(147)

0> — 03 e202(n+C) 4 17 ¢202(n+C) 4 1

1
1 [e202n+0) _ g 202(n+0) m S o—pzthiia)
+a2<tan <2tan |:6292(W+C) 1 202t 0) 1 1 e

_ (92 + 93)a2 1 . e201(n+C) e201(n+C) _q
Qss (7,t) = [ T e, g, Tatan| gtan e e T et O) 1

201 (n+C 201 (n+C 27 35
+az| tan ltaun_1 NS ) —1 ’ et (H1e—pattus)
2 201 (n+C) + 1’ e201(n+C) +1

(62+03)a2+a (62 +03)(0:1(n + C) +2)
02 — 03 ! 02(n+C)

(148)

(149)

1
s { (62 + 63)(61(n + C) + 2)} } T ma—nattus)  (150)

Qs (I,t):|:* 62(77+C)

22
ng (I,t) — |: _ % + a1 |: ico(n+C) 1:| +a |: ico(n+C) 1:| :| 2 eL(H1x7H2t+H3) (151)
2 — U3

05 — 03 cico(ntC) — 1 cico(nt0) _ |

¢ico(n+0) ico(nt0) 1% 2w
Qor (2, 1) = [ B (02 + 63)as ta [ ] tas { } ] et (B E—pattps) (152)

27 2%
(01 +02 O2(n+C) _ 2 eL(#1w7/12t+u3) (153)
(91 — 02)ef2(1+C) — 1

Qo2 (z,t) = { - (62 + 9 )az + [(91 + 92)592(”+C>

0y — 03 (91 — 92)692(77+C

Scientific Reports|  (2025) 15:32164 | https://doi.org/10.1038/s41598-025-92387-w nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

e [ P e I
R e L R P e R
Qos (z,t) = [ — (62;_92):2 + a1 {Z;Z:E:iz; + a2 :Z;Z:E:iz;} 2} ﬁet(mx—uztﬂ@) (156)
ot <[ o [ e ] e o
Qo7 (z,1) = { - % +a [03 (n+ C)_ + as —03 (n+ C)] T ﬁe““lﬂ”—“z“r%) (158)
slnt) = [ e SR [03(771+ c): e :03(771+ 0) reWMMS) 1

21 3,
Qoo (z,t) = { — W + a1 tan (%93(77 + C)) + a2 (tan (%93(7} + C))) } gtme—nzttus) — (160)
o — 03

Analysis of the physical implications of the obtained results

This section provides a concise summary of the outcomes derived in the preceding sections. The theory of
periodic and soliton solutions constitutes a fundamental and well-established domain in the modern theory
of differential equations. These solutions play a crucial role in the analysis of dynamical systems and find
applications across various fields, including mathematical biology, social sciences, and other nonlinear sciences,
where phenomena are modeled with diverse parameters. Hence, it is essential to explore the conditions associated
with these arbitrary parameters that give rise to periodic wave and soliton solutions. Graphical representations
were used to elucidate the physical characteristics of the obtained solutions. In Fig. 1, the 3D and 2D plots
illustrate the solution Q1(z,t), featuring both real and imaginary components. This solution portrays a sub-
picosecond shock wave within the intervals —10 < z < 10 and —5 < ¢t < 5, with the parameter values set
as s = —1, n = 2, and all other arbitrary parameters set to unity. Figure 2 depicts the 3D and 2D plots of the
solution Q2 (x, t), showing both real and imaginary aspects. These graphs illustrate a singular soliton solution
within the intervals —10 < = < 20 and —10 < ¢ < 10, where the parameter values are specified as s = —1
and n = 2, and all other arbitrary parameters are set to unity. Figure 3 displays the profiles of the solution
Q3(z, t), illustrating sub-picosecond singular wave solutions with ranges —10 < z < 20 and —10 < ¢ < 10.
The parameter values were set as s = —1 and n = 2, and all other arbitrary parameters were assigned a value
of unity. Figure 4 illustrates the 3D and 2D plots of the solution Q4(x,t), showing a sub-picosecond bright
soliton solution over the spatial and temporal intervals —10 < z < 20 and —10 < ¢ < 10. The parameters

are specified as s2 = —1 and n = 2, and the remaining units. The plots in Fig. 5 correspond to the solution
Qe(z,t), depicting a double periodic wave solution within the intervals —10 < = < 20 and —10 < ¢ < 10.
The parameters were set as sz = —1 and n = 2, and all other parameters were assigned a value of unity. Figure

6 illustrates the periodic wave solutions over the ranges —10 < < 10 and —5¢ < 5, derived from the solution
Q27(z, t). The parameters were set to n = 2, 02 = 2, and all other arbitrary elements were set to unity.

|ijff,),|, t=01 — t=0.5 t=0.9
1Q1(x,t)]
X

-10

(a) 3D plot

Fig. 1. Profile of sub-pico-second shock wave solution Q1 (z, t) by setting parameters
s3=01=0=03=ax=c=1, n=2and so = —1.
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1Q2(x,1)]|
X

1.15f

10 -5 ' 5 10 @
(b) 2D plot
Fig. 2. Profile of singular soliton solution Q2 (x, t) by setting parameters
s3=01=0=03=ax=c=1, n=2and s2 = —1.
1Qs(x,1)] t=12 = t=16 — t=2.0
1Qs(x.)]
X
3.5}
3.0f
2.5}
2.0f
ST 1.5}
20 1.0f
05
o -10 -5 * 5 10 %
(a) 3D plot (b) 2D plot
Fig. 3. Profile of sub-pico-second singular soliton waves Q3(x, t) by setting parameters
s3=01=0;=03=ax=c=1, n=2and s2 = —1.
1Qa(x1)| t=1.0 — t=15 — t=2.0
i 1Qa(x,1)|
p.¢
1o -10 -5 : 5 10 %
(a) 3D plot (b) 2D plot

Fig. 4. Profile of sub-pico-second bright soliton Q4 (x, t) by setting parameters
s3=01=03=03=a2=c=1, n=2and s2 = —1.

Discussion and conclusions
This study explored subpicosecond optical soliton solutions within the TB model. By leveraging advanced

techniques, specifically the gJEF method and the tan (@)—expansion method, a diverse range of wave

solutions, including sub-picosecond shock wave solitons, sub-picosecond optical bright and singular solitons,
and double periodic waves, were systematically derived. Distinct from previous works by Yildirim®® and Ghazala
and Sayed®!, our results introduce novel solution classes such as shock waves and double periodic wave solutions.
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(a) 3D plot (b) 2D plot

Fig. 5. Profile of double periodic waves Q¢ (x, t) by setting parameters
s3=01=0=03=ax=c=1, n=2and so = —1.

t=02 =— t=0.5 — t=0.8

1Q27 (’ff
7 1Qa27(x,1)]
X

N ...

3.5
3.0
2.5

2.0
1.5

o x -10 -5 5 10

(a) 3D plot (b) 2D plot

Fig. 6. Profile of periodic wave solution Q27 (z, t) by setting parameters
a0=a2=83=01292:93293262021, n=2and02:2.

Furthermore, for the sake of novelty, a rigorous exploration of periodic wave solutions for the TB model
(1) was undertaken. Nine periodic wave solutions, expressed in terms of Jacobi amplitude symbols and others,
were obtained using the tan (@)-expansion method. This novel contribution enriches our theoretical

understanding of the TB model (1). The outcomes of this study underscore the necessity for a more intricate
examination of the model. Future investigations may extend the TB equation relevant to birefringent fibers
and Dense Wavelength Division Multiplexing (DWDM) technology, employing robust methodologies such as
extended Kudryashov’s methodology, trial equation procedures, and Lie symmetry analysis. The comprehensive
findings of these studies will be presented in subsequent publications.
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All data generated or analyzed during this study are included in this published article.
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