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Given the application of cycloalkanes in surrogate blends for aviation fuels, their determination of 
critical characteristics pertinent to fuel transportation and combustion becomes imperative. In this 
study, we aim to construct intelligent models based on machine learning methods of random forest 
(RF), adaptive boosting, decision tree (DT), ensemble learning, K-nearest neighbors (KNN), support 
vector machine (SVM), multi-layer perceptron (MLP) artificial neural network and convolutional neural 
network (CNN) to predict the density of binary blends of ethylcyclohexane or methylcyclohexane 
with n-hexadecane/n-dodecane/n-tetradecane in terms of operational conditions (pressure and 
temperature) and cycloalkane mole fractions in n-alkanes, utilizing laboratory data extracted 
from existing scholarly publications. The reliability of the data used is affirmed using an outlier 
detection algorithm, and the relevancy factor concept is utilized to find the relative effects of the 
input parameters on the output parameter. The preciseness of the developed models is checked and 
compared comprehensively via statistical and graphical methods. The obtained results indicate that 
temperature has the most effect on density, with a relevancy value of − 0.9619, and pressure has 
the least effective value, with a relevancy value of 0.041, which explains the straight relationship 
between pressure and density. The modeling results illustrate that DT and RF algorithms have the 
best performance in calculating density with R2 values of 0.9985 and 0.09982, respectively. The MLP 
and Adaboosting models exhibit the weakest performance in this field, with R2 values of 0.9455 and 
0.9477, respectively. The current paper indicates robust tools for the accurate prediction of the density 
of binary blends of ethyl cyclohexane or methylcyclohexane with n-hexadecane/n-dodecane/n-
tetradecane, which are required for fuel transportation and combustion studies.
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List of symbols
RF	� Random forest
DT	� Decision tree
KNN	� K-nearest neighbors
SVM	� Support vector machine
MLP	� Multi-layer perceptron
CNN	� Convolutional neural network
R2	� R-squared
AI	� Artificial intelligence
ANN	� Artificial neural network
XGBoost	� Extreme gradient boosting
GBRT	� Gradient boosting regression tree
ϕ(x)	� Nonlinear mapping
∥w∥2	� The regularization term
EL	� Ensemble learning
x	� Lower-dimensional input
ϵ	� Insensitive loss function
C	� Regularization constant
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ξ	� Slack variable
w	� Weight
b	� Bias
ai	� Lagrange multiplier
ηi	� Lagrange multiplier
K	� Kernel function
RBF	� Radial basis function
γ	� The breadth of the Gaussian function
FT	� Weak learner
X	� Input variable
Et	� Aggregate error
αth (Xi)	� Enhanced weak learner
n	� Number of points
Di	� Euclidean distance
yi	� I’th training sample value
Cp	� The test data sample predicted value
Ct	� Adjacent neighbor
v1,1	� Value within the subsequent layer
F	� Size of filter
k	� Row number
δ	� Activation function
Vi	� Random vector
MAPE	� Mean absolute percentage error
MSE	� Mean squared error
R2	� R-square
MRE	� Mean relative error
H	� Hat matrix
m	� Number of data points
H*	� Critical leverage value
rj 	� Relevance factor
xj 	� Average of a particular variable values
y	� Average of target values

Broadly speaking, regular petroleum derivatives, including gasoline and aviation fuels, are composed of a vast 
array of hydrocarbons, numbering in the hundreds1. The primary constituents of these fuels include normal 
alkanes, isoparaffins, naphthenes, and aromatics, with normal alkanes and naphthenes featuring alkyl side 
chains being especially crucial in the composition of aviation fuels2–5. These blends are used in fuel production, 
such as jet fuel. This fuel includes four main hydrocarbon groups: linear alkanes, aromatics, branched alkanes, 
and cycloalkanes. The relative amounts of these components highly affect the performance of the jet fuel in 
combustion, atomization, aircraft range, metering, and thermal stability. It should be mentioned that fuel 
quality has a direct effect on global warming issues6. Accurately delineating their fundamental properties 
presents a significant challenge due to the various hydrocarbons and their intricate interactions. This complexity 
consequently impedes the precise simulation of fluid dynamics and the design of heat exchange systems6–10.

Within aviation fuel composition, straight-chain alkanes such as n-dodecane, n-hexadecane, and 
n-tetradecane are frequently selected as representative model compounds. Conversely, shorter alkyl cycloalkanes 
are utilized for the cycloalkane category, with methylcyclohexane and ethylcyclohexane being commonly 
employed exemplars8,11–13. Regarding the investigation into either methylcyclohexane or ethyl cyclohexane 
independently14,15, there exists a wealth of density-related data, which has been extensively documented by 
various researches16–20. However, the study of physical properties, such as the density of binary mixtures 
comprising these cycloalkanes and straight-chain alkanes, has received relatively scant attention.

The importance of studying fuels10 and ignition21 and the properties that may affect their performance is 
undeniable22. Given the application of cycloalkanes in surrogate mixtures for aviation fuels, determining critical 
properties pertinent to fuel transportation and combustion becomes imperative for combinations of these compounds 
with n-alkanes23. Acquiring basic physical property data remains challenging across broad pressure and temperature 
spectra, even for binary mixtures with rudimentary composition. Therefore, elucidating and measuring the physical 
characteristics of such binary blends encompassing thermal expansion, compressibility, and density form the 
foundational groundwork for the advanced evaluation and modeling of complex aviation fuels. Consequently, many 
researchers have embarked on experimental investigations into their physical properties. For instance, Prak et al.23 
conducted studies on the physical properties of mixtures of methylcyclohexane or ethylcyclohexane with n-dodecane 
or n-hexadecane across temperatures ranging from 293.15 to 333.15 K and at a pressure of 0.1 MPa. By comparing these 
properties with those of traditional petroleum-based fuels, they deduced that mixtures involving ethylcyclohexane 
and n-hexadecane most closely resemble jet fuel characteristics. Baragi et al.24 explored the densities and forecasted 
the excess molar volume of methylcyclohexane and n-dodecane mixtures at temperatures between 298.15 and 308.15 
K and a pressure of 0.1 MPa. Calvar et al.25 assessed the density values of aromatic hydrocarbons-methylcyclohexane 
blends at a temperature of 313.15 K and pressure of 0.1 MPa. Van Hecke et al.26 experimentally determined densities 
for ethyl cyclohexane blends with organic compounds at temperatures of 288.15 and 318.15 K while at a constant 
pressure of 0.1 MPa, noting an uncertainty of 0.0005 g/cm3. However, the influence of purity variations on this 
uncertainty was not discussed. Prak et al.27 presented density measurements for n-alkylcyclohexane/n-tetradecane 
mixtures from 288.15 to 333.15 K at 0.1 MPa, specifying an expanded uncertainty of 0.3 kg/m3. Wang et al.28 opted 
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for n-dodecane, n-hexadecane, and n-tetradecane as proxies for straight-chain alkanes and methylcyclohexane/
ethylcyclohexane representing alkyl cycloalkanes, conducting density measurements for six mixtures across a pressure 
range from 0.1 to 9 MPa and temperature span of 280–423.15 K, thus covering the operational circumstances of most 
engineering applications. Chum-in et al. developed correlations to estimate density of binary biofuel mixture by using 
Gibbs energy29. Cano-Gómez et al. suggested a non-linear relationship based on the fractional ratios to determine 
viscosity of a binary system30. Krisnangkura et al. implemented an approach to determine viscosity of mixtures of 
diesel and biodiesel based on the molecular similarities31. Yoon et al. suggested a method in terms of temperature and 
proportional ratio to predict the density of soybean oil and diesel mixtures32.

The comprehensive laboratory research outlined previously underscores a labor-intensive and intricate 
process, necessitating sophisticated analytical techniques alongside the employment of high-cost laboratory 
apparatus. Concurrently, the domain of artificial intelligence (AI) has manifested remarkable efficacy in a myriad 
of applications33, spanning interpretation and prognostication tasks across diverse fields34–42. It is of particular 
interest that, despite the acute demand for data characterizing the density of hydrocarbon mixtures under elevated 
pressures and temperatures, a noticeable gap exists in the endeavor to formulate models leveraging advanced 
intelligent modeling methodologies. In this vein, the present study aims to harness cutting-edge machine 
learning techniques, including Random Forest (RF), Adaptive Boosting, Decision Tree (DT), Ensemble Learning, 
K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Multi-Layer Perceptron(MLP) Artificial Neural 
Network and Convolutional Neural Network (CNN). These methodologies are employed to predict the density 
of binary blends of Ethylcyclohexane or methylcyclohexane with n-hexadecane/n-dodecane/n-tetradecane 
across an extensive range of operational conditions (encompassing pressure and temperature) and cycloalkane 
mole fractions in n-alkanes, utilizing refined laboratory data extracted from existing scholarly publications. 
The reliability of the utilized data is affirmed through an outlier detection algorithm, and a relevancy factor is 
applied to determine the significance of each input variable on the mixture density. Additionally, the precision 
of the developed models is stringently assessed using statistical indices and graphical representation techniques.

Methodology
Data gathering
This investigation leverages a detailed dataset comprising 1461 datapoints, culled from a thorough review of 
extant scholarly articles23,24,28, dedicated predominantly to the empirical determination of the density of binary 
blends involving ethylcyclohexane or methylcyclohexane and n-hexadecane/n-dodecane/n-tetradecane. This 
dataset spans a broad spectrum of mole fractions, temperatures, and pressures. The statistical attributes of 
all experimental data employed in the modeling process are systematically cataloged in Table 1. For model 
development, 1156 data points are utilized for training, while 158 and 147 data points validate and test the 
constructed models’ potential, respectively.

Machine learning approaches
We delve into the mathematical foundations underpinning the machine learning algorithms employed for the 
development of intelligent models in this study. The details of theory of these models are reported in Appendix.

Input parameters Output parameter

Mole fraction Temperature (K) Pressure (MPa) Density (mPa s)

Minimum 0 280 0.1 37.38

Maximum 1 423.15 9 805

Average 0.6 344.63 4.61 649.61

Standard deviation 0.24 47.95 2.81 732.68

Table 1.  Statistical data pertinent to the experimental data.

 

Fig. 1.  The estimation of max-depth in the DT model.
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Results and discussion
In this part, the density of binary blends for ethyl cyclohexane or methylcyclohexane with n-hexadecane/n-
dodecane/n-tetradecane is estimated by using eight machine learning methods. First, the hyper-parameters are 
determined for each model. For example, the max-depth is estimated to be 15 for DT algorithm as shown in Fig. 1. 
Then, Fig. 2 illustrates that the performance of the KNN algorithm in the K value of 1 is better than other K values.

Figure 3 demonstrates the R-squared values for different c values in the SVM algorithm, and the optimum 
value of c is obtained at about 1. The accuracy values of AdaBoosting in terms of the number of estimators are 
shown in Fig. 4. As illustrated, 63 estimators are the best structure for this model. After that, it is determined that 
the RF model with 9 estimators shows the most accuracy in the max-depth value of 9 (See Fig. 5).

Fig. 3.  SVM algorithm performance for disparate c values.

 

Fig. 2.  The estimation of K in the KNN model.

 

Fig. 4.  Adaptive Boosting algorithm performance for disparate numbers of estimators.
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Fig. 6.  The MSE values in different iterations for the CNN model.

 

Fig. 5.  Hyper-parameter estimation for the RF algorithm.

 

Fig. 7.  The MSE values in different iterations for the MLP model.
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The performance of CNN and MLP methods during the training process is shown in Figs. 6 and 7, respectively.
The chosen hyper-parameters for each algorithm are reported briefly in Table 2.
Some statistical parameters are employed to assess the models mentioned above. They are defined as below:
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Model Hyper-parameter

SVM C = 1, kernel = rbf, degree = 3,

DT Max-depth = 15, criterion = squared_error, min_samples_split = 2, min_samples_leaf = 1,

Adaptive Boosting Number of estimators = 63, learning_rate = 1.0, loss = linear

RF Max-depth = 9, Number of estimators = 9, min_samples_split = 3

EL Includes DT, SVM and KNN

MLP 1 Dense layer(128 Neurons), 1 Dense layers(64 Neurons), 2 Dense layers(16 Neurons), 2 Dense layers(8 Neurons), 1 
Dense layer(4 Neurons). loss = mse, Activation function: elu , learning rate = 0.001

CNN 1 Conv1D layers(64), 2 Conv1D layers(16), 1 Dense layer(128 Neurons), 1 Dense layers(64 Neurons), 1 Dense layer(16 
Neurons), 1 Dense layer(8 Neurons), 1 Dense layer(4 Neurons). loss = mse, Activation function: elu , learning rate = 0.01

Table 2.  The chosen hyper-parameters for each algorithm.

 

Model Run Time

R-squared MAPE MAE MSE

Training Validation Testing Training Validation Testing Training Validation Testing Training Validation Testing

SVM 0.0094 0.9579 0.9562 0.9593 16.3489 16.6465 40.6545 0.0407 0.0408 0.0361 0.0024 0.0024 0.0021

MLP 10.6822 0.9506 0.9447 0.9455 15.1776 18.2716 24.8411 0.0437 0.0458 0.0407 0.0029 0.0030 0.0028

CNN 15.7672 0.9855 0.9841 0.9773 7.4173 7.2048 21.8950 0.0229 0.0248 0.0270 0.0008 0.0008 0.0011

Ensemble learning 0.0217 0.9953 0.9917 0.9934 5.4496 6.2881 15.7982 0.0135 0.0163 0.0141 0.0002 0.0004 0.0003

RF 0.0407 0.9992 0.9982 0.9982 1.5013 2.6194 4.5270 0.0048 0.0081 0.0073 0.0000 0.0001 0.0001

KNN 0.0005 1.0000 0.9798 0.9880 0.0000 5.8111 5.9151 0.0000 0.0191 0.0149 0.0000 0.0011 0.0006

DT 0.0163 1.0000 0.9988 0.9985 0.0000 2.8254 4.6935 0.0000 0.0071 0.0077 0.0000 0.0001 0.0001

Adaptive boosting 0.2623 0.9574 0.9520 0.9477 16.3788 19.3579 36.6926 0.0419 0.0441 0.0442 0.0025 0.0026 0.0027

Table 3.  The summary of statistical analysis.

 

Fig. 8.  Calculation of MAPE values for different algorithms.
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The summary of statistical analysis is reported in Table 3. For better description, the MAPE values are shown in 
Fig. 8, and it shows that the RF and DT models are the most accurate models in the calculation of density with 
MAPE values of 4.527 and 4.6935, respectively.

Figure 9 confirms that DT and RF algorithms have acceptable performance in the calculation of density with 
R2 values of 0.9985 and 0.09982, respectively. On the other hand, the MLP and Adaboosting models exhibit the 

Fig. 9.  Calculation of R2 values for different algorithms.

 

Fig. 10.  Calculation of MAE values for different algorithms.

 

Fig. 11.  Calculation of MSE values for different algorithms.
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Fig. 12.  The predicted density versus the actual density.
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weakest performance in this field, with R2 values of 0.9455 and 0.9477, respectively. Then, the summary of the 
determination of MAE and MSE is shown in Figs. 10 and 11, respectively.

The predicted density is demonstrated against the actual density in Fig.  12, in which density points’ 
compaction expresses the models’ precision. In addition, the fitting lines on the different subsets of data points 
are constructed, and they seem similar to the bisector line. After that, the relative error between the predicted 
and real density values is shown for each model in Fig. 13. if the relative errors lie near the x-axis, the model will 
be more accurate.

One of the critical points in selecting the best estimator is the time required for training the model. Due to 
this fact, the time spent training each model is reported in Fig. 14, and it seems that neural network models 
require more time than others.

It is worth mentioning the advantages and disadvantages of these models. The KNN algorithm has a 
simple implementation procedure but can be computationally expensive for large data banks. Also, the SVM is 
computationally expensive but works well with small databanks. DT is robust to outliers but prone to overfitting. 
On the other hand, RF is robust to overfitting and high accuracy because of ensemble learning. ANN-based 
algorithms can be used for complex tasks, but they need high processing time.

Figure 12.  (continued)
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The accuracy of the utilized dataset in the training of algorithms has vital importance. Hence, assessing 
the precision of ethylcyclohexane/methylcyclohexane with n-dodecane/n-tetradecane/n-hexadecane density 
databank is necessary. The leverage method, which is based on mathematical techniques, is employed in this 
work. There is a matrix shown by H, and it is called the Hat matrix and determined as below43–45:

	 H = X
(
XT X

)−1
XT � (5)

In this definition, X is m × n dimensional matrix, in which dimensions are the number of data points and model 
parameters, respectively. Then, the reliable and outlier zones should be identified. Hence, the critical value of H* 
is defined as follows:

	 H∗ = 3 (n + 1) /m� (6)

Then, the William’s plot is applied to indicate the results of this analytical technique.The normalized residuals 
are plotted against the Hat values in this plot. These Hat values is determined by using the main diagonal of H. 
Figure 15 expresses the situation of these data points in this method and it is obvious that all data points are 
reliable. Therefore, they have enough accuracy to be used in the development of algorithms. In this work, the 
best model, DT, is used to generate this graph and analysis.

The effect of pressure, temperature, and mole fraction of cycloalkane on density of ethyl cyclohexane/
methylcyclohexane with n-dodecane/n-tetradecane/n-hexadecane is determined by the relevance factor (rj). 
This parameter is used to predict the effect of a particular variable (xj) on the density (y). The below formulation 
describes the procedure of this method46,47:

	

rj =
∑n

i=1 (xj,i − xj) (yi − y)√∑n

i=1 (xj,i − xj)2 ∑n

i=1 (yi − y)2
, (j = 1, 2, 3)� (7)

The determined parameter lies between –1 and 1 with negative sign showing that the density decreases by 
increasing that particular parameter. Furthermore, a higher value of r represents the stronger relationship 
between that particular input and density. As shown in Fig. 16, temperature has the most impact on the density, 
with an r value of –0.9619. Also, the negative sign expresses a reverse relationship between temperature and 
density. On the other hand, pressure is the least effective, with an r value of 0.041, which explains the straight 
relationship between pressure and density.

Conclusions
In this study, several artificial intelligence methods are applied to forecast the density values of ethyl cyclohexane/
methylcyclohexane blended with n-dodecane/n-hexadecane/n-tetradecane in terms of operational conditions 
(encompassing pressure and temperature) and cycloalkane mole fractions in n-alkanes. A number of 1461 
data points which lie in the extensive range of conditions are used in suggesting models. These data points 
are assessed using a mathematical method, and it is obtained that all data points are maintained in the reliable 
region. Hence, they can be used in different steps of model development. The carried out sensitivity analysis by 
the relevancy factor concept exhibits that temperature is the most influential parameter on the density with r 
value of –0.9619. Also, the negative sign expresses a reverse relationship between temperature and density. The 
statistical and graphical comparisons between the developed models show that the DT and RF algorithms have 
the best performance in calculating density with R2 values of 0.9985 and 0.09982, respectively. According to the 

Figure 12.  (continued)
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Fig. 13.  The relative error between the predicted and actual density values.
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Figure 13.  (continued)

Fig. 14.  Calculation of run time for different algorithms.
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results, this paper provides several robust tools to calculate the density of Ethylcyclohexane /methylcyclohexane 
with n-dodecane/n-tetradecane/n-hexadecane that is useful for chemical engineers and chemists.

Data availability
Data file is available as a supplementary file.
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