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The rapid growth of the Internet of Things (IoT) and its extensive use in many regions, such as 
smart homes, healthcare, and vehicles, have made IoT security increasingly critical. Ransomware is 
an advanced and adjustable threat influencing users globally, limiting admittance to their data or 
systems over models like file encryption or screen locking. Traditional ransomware detection methods 
frequently drop, deprived of the ability to combat these threats successfully. Therefore, an effective 
and reliable mechanism is needed for ransomware detection. Deep learning (DL) and machine 
learning (ML) methods are very efficient and enhance model efficacy, offering burgeoning research 
paths, mainly in the ransomware detection realm, and presenting advantageous possibilities for new 
solutions. This study proposes a novel Multi-head Attention-Based Recurrent Neural Network with 
Enhanced Gorilla Troops Optimization for Cybersecurity Ransomware Detection (MHARNN-EGTOCRD) 
approach. The main goal of the MHARNN-EGTOCRD approach is to detect and classify ransomware 
attacks using advanced hybrid and optimization models in IoT environments. In the data normalization 
stage, the min-max normalization transforms input data into a suitable format. The dung beetle 
optimization (DBO) model is employed for the feature selection procedure to eliminate irrelevant, 
redundant, or noisy features. In addition, the proposed MHARNN-EGTOCRD model also implements 
a multi-head attention mechanism hybrid with a long short-term memory (MHA-LSTM) model for 
detecting ransomware. Finally, the hyperparameter selection of the MHA-LSTM model is performed 
by utilizing the EGTO model. The experimental analysis of the MHARNN-EGTOCRD technique is 
established on a ransomware detection dataset. The experimental validation of the MHARNN-
EGTOCRD technique portrayed a superior accuracy value of 98.53% over existing models.
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The application of interconnected smart gadgets, generally termed the IoT, has had considerable development. 
IoT devices might be obtained from someplace, such as an office, vehicle, or home, to attain everyday activities1. 
Such smart gadgets are employed in healthcare services, smart cities, industries, vehicular networks, smart 
homes, and smart grids. In dual upsides and downsides, the gadgets related to the Internet are in danger of 
threats and digital attacks, inducing the administration’s inability to transmit administrative refusals2. There 
are no established safety models that guarantee the digital security of such devices3. IoT has become a capitated 
platform for attackers since it can launch each kind of system threat on connected gadgets, usually leading to a 
few severe losses4. Applications or Malicious threats like malware and ransomware families continuously pose 
critical security concerns to cyber security and can cause catastrophic losses to data centres, computer systems, 
and the web through multiple industries and businesses5.

Ransomware is primarily advanced to block and prevent victims from accessing system databases by utilizing 
a strong encoding model that attackers might decode6. Ransomware is a different and advanced attack that affects 
users throughout the globe and limits consumers from accessing the system or data by locking or encrypting 
the system screening and the consumer files until a ransom is contributed7. Traditional ransomware recognition 
models are unfit to oppose the threats. Consequently, artificial intelligence (AI) models have been deciding 
between cutting-edge and helpful models over recent years. Therefore, these models perform a substantial role in 
multiple domains, comprising information and cyber security8. AI-based DL and ML models were accepted to 
enhance their functionalities and flourished to recognize the diverse kinds of intrusions and threats, particularly 
unpredictable and unforeseen threats9. Compared with conventional ML techniques, DL can rapidly identify 
anomalies and assist in in-depth network data analysis10.

This study proposes a novel Multi-head Attention-Based Recurrent Neural Network with Enhanced Gorilla 
Troops Optimization for Cybersecurity Ransomware Detection (MHARNN-EGTOCRD) approach. The main 
goal of the MHARNN-EGTOCRD approach is to detect and classify ransomware attacks using advanced hybrid 
and optimization models in IoT environments. In the data normalization stage, the min-max normalization 
transforms input data into a suitable format. The dung beetle optimization (DBO) model is employed for the 
feature selection procedure to eliminate irrelevant, redundant, or noisy features. In addition, the proposed 
MHARNN-EGTOCRD model also implements a multi-head attention mechanism hybrid with a long short-
term memory (MHA-LSTM) model for detecting ransomware. Finally, the hyperparameter selection of the 
MHA-LSTM model is performed by utilizing the EGTO model. The experimental analysis of the MHARNN-
EGTOCRD technique is established on a ransomware detection dataset. The major contribution of the 
MHARNN-EGTOCRD technique is listed below.

•	 The MHARNN-EGTOCRD model utilizes min-max normalization to standardize input data, improving the 
accuracy and stability of the detection process. This step ensures that all features are scaled appropriately, 
enhancing model performance. By employing this technique, the model can more effectually process and 
analyze data for ransomware detection.

•	 The MHARNN-EGTOCRD approach employs the DBO model for feature selection to detect the most rele-
vant features for ransomware detection. This methodology enhances the model’s performance by concentrat-
ing on the most critical variables, mitigating dimensionality. As a result, the model becomes more effective 
and accurate in detecting cyber threats.

•	 The MHARNN-EGTOCRD method improves ransomware detection by incorporating the MHA-LSTM 
model and effectively capturing intrinsic temporal dependencies. This integration allows the model to con-
centrate on significant patterns in data over time, significantly improving the technique’s capability to detect 
evolving ransomware threats.

•	 The MHARNN-EGTOCRD methodology employs EGTO-based hyperparameter selection to fine-tune the 
model’s parameters. This approach optimizes key settings, improving the technique’s efficiency and overall 
predictive accuracy. By adjusting the hyperparameters, the model attains enhanced performance in ransom-
ware detection.

•	 The novelty of the MHARNN-EGTOCRD model is in its unique integration of DBO for feature selection, 
MHA-LSTM for ransomware detection, and EGTO for hyperparameter optimization. This incorporation cre-
ates a robust and effective framework for detecting cyber threats. The model improves feature relevance and 
predictive performance by utilizing these advanced techniques. This novel approach significantly improves 
ransomware detection and cybersecurity resilience.

Related works
Hurley et al.11 developed a novel recognition model named Adaptive Behavior Fingerprinting (ABF), which 
notably advanced to improve real-world recognition ability for ransomware by utilizing an adaptive learning 
structure concentrated on the behavioural study. ABF addresses current recognition gaps to offer an algorithmic 
framework that emphasizes behavioural signatures through conventional identifiers. This method presents a 
systematic technique to feature extractor that prioritizes and chooses ransomware-specific features, permitting 
the recognition method to continue either lightweight or efficient. The authors12 introduce an Automated 
Android Malware Detection utilizing the Optimum Ensemble Learning Approach for Cyber-security (AAMD-
OELAC) model. Then, the HPO method is leveraged for optimum parameter tuning of 3 DL techniques, which 
assists in performing enhanced malware recognition outcomes. Moritaka and Komuro13 developed an innovative 
double-layered Random Forest method to increase ransomware recognition by utilizing a hierarchic study of 
opcode progressions, offering robustness and superior precision compared to classical techniques. The projected 
model contains a primary layer that takes overall opcode distribution designs, succeeded by an improved second 
layer that aimed at the most segregated aspects recognized over cutting-edge feature engineering models like 
TF-IDF transformations and n-gram techniques. In14, a new structure is projected that synergizes the predictive 
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intensities of DL techniques with the dynamic decision-making abilities of Monte Carlo Tree Search (MCTS), 
offering an inclusive solution to the challenges modelled by developing ransomware alternatives. Over rigorous 
estimation, the hybrid structure established a substantial development in recognition precision, decreasing false 
positives and outperforming traditional ML techniques. The incorporation of MCTS permitted the exploration 
of several decision paths, improving the flexibility of innovative attacks in the real world.

The author15 introduced a Rock Hyrax Swarm Optimize with DL-based AMD (RHSODL-AMD) technique. 
This method detects API calls and the essential privileges, which results in effectual differences between the 
malware and goodware applications. The authors16 introduce an Optimum Graph CNN-based Ransomware 
Detection (OGCNN-RWD) method for cyber security in an IoT framework. The Learning Enthusiasm for TLBO 
(LETLBO) models for the FS method. In addition, the GCNN technique is utilized within this paper, and its 
hyper-parameters might be optimum selected by HSA. Sumathi and Rajesh17 propose a hybrid IDS by utilizing 
Back Propagation Network (BPN), Self Organizing Map (SOM), and Grey Wolf Optimizer (GWO) for cloud 
computing, improving BPN performance. Feature selection is accomplished via a correlation-based approach 
with Stratified 10-fold cross-validation, and hyperparameters are fine-tuned by utilizing GWO. Dhande, Tiwari, 
and Rathod18 develop a novel malware prediction model using Auto Encoders and Attention Mechanisms to 
improve malware pattern analysis and detection, overcoming the limitations of traditional methods in detecting 
growing threats and mitigating false positives. Sokkalingam and Ramakrishnan19 present a hybrid ML IDS 
model with feature selection using 10-fold cross-validation. Support vector machine (SVM) parameters are 
fine-tuned by utilizing a hybrid Harris Hawks optimization (HHO) and particle swarm optimization (PSO) 
approach, with performance validated via a confusion matrix.

Berguiga, Harchay, and Massaoudi20 present a hybrid DL-based IDS for IoMT networks (HIDS-IoMT), 
integrating CNN for feature extraction and LSTM for sequence prediction. The model is implemented on a 
Raspberry Pi using fog computing to improve responsiveness and reduce latency. Sumathi, Rajesh, and Lim21 
develop an efficient IDS for DDoS attack detection using an LSTM-based RNN and autoencoder-decoder 
DL strategy, with optimal parameter tuning through a hybrid HHO and PSO methods. Liu et al.22 introduce 
SilentCatchR, an attack attribution framework that improves training data with a perturbation mechanism, 
utilizes a transformer-based model for stealth attack detection and combines a probabilistic graphical 
model for enhanced interpretability. Sumathi, Rajesh, and Karthikeyan23 improve DDoS attack detection by 
incorporating C4.5 with SVM and KNN classifiers, utilizing 10-fold cross-validation. Aldossary, Alzamil, and 
Almutairi24 introduce a Cross-Layer Convolutional Attention Network (CLCAN) methodology using multi-
scale convolution, hierarchical attention, and dynamic feature fusion. Preprocessing techniques enhance data 
quality and mitigate class imbalances for efficient anomaly detection. Sumathi and Rajesh25 implement BPN 
and multi-layer perceptron (MLP) approaches for intrusion detection. Min-max normalization is utilized to 
preprocess the data, and a hybrid HHO-PSO method selects and tunes significant features. Hwang et al.26 
propose ContextualGraph-LLM (CG-LLM), a framework integrating Graph Neural Networks (GNNs) and 
Large Language Models (LLMs) for multi-label intrusion detection in Darknet traffic.

The existing research in intrusion detection and malware prediction presents promising advancements, 
but there are various limitations and research gaps. Many methods, namely ABF and conventional classifiers, 
encounter issues detecting emerging malware strains like polymorphic and metamorphic variants, resulting in 
high false positives. Some approaches, like DL models, still face difficulty with adaptability to dynamic attack 
patterns. Furthermore, many systems do not effectually scale to real-time traffic or IoT networks, suffering from 
delays and limited interpretability. While some models enhance accuracy, integrating diverse methods (like 
hybrid models) is often limited, and performance in complex, large-scale environments like IoMT or Darknet is 
still underexplored. There is also a requirement for more robust, adaptive, and interpretable models that handle 
growing cyber threats effectively while mitigating computational complexity.

Materials and methods
This paper proposes a new MHARNN-EGTOCRD technique. The main goal of the proposed technique is to 
detect and classify ransomware attacks using advanced hybrid and optimization models in IoT environments. 
Figure 1 signifies the workflow of the MHARNN-EGTOCRD model.

Stage I: Min-max normalization
In the data normalization phase, the min-max normalization transforms input data into a suitable format27. 
This model is chosen for its capability to standardize input data within a specific range, usually between 0 and 
1, improving ML methods’ stability and performance. This technique ensures that all features contribute equally 
to the model by preventing larger-scale features from dominating the learning process. Compared to other 
normalization techniques, namely Z-score normalization, min-max normalization is simple to implement and 
works well when the data distribution is unknown or not Gaussian. Furthermore, it is specifically beneficial 
when the model depends on distance-based algorithms, ensuring all features are on the same scale. This results 
in faster convergence during training and improved accuracy.

Data normalization is necessary to remove inconsistent value ranges that may lead to bias in particular DL 
models and to speed up the optimizer procedure. It additionally develops the data for calculation and restricts the 
value ranges. This study uses the Min-Max Normalization approach that scales each data value from its unique 
range from (0,1), thus increasing accuracy and speed performance. The equation for Min-Max Normalization 
is established:

	
Xnew = X − min (X)

max (X) − min (X) � (1)
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Whereas Xnew  denotes the new scaled value, X  indicates the original value, and Min (X) and Max (X) 
suggest the data set’s minimal and maximal values.

Stage II: DBO-based feature selection
For the feature selection procedure, the DBO model is utilized to eliminate irrelevant, redundant, or noisy 
features28. This method was chosen because of its capability to effectually detect the most relevant features 
in high-dimensional datasets, which is significant for enhancing the model’s performance. This technique is 

Fig. 1.  Workflow of MHARNN-EGTOCRD model.
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inspired by the natural foraging behaviour of dung beetles, allowing it to effectively navigate large search spaces 
and choose the most informative features. Unlike conventional methods like Recursive Feature Elimination 
(RFE) or mutual information, DBO does not depend on gradient-based approaches, making it appropriate for 
complex and non-linear relationships within the data. This method assists in mitigating overfitting by eliminating 
irrelevant or redundant features, enhancing computational efficiency. Additionally, the capability of the DBO 
model to avoid local optima ensures a more reliable and robust feature selection compared to simpler heuristics. 
Figure 2 illustrates the steps involved in the DBO methodology.

DBO is the swarm intelligence (SI) optimizer approach, which frequently looks for the optimum solution by 
mimicking the dancing, rolling, stealing, breeding, and foraging behaviours of DB. The parameter tuning stages 
according to DBO are usually as shown:

Stage 1: Initialize the DB population and determine the parameter vector being modified, whereas each DB 
individual symbolizes a vector. The vectors Lb and Ub establish the lower and upper limits of the parameters 
being modified. Randomly produce the primary location x (0) for all DB in the solution area.

Stage 2: Establish the fitness function (FF). Using FF, compute and record the fitness of every DB individual.
Stage 3: DB carries out the behaviour of rolling navigate by sunlight. The location upgrade of rolling is stated 

as shown:

	

{
xi(t + 1) = xi (t) + γ kxi(t − 1) + b∆ x
∆ x = |xi (t) − Xw| � (2)

Whereas xi (t) characterizes the location of the i th DB at iteration t, Xw  epitomizes the poorest global 
location of the iteration, k denotes the coefficient of the deflection, k indicates a constant, γ  stands for the 
allocated natural coefficient of −1 or 1, b represents continuous characterized by the range (0,1), and ∆ x has 
been applied for simulating modifications of light intensity.

In samples, while a DB challenges problems hindering its forward motion, it requires a re-calibration of its 
route over the dancing-like behaviour performance, thus enabling the finding of another route. This behaviour 
is stated as follows:

	 xi (t + 1) = xi (t) + tan (θ ) |xi (t) − xi (t − 1)|� (3)

Here, θ  signifies the defection angle characterized by [0, π ].

Fig. 2.  Steps involved in the DBO model.
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Stage 4: Selecting the updated area for the following generations of DBs over the boundary selection approach, 
mimicking the area choice for laying the egg, stated as:

	

{
Lb* = max

(
X* (1 − R) , Lb

)
Ub* = min

(
X* (1 + R) , Ub

) � (4)

Whereas X* characterizes the local optimum location in the iteration, Ub* and Lb* characterize the upper 
and lower bounds of the spawn region, and R = 1 − t/Tite. At the same time, Tite epitomizes the maximal 
iteration counts. Every DB puts only one egg in all iterations, and the spawning behaviour is stated as follows:

	 Bi (t + 1) = X* + b1
(
Bi (t) − Lb*)

+ b2
(
Bi (t) − Ub*)

� (5)

Bi (t) characterizes the location of the i th brood ball throughout the t th iteration, and b1 and b2 characterize 
self-governing arbitrary vectors of similar size as the vector parameters.

Stage 5: Choosing the optimum foraging region for smaller DBs directs their foraging behaviour. This region 
is designated over the following method:

	

{
Lbb = max

(
Xb (1 − R) , Lb

)
Ubb = min

(
Xb (1 + R) , Ub

) � (6)

Here, Xb characterizes the global optimum location throughout the iteration, and Ubb and Lbb epitomize 
the upper and lower bounds of an optimum foraging region. The positional upgrade for smaller DBs is as 
demonstrated:

	 xi (t + 1) = xi (t) + D1
(
xi (t) − Lbb

)
+ D2

(
xi (t) − Ubb

)
� (7)

Now xi (t) characterizes the location information of i th more minor DB at the t th iteration, D1 refers to a 
number generated at random that emulates normal standard distribution, and D2 denotes a randomly formed 
vector appropriate to (0,1).

Stage 6: Imitate the stealing behaviour of the DB. The location upgrade for the thief is defined as demonstrated:

	 xi (t + 1) = Xb + gH
(∣∣xi (t) − X*

∣∣ +
∣∣xi (t) − Xb

∣∣)� (8)

Now xi (t) signifies the location information of i th thief at the t th iteration, g represents a randomly 
generated vector of similar size as the vector parameter, and H  symbolizes a continuous value.

Stage 7: Overall rounds of iteration, the FF was computed for every DB, concurrently upgrading the global 
optimum location Xb and the local best location X*. Finally, afterwards, Tite iterations, the most adjusted DB, 
similar to the most enhanced set of parameters, are recognized. The FF applied in the DBO approach is intended 
to have balances amongst the selected feature counts in all solutions (minimal), and the classification accuracy 
(maximal) gained by utilizing these designated characteristics; Eq. (9) characterizes the FF to evaluate solutions.

	
F itness = α γ R (D) + β

|R|
|C| � (9)

While γ R (D) characterizes the classifier rate of error of a specified classifier, |R| refers to the cardinality of the 
designated subset, and |C| means the total feature counts in the dataset. α  and β  represent dual parameters 
comparable to the importance of classifier excellence and the length of a subset.

Stage III: ransomware detection using MHA-LSTM
In addition, the proposed MHARNN-EGTOCRD approach implements a hybrid of the MHA-LSTM model 
for ransomware detection29. This approach is chosen for ransomware detection because it can capture both 
short-term and long-term dependencies in sequential data, which is critical for detecting evolving ransomware 
behaviours. The multi-head attention mechanism allows the model to concentrate on diverse parts of the input 
sequence, improving its capability to detect key patterns and anomalies related to ransomware activity. LSTM, on 
the contrary, efficiently handles the temporal nature of the data, allowing the model to remember and learn from 
previous states. This hybrid methodology outperforms conventional methods, such as CNNs or basic LSTMs, 
as it can adapt to intrinsic patterns and handle variable-length sequences. Integrating attention and LSTM 
ensures higher detection accuracy and robustness against advanced ransomware threats. Moreover, this model 
is computationally effectual and scalable, making it ideal for real-time detection in dynamic environments. 
Figure 3 represents the architecture of MHA-LSTM.

LSTM is a specific type of RNN that combines a gate mechanism to control the data flow, successfully dealing 
with the problem of long-term dependencies. All LSTM components include a cell layer, input gate, output gate, 
and forget gate. These states and gates enable the acquisition of the model of longer‐term dependence relations 
and allow it to disregard or remember input selectively. The particular computation equation is provided as 
shown:

	 ft = σ (Wf · [ht−1, xt] + bf )� (10)
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	 it = σ (Wi · [ht−1, xt] + bi)� (11)

	
∼
C= tanh (WC · [ht−1, xt] + bC)� (12)

	 Ct = ft · Ct−1 + it ·
∼
Ct

� (13)

	 ot = σ (Wo · [ht−1, xt] + bo)� (14)

	 ht = ot · tanh (Ct)� (15)

For example, the equation above characterizes the computation equations for the update candidate value, cell 
layer update, input gate, output gate, and forget gate in sequence. it and Ĉt signify the candidate cell state at the 
present step, σ  and tanh refer to the activation and hyperbolic tangent function. Wi and Wc correspondingly 
represent weighted matrices for the input gate and candidate cell state. Wo denotes the output weighted matrix; 
Wf  signifies the forget weighted matrix, and bi, bc, bf , and bo denote offset vectors.

By capturing and extracting multi-dimensional features, the MHA mechanism allows the construction of 
more precise and effective predictive methods. All attention heads may focus on different features or time ranges. 
In this manner, MHA captures the multi-dimensional features and long short‐term dependencies in prediction. 
The basic process of MHA is established on Scaled Dot‐Product Attention, and it takes different feature 
representations over many independent attention heads. The multi‐head attention mechanism supplements 
the model’s representative capacity by calculating numerous attention heads simultaneously. The computation 
equation for the attention score and the multi‐head attention of all heads is as shown:

Fig. 3.  Structure of MHA-LSTM.
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Attention (Q, K, V ) = softmax

(
QKT

√
dk

)
� (16)

	 Multihead (Q, K, V ) = Concat (head1, · · · , headn) W O � (17)

In detail, Q characterizes the query matrix, K  refers to the key matrix, V  specifies the value matrix, dk  
signifies the key vector dimension, 1/

√
dk  represents the scaling factor, h characterizes the head counts, and 

Wo denotes a weighted matrix.
The MHA-LSTM prediction model mainly includes numerous essential components, such as the fully 

connected (FC) layer, the MHA layer, an input layer, an output layer, and the LSTM layer. In detail, the input 
layer is responsible for acquiring the time-series data and its outside features and transforming them into a multi‐
dimensional tensor method appropriate for model processing and input. The multi‐head attention mechanism 
layer can adaptively remove the main features directly associated with the prediction task and then transfer them 
to the LSTM layer. The LSTM layer handles the data according to the time-series sequence, deeply capturing 
and excavating the dynamic changing patterns in the time dimensions. Then, the FC layer manages additional 
in‐depth handling of the gained features to make feature vectors with higher‐dimensional representations.

Stage IV: hyperparameter tuning process
Finally, the parameter selection of the MHA-LSTM method is performed by utilizing the EGTO method. This 
method is chosen for its ability to effectually optimize hyperparameters by replicating the collaborative hunting 
strategy of gorilla troops. This methodology enables the model to explore a large search space for hyperparameter 
values, assisting in detecting the optimal configuration that improves performance. Unlike conventional 
techniques such as grid or random search, EGTO presents a more adaptive and intelligent search mechanism 
that averts local optima and converges faster. EGTO can handle complex and non-linear relationships between 
hyperparameters using a population-based nature. This method enhances the model’s accuracy and robustness, 
specifically in ransomware detection tasks where fine-tuning is significant. Furthermore, the capability of the 
EGTO model to balance exploration and exploitation ensures a more reliable optimization process, resulting 
in improved predictive performance compared to simpler tuning techniques. Figure 4 demonstrates the EGTO 
model.

The presented method is improved to develop its efficiency and strike an improved balance between 
exploration and exploitation inside the search procedure30. The model is improved through a constriction 
component and a removal stage to increase its strength, quality of solution, and rate of convergence, which are 
applied by meta-heuristic models, such as the GTO model.

(A) Limitation component: The model uses a basic constriction component to control the speed of the 
search procedure. It permits the solutions or particles in the exploration area to converge near possible regions 
more quickly, whereas exploration of another region is also explored. The constriction component improves the 
coefficients of acceleration based on the swarm’s optimum implementation, and it leads to stopping extreme 
actions and stimulating fast convergence. The constriction component is used for the random variables, such as 
r1, r2, r3, and rand, using the succeeding equation:

	
r1 = θ

1 −
√

ϕ 2 − 4ϕ
� (18)

	
r2 = θ

1 −
√

ϕ 2 − 4ϕ
)� (19)

	
r3 = θ

1 −
√

ϕ 2 − 4ϕ
� (20)

	
rand = θ

1 −
√

ϕ 2 − 4ϕ
� (21)

According to the research outcomes, using constraint components through each dimension is a promising 
model for every dimension. A previous study highlighted that this model provides superior results to related 
models. The present analysis offers an original development of the constraint element-based approach, which 
is discovered to be a validated model in scientific study. Rather than maintain their constant, the presented 
development proposes a slow, linear decrease in the variables r1, r2, r3, and rand. To perform this model, the 
θ  value is improved in an iterative method using the equation below:

	
θ j = θ +

(
θ − θ

)
× L − j

L − 1
� (22)

Now, the variable L specifies the higher number of iterations. The jth variable establishes the present iteration 
inside the process. Detecting constriction elements is important to preserve the computing strength of the 
EGTO model.

Utilizing constriction elements to balance exploitation and exploration is a significant part of enhancing 
meta-heuristic methods, namely the GTO model. This development helps the method to converge more quickly 
toward an optimum solution. The constriction component improves the coefficients of acceleration depending 
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upon the swarm’s improved execution. It allows the particles or solutions to meet more effectively toward 
promising areas as they discover another region. Besides improving convergence, this development additionally 
increases the model’s robustness.

(B) Elimination stage: After all iterations, a method recognized as the elimination stage is performed to 
eliminate the minimum efficient solution or candidate from the groups. This stage removes a part of the group 
according to specific selection conditions, such as fitness value.

Fig. 4.  Architecture of the EGTO technique.
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After all iterations of this model, the elimination stage process is applied. This procedure involves classifying the 
population based on their fitness values and eliminating a particular solution counted by the lower effectiveness 
(NE), as described by the ER. Following this, added movements, like reproduction or replacement, are performed 
to keep the preferred size of the population, thus allowing the population to proceed towards better solutions in 
time. Incorporating the developments improves the model’s optimization performance, convergence speed, and 
flexibility in composite problem settings. Strike a balance between exploration and exploitation. The constriction 
element is useful, whereas the elimination stage helps eliminate weak solutions to improve the development of 
greater individuals. The elimination stage further improves solution value by removing insufficient solutions that 
slowly enhance the overall population qualities. Furthermore, diversity maintenance is guaranteed by removing 
weak solutions, which prevents premature convergence and maintains diversity inside the population. Fitness 
selection is the major feature that manipulates performance in the EGTO model. The hyperparameter choice 
process comprises the solution encoder method to approximate the effectiveness of the candidate solutions.

	 F itness = max (P )� (23)

	
P = T P

T P + F P
� (24)

Meanwhile, T P  symbolizes the positive value of true, and FP indicates the positive value of false.

Experimental result and analysis
The performance analysis of MHARNN-EGTOCRD is studied under the ransomware detection dataset31. This 
dataset contains 840 records under dual-class labels such as Goodware and Ransomware, as portrayed in Table 1. 
The total number of features is 17, but only 12 features are selected.

Figure 5 displays the classifier results of the MHARNN-EGTOCRD technique. Figure 5a and b exemplifies 
the confusion matrices by precisely identifying and classifying distinct classes below 70%TRPH and 30%TSPH. 
Figure 5c demonstrates the PR outcome, which notified superior performance over all classes. Eventually, Fig. 5d 
represents the ROC outcome, which signifies skilful solutions with great ROC values for dissimilar class labels.

Table 2; Fig. 6 depict the cybersecurity detection of the MHARNN-EGTOCRD approach below 70%TRPH 
and 30%TSPH.

Using 70%TRPH, the MHARNN-EGTOCRD approach provides average accuy , sensy , specy , Fscore

, and MCC of 95.52%, 95.52%, 95.52%, 95.57%, and 91.19%, respectively. Simultaneously, using 30%TSPH, 
the MHARNN-EGTOCRD technique delivers average accuy , sensy , specy , Fscore, and MCC  of 98.53%, 
98.53%, 98.53%, 98.41%, and 96.86%, correspondingly.

In Fig. 7, the training (TRA) accuy  and validation (VAL) accuy  performances of the MHARNN-EGTOCRD 
technique under 70%TRPH and 30%TSPH are showcased. The values of accuy are computed across a period 
of 0–25 epochs. The outcome highlighted that the values of TRA and VAL accuy  present an increasing trend, 
indicating the capacity of the MHARNN-EGTOCRD technique through enhanced performance across 
numerous repetitions. Moreover, the TRA and VAL accuy  values remain close through the epochs, notifying 
decreased overfitting and expressing the higher performance of the MHARNN-EGTOCRD model, which 
guarantees reliable calculation on unseen samples.

Figure 8 shows the TRA loss (TRALOS) and VAL loss (VALLOS) of the MHARNN-EGTOCRD model under 
70%TRPH and 30%TSPH. The loss values are computed over a period of 0–25 epochs. The values of TRALOS 
and VALLOS demonstrate a declining tendency, which designates the proficiency of the MHARNN-EGTOCRD 
approach in corresponding a trade-off between generalization and data fitting. The succeeding dilution in loss 
values also ensures the superior performance of the MHARNN-EGTOCRD method and tunes the prediction 
outcomes gradually.

Figure 9 presents the classifier outcomes of the MHARNN-EGTOCRD method. Figure 9a and b illustrates the 
confusion matrices across specific classifications of dissimilar classes under 80%TRPH and 20%TSPH. Figure 9c 
depicts the PR examination, indicating a higher outcome through all classes. Finally, Fig. 9d demonstrates the 
ROC examination, signifying proficient solutions using great ROC values for dissimilar classes.

Table  3; Fig.  10 exemplify the cybersecurity detection of the MHARNN-EGTOCRD technique under 
80%TRPH and 20%TSPH. The solutions imply that the MHARNN-EGTOCRD technique correctly 
acknowledged the samples. Using 80%TRPH, the MHARNN-EGTOCRD approach attained typical accuy  
of 97.34%, sensy  of 97.34%, specy  of 97.34%, Fscore of 97.32%, and MCC of 94.65%. Besides, based on 
20%TSPH, the MHARNN-EGTOCRD approach attained typical accuy  of 98.10%, sensy  of 98.10%, specy  of 
98.10%, Fscore of 98.18%, and MCC of 96.37%.

Figure  11 shows the TRA accuy  and VAL accuy  solutions of the MHARNN-EGTOCRD technique 
below 80%TRPH and 20%TSPH. The accuy values are computed through an interlude of 0–25 epochs. The 
performances underscored that the TRA and VAL accuy  values exhibit a cumulative trend, notifying the 

Class labels Records

“Goodware” 420

“Ransomware” 420

Total records 840

Table 1.  Details of database.
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proficiency of the MHARNN-EGTOCRD method over superior performance through multiple iterations. In 
addition, TRA and VAL accuy  values remain closer across the epochs, which notified diminished overfitting 
and states enhanced performance of the MHARNN-EGTOCRD method, assuring steady calculation on hidden 
samples.

In Fig.  12, the TRALOS and VALLOS of the MHARNN-EGTOCRD approach below 80%TRPH and 
20%TSPH are exemplified. The loss values are computed through an interlude of 0–25 epochs. The TRALOS 
and VALLOS values represent a diminishing trend, notifying the competency of the MHARNN-EGTOCRD 
technique in equalizing a trade-off between data fitting and generalization. Moreover, the successive decrease in 
loss values secures the maximum outcome of the MHARNN-EGTOCRD technique and tunes the calculation 
solutions after a while.

Table 4 exemplifies the comparative results of the MHARNN-EGTOCRD method with existing methods 
under dissimilar metrics16,32.

Figure  13 inspects the comparative accuy  performances of the MHARNN-EGTOCRD approach. The 
solutions revealed that the MHARNN-EGTOCRD approach gains greater performance. According to accuy

Fig. 5.  (a,b) 70% and 30% confusion matrix and (c,d) curves of PR and ROC.
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, the MHARNN-EGTOCRD method delivers a maximum accuy  of 98.53%. In contrast, the OGCNN-RWD, 
DWOML, Bagging, AdaBoost-M1, Rotation Forest (ROF), DT, and RF models attain decrease accuy  of 98.01%, 
97.33%, 96.86%, 96.13%, 95.79%, 97.63%, and 97.25%, respectively.

In Fig.  14, a comparative sensy  and specy  performance of the MHARNN-EGTOCRD technique is 
delivered. The performances suggest that the Bagging, AdaBoost-M1, and Rotation Forest techniques have 
exemplified poorer values of sensy  and specy . Simultaneously, the RF and DT approaches have gained barely 
better sensy  and specy . In the meantime, the DWOML and OGCNN-RWD techniques have depicted closer 
values of sensy  and specy . However, the MHARNN-EGTOCRD model solutions have higher performance 
with sensy  and specy  of 98.53% and 98.53%, respectively.

Fig. 6.  Average of MHARNN-EGTOCRD model under 70%TRPH and 30%TSPH.

 

Class Accuy Sensy Specy Fscore MCC

TRPH (70%)

 Goodware 93.66 93.66 97.37 95.34 91.19

 Ransomware 97.37 97.37 93.66 95.79 91.19

 Average 95.52 95.52 95.52 95.57 91.19

TSPH (30%)

 Goodware 97.06 97.06 100.00 98.51 96.86

 Ransomware 100.00 100.00 97.06 98.31 96.86

 Average 98.53 98.53 98.53 98.41 96.86

Table 2.  Cybersecurity detection of MHARNN-EGTOCRD model under 70%TRPH and 30%TSPH.
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Conclusion
In this article, a new MHARNN-EGTOCRD approach is proposed. The main goal of the MHARNN-EGTOCRD 
approach is to detect and classify ransomware attacks using advanced hybrid and optimization models in IoT 
environments. In the data normalization stage, the min-max normalization transforms input data into a suitable 
format. The DBO model eliminates irrelevant, redundant, or noisy features for the feature selection process. 
In addition, the proposed MHARNN-EGTOCRD model implements a hybrid of the MHA-LSTM model for 
ransomware detection. Eventually, the hyperparameter selection of the MHA-LSTM technique is employed 
by the design of the EGTO system. The experimental analysis of the MHARNN-EGTOCRD technique is 
established on a ransomware detection dataset. The experimental validation of the MHARNN-EGTOCRD 
technique portrayed a superior accuracy value of 98.53% over existing models.

Fig. 7.  Accuy  curve of MHARNN-EGTOCRD model under 70%TRPH and 30%TSPH
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Fig. 8.  Loss curve of MHARNN-EGTOCRD model under 70%TRPH and 30%TSPH.
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Fig. 9.  (a,b) 80% and 20% confusion matrix and (c,d) curves of PR and ROC.
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Fig. 10.  Average of MHARNN-EGTOCRD model below 80%TRPH and 20%TSPH.

 

Classes Accuy Sensy Specy Fscore MCC

TRPH (80%)

 Goodware 96.83 96.83 97.85 97.39 94.65

 Ransomware 97.85 97.85 96.83 97.25 94.65

 Average 97.34 97.34 97.34 97.32 94.65

TSPH (20%)

 Goodware 97.26 97.26 98.95 97.93 96.37

 Ransomware 98.95 98.95 97.26 98.43 96.37

 Average 98.10 98.10 98.10 98.18 96.37

Table 3.  Detection outcome of MHARNN-EGTOCRD model under 80%TRPH and 20%TSPH.
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Fig. 12.  Loss curve of MHARNN-EGTOCRD technique below 80%TRPH and 20%TSPH.

 

Fig. 11.  Accuy  curve of MHARNN-EGTOCRD method below 80%TRPH and 20%TSPH
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Fig. 13.  Accuy  analysis of MHARNN-EGTOCRD model with existing methods

 

Methods Accuy Sensy Specy

MHARNN-EGTOCRD 98.53 98.53 98.53

OGCNN-RWD 98.01 97.97 98.1

DWOML Method 97.33 97.92 97.39

Bagging Model 96.86 92.01 94.36

AdaBoost-M1Method 96.13 94.5 94.6

Rotation Forest (ROF) Model 95.79 96.77 97.38

DT Algorithm 97.63 97.82 98.12

RF Technique 97.25 97.03 96.54

Table 4.  Comparative analysis of the MHARNN-EGTOCRD model with existing techniques.
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Data availability
The data that support the findings of this study are openly available in Kaggle repository at ​h​t​t​p​s​:​​/​/​w​w​w​.​​k​a​g​g​l​e​​.​
c​o​m​/​​d​a​t​a​s​e​t​s​/​a​m​d​j​3​d​a​x​/​r​a​n​s​o​m​w​a​r​e​-​d​e​t​e​c​t​i​o​n​-​d​a​t​a​-​s​e​t​, reference number21.
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