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Machine learning based estimation
of density of binary blends of
cyclohexanes in normal alkanes

AliYarahmadi?, Ali Rashedi? & Amin Bemani>"*

Given the application of cycloalkanes in surrogate blends for aviation fuels, their determination of
critical characteristics pertinent to fuel transportation and combustion becomes imperative. In this
study, we aim to construct intelligent models based on machine learning methods of random forest
(RF), adaptive boosting, decision tree (DT), ensemble learning, K-nearest neighbors (KNN), support
vector machine (SVM), multi-layer perceptron (MLP) artificial neural network and convolutional neural
network (CNN) to predict the density of binary blends of ethylcyclohexane or methylcyclohexane
with n-hexadecane/n-dodecane/n-tetradecane in terms of operational conditions (pressure and
temperature) and cycloalkane mole fractions in n-alkanes, utilizing laboratory data extracted

from existing scholarly publications. The reliability of the data used is affirmed using an outlier
detection algorithm, and the relevancy factor concept is utilized to find the relative effects of the
input parameters on the output parameter. The preciseness of the developed models is checked and
compared comprehensively via statistical and graphical methods. The obtained results indicate that
temperature has the most effect on density, with a relevancy value of - 0.9619, and pressure has

the least effective value, with a relevancy value of 0.041, which explains the straight relationship
between pressure and density. The modeling results illustrate that DT and RF algorithms have the
best performance in calculating density with R? values of 0.9985 and 0.09982, respectively. The MLP
and Adaboosting models exhibit the weakest performance in this field, with R? values of 0.9455 and
0.9477, respectively. The current paper indicates robust tools for the accurate prediction of the density
of binary blends of ethyl cyclohexane or methylcyclohexane with n-hexadecane/n-dodecane/n-
tetradecane, which are required for fuel transportation and combustion studies.
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List of symbols

RF Random forest

DT Decision tree

KNN K-nearest neighbors

SVM Support vector machine

MLP Multi-layer perceptron

CNN Convolutional neural network
R? R-squared

Al Artificial intelligence

ANN Artificial neural network
XGBoost  Extreme gradient boosting
GBRT Gradient boosting regression tree
¢(x) Nonlinear mapping

[|w]|? The regularization term

EL Ensemble learning

X Lower-dimensional input

€ Insensitive loss function

C Regularization constant

1Department of Petroleum Engineering, Petroleum University of Technology, Ahwaz, Iran. 2Department of
Computer Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran. 3Department of
Petroleum and Geo-energy Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
*email: aminbemani90@yahoo.com

Scientific Reports | (2025) 15:8469 | https://doi.org/10.1038/s41598-025-92608-2 nature portfolio


http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-92608-2&domain=pdf&date_stamp=2025-3-11

www.nature.com/scientificreports/

13 Slack variable

w Weight

b Bias

ai Lagrange multiplier

i Lagrange multiplier

K Kernel function

RBF Radial basis function

Y The breadth of the Gaussian function

F, Weak learner

X Input variable

Et Aggregate error

ath (X;)  Enhanced weak learner

n Number of points

Di Euclidean distance

Y; I'th training sample value
» The test data sample predicted value
A Adjacent neighbor

Vi, Value within the subsequent layer

F Size of filter

k Row number

) Activation function

Vi Random vector

MAPE Mean absolute percentage error

MSE Mean squared error

R? R-square

MRE Mean relative error

H Hat matrix

m Number of data points

H* Critical leverage value

T Relevance factor

T; Average of a particular variable values

g Average of target values

Broadly speaking, regular petroleum derivatives, including gasoline and aviation fuels, are composed of a vast
array of hydrocarbons, numbering in the hundreds'. The primary constituents of these fuels include normal
alkanes, isoparaffins, naphthenes, and aromatics, with normal alkanes and naphthenes featuring alkyl side
chains being especially crucial in the composition of aviation fuels?~>. These blends are used in fuel production,
such as jet fuel. This fuel includes four main hydrocarbon groups: linear alkanes, aromatics, branched alkanes,
and cycloalkanes. The relative amounts of these components highly affect the performance of the jet fuel in
combustion, atomization, aircraft range, metering, and thermal stability. It should be mentioned that fuel
quality has a direct effect on global warming issues®. Accurately delineating their fundamental properties
presents a significant challenge due to the various hydrocarbons and their intricate interactions. This complexity
consequently impedes the precise simulation of fluid dynamics and the design of heat exchange systems®~!°.

Within aviation fuel composition, straight-chain alkanes such as n-dodecane, n-hexadecane, and
n-tetradecane are frequently selected as representative model compounds. Conversely, shorter alkyl cycloalkanes
are utilized for the cycloalkane category, with methylcyclohexane and ethylcyclohexane being commonly
employed exemplars®!!-13, Regarding the investigation into either methylcyclohexane or ethyl cyclohexane
independently!®'5, there exists a wealth of density-related data, which has been extensively documented by
various researches!®2°. However, the study of physical properties, such as the density of binary mixtures
comprising these cycloalkanes and straight-chain alkanes, has received relatively scant attention.

The importance of studying fuels!® and ignition?! and the properties that may affect their performance is
undeniable??. Given the application of cycloalkanes in surrogate mixtures for aviation fuels, determining critical
properties pertinent to fuel transportation and combustion becomes imperative for combinations of these compounds
with n-alkanes?®. Acquiring basic physical property data remains challenging across broad pressure and temperature
spectra, even for binary mixtures with rudimentary composition. Therefore, elucidating and measuring the physical
characteristics of such binary blends encompassing thermal expansion, compressibility, and density form the
foundational groundwork for the advanced evaluation and modeling of complex aviation fuels. Consequently, many
researchers have embarked on experimental investigations into their physical properties. For instance, Prak et al.>}
conducted studies on the physical properties of mixtures of methylcyclohexane or ethylcyclohexane with n-dodecane
or n-hexadecane across temperatures ranging from 293.15 to 333.15 K and at a pressure of 0.1 MPa. By comparing these
properties with those of traditional petroleum-based fuels, they deduced that mixtures involving ethylcyclohexane
and n-hexadecane most closely resemble jet fuel characteristics. Baragi et al.** explored the densities and forecasted
the excess molar volume of methylcyclohexane and n-dodecane mixtures at temperatures between 298.15 and 308.15
K and a pressure of 0.1 MPa. Calvar et al.>® assessed the density values of aromatic hydrocarbons-methylcyclohexane
blends at a temperature of 313.15 K and pressure of 0.1 MPa. Van Hecke et al.?® experimentally determined densities
for ethyl cyclohexane blends with organic compounds at temperatures of 288.15 and 318.15 K while at a constant
pressure of 0.1 MPa, noting an uncertainty of 0.0005 g/cm®. However, the influence of purity variations on this
uncertainty was not discussed. Prak et al.?” presented density measurements for n-alkylcyclohexane/n-tetradecane
mixtures from 288.15 to 333.15 K at 0.1 MPa, specifying an expanded uncertainty of 0.3 kg/m>. Wang et al.?® opted
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for n-dodecane, n-hexadecane, and n-tetradecane as proxies for straight-chain alkanes and methylcyclohexane/
ethylcyclohexane representing alkyl cycloalkanes, conducting density measurements for six mixtures across a pressure
range from 0.1 to 9 MPa and temperature span of 280-423.15 K, thus covering the operational circumstances of most
engineering applications. Chum-in et al. developed correlations to estimate density of binary biofuel mixture by using
Gibbs energy”. Cano-Gdmez et al. suggested a non-linear relationship based on the fractional ratios to determine
viscosity of a binary system™. Krisnangkura et al. implemented an approach to determine viscosity of mixtures of
diesel and biodiesel based on the molecular similarities®!. Yoon et al. suggested a method in terms of temperature and
proportional ratio to predict the density of soybean oil and diesel mixtures®.

The comprehensive laboratory research outlined previously underscores a labor-intensive and intricate
process, necessitating sophisticated analytical techniques alongside the employment of high-cost laboratory
apparatus. Concurrently, the domain of artificial intelligence (AI) has manifested remarkable efficacy in a myriad
of applications®®, spanning interpretation and prognostication tasks across diverse fields**~*2. It is of particular
interest that, despite the acute demand for data characterizing the density of hydrocarbon mixtures under elevated
pressures and temperatures, a noticeable gap exists in the endeavor to formulate models leveraging advanced
intelligent modeling methodologies. In this vein, the present study aims to harness cutting-edge machine
learning techniques, including Random Forest (RF), Adaptive Boosting, Decision Tree (DT), Ensemble Learning,
K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Multi-Layer Perceptron(MLP) Artificial Neural
Network and Convolutional Neural Network (CNN). These methodologies are employed to predict the density
of binary blends of Ethylcyclohexane or methylcyclohexane with n-hexadecane/n-dodecane/n-tetradecane
across an extensive range of operational conditions (encompassing pressure and temperature) and cycloalkane
mole fractions in n-alkanes, utilizing refined laboratory data extracted from existing scholarly publications.
The reliability of the utilized data is affirmed through an outlier detection algorithm, and a relevancy factor is
applied to determine the significance of each input variable on the mixture density. Additionally, the precision
of the developed models is stringently assessed using statistical indices and graphical representation techniques.

Methodology

Data gathering

This investigation leverages a detailed dataset comprising 1461 datapoints, culled from a thorough review of
extant scholarly articles?>?*?8, dedicated predominantly to the empirical determination of the density of binary
blends involving ethylcyclohexane or methylcyclohexane and n-hexadecane/n-dodecane/n-tetradecane. This
dataset spans a broad spectrum of mole fractions, temperatures, and pressures. The statistical attributes of
all experimental data employed in the modeling process are systematically cataloged in Table 1. For model
development, 1156 data points are utilized for training, while 158 and 147 data points validate and test the
constructed models’ potential, respectively.

Machine learning approaches
We delve into the mathematical foundations underpinning the machine learning algorithms employed for the
development of intelligent models in this study. The details of theory of these models are reported in Appendix.

Input parameters Output parameter
Mole fraction | Temperature (K) | Pressure (MPa) | Density (mPa s)
Minimum 0 280 0.1 37.38
Maximum 1 423.15 9 805
Average 0.6 344.63 4.61 649.61
Standard deviation | 0.24 47.95 2.81 732.68

Table 1. Statistical data pertinent to the experimental data.
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Fig. 1. The estimation of max-depth in the DT model.
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Fig. 2. The estimation of K in the KNN model.
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Fig. 4. Adaptive Boosting algorithm performance for disparate numbers of estimators.

Results and discussion
In this part, the density of binary blends for ethyl cyclohexane or methylcyclohexane with n-hexadecane/n-
dodecane/n-tetradecane is estimated by using eight machine learning methods. First, the hyper-parameters are
determined for each model. For example, the max-depth is estimated to be 15 for DT algorithm as shown in Fig. 1.
Then, Fig. 2 illustrates that the performance of the KNN algorithm in the K value of 1 is better than other K values.
Figure 3 demonstrates the R-squared values for different ¢ values in the SVM algorithm, and the optimum
value of ¢ is obtained at about 1. The accuracy values of AdaBoosting in terms of the number of estimators are
shown in Fig. 4. As illustrated, 63 estimators are the best structure for this model. After that, it is determined that
the RF model with 9 estimators shows the most accuracy in the max-depth value of 9 (See Fig. 5).
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Fig. 5. Hyper-parameter estimation for the RF algorithm.
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Fig. 6. The MSE values in different iterations for the CNN model.

—— Training
—— validation
0.20 1
0.15 4
w
%)
Z0.10
0.05 1
0.00 4 ﬁ\w
0 20 40 60 80 100 120 140

Iteration

Fig. 7. The MSE values in different iterations for the MLP model.
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Model Hyper-parameter
SVM C=1, kernel =rbf, degree =3,
DT Max-depth =15, criterion =squared_error, min_samples_split=2, min_samples_leaf=1,

Adaptive Boosting | Number of estimators =63, learning_rate= 1.0, loss =linear

RF Max-depth =9, Number of estimators =9, min_samples_split=3

EL Includes DT, SVM and KNN

1 Dense layer(128 Neurons), 1 Dense layers(64 Neurons), 2 Dense layers(16 Neurons), 2 Dense layers(8 Neurons), 1

MLP Dense layer(4 Neurons). loss = mse, Activation function: elu , learning rate=0.001

1 Conv1D layers(64), 2 Conv1D layers(16), 1 Dense layer(128 Neurons), 1 Dense layers(64 Neurons), 1 Dense layer(16

CNN Neurons), 1 Dense layer(8 Neurons), 1 Dense layer(4 Neurons). loss = mse, Activation function: elu , learning rate=0.01

Table 2. The chosen hyper-parameters for each algorithm.

R-squared MAPE MAE MSE
Model Run Time | Training | Validation | Testing | Training | Validation | Testing | Training | Validation | Testing | Training | Validation | Testing
SVM 0.0094 0.9579 0.9562 0.9593 |16.3489 | 16.6465 40.6545 | 0.0407 0.0408 0.0361 | 0.0024 0.0024 0.0021
MLP 10.6822 0.9506 0.9447 0.9455 | 15.1776 18.2716 24.8411 | 0.0437 0.0458 0.0407 | 0.0029 0.0030 0.0028
CNN 15.7672 0.9855 0.9841 0.9773 7.4173 7.2048 21.8950 | 0.0229 0.0248 0.0270 | 0.0008 0.0008 0.0011
Ensemble learning | 0.0217 0.9953 0.9917 0.9934 5.4496 6.2881 15.7982 | 0.0135 0.0163 0.0141 | 0.0002 0.0004 0.0003
RF 0.0407 0.9992 0.9982 0.9982 1.5013 2.6194 4.5270 | 0.0048 0.0081 0.0073 | 0.0000 0.0001 0.0001
KNN 0.0005 1.0000 0.9798 0.9880 0.0000 5.8111 5.9151 | 0.0000 0.0191 0.0149 | 0.0000 0.0011 0.0006
DT 0.0163 1.0000 0.9988 0.9985 0.0000 2.8254 4.6935 | 0.0000 0.0071 0.0077 | 0.0000 0.0001 0.0001
Adaptive boosting | 0.2623 0.9574 0.9520 0.9477 |16.3788 | 19.3579 36.6926 | 0.0419 0.0441 0.0442 | 0.0025 0.0026 0.0027

Table 3. The summary of statistical analysis.
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Fig. 8. Calculation of MAPE values for different algorithms.

The performance of CNN and MLP methods during the training process is shown in Figs. 6 and 7, respectively.
The chosen hyper-parameters for each algorithm are reported briefly in Table 2.
Some statistical parameters are employed to assess the models mentioned above. They are defined as below:
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Fig. 10. Calculation of MAE values for different algorithms.
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The summary of statistical analysis is reported in Table 3. For better description, the MAPE values are shown in
Fig. 8, and it shows that the RF and DT models are the most accurate models in the calculation of density with
MAPE values of 4.527 and 4.6935, respectively.

Figure 9 confirms that DT and RF algorithms have acceptable performance in the calculation of density with
R2 values of 0.9985 and 0.09982, respectively. On the other hand, the MLP and Adaboosting models exhibit the
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Fig. 12. The predicted density versus the actual density.
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Figure 12. (continued)

weakest performance in this field, with R? values of 0.9455 and 0.9477, respectively. Then, the summary of the
determination of MAE and MSE is shown in Figs. 10 and 11, respectively.

The predicted density is demonstrated against the actual density in Fig. 12, in which density points’
compaction expresses the models’ precision. In addition, the fitting lines on the different subsets of data points
are constructed, and they seem similar to the bisector line. After that, the relative error between the predicted
and real density values is shown for each model in Fig. 13. if the relative errors lie near the x-axis, the model will
be more accurate.

One of the critical points in selecting the best estimator is the time required for training the model. Due to
this fact, the time spent training each model is reported in Fig. 14, and it seems that neural network models
require more time than others.

It is worth mentioning the advantages and disadvantages of these models. The KNN algorithm has a
simple implementation procedure but can be computationally expensive for large data banks. Also, the SVM is
computationally expensive but works well with small databanks. DT is robust to outliers but prone to overfitting.
On the other hand, RF is robust to overfitting and high accuracy because of ensemble learning. ANN-based
algorithms can be used for complex tasks, but they need high processing time.
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Figure 12. (continued)

The accuracy of the utilized dataset in the training of algorithms has vital importance. Hence, assessing
the precision of ethylcyclohexane/methylcyclohexane with n-dodecane/n-tetradecane/n-hexadecane density
databank is necessary. The leverage method, which is based on mathematical techniques, is employed in this
work. There is a matrix shown by H, and it is called the Hat matrix and determined as below*3~4>:

H=X(X"x)"xT (5)

In this definition, X is m x n dimensional matrix, in which dimensions are the number of data points and model
parameters, respectively. Then, the reliable and outlier zones should be identified. Hence, the critical value of H*
is defined as follows:

H =3(n+1)/m (6)

Then, the William’s plot is applied to indicate the results of this analytical technique.The normalized residuals
are plotted against the Hat values in this plot. These Hat values is determined by using the main diagonal of H.
Figure 15 expresses the situation of these data points in this method and it is obvious that all data points are
reliable. Therefore, they have enough accuracy to be used in the development of algorithms. In this work, the
best model, DT, is used to generate this graph and analysis.

The effect of pressure, temperature, and mole fraction of cycloalkane on density of ethyl cyclohexane/
methylcyclohexane with n-dodecane/n-tetradecane/n-hexadecane is determined by the relevance factor (r;).
This parameter is used to predict the effect of a particular variable (xj) on the density (y). The below formulation
describes the procedure of this method*%*:

Doy (@i —75) (yi — )
\/Z?:l (Cvgz — @-)2 :;1 (yi — g)Q

ri =

The determined parameter lies between -1 and 1 with negative sign showing that the density decreases by
increasing that particular parameter. Furthermore, a higher value of r represents the stronger relationship
between that particular input and density. As shown in Fig. 16, temperature has the most impact on the density,
with an r value of -0.9619. Also, the negative sign expresses a reverse relationship between temperature and
density. On the other hand, pressure is the least effective, with an r value of 0.041, which explains the straight
relationship between pressure and density.

Conclusions

In this study, several artificial intelligence methods are applied to forecast the density values of ethyl cyclohexane/
methylcyclohexane blended with n-dodecane/n-hexadecane/n-tetradecane in terms of operational conditions
(encompassing pressure and temperature) and cycloalkane mole fractions in n-alkanes. A number of 1461
data points which lie in the extensive range of conditions are used in suggesting models. These data points
are assessed using a mathematical method, and it is obtained that all data points are maintained in the reliable
region. Hence, they can be used in different steps of model development. The carried out sensitivity analysis by
the relevancy factor concept exhibits that temperature is the most influential parameter on the density with r
value of -0.9619. Also, the negative sign expresses a reverse relationship between temperature and density. The
statistical and graphical comparisons between the developed models show that the DT and RF algorithms have
the best performance in calculating density with R? values of 0.9985 and 0.09982, respectively. According to the
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Fig. 13. The relative error between the predicted and actual density values.
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Figure 13. (continued)
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Fig. 14. Calculation of run time for different algorithms.
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Fig. 15. Outlier detection.
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Fig. 16. Relevancy factor for density of ethylcyclohexane/methylcyclohexane with n-dodecane/n-tetradecane/
n-hexadecane databank.

results, this paper provides several robust tools to calculate the density of Ethylcyclohexane /methylcyclohexane
with n-dodecane/n-tetradecane/n-hexadecane that is useful for chemical engineers and chemists.
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