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The rapid increase in carbon emissions from the logistics transportation industry has underscored the 
urgent need for low-carbon logistics solutions. Electric logistics vehicles (ELVs) are increasingly being 
considered as replacements for traditional fuel-powered vehicles to reduce emissions in urban logistics. 
However, ELVs are typically limited by their battery capacity and load constraints. Additionally, 
effective scheduling of charging and the management of transportation duration are critical factors 
that must be addressed. This paper addresses low energy consumption scheduling (LECS) problem, 
which aims to minimize the total energy consumption of heterogeneous ELVs with varying load and 
battery capacities, considering the availability of multiple charging stations (CSs). Given that the 
complexity of LECS problem, this study proposes a heterogeneous attention model based on encoder-
decoder architecture (HAMEDA) approach, which employs a heterogeneous graph attention network 
and introduces a novel decoding procedure to enhance solution quality and learning efficiency during 
the encoding and decoding phases. Trained via deep reinforcement learning (DRL) in an unsupervised 
manner, HAMEDA is adept at autonomously deriving optimal transportation routes for each ELV 
from specific cases presented. Comprehensive simulations have verified that HAMEDA can diminish 
overall energy utilization by no less than 1.64% compared with other traditional heuristic or learning-
based algorithms. Additionally, HAMEDA excels in maintaining an advantageous equilibrium between 
execution speed and the quality of solutions, rendering it exceptionally apt for expansive tasks that 
necessitate swift decision-making processes.

Keywords  Urban electric logistics vehicle networks, Low energy consumption scheduling, Heterogeneous 
attention model, Deep reinforcement learning

The meteoric expansion of the e-commerce sector has markedly accelerated the evolution of the logistics 
industry within China. This sector is a significant consumer of conventional fossil fuels and a major contributor 
to substantial carbon emissions. In light of the progressive degradation of the global climate, the adoption of 
low-carbon logistics strategies has become an imperative adaptation. According to statistics from Greenpeace 
Organization1, carbon emissions associated with China’s logistics sector are projected to reach 55.65 million tons 
in 2022 as shown in Fig. 1, reflecting an average increase of 25.1% over the past six years. The carbon emissions 
within the logistics industry primarily originate from three major areas: warehousing, packaging materials, and 
transportation. Notably, transportation alone accounted for 62.7% of the total emissions within the logistics 
sector in 2022. This highlights the urgent need for low-carbon transportation solutions in logistics, which has 
spurred innovative research initiatives, including energy-efficient intelligent transportation scheduling2, green 
logistics3 and low-carbon logistics network design4.
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The comprehensive supporting infrastructure and reliable performance of traditional fuel vehicles have 
established them as the dominant mode of logistics transportation over recent decades. In contrast, electric 
vehicles (EVs) face several significant challenges, including limited battery capacity, susceptibility to climatic 
conditions affecting battery performance, and insufficient distribution of charging stations (CSs). It is not 
uncommon to observe numerous vehicles queuing to charge at these stations. Such issues severely hinder the 
transportation efficiency within the logistics sector and significantly impede the adoption of EVs in this industry. 
This is particularly critical in urban logistics, where the timeliness of transportation is a paramount concern. 
Generally, urban areas tend to have a relatively higher number of CSs. Consequently, a viable strategy to enhance 
the transportation efficiency of urban logistics involves generating multiple optimal transportation routes for 
heterogeneous electric logistics vehicles (ELVs) that possess varying load capacities and battery specifications, 
all while ensuring timely transportation. This approach aims to minimize energy consumption during transit. 
Each route for an ELV comprises logistics packages (LPs) and CSs, with each vehicle visiting these locations 
sequentially according to its designated route. Therefore, determining the optimal routes for ELVs for multiple 
CSs presents a practical and intriguing challenge.

Numerous studies have focused on the formulation of transportation routing optimization models5 and 
the collaborative logistics of pickup and delivery systems6,7. There is also significant research dedicated to the 
simultaneous optimization of routing and charging for fleets of ELVs8. Considering elements such as fixed, 
transportation, and carbon emission costs, a model for optimizing low-carbon logistics routing for cold chains 
was developed, integrating constraints concerning vehicle load and delivery windows9. Zhang et al.10 proposed 
a model for low-carbon, flexible, time-sensitive pickup and delivery (LC-FTSP-TW) aimed at minimizing 
greenhouse gas emissions within logistics frameworks, accommodating fluctuations in traffic conditions, 
customer delivery timelines, and vehicle energy requirements. The M-NSGA-II algorithm was employed to 
reduce energy consumption and carbon emissions in urban logistics transportation11. Considering that logistics 
transportation must account for factors such as energy consumption and the spatial distribution of CSs, the 
associated optimization problem exhibits high dimensionality and strong nonlinearity, which often struggle to 
provide efficient and scalable solutions for traditional optimization methods. Therefore, the deep reinforcement 
learning (DRL) method featuring an attention mechanism was designe to optimize the longest or total travel 
duration for vehicles of varying capacities. This method includes a vehicle selection decoder and a node selection 
decoder, facilitating the automated selection of both a vehicle and a node for that vehicle at each decision 
point12. Furthermore, given the constraints of battery capacity, a novel optimal charging strategy for ELVs on 
long journeys was introduced, providing drivers with precise charging guidance for specific routes13. However, 
none of the aforementioned studies have addressed the heterogeneity of ELVs or the presence of multiple CSs 
concurrently.

In contrast to existing literature, the proposed LECS system is designed to identify optimal transportation 
routes for heterogeneous ELVs, each characterized by different load capacities and battery specifications, as shown 
in Fig. 2. The optimal transportation route is anticipated to be a Hamiltonian tour, representing a permutation of 
a subset of LPs and CSs. Notably, each LP must be assigned exclusively to the tour of a single ELV and can only be 
included once. Furthermore, it is assumed that each ELV can achieve a full charge within a reasonable timeframe 
upon arrival at CS. Unlike traditional logistics scheduling approaches, which primarily focus on vehicle load 
capacity and routing optimization, the proposed method considers multiple factors, including the heterogeneity 
of ELVs, the distribution of CSs, and the timeliness of transportation.

The deployment of a LECS holds the promise of substantially curtailing both energy consumption and 
carbon emissions in urban logistics transportation. This system is particularly appealing to logistics companies 
that utilize unmanned ELVs. Notably, improvements in charging efficiency could further diminish carbon 
emissions across the entire urban logistics transportation sector, thereby facilitating the adoption of new energy 
vehicles from an economic standpoint. However, the challenges associated with LECS system are considerable. 

Fig. 1.  Logistics business involved carbon emissions in China (2017-2022).
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Primarily, it is essential to identify an optimal Hamiltonian transportation tour for each heterogeneous ELV 
while accommodating multiple CSs and adhering to constraints related to maximum transportation duration. 
The tour may encompass any subset of all LPs and CSs, indicating that the process of determining the optimal 
tour may require exponential time for any given ELV. Furthermore, each LP must be assigned precisely once. 
Due to the high time complexity involved, there currently exists no effective exact algorithm or approximation 
algorithm capable of addressing LECS problem.

Fortunately, the DRL-based graph attention mechanism dynamically adjusts learnable attention weights, 
enabling ELVs to focus on critical nodes (such as CSs or key task nodes) at different mission stages while filtering 
out irrelevant information, which can effectively reduce the interference of noisy nodes and provide efficient and 
scalable solutions for the associated optimization problem with high dimensionality and strong nonlinearity. 
Therefore, this paper formulates LECS problem, which aims to minimize the total energy consumption of 
various heterogeneous ELVs with differing loads and battery capacities, while adhering to the constraints of 
maximum transportation duration. After analyzing the complexity of LECS problem, it was initially modeled as 
a Markov decision process (MDP). Subsequently, a heterogeneous attention model based on encoder-decoder 
architecture (HAMEDA) approach, which is designed to automatically learn a construction policy for solving 
LECS problem, consisting of an encoding phase and a decoding phase. Finally, HAMEDA is trained using 
REINFORCE algorithm14. The primary contributions of this study are outlined as follows: 

	1.	� A novel LECS framework is introduced, aiming to optimize total energy usage across a network of diverse 
ELVs. Through rigorous theoretical examination, it is demonstrated that solving the LECS problem is 
non-deterministic polynomial-time hard (NP-hard).

	2.	� To capture the complex relationships between LPs and CSs, a heterogeneous graph attention network is 
employed to encode the features of nodes to the embeddings in the encoding phase of HAMEDA model. 
During the decoding phase, a masking technique is integrated to effectively manage the graph structure, 
thereby precluding the selection of infeasible nodes and enhancing the overall solution quality. Furthermore, 
to enhance training stability, proposed model is trained via DRL in an unsupervised manner with the one-
agent-per-decoding-step strategy.

	3.	� Extensive simulations demonstrate that the proposed HAMEDA model reduce the total energy consumption 
by at least 1.64% compared to traditional heuristic and learning-based algorithms, while only 3.5% higher 
than the optimal solution. Furthermore, HAMEDA offers an optimal balance between execution time and 
solution quality, making it particularly suitable for large-scale applications requiring prompt decision-mak-
ing. The scheme has been open-sourced, enabling researchers to utilize it for evaluating auto-scaling meth-
odologies.

The structure of the remainder of this study is organized as follows: Section II surveys pertinent literature. 
Section III delineates the system model and articulates the LECS problem. Section IV details the HAMEDA 
model, proposed as a resolution to the LECS challenge. Section V undertakes a performance assessment. Section 
VI culminates with the conclusions.

Related work
Low-carbon logistics network design
Recently, the design of networks for low-carbon logistics has garnered significant attention from researchers both 
domestically and internationally15,16. Liang et al.17 developed a dynamic generalized method of moments (GMM) 
model and a Tobit model to investigate the potential temporal and spatial effects of environmental regulation 
on the green total factor productivity within the low-carbon logistics sector. For regional multimodal logistics 
networks, Jiang et al.18 proposed an enhanced adjustable robust optimization method aimed at reducing carbon 
dioxide emissions. In pursuit of harmonizing the goals of governmental bodies with those of cold chain logistics 
firms, Zhang et al.19 devised a bilevel programming-based decision-making model that seeks to minimize the 

Fig. 2.  Illustration of LECS system in urban logistics.
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aggregate costs within the entire cold chain logistics framework. In subsequent research, the intricacies of a 
low-carbon integrated forward/reverse logistics network were analyzed, leading to the development of a fuzzy 
stochastic programming model aimed at reducing costs associated with carbon trading balances20. Additionally, 
to achieve specific carbon dioxide emission targets in a regional logistics network, a bi-level optimization model 
was developed, integrating the selection of investments in logistics infrastructure and the allocation of subsidies 
for sustainable transportation modes21. To facilitate enterprises in reducing carbon emissions during current 
logistics operations, Wang et al. formulated a green urban closed-loop logistics distribution network model 
designed to minimize both greenhouse gas emissions and total operational costs22. Li et al.23 proposed an 
optimization model for the EV routing problem, tailored to the sharing economy, with the aim of minimizing 
comprehensive costs including operational, penalty, queuing, electricity, and environmental expenses. A 
Catastrophic Adaptive Genetic Algorithm (CA-GA), based on Monte Carlo sampling, was engineered to solve 
the low-carbon path optimization issue, accounting for transportation costs, time expenses, and carbon emission 
costs amidst dual uncertainty24. Furthermore, a multistage planning approach for developing low-carbon 
charging infrastructure for EVs was introduced, featuring an innovative travel route choice model that allows 
EV drivers to make multiple charging detours before completing their routes25. Zhang et al.26 crafted a sparrow 
search algorithm enhanced by an adaptive t-distribution for tackling a multi-objective low-carbon multi-modal 
transportation planning problem with fuzzy demand and fuzzy time (MOLCMTPP-FDFT), aiming to minimize 
both costs and time while integrating essential policies on carbon emissions, carbon taxes, carbon trading, and 
carbon offsets.

The aforementioned methods address the challenges associated with low-carbon path optimization and 
decision-making in dynamic network environments. In contrast to the studies cited above, this paper introduces 
an innovative scheduling mechanism aimed at minimizing energy consumption and carbon emissions produced 
by heterogeneous ELVs during urban logistics transportation.

Cost optimization method design
Challenges within the transportation sector are broadly categorized under generalizations of the vehicle routing 
problem (VRP) or the traveling salesman problem (TSP), both recognized as NP-hard issues. Consequently, 
conventional strategies to manage such NP-hard challenges generally fall into three categories: exact algorithms, 
heuristic algorithms, and methods reliant on DRL. Exact algorithms are designed to yield optimal solutions 
through enumeration or other techniques. However, they generally exhibit exponential running times27. 
In contrast, approximate algorithms can deliver feasible solutions within polynomial time and are capable 
of identifying approximate solutions that are relatively close to the optimal for large-scale cost optimization 
challenges28,29. Compared to the aforementioned two categories, DRL-based methods tend to produce 
solutions more rapidly and possess the ability to autonomously learn representations of states and actions. This 
characteristic diminishes the dependence on domain-specific knowledge and may uncover complex patterns 
that traditional methods fail to capture. To derive an approximate solution for covering salesman problem (CSP), 
Li et al.30 introduced a novel deep learning approach utilizing multi-head attention (MHA), which was trained 
using unsupervised DRL techniques. To reduce the overall flight distance of unmanned aerial vehicles (UAVs), 
this study introduces a DRL-based approach, employing a multi-head heterogeneous attention (MHHA) 
mechanism. This mechanism supports the strategic sequential formulation of routes with an emphasis on energy 
efficiency31. Several frameworks leveraging DRL have been developed to address a challenging yet nontrivial 
variant of TSP32,33. In addressing large-scale problem scenarios to enhance solution quality, Zhao et al. suggested 
a novel DRL model, which incorporates a local search method aimed at further elevating the quality of solutions. 
This model is structured around an actor, an adaptive critic, and a routing simulator34. Additionally, an adaptive 
car-following trajectory control algorithm (e.g., deep adaptive control) was developed to address the challenges 
associated with adaptive vehicle trajectory control across varying risk levels35. Furthermore, to decrease the 
total charging time for EVs, the research presented a DRL algorithm focused on reducing not only the overall 
charging duration for EVs but also achieving significant reductions in the origin-destination distance36.

However, the presence of heterogeneous vehicles and the mixing of CS and LP nodes can negatively affect 
the convergence and efficiency of optimization models, factors that have not been adequately addressed by the 
previously mentioned methods. In contrast to the works discussed above, this paper proposes a heterogeneous 
attention model-based approach HAMEDA for LECS problem utilizing DRL. This approach demonstrates 
superior performance compared to traditional heuristic methods and other learning-based techniques.

System model and problem formulation
System model
This study examined a low-energy consumption scheduling system composed of a logistics cloud platform, an 
online community consisting of n users and z CSs, as well as m ELVs with varying load and battery capacities. 
Each user is associated with an LP that requires collection by an ELV. For clarity, N = {1, 2, · · · , n} is used 
to uniformly represent both users and their corresponding LPs. Z = {1, 2, · · · , z} is employed to denote the 
collection of CSs, while M = {1, 2, · · · , m} is used to represent ELVs. All computations for this system are 
conducted by the logistics cloud platform. Given the presence of multiple CSs, each may be visited by an ELV 
multiple times or not at all. It is assumed that these CSs have been established within the region of interest, and the 
location information (xe

0, xe
1, · · · , xe

z) of CSs has been provided to the platform. Each user i ∈ N  is also required 
to submit pertinent information UIi = (wLP

i , xu
i ) to the platform, which includes wLP

i  and xu
i , representing 

the weight of LP i and its current location, respectively. Generally, weight serves as a standard criterion for 
logistics services37. Additionally, each ELV must submit information V Im = (xv

m, Rm, Rr
m, rm, wmax

m , wELV
m ) 

to the platform, where xv
m is the current location of ELV m and Rm, Rr

m, rm are the maximum battery capacity, 
current battery capacity, and unit battery consumption of ELV, respectively. It is assumed that each CS possesses 
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unlimited energy capacity, ensuring that all arriving ELVs can be fully recharged. wmax
m , wELV

m  are the maximum 
and current load weight of ELV m’s, respectively.

LECS system represents a complete graph G = (X, E), whereis a combination of LP set 
XLP = (x1, · · · , xn), the depot x0, and CSs set XCS = (xn+1, · · · , xn+z). The node setcan be constructed 
as X = {x0} ∪ XCS ∪ XLP . E = ({xi, xj} : i < j) is the edge set. Each edge {xi, xj}is associated with a 
non-negative travel time ti,j  and the shortest route length d(xi, xj).

A feasible ELV m’s tour πm commences at the depot x0, sequentially traverses a series of LPs and CSs, and 
ultimately returns to x0, where each CS may be accessed multiple times. To facilitate the representation of ELV 
access sequence in the most efficient manner, this study introduce δz − 1 dummy nodes for each CS, which 
share their respective locations. The set of dummy nodes is XCS

d . The number δz  of dummy nodes associated 
with each CS, is determined by the frequency of visits to the corresponding CS z. It is advisable to minimize δz  
to reduce the overall size of the network38. For convenience, I = XCS ∪ XLP ∪ XCS

d  and Z′ = XCS ∪ XCS
d  

is defined. Consequently, the total number of nodes in the resulting augmented graph G′ = (I, E) can be 
calculated as follows:

	
count = n + 1 +

z∑
k=0

δz � (1)

The following section presents the formulation of the problem and an analysis of its complexity. Table 1 provides 
a list of commonly used notations.

Problem formulation
In an LECS system, the study aims to identify a maximum of transportation Hamiltonian tours, one for each 
ELV, that commence and conclude at the depot while visiting a selected subset of nodes, including CSs as 
necessary, to minimize the total energy consumption associated with transportation. This study defines the arc 
set A = {(xi, xj) : i < j and i, j ∈ I} within graph G′. Therefore, the edge set E is substituted with an arc 
set A, where each arc (xi, xj) : i < j and i, j ∈ I  corresponds to a respective edge {xi, xj}. Additionally, the 
decision variable xi,j  is expressed as follows:

	
xi,j =

{ 1 if xi, xj ∈ πm, i < j
0 otherwise � (2)

The duration of the transportation tour for ELV’s can be expressed as follows:

Symbol Description

N, n Set of LPs, number of LPs

Z, z Set of CSs, number of CSs

M, m Set of ELVs, number of ELVs

UIi Information submitted by the user i

V Im Information submitted by ELV m

xu
i User i’ s location

xv
m ELV m’ s location

wLP
i

LP i’s weight

wmax
m ELV m’s maximum load capacity

Rm ELV m’s maximum or current battery capacity

Rr
m ELV m’s remaining battery capacity

rm ELV m’s unit energy consumption

wELV
m

ELV m’s remaining load capacity

G (X, E) The nodes set and edge set in graph G

count Total number of nodes in G′

x0, xn+z+1 Depot

d(xi, xj) The shortest distance between xi  and xj

πm Optimal pickup Hamiltonian tour of ELV m

dist(πm) Route length of ELV m

Qm (πm) The total battery consumption of ELV m

Tmax Maximum duration

τi The time of arrival of a ELV at node i

ηj Service or charging time

Table 1.  Frequently used notations.
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dist(πm) =
∑

xi,xj ∈πm,i<j

d(xi, xj) · xi,j � (3)

where d(xi, xj) is the shortest route length between node xi and node xj .
The remaining load capacity of ELV m is expressed as follows:

	
wELV

m = wmax
m −

∑
i∈πm

wLP
i � (4)

The remaining transportation duration of ELV m is given as follows:

	
T ELV

m = Tmax −
∑

j∈πm

ηj −
∑

i,j∈πm,i<j

ti,j (m) xi,j � (5)

and

	 ti,j (m) = d(xi, xj)/vm� (6)

where Tmax is the maximum transportation duration for each EV, which is treated as a constant; ti,j  is the travel 
time from node i to node j; vm is the average speed of ELV m. ηj  is also assumed to be constant, signifying the 
service time when node i is classified as a LP; otherwise, it indicates the recharging time.

The total energy consumption of ELV m can be expressed as follows:

	 Qm (πm) = rm · dist(πm)� (7)

The remaining battery capacity of ELV m is given as follows:

	 Rr
m = Rm − Qm (πm)� (8)

The objective of this study is to minimize the total energy consumption of all ELVs. This issue is defined as LECS 
problem, which can be articulated as follows:

	
(LECS) min

∑
m∈M

Qm (πm) � (9)

	

s.t.
∑

j:(xi,xj )∈A

xi,j =
∑

j:(xj ,xi)∈A

xj,i = 1, ∀i ∈ XLP

� (9-1)

	

∑
j:(xi,xj )∈A,i̸=j

xi,j ≤ 1, ∀i ∈ X � (9-2)

	

∑
j:(xi,xj )∈A,,i̸=j

xi,j =
∑

j:(xj ,xi)∈A,,i̸=j

xj,i, ∀i ∈ I � (9-3)

	

∑
i∈I,i̸=j

xi,0 =
∑

i∈I,i̸=j

x0,i ≤ m, ∀j ∈ M � (9-4)

	

∑
i∈πm

wLP
i ≤ wmax

m , ∀m ∈ M � (9-5)

	 Rm − rm · d(xi, xj) · xi,j ≥ 0, ∀m ∈ M, i ∈ N, j ∈ Z′ � (9-6)

	 Rm − rm · d(xi, xj) · xi,j ≥ 0, ∀m ∈ M, i ∈ N, j ∈ Z′ � (9-7)

	 πm ∩ πm′
= {x0}, ∀m, m′ ∈ M, m ̸= m′� (9-8)

	 si − sj + 1 ≤ (1 − xi,j) |πm| , ∀i, j ∈ πm, i ̸= j� (9-9)

	 1 ≤ si ≤ |πm| , ∀i ∈ πm� (9-10)

	 τj ≥ τi + (ti,j − ηj) xi,j − Tmax(1 − xi,j), ∀i ∈ I, j ∈ I\{0} � (9-11)

	 0 ≤ τ0 ≤ Tmax� (9-12)

	 t0,j ≤ τj ≤ Tmax − (tj,0 + ηj) , ∀j ∈ I\{0}� (9-13)

	 xi,j ∈ {0, 1} , ∀i ∈ I � (9-14)
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where τi is a time variable that indicates the arrival time of an ELV at node i, which is initialized to zero upon 
departure from the depot. Constraint (9-1) stipulates that each LP must be accessed only once. Constraint 
(9-2) ensures that each CS is visited at most once, including the dummy nodes. Constraint (9-3) mandates 
that each LP possesses a single in-degree and a single out-degree. Constraint (9-4) limits the total number of 
tours to a maximum of m. Furthermore, each ELV is required to commence and conclude its journey at the 
depot. Constraint (9-5) guarantees that the cumulative weight of all LPs within ELV m’s tour πm does not 
exceed its maximum load capacity. Constraint (9-6) ensures that each ELV can access the subsequent LP based 
on its current battery capacity. Similarly, constraint (9-7) confirms that each ELV can reach the nearest CS, 
also contingent upon its current battery capacity. Constraint (9-8) prohibits the overlap of routes between any 
two ELVs, with the exception of the depot. Constraints (9-9) and (9-10) prevent the formation of subtours 
within the route of any ELV. The arrival time at each node for each ELV is monitored through constraint (9-11). 
Constraint (9-12) establishes an upper limit on arrival times upon return to the depot, specifically the maximum 
transportation duration Tmax. Constraints (9-13) provide lower and upper bounds on arrival times at LPs and 
CSs, ensuring that each tour is completed by time Tmax. The final constraint defines the variables as binary.

Hardness analyzing
This study endeavors to identify an exact algorithm for LECS problem. However, as demonstrated by Theorem 
1, LECS problem is classified as NP-hard. Subsequently, the complexity associated with LECS problem is 
investigated.

Theorem 1  LECS problem is NP-hard.

In the realm of logistics optimization, the Green vehicle routing problem (G-VRP)39 is characterized on 
a comprehensive graph wherein the vertices symbolize the locations of LPs, ELVs, and a central depot. The 
primary aim of G-VRP is to ascertain a collection of routes for ELVs that optimize efficiency by minimizing 
the cumulative distance traveled. Each tour commences at the depot, visits a designated set of LPs within a 
predetermined time constraint, and subsequently returns to the depot, all while adhering to the driving range 
limitations imposed by the battery capacity of ELVs. Additionally, each tour may incorporate stops at one or 
more CSs to facilitate recharging of ELVs during the journey. G-VRP can be expressed as follows:

	

(G − V RP ) min
∑

m∈M

dist(πm)

s.t. (9 − 1) − (9 − 4) and (9 − 6) − (9 − 14)
� (10)

LECS problem presents differences from G-VRP in two main aspects. Firstly, LECS incorporates an additional 
constraint (9-1) that ensures the heterogeneity of ELVs with varying load weights. Furthermore, the objective 
function (9) of LECS considers the heterogeneity of ELVs in terms of their different unit energy consumption. 
Therefore, the G-VRP problem can be seen as the special case of LECS problem, where the ELVs’ load weights 
are unfinite. Obviously, this problem is a generalization of the well-known NP-hard G-VRP problem39. This 
indicates that LECS problem is at least as complex as G-VRP. Given that G-VRP is classified as NP-hard39, it 
follows that LECS problem is also NP-hard.

Reformulation as MDP
Given that LECS problem is classified as NP-hard, obtaining an optimal solution within polynomial time is 
infeasible. Route formulation within the LECS is envisioned as a series of sequential decision-making tasks. 
This perspective allows for a natural formulation of the problem as an MDP model, which can be effectively 
addressed using Encoder-Decoder architecture40.

1) State: The global state St encompasses comprehensive state information, whereas each ELV m possesses 
only partial state information sm

t , sm
t ∈ St. The state sm

t = (πm
t , Rr

m (t) , wr
m (t) , T r

m (t)) comprises the 
partial solution πm

t , the remaining battery capacity Rr
m (t), the remaining load capacity wr

m (t), and the 
remaining duration limit T r

m (t) at time step t for ELV m. Additionally, πm
t  contains all nodes that have been 

visited up to time step t.
2) Action: The action space at time step t is am

t = (Nr
t , Zt) , m ∈ M , where Nr

t  is the set of available LP 
nodes that have not yet been visited but can be accessed by ELV m at time step t, Zt is the set of available CS 
nodes that ELV m can reach at time step t. Therefore, the action space for all ELVs can be defined as follows:

	
At =

∪
m∈M

am
t � (11)

The agent must select an action At from the set at time step t unless it reaches a terminal state.
3) Reward: To minimize the overall energy consumption of all ELVs, the reward is defined as the negative of 

the objective value. Consequently, the reward function R is computed as follows:

	
R = −

∑
m∈M

Qm (πm)� (12)

4) Transition: The subsequent state sm
t+1 = (πm

t+1, Rr
m (t + 1) , wr

m (t + 1) , T r
m (t + 1)) is determined by 

the node selected at time step t. The partial solution is concatenated with the newly selected node j (i.e., resulting 
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in πm
t+1 = (πm

t ; {j})). The modifications to wr
m (t + 1) and T r

m (t + 1) are executed in accordance with Eq. 
(4) and (5). Specifically, if node j is classified as a LP node, Rr

m (t + 1) = Rr
m (t) − rm (i, j) is defined, where 

rm (i, j) is the energy consumption of ELV m for traversing from the previous node i to the current node j. 
Conversely, if node j is categorized as a CS node, then Rr

m (t + 1) = Rm is applicable.

Methods
This section introduces HAMEDA model as a solution to LECS problem, which facilitates the dynamic 
extraction of additional features from nodes. The HAMEDA model, upon completion of training, facilitates 
the calculation of the optimal value of the objective function. This calculation leverages the parameters derived 
from training and specific input instances. As illustrated in Figure  3, the HAMEDA model employs an Encoder-
Decoder architecture to parameterize and educate the agent’s policy proθ(π|X). Each decision-making round is 
divided into T  time steps. At each time step t, the encoder projects and embeds the graph nodes, capturing their 
spatial and contextual relationships, while the one-agent-per-decoding-step procedure is employed to improve 
the creation of optimal transportation routes for the decoder. Specifically, this policy strategically selects nodes 
sequentially for each ELV, culminating in a node permutation that integrates the depot, all LPs, and a subset of 
CSs, collectively denoted as π = π0, · · · , πm, · · · , π|M|, m ∈ M . Furthermore, is a permutation of the selected 
nodes for ELV m, which can be defined as follows:

	 πm = πm
0 (= x0) , πm

1 , · · · , πm
|πm| (= x0)� (13)

where |πm| is the total number of nodes selected by ELV m.
Consequently, for the input instance X and the set of learnable parameters θ, the probability distribution 

proθ(π|X) of solution π is regarded as the policy for determining π given θ. The policy function can be 
expressed as follows:

	
proθ(π|X) =

∏
m∈M

|πm|∏
t=1

proθ(πm
t

|X, πm
1:t−1 )� (14)

where πm
t

 is the node selected by EV at decision step t; πm
1:t−1  is the node selected by m at t − 1 time steps. The 

objective is to identify the optimal parameter set θ∗ that generates the optimal tour π∗ for EVs.

Model design
The HAMEDA framework is bifurcated into two pivotal phases: encoding and decoding. The encoding phase 
sees the encoder extracting structural features and embedding each graph node of the input instance X. These 
embeddings are crucial for generating the key of HAMEDA. During the decoding phase, the framework 

Fig. 3.  Tour construction of HAMEDA model applied to two ELVs and five target nodes.
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processes these embeddings along with the step context and a mask denoting infeasible nodes, thereby aiding 
the node selection process for each ELV. Given the requirement to manage transportation tours for numerous 
ELVs concurrently, this study introduces an innovative decoding strategy tailored to the multi-agent dynamics 
of the problem. This strategy effectively mitigates the challenges posed by the combinatorial expansion inherent 
in the multi-agent action space.

Encoding phase
To construct the key for each node, a heterogeneous graph attention (HGA) network-based encoder is employed 
to encode the features of the nodes into embeddings that encapsulate the structural patterns of the input instance 
X. As illustrated in Figure  4, the encoder comprises L identical attention layers. Each attention layer consists 
of two sub-layers: a multi-head heterogeneous attention (MHHA) sublayer and a simple, position-wise feed-
forward (FF) sublayer. MHHA sublayer incorporates both self-attention and cross-attention mechanisms, 
enabling the identification of relationships among all nodes, including CS nodes and ELV nodes. FF sublayer 
functions as a fully connected network. A residual connection operation is implemented between every two 
sublayers, followed by a normalization operation. The dx-dimensional input node xi is initially mapped to the 
dh-dimensional initial node embeddings h(0)

i . This mapping can be achieved through a linear transformation 
that incorporates learnable parameters as follows:

Algorithm 1.  Training HAMEDA using REINFORCE.

 

Fig. 4.  Illustration of encoding phase in HAMEDA model.
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h

(0)
i =

{
W xi + b if i ̸= 0

W0xi + b0 if i = 0 � (15)

where W, W0 ∈ dx×dh  and b, b0 ∈ dh  are the learnable parameters; and x0 is the starting node when i = 0 is 
considered. Consequently, this study employs the self-reliant parameters W0, b0 for x0. Given that there are 
count − 1 nodes in graph G′, excluding the depot, the configuration is denoted as (count − 1) dh for the initial 
node embedding.

To extract features, the self-attention mechanism is employed to compute the key, query, and value vectors for 
node i, which can be expressed as follows:

	

Ki = W kh
(L−1)
i

qi = W qh
(L−1)
i

vi = W vh
(L−1)
i

� (16)

where W k, W q ∈ Rdh×dq  and W v ∈ Rdh×dv  are the learnable weight parameters; while dq = dv = dh/ϖ 
and ϖ are the number of attention heads. This configuration enables the model to extract a greater number of 
structural features.

The scaled dot product of the query vector of node i and the key vector of node j is determined to assess the 
compatibility between the two nodes. This computation can be expressed as follows:

	
ui,j = qT

i Kj√
dq

� (17)

The node weight is subsequently determined by applying a softmax function, as outlined below:

	

ai,j = softmax(ui,j) = eui,j

n∑
j′=1

eui,j′ � (18)

The described methodology facilitates the elucidation of relationships between any two nodes, with particular 
emphasis on the interaction between charging nodes and their target counterparts. Consequently, the cross-
attention mechanism is employed to extract additional structural features. In this model, the key Kc

j , query qe
i , 

and value vc
j  vectors can be articulated as follows:

	

Kc
j = W kchc

k
qe

i = W qehe
i

vc
j = W vchc

j

� (19)

where he
i  and hc

j  are the embeddings of LP node i and CS node j, respectively. All parameters W kc, W qe, W vc 
are subject to training. Therefore, the weights assigned to the connections between CS nodes and LP nodes are 
computed as follows:

	
uec

i,j =
(qe

i )T Kc
j√

dq

� (20)

	

aec
i,j =softmax(ui,j) = euec

i,j

n∑
j′=1

e
uec

i,j
� (21)

This study leverages the cumulative output of all attention heads to enhance the single head vector h(ϖ)
i , which 

can be formally expressed as follows:

	
h

(ϖ)
i =

∑
j

ai,jvj +
∑

j

aec
i,jvc

j � (22)

Notably, while CS nodes might be visited repeatedly, LP nodes are restricted to a single visit. Consequently, 
the attention mechanisms from LP nodes to CS nodes primarily enhance the embeddings of the LP nodes 
alone. In contrast, the attention heads associated with CS node embeddings yield a value of zero. Following 
the concatenation of messages from various heads, the resulting multi-head vector is processed through a skip-
connection layer and a batch normalization (BN) layer as follows41:

	
hl′

i = BN(h(L−1)
i + W out · concat

{
h

(1)
i , · · · , h

(ϖ)
i

}
)� (23)
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where concat {·} is the concatenation operator; BN (·) is BN function; and W out is a trainable parameter. 
Subsequently, the output vector from FF sublayer is transmitted through a skip connection and a BN layer, as 
described below:

	
hl

i = BN(hl′
i + F F

(
hl′

i

)
)� (24)

Through the progressive traversal across L attention layers, refined node embeddings are obtained. Subsequently, 
a comprehensive graph embedding is calculated, encapsulating overarching graph information.

	
hN =

∑
i∈X

hL
i /n + 1 + z� (25)

Both the graph embeddings hN  and the advanced node embeddings hl
i are utilized as inputs to the decoder.

Decoding phase
During the encoding phase, leveraging both the refined node embeddings and the comprehensive graph 
embedding, along with the intermediate solution πm

1:t−1 at each construction step t ∈ {1, · · · , T }, this study 
ascertains the subsequent node πm

t  in the decoding phase. The decoder, at each step, creates a probability 
distribution over the nodes, informed by the embeddings generated during the encoding phase. However, 
if multiple ELVs simultaneously make decisions, the dimensionality of the joint action space increases 
exponentially, leading to a substantial rise in training complexity and computational overhead. To address this 
challenge, we adopt the one-agent-per-decoding-step strategy, ensuring that only one agent makes a decision per 
time step. This approach effectively transforms the problem into a sequential optimization process, progressively 
constructing an optimal solution, thereby improving the stability for creation of optimal transportation routes. A 
pivotal initial step involves identifying which ELV will make decisions at each time step t as is shown in Figure  3. 
Thereafter, the current active index ℓ of the ELV is established as follows:

	 ℓ ← t%m� (26)

A context vector hct
ℓ (t) is determined at each decoding step t, incorporating the global graph embedding hN

, the embedding of the most recently visited node, and the remaining battery capacitie Rr
m (t), the remaining 

load capacity wr
m (t), and remaining time duration T r

m (t). For the initial step of decoding, the embedding of the 
last visited node is replaced with trainable parameters. The computation of the context vector hct

ℓ (t) is detailed 
below:

	 hct
ℓ = W graph · hN + W step · concat {Inputt, Rr

m (t) , wr
m (t) , T r

m (t)}� (27)

where

	
Inputt =

{
W d if t = 1

hL
πℓ

|πℓ|
if t > 1 � (28)

where W graph, W d and W step are the matrices of trainable parameters.
In the process of computing node selection πℓ

t , it is essential to take into account not only the previously 
selected nodes πℓ

1∼t−1 but also the compatibility between these selected nodes and the remaining nodes. This 
study ensures a logical and efficient progression in the selection process, optimizing the overall route based 
on proximity and compatibility criteria πℓ

t . Therefore, in light of these considerations, an additional attention 
mechanism42 is incorporated to process hct

ℓ , which facilitates the acquisition of more comprehensive information.
The query qℓ is constructed as follows:

	
qℓ = soft max(hct

ℓ KT
1√

dk

)V1� (29)

where K1 and V1 are linear projections of the node embeddings hct
ℓ . dk  is the scaling factor and dk = dh

M , with 
M denoting the number of heads in Scaled Dot-Product Attention mechanism43.

The key vector for node i in the single-head attention mechanism is computed as follows:

	 ki = W KhL
i � (30)

Through the aforementioned operation, the query-key (qℓ, ki) is derived. The compatibility between the query 
and the key is subsequently calculated according to the following methodology.

	
uℓ

i = qT
ℓ ki√
dk

� (31)
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During network training, the presence of infeasible nodes in the action space increases the complexity of 
training and hinders convergence. The masking process improves learning efficiency by dynamically filtering 
out infeasible nodes to reduce the exploration space, thereby accelerating the convergence of the optimal 
strategy and enhancing the overall solution quality. Therefore, uℓ

i  is constrained between −R and +R utilizing 
the tanh (·) function, while the infeasible nodes are masked. In this masking process, the infeasible nodes are 
assigned a value of −∞ to facilitate the updating of uℓ

i .

	 uℓ
i ← tanh

(
uℓ

i

)
· R� (32)

The infeasible nodes consist of the following categories: 

	1)	� LP nodes that have been already visited;
	2)	� LP nodes that whose package weight exceed remaining load weight of current ELV;
	3)	� The LP or CS nodes that the ELV cannot reach at the current step due to the insufficient battery capacity or 

insufficient remaining duration;
	4)	� LP nodes that would cause the ELV to fail to reach any CS nodes at the next step if the ELV visits them at the 

current step;
	5)	� The depot when there are still remaining target nodes that need to be visited.

To facilitate the normalization of final probabilities within the range [0, 1], this study utilizes the softmax 
function. Thus, the likelihood of choosing node i at the decoding step t is formulated as follows:

	

prot
i

= softmax(uℓ
i) = euℓ

i

n∑
j=1

ut
j

, i = 1, · · · , n
� (33)

Assuming the application of a greedy strategy to ascertain the pickup tour πℓ, this study selects the node with 
the highest probability pt

i
 as πℓ

t  during the decoding step t. Specifically, the decoder generates a probability 
distribution across all nodes as described by Eq. (33). Subsequently, a node is selected to visit based on a specified 
strategy and append it to the end of πℓ

1:t−1 at each construction step. This decoding procedure repeats iteratively 
until all LP nodes are visited, and ELVs return to the depot.

Model training
HAMEDA model is trained to obtain parameters θ through policy gradient methods utilizing REINFORCE 
algorithm14. This approach integrates both the policy network and the baseline network. The policy network 
proθ(π|X) generates a probability distribution over the action space based on the current state. The baseline 
network functions to provide a standard reward, aiming to decrease variance with a greedy rollout strategy that 
selects the action of highest probability. Notably, the baseline network shares an identical architecture with the 
policy network. Subsequently, this study employs gradient descent to update θ , and the gradients of θ can be 
expressed as follows:

	
dθ = 1

B

B∑
λ=1

(R (λ) − b(λ)) · ∇θproθ(π|λ) � (34)

	 θ ← Adam (θ,dθ) � (35)

where B is the batch size and b (·) is a baseline function within the baseline network. The implementation of the 
baseline function facilitates a significant reduction in computational costs and enhances the rate of convergence. 
θ can be updated utilizing the Adam optimizer44.

The training algorithm employed in the proposed method is delineated in Algorithm 1. The baseline function 
b (·) is instantiated as R(π∗

i ), which is developed through a greedy rollout approach, while R(πi) is constructed 
via a sample rollout method. Initially, it is essential to initialize the model parameters θ, θ∗ with random values 
for both the policy and the baseline policy, concurrently setting θ∗ ← θ (line 1). Subsequently, HAMEDA model 
undergoes training based on predetermined epochs and steps (lines 2-16). During the training process, instances 
are randomly selected from the sample set X (line 4), and the policy is executed through sampling and greedy 
methods to compute the transportation tours πi and π∗

i , respectively (lines 5-6). When the sampled solution 
πi demonstrates superior performance compared to the greedy solution π∗

i , Monte Carlo sampling is employed 
to iteratively refine the parameters, thereby enhancing the policy model parameters as delineated in lines 7-10, 
where B represents the batch size. Additionally, a paired t-test is performed at each epoch to determine whether 
updates are necessary for the baseline parameters, as specified in lines 13-15. Should the policy outperform the 
baseline, the parameters of the latter are replaced with those of the former. After extensive training iterations 
within each epoch, the refined policy network is capable of generating effective solutions.

Once HAMEDA model has been trained using Algorithm 1, the optimal Hamiltonian transportation tour π 
for ELVs can be calculated based on the trained parameters θ and the given input instance X.
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Discussion
The study presents a detailed description of the data generation methodology employed for the training and 
testing datasets, as well as the benchmark algorithms and hyperparameter settings utilized for the proposed 
HAMEDA model. The experimental setup involves random sampling of the coordinates of depots and LPs within 
a unit square defined by the interval [0, 1] × [0, 1], employing a uniform distribution. CSs are selected randomly 
from a discrete grid defined by [0, 0.25, 0.5, 0.75, 1] × [0, 0.25, 0.5, 0.75, 1]. The weights of LPs are discrete 
values randomly chosen from the set [1, 2, . . . , 6]. It is assumed that the unit energy consumption and speeds 
remain constant before and after the loading of packages for each ELV. For the purpose of simplification, the 
vehicle speed is standardized for all ELVs to 1.0. To assess the performance of the proposed model, HAMEDA 
on instances of varying problem sizes are evaluated, specifically 20 LPs with 2 CSs, and 50 LPs with 5 CSs, 
which designated as L20C2 and L50C5, respectively. Furthermore, the performance of the proposed HAMEDA 
is compared against several representative baseline algorithms, which include: 

	1.	� OPT: The optimal solution to LECS problem is obtained using the standard Gurobi version 9.0.1 solver45, 
which is recognized as a state-of-the-art exact solver for combinatorial optimization problems.

	2.	� Pointer Network (Ptr-Net): Ptr-Net is effective in addressing combinatorial optimization problems, utilizing 
an attention model to select a member from the input sequence as the output46. The hyperparameters em-
ployed are consistent with those proposed in HAMEDA.

	3.	� Variable Neighborhood Search (VNS): An effective heuristic approach for addressing VRP and their vari-
ants47.

	4.	�  Kool-AM: Kool-AM can leverage the graph attention mechanism to effectively capture the relationships 
between nodes, which is applied to solve combinatorial optimization problems. Following the idea of48, we 
the model to the multi-agent scenario.

All algorithms were implemented using Python version 3.7.6. Furthermore, the implementations of Ptr-Net and 
HAMEDA were conducted utilizing PyTorch framework version 1.2.0 in conjunction with CUDA version 9.2. 
The experimental simulations were performed on a system running Ubuntu 16.04.6, which is equipped with a 
32GB Tesla V100S GPU and an Intel® Xeon® Gold 5218R CPU with 500GB of storage. Each measurement was 
averaged over 1,000 iterations. A selection of parameters utilized for training and testing is presented in Table 2.

Performance results
This study initially conducted a comparative analysis of the reward training curves associated with the proposed 
HAMEDA algorithm across varying node counts to assess its convergence. In Figure 5, the reward function 
exhibits a marked increase corresponding to the rise in training iterations, indicating a continuous decrease in 

Fig. 5.  Effect of training epochs on convergence and performance of HAMEDA model.

 

Parameters Value Parameters Value

B 512 Nepoch 500

Nsteps 500 dx 2

optimizer Adam learning rate 0.0001

ϖ 8 L 3

dk 64 dh 128

decaying rate 0.995 α 0.05

Table 2.  Default parameter settings for HAMEDA model.
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the value of the objective function. Subsequently, HAMEDA algorithm demonstrates convergence, with L20C2 
configuration achieving convergence in approximately 50 iterations, while L50C5 configuration converges in 
about 90 iterations. Notably, the convergence rate of HAMEDA surpasses that of Ptr-Net algorithm. Furthermore, 
HAMEDA ultimately attains a higher reward compared to Ptr-Net algorithm. In contrast to L20C2, L50C5 
configurations of both algorithms exhibit a certain degree of fluctuation during the training iterations. However, 
HAMEDA algorithm maintains a relatively higher level of stability. This phenomenon can be attributed to the 
increasing number of LPs, which enhances the effectiveness of the constraints within the objective function. 
These observations indicate a significant improvement in the learning efficiency of HAMEDA algorithm, 
attributable to the implementation of the heterogeneous graph attention mechanism and the newly proposed 
decoding procedure utilized by HAMEDA network.

To validate the effectiveness of proposed HGA network, the one-agent-per-decoding-step strategy and 
masking process, Fig. 6 illustrates the reward changes over iterations for the HAMEDA algorithm, the HAMEDA 
without HGA , and the HAMEDA without improved decoding paradigm, i.e. the one-agent-per-decoding-step 
strategy and masking process, under scenarios with L50C5. The simulation results indicate that, compared to 
the HAMEDA algorithm without HGA, the proposed algorithm achieves higher rewards but with a slower 
convergence rate. This suggests that incorporating HGA network into the encoder allows agents to extract more 
hidden relationships among all nodes, leading the policy iteration closer to the optimal solution. The reason for 
the slow convergence speed is that the HGA network integrates self-attention and cross-attention mechanisms, 
extracts more features, leads to an increase in the dimensionality of the state and joint action space, and requires 
more iterations. Additionally, compared HAMEDA algorithm without improved decoding paradigm, the 
proposed algorithm demonstrates faster and more stable learning speeds and higher rewards. This is because the 
masking process effectively filters out infeasible nodes to reduce action space that proposed algorithm needs to 
learn and explore, thereby enhancing the algorithm’s learning speeds and rewards. The one-agent-per-decoding-
step strategy can enhance training stability. Thus, the HGA network, the one-agent-per-decoding-step strategy 
and masking process can effectively improve the performance of the HAMEDA algorithm.

The research subsequently analyzed the variations in total energy consumption across all algorithms with 
respect to different node configurations. The parameters are established as follows: a maximum travel time 
of 65, a maximum energy consumption of 15, and a maximum load constraint of 150. In order to intuitively 
show the impact of different numbers of LPs and CSs, we set different scales for the y-axis in Figure 7a and 
7b. Figure 7a demonstrates that an increase in the number of LPs is correlated with a rise in the total energy 
consumption, as measured across all algorithms, with the number of CSs held constant at 5. This increase can 
be attributed to the fact that the total length of transportation routes typically expands with the increase in the 
number of users. Notably, the energy consumption reported by the proposed algorithm remains lower than that 
of the other algorithms. In Figure 7b, an increase in the number of CSs results in a decrease in the total energy 
consumption outputted by all algorithms, with the number of LPs maintained at 50. This reduction can be 
explained by the enhanced recharging strategy afforded by the additional CS nodes, which allows ELVs to extend 
their service range more effectively. Under the constraints of limited load and duration capacity, ELVs can cover 
a broader area, thereby facilitating the servicing of more LP nodes and significantly reducing overall system 
energy consumption. In comparison to Ptr-Net and Kool-AM, HAMEDA demonstrates superior performance 
in optimizing the objective function, attributable to the heterogeneous graph attention mechanism that adeptly 
extracts dynamic features and relationships among all nodes, including both CS and ELV nodes.

This study conducted an analysis of the effect of varying constraint values on total energy consumption in 
Figure 8 with the number of LPs and CSs set at 50 and 5, respectively. The results indicate that as the values of 
several constraints, including maximum transportation duration, maximum battery capacity, and maximum 
load capacity, increase, the total energy consumption of the different algorithms tends to decrease. This reduction 
in energy consumption among all ELVs can be ascribed to higher constraint settings, which enable the vehicles 
to service an increased number of LP nodes.

Fig. 6.  The effect of HGA and improved decoder.
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Fig. 8.  Effects of different constraints on total energy consumption in ELVs: (a) Maximum load capacity; (b) 
Maximum battery capacity; (c) Maximum transportation duration.

 

Fig. 7.  Effects of LPs and CSs on total energy consumption: (a) Total energy consumption versus LPs; (b) Total 
energy consumption versus CSs.
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Table 3 details the execution times of the OPT, HAMEDA, VNS, Ptr-Net and Kool-AM algorithms, noting 
that the duration required by each algorithm extends as the node count rises. Notably, the runtime of OPT 
and VNS algorithms exhibits an almost exponential growth as the problem size escalates, whereas the runtime 
of the learning-based methods demonstrates a linear growth pattern. Specifically, the runtimes of OPT and 
VNS methods are significantly longer than those of the learning-based approaches, which consistently remain 
approximately 1s. Furthermore, HAMEDA consistently yields a solution that is comparable in quality while 
requiring relatively less execution time for large-scale instances.

Comparatively, the HAMEDA algorithm consistently demonstrates at least a 1.64% lower total energy 
consumption than other DRL-based algorithms, i.e. Ptr-Net and Kool-AM, yet it shows 3.5% higher when 
compared to OPT. Moreover, HAMEDA significantly outperforms other baseline algorithms in execution 
speed for large-scale scenarios, thus enhancing timely decision-making capabilities. The experimental findings 
underscore HAMEDA’s ability to strike an effective balance between quick execution and high-quality solutions, 
alongside marked improvements in optimization efficacy and system scalability.

Conclusion
This paper addresses LECS problem in urban logistics, where multiple CSs are available for recharging ELVs. 
LECS problem is formulated to minimize the total energy consumption of heterogeneous ELVs, each with 
different load capacities and battery sizes, under the constraint of maximum transportation duration. Given 
the NP-hard nature of LECS problem, it was modeled as an MDP and proposed HAMEDA approach, based 
on an Encoder-Decoder architecture. HAMEDA incorporates a heterogeneous graph attention network to 
capture advanced representations of the relationships between LPs and CSs during the encoding phase. In the 
decoding phase, a novel procedure that utilizes a one-agent-per-decoding-step routine and a masking strategy 
is introduced to enhance solution quality in tour generation, thereby improving learning efficiency. HAMEDA 
model is trained through DRL in an unsupervised manner. Extensive experiments demonstrate that HAMEDA 
reduces total energy consumption by at least 1.64% compared to traditional heuristic and learning-based 
algorithms. Furthermore, HAMEDA consistently delivers comparable solutions with significantly reduced 
execution times, making it an optimal choice for large-scale tasks that require rapid decision-making.

Our current research focuses on low energy consumption scheduling in scenarios with fixed CSs. However, 
in regions where fixed CSs are sparsely deployed or nonexistent, the coordinated scheduling of mobile CSs and 
ELVs remains an open challenge for future exploration. Additionally, the proposed centralized approach relies on 
the logistics cloud platform for all computations, potentially leading to significant data exchange between ELVs 
and the cloud. To further enhance efficiency and scalability, future research will explore advanced distributed 
methodologies, such as decentralized federated learning49, to reduce communication overhead and improve 
overall system performance.

Data availability
The datasets used, generated and analyzed during this study are available from the corresponding author on 
reasonable request.
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