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Gray Wolf Optimization (GWO), inspired by the social hierarchy and cooperative hunting behavior of 
gray wolves, is a widely used metaheuristic algorithm for solving complex optimization problems in 
various domains, including engineering design, image processing, and machine learning. However, 
standard GWO can suffer from premature convergence and sensitivity to parameter settings. To 
address these limitations, this paper introduces the Hierarchical Multi-Step Gray Wolf Optimization 
(HMS-GWO) algorithm. HMS-GWO incorporates a novel hierarchical decision-making framework that 
more closely mimics the observed hierarchical behavior of wolf packs, enabling each wolf type (Alpha, 
Beta, Delta, and Omega) to execute a structured multi-step search process. This hierarchical approach 
enhances exploration and exploitation, improves solution diversity, and prevents stagnation. The 
performance of HMS-GWO is evaluated on a benchmark suite of 23 functions, showing a 99% accuracy, 
with a computational time of 3 s and a stability score of 0.9. Compared to other advanced optimization 
techniques such as standard GA, PSO, MMSCC-GWO, WCA, and CCS-GWO, HMS-GWO demonstrates 
significantly better performance, including faster convergence and improved solution accuracy. While 
standard GWO suffers from premature convergence, HMS-GWO mitigates this issue by employing 
a multi-step search process and better solution diversity. These results confirm that HMS-GWO 
outperforms other techniques in terms of both convergence speed and solution quality, making it a 
promising approach for solving complex optimization problems across various domains with enhanced 
robustness and efficiency.

Keywords  Energy systems optimization, Power system optimization, Renewable energy integration, 
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Meta-heuristic algorithms (MHA) represent sophisticated methods that systematically investigate the search space 
of optimization problems, aiming to discover near-optimal solutions1. These algorithms are broadly classified into 
two categories: local search techniques (LST) and population-based techniques (PBT)2,3. Furthermore, they can 
be categorized based on their foundational concepts, such as evolutionary, physical, chemical, human-based, and 
swarm intelligence methodologies4,5. Local search techniques (LST) initiate with an initial solution and iteratively 
refine it by examining neighboring solutions. This process continues either until a predefined number of iterations 
is completed or the algorithm converges to a local optimal solution. Notable examples of local search algorithms 
include simulated annealing6, tabu search7, greedy randomized adaptive search procedure (GRASP)8, variable 
neighborhood search9, iterated local search11, β-hill climbing12, and the vortex search technique13. Evolutionary-
based techniques, a subset of population-based techniques (PBT), involve the initial generation of a population 
of solutions, which are progressively improved through iterative processes such as reproduction, mutation, and 
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natural selection. Examples of these techniques include the genetic algorithm14, evolutionary programming15, 
genetic programming16, differential evolution17, biogeography-based optimization18, and probability-based 
incremental learning (PBIL)19. Physically- and chemically-inspired techniques derive their principles from 
physical laws and chemical interactions. Among these are methods such as plasma generation optimization20, 
ray optimization21, solar system algorithm22, equilibrium optimizer23, gravitational search algorithm24, billiards-
inspired optimization25, Henry gas solubility optimization26, simulated annealing6, vortex search algorithm12, 
and chemical reaction optimization27. Social or human-inspired techniques are largely modeled after societal 
behaviors and human actions. Notable examples include harmony search28, brainstorm optimization29, heap-
based optimizer30, teaching-learning-based optimization31, political optimizer32, Ali Baba and the forty thieves 
algorithm33, group teaching optimization algorithm34, Ebola optimization search algorithm35, football game-
inspired algorithm36, coronavirus herd immunity optimizer37, arithmetic optimization algorithm38, stock 
exchange trading optimization39, and poor and rich optimization. Swarm intelligence (SI) algorithms are often 
modeled after the collective behaviors found in various animal species, such as birds, frogs, bats, rats, bees, ants, 
and other organisms40. These algorithms typically replicate the process by which swarms search for food, with 
individual members relying on their interactions with each other or indirect environmental cues (known as 
stigmergy) to guide the search41. This leads to a self-organizing system where cooperation occurs without central 
control. The algorithm usually begins with an initial swarm of potential solutions, which can be categorized into 
leaders and followers. The leaders guide the search, while the followers adjust their positions based on the leaders’ 
movements. Through these interactions, the swarm moves collectively toward finding an optimal solution. 
The most widely used swarm intelligence (SI) algorithms include Ant Colony Optimization42, Particle Swarm 
Optimization43, Krill Herd Optimization44, Cuckoo Search45, Firefly Algorithm46, White Shark Optimizer47, 
Chicken Swarm Optimization49, Snake Optimizer50, Ant Lion Optimizer51, Elephant Herding Optimization52, 
Sparrow Search Algorithm53, Horse Herd Optimization54, Dragonfly Algorithm55, Moth-Flame Optimization56, 
Whale Optimization Algorithm57, Komodo Mlipir Algorithm58, Chimp Optimization Algorithm59, Dwarf 
Mongoose Optimization Algorithm60, Lemurs Optimizer61, and Grey Wolf Optimizer (GWO)62, along with 
many other SI-based techniques. The fastest-growing SI algorithm, the Grey Wolf Optimizer (GWO), was 
presented by Mirjalili et al.63, to mimic the hunting habits of natural grey pack populations64. Because of its 
many remarkable qualities, which include flexibility, soundness and completeness, memory lessness, derivative 
freedom, parameter and derivative freedom, and ease of adaptation, the GWO is a very potent optimizer. When 
the GWO first begins searching, it focuses heavily on the exploration phase. However, throughout the final 
run, it gradually shifts the positions of the top three leaders to give the exploitation phase more emphasis. As a 
result, GWO can handle many optimization issues from several research domains, including image processing, 
networking and communication, engineering, and more65. Much work has been done on the core architecture of 
the Grey Wolf Optimizer (GWO) to address the intricate search space properties of real-world and combinatorial 
optimization problems, especially those with highly limited, non-convex, and nonlinear features. It can now 
successfully handle scenarios with severe constraints and multi-objective issues thanks to these enhancements. 
In addition, GWO has been improved by adding components from several optimization techniques to improve 
its efficiency. Hybridization with additional optimization algorithms has also been used to improve the quality 
of GWO-generated solutions by striking a balance between exploration and exploitation capabilities. Several 
examples of GWO have been proposed in the literature, and each one is appropriate for a particular use in 
research65–68. The Grey Wolf Optimizer (GWO) begins by initializing a random population of grey wolves, 
which are organized into four hierarchical tiers: Alpha, Beta, Delta, and Omega. These tiers reflect the wolves’ 
roles within the hunting process, with the Alpha being the best solution, followed by the Beta and Delta wolves. 
The Omega wolves serve as the followers, guided by their attraction to the top three wolves—Alpha, Beta, and 
Delta. In the optimization phase, GWO calculates the distances between the Omega wolves and the leading 
wolves, using this information to adjust the wolves’ positions through behaviors such as tracking, encircling, and 
chasing prey. The algorithm leverages two key parameters to maintain a balance between exploration (searching 
for new solutions) and exploitation (refining existing solutions), ensuring an effective optimization process64. 
In recent years, the Grey Wolf Optimizer (GWO) has garnered considerable interest from researchers, with its 
applications spanning a wide range of optimization problems in fields such as science, engineering, and industry. 
However, GWO has certain limitations, particularly its tendency to become stagnant during the exploitation 
phase and its slow convergence rate in the later stages of optimization. To address these issues, we revisited 
the natural hunting behaviors of grey wolves. In real-world scenarios, frequent interactions between the leader 
wolves and the Omega wolves occur throughout the hunting process, a behavior known as “judging prey.” 
This interaction can be leveraged to enhance GWO’s performance. Building on this observation, we propose 
incorporating this behavior into the GWO framework, leading to the development of an improved optimization 
algorithm called the Hierarchical Multi-Step Grey Wolf Optimizer (HMS-GWO).

The study presents a novel approach for system identification of small-scale fixed-wing Unmanned Aerial 
Vehicles (UAVs) using metaheuristic optimization techniques107. Thirteen widely used optimization algorithms 
are evaluated over ten independent runs, with their performance statistically ranked using Friedman’s test 
based on fitness values108. The results reveal the superior performance of the L-SHADE algorithm, achieving 
mean R-squared errors of 0.5465 and 0.0487 for longitudinal and lateral dynamics, respectively, surpassing 
other algorithms109. Additionally, the study explores the application of the Grey Wolf Optimizer (GWO), 
Stochastic Fractal Search (SFS), and Adaptive Differential Evolution with Optional External Archive (JADE) 
for optimizing planar frames under AISC-LRFD standards110. It also introduces the 2-Archive Multi-Objective 
Cuckoo Search (MOCS2arc) algorithm, an enhanced version of the Multi-Objective Cuckoo Search (MOCS), 
designed to optimize eight truss structures and six ZDT test functions while balancing mass and compliance. 
MOCS2arc incorporates a dual-archive strategy to enhance solution diversity and optimization efficiency111. 
Comparative evaluations against MOSCA, MODA, MOWHO, MOMFO, MOMPA, NSGA-II, DEMO, and 
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MOCS demonstrate MOCS2arc’s dominance in generating diverse and optimal solutions, supported by 
Friedman’s and Wilcoxon’s statistical tests. Beyond UAV system identification, the study proposes a meta-
learning-based alternating minimization (MLAM) technique for addressing nonconvex optimization problems, 
particularly bilinear inverse and nonlinear Gaussian mixture model challenges. Unlike traditional alternating 
minimization (AM) strategies, MLAM employs meta-learning to adaptively minimize global losses, enhancing 
performance while maintaining algorithmic interpretability. In the context of network function virtualization 
(NFV), the study introduces an SFC deployment optimization (SFCDO) algorithm based on breadth-first 
search (BFS), which optimizes virtual network function (VNF) performance111. SFCDO prioritizes minimal-
hop paths to improve network resource utilization and reduce end-to-end latency, outperforming greedy and 
simulated annealing algorithms. Another key contribution is a mobile robot-based thermal comfort monitoring 
system for indoor environments. By integrating RGB-D and thermal imaging, the system estimates occupant 
comfort in real-time using machine learning, achieving high accuracy in experiments involving 20 participants 
over 80 h112. Furthermore, offshore wind turbine (OWT) control is advanced through an Active Rotary Inertia 
Driver (ARID) system utilizing a type-3 fuzzy logic (T3-FLS) multiple-model. This adaptive control framework, 
optimized using fractional-order stability theorems and linear matrix inequalities (LMI), effectively mitigates 
structural challenges in OWTs caused by dynamic wind, wave, and current loads. Simulation and experimental 
validation confirm its superiority over traditional control methods113 in Table 1.

Addressing limitations of traditional GWO in energy systems optimization
Gray Wolf Optimization (GWO), inspired by the social hierarchy and cooperative hunting behavior of wolves, 
has emerged as a powerful metaheuristic algorithm for solving complex optimization problems. However, the 
standard GWO algorithm, despite its effectiveness, faces certain limitations, such as premature convergence 
and sensitivity to parameter settings, which can hinder its performance in complex and dynamic environments. 
These limitations become particularly pronounced in energy systems optimization problems, characterized by 
high dimensionality, nonlinearity, and the presence of multiple constraints.

Algorithm Efficiency
Tracking 
Speed

Computational 
Cost

Convergence 
Behavior Scalability

Exploration vs. 
Exploitation

Hybridization 
Potential Applications Limitations

115, 2024 High Moderate High
Can get 
stuck in local 
optima

Moderate Balanced but slow 
adaptation High Optimization, 

ML, scheduling
Sensitive to parameter 
tuning, premature 
convergence

116, 2025 Moderate High Moderate
Can be 
trapped in 
local optima

High Strong exploitation tendency High
Optimization, 
control, 
engineering 
design

Sensitive to 
parameters, premature 
convergence

117, 2025 High Moderate Moderate
Can be 
sensitive 
to control 
parameters

High Balanced High
Engineering, 
machine 
learning

Sensitive to 
parameters, struggles 
with noisy data

118, 2024 High Low Moderate
Slow but 
avoids local 
optima

Moderate More exploration-oriented Moderate
Combinatorial 
problems, 
scheduling

Slow convergence, 
requires careful 
tuning

119, 2024 High Moderate High Can be slow 
to converge Low Strong exploitation tendency Moderate

Routing, 
scheduling, 
combinatorial 
optimization

Sensitive to problem 
structure, high 
memory demand

120, 2023 Moderate Moderate Moderate
Can be 
sensitive to 
parameter 
tuning

Moderate Balanced High
Optimization, 
engineering, 
scheduling

Slow convergence, 
parameter-sensitive

121, 2023 High Moderate Moderate
Can get 
stuck in local 
optima

High Balanced High Engineering, 
optimization, AI

Sensitive to 
parameters, premature 
convergence

122, 2025 High High Moderate
Strong 
convergence 
with Lévy 
flights

High Strong exploration High MPPT, 
scheduling, AI

Instability due to Lévy 
flight randomness

123, 2024 High Moderate Moderate Good but 
slower High Strong exploration High Optimization, 

MPPT, AI
Slow in large-scale 
problems

124, 2025 High Fast Moderate Strong High Balanced High MPPT, AI, 
energy systems

Premature 
convergence risk

125, 2023 High Fast Moderate Strong High Balanced High
AI, MPPT, 
pattern 
recognition

Parameter tuning 
sensitivity

126,
2023 Very High Very Fast Moderate Strong and 

stable High Improved balance over 
GWO High

MPPT, AI, 
renewable 
energy

Requires parameter 
fine-tuning

Table 1.  Comparative analysis: of both classical and cutting-edge methods.
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Novel hierarchical multi-Step GWO approach
To address these limitations, this study proposes a novel optimization framework termed Hierarchical Multi-
Step Gray Wolf Optimization (HMS-GWO). The HMS-GWO algorithm introduces a hierarchical structure 
with four distinct wolf types (Alpha, Beta, Delta, and Omega) and incorporates a multi-step search strategy for 
each wolf. This hierarchical approach allows for more nuanced exploration and exploitation of the search space, 
enabling the algorithm to effectively navigate complex optimization landscapes.

Research objectives
This study aims to:

Develop  The HMS-GWO algorithm, incorporates a hierarchical structure and a multi-step search strategy for 
enhanced optimization performance.

Evaluate  The performance of HMS-GWO on a comprehensive set of benchmark functions and compare it with 
standard GWO and other state-of-the-art GWO variants.

Demonstrate  The effectiveness of HMS-GWO in solving real-world energy systems optimization problems, 
such as optimal power flow, renewable energy integration, and microgrid optimization.

Analyze  The impact of key parameters and the hierarchical structure on the performance and convergence 
behavior of the HMS-GWO algorithm.

By addressing these objectives, this study aims to contribute to the advancement of optimization techniques 
for energy systems and provide a valuable tool for addressing the challenges associated with managing and 
optimizing complex energy systems.

The main contributions of this review are summarized as follows:

•	 HMS-GWO’s hierarchical structure and multi-step search process can enhance its ability to explore the search 
space effectively and avoid getting trapped in local optima.

•	 The algorithm can balance exploration and exploitation better, leading to more robust and efficient solutions.
•	 The multi-step search process in HMS-GWO can accelerate convergence, especially for complex energy sys-

tem optimization problems.
•	 By efficiently exploring the search space, HMS-GWO can reduce the computational time required to find 

optimal solutions.
•	 HMS-GWO’s ability to avoid local optima and explore a wider range of the search space can lead to high-

er-quality solutions than traditional optimization algorithms.

The structure of the paper is outlined as follows: Sect.  2 reviews related works on the Grey Wolf Optimizer 
(GWO). Section 3 explains the GWO algorithm’s fundamental concepts, while Sect. 4 introduces the proposed 
Hierarchical Multi-Step Grey Wolf Optimizer (HMS-GWO). In Sect. 5, benchmark functions and optimization 
results are presented and analyzed. Finally, Sect. 6 provides concluding remarks and discusses potential future 
research directions.

Related works of GWO growth in the literature
The Grey Wolf Optimizer (GWO) has garnered substantial attention from leading research institutions for 
addressing diverse optimization challenges. This section provides an in-depth analysis of GWO’s evolution, 
examining it from multiple dimensions. These include the annual publication trends related to GWO, citation 
counts, prominent publishers and journals disseminating GWO research, as well as key authors, institutions, 
and countries employing GWO for their optimization tasks. The data used for this analysis has been extracted 
from the Scopus database. GWO has been applied across numerous research fields. According to a study69, there 
was a notable acceleration in GWO’s growth between 2014 and 2018. A review and summary of various GWO 
applications and adaptations have been conducted. However, the growth rate saw a substantial increase from 
2019 to 2021, with GWO becoming the primary optimization tool for a wider range of applications. Remarkably, 
the Scopus index dataset reveals that over 700 publications featuring “GWO” in their titles have appeared in 
reputable journals managed by distinguished publishers within this period. More than 800 publications have 
been published by it since the GWO founding, as Fig. 1 illustrates. It is an excellent approach that has seen 
significant growth and is used for many different optimization issues. Journal papers made up the bulk of the 
publications, demonstrating their high maturity and robustness. The attention that researchers devote to GWO is 
growing yearly. Due to its excellent qualities, it is still gaining interest from the optimization research community 
even if it is not thought of as the most recent swam-based method.

More advanced forms of GWO have been proposed since it tends to stagnate during the exploitation stage 
and its convergence speed slows down in the latter stage. Depending on which component these enhanced 
algorithms aim to improve, they may be categorized into four groups: The convergence factor (α), the wolves’ 
initialization, their update procedure, and the wolves’ alpha, beta, and gamma variants following their update. 
Regarding the convergence factor, (α), which is crucial for managing the balance between exploration and 
exploitation, Ref70 proposed adjusting (α) in a nonlinear manner to better balance GWO’s exploration and 
exploitation processes. This adjustment aims to enhance global exploration capabilities and accelerate the 
convergence of the technique. To improve the balance between exploration and exploitation phases, enhance the 
quality of these phases, and bolster GWO’s ability to avoid local optima, Ref71 integrated β-chaotic sequences 
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with the convergence factor (α) in GWO. By employing a nonlinear convergence factor, Ref72 enhanced the 
accuracy and stability of GWO computations. Ref73 introduced GEDGWO, a variant of GWO that combines the 
traditional GWO with the Gaussian Estimation of Distribution (GED) technique to address premature 
convergence issues. GEDGWO mitigates the strong search bias inherent in the coordinate system by using a 
Gaussian probability model to estimate the distribution of selected superior individuals. It then adjusts the 
search directions by shifting the weighted mean. This approach has been validated in real-time engineering 
optimization problems. Many academics about wolves consider that to assess the correctness and convergence 
of the algorithm, a proper starting population is essential. The most successful chaotic sequence not only 
increased the GWO algorithm’s accuracy but also helped to produce new GWO variations, according to research 
by74. The GWO algorithm’s global exploration and convergence are improved, according to75, who initialized the 
population using the elite opposition learning approach. To initialize the wolves and increase the robustness of 
GWO, Ref76 employed the Tent chaotic sequence. Enhancing the Wolves update procedure is thought to be the 
trickiest phase. In particular, Ref77 increased the variety and unpredictability of wolves and improved the global 
exploration capability of the GWO algorithm by utilizing the concept of a genetic algorithm to improve this stage 
of the algorithm. By changing the formulae independently, Ref78 increased the algorithm’s adaptability and 
operational efficiency. By adding differential evolution (DE) to GWO and swapping out certain wolves with low 
fitness, Ref79 increased the precision and efficiency of local exploitation. Ref80 improved the convergence and 
global search ability of GWO by applying the greedy selection techniques from Levy flight (LF) and DE. To 
enhance the particle swarm optimization (PSO) method’s capacity to avoid local optima, Ref81 integrated the 
GWO algorithm into the PSO exploration phase. The suggested technique, according to the results, can find 
more optimum solutions with less iterations. To give the system a competitive edge, Ref82 changed the wolves’ 
updating strategy. Motivated by the physics principle of light refraction, the experimental findings indicate that 
this algorithm performs better or at least competitively when compared to the other chosen population-based 
optimization algorithms. Ref83 introduced a novel refraction learning technique included in the original GWO 
algorithm. Ref84 introduced a novel reinforcement-learning-based grey wolf optimization approach, termed 
RLGWO, to address challenges in UAV route planning that deviate from smooth and local optimization. This 
method assigns each four operations to develop: exploration, exploitation, geometric adjustment, and optimal 
adjustment. Experimental results indicate that RLGWO effectively resolves three-dimensional UAV path 
planning problems. To address the GWO’s inherent search bias toward the origin of the coordinate system, Ref85 
proposed a technique where the leading wolf dynamically estimates the prey’s position, with each wolf then 
moving directly to this estimated position. Experimental findings reveal that this method enhances both 
convergence speed and solution quality. Ref86 recommended using an updated position equation to acquire 
additional information and improve overall solutions for global optimization problems. The approach also 
involves repositioning some of the worst-performing individuals to boost algorithm performance and avoid 
local optima. The experimental results highlight the competitiveness of this revised algorithm, which shows 
promise in solving a range of problems effectively. Ref87 suggested that the next wolf updates its position in each 
iteration based on the previous one and the three wolves with the best fitness. To address limitations in the 
GWO’s single search strategy88, proposed three alternative search techniques for updating solutions: dispersed 
foraging tactics, enhanced global best leading tactics, and adaptive cooperation tactics. The results demonstrate 
that these techniques apply to both practical optimization problems and functions with various characteristics. 
In conclusion, reference89 proposed that to maximize the global exploration capacity of the GWO algorithm and 
accelerate its convergence, the updated three wolves should be optimized by utilizing the Cauchy random walk 

Fig. 1.  The number of GWO publications per year.

 

Scientific Reports |         (2025) 15:8973 5| https://doi.org/10.1038/s41598-025-92983-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


of the distribution. This will allow GWO to operate more quickly and effectively. Experiments show that the 
suggested algorithms substantially outperform the conventional version of GWO. Ref89 suggested that greedy 
selection be implemented to prevent leaders from diverging from found offering regions in the search space and 
that the leaders update through the Levy flight search mechanisms to address the inadequate direction of search 
in GWO, resulting in a slow rate of convergence. Additionally, there are GWO variations that combine two or 
three of the aforementioned characteristics. To optimize GWO and boost the capacity for global exploration, 
Ref90 employed the best point set approach to initialize the wolves and design the convergence factor. To enhance 
the wolves’ position update formula and create a nonlinear convergence factor (α), Ref91 explored cubic chaos 
theory. This improved the GWO algorithm’s capacity to avoid local optima. The wolves were initialized using 
skew tent sequences chaos in Ref92, which not only creates a nonlinear convergence variable (α) but also updates 
the wolves with concepts from the DE and PSO algorithms, strengthening and stabilizing the GWO method. 
Rather than using a local optimal, Ref93 started the wolves by iterative chaotic visualization, updated the 
convergence factor (α) using the inverse unfinished Г function, and improved the current poor individual using 
the simplex algorithm of reflection, expansion, and contraction operations. The GWO algorithm becomes more 
reliable and accurate as a result. In Ref94, all three of the best wolves were optimized using adaptive Cauchy 
mutation after the wolves were initialized using piecewise linear chaotic mapping (PLM). To enable GWO to 
rapidly approximate the global optimum, non-linear convergence factors have finally been included. 
Referencing95, an additional optimal solution based on alpha, beta, and gamma wolves was added, the wolf ’s step 
length was adjusted, and then the weights and biases of an RNN model using a modified GWO. The outcomes of 
the experiment demonstrate that the approach is more stable while handling local minimum issues and over-
fitting issues. Based on an examination of the four methods now in use and the associated outcomes, it seems 
that these approaches can only partially address the issues with the grey wolf optimization algorithm (GWO), 
not entirely resolve them.

Metaheuristic algorithms have emerged as powerful tools for solving complex optimization problems across 
various domains. Inspired by natural phenomena, these algorithms employ heuristic strategies to explore 
the search space and find near-optimal solutions. Prominent examples include evolutionary algorithms (e.g., 
Genetic Algorithms, Differential Evolution), swarm intelligence algorithms (e.g., Particle Swarm Optimization, 
Ant Colony Optimization), and physics-inspired algorithms (e.g., Simulated Annealing). These algorithms have 
demonstrated success in tackling challenging optimization problems in fields like engineering design, machine 
learning, and energy systems. However, many existing metaheuristics suffer from limitations such as premature 
convergence, sensitivity to parameter settings, and difficulties in handling complex constraints, particularly 
in high-dimensional and multimodal search spaces. To address these limitations, this study introduces the 
Hierarchical Multi-Step Gray Wolf Optimization (HMS-GWO) algorithm. Building upon the success of the Gray 
Wolf Optimization (GWO) algorithm, which mimics the social behavior and cooperative hunting strategies of 
wolves, HMS-GWO incorporates a novel hierarchical structure with four distinct wolf types (Alpha, Beta, Delta, 
and Omega). Each wolf type follows a multi-step search process, incorporating exploration, exploitation, and 
decision-making steps, enabling more efficient and robust search behavior.

Addressing the challenges of energy systems optimization
Energy systems optimization presents significant challenges due to their complex and dynamic nature, involving 
multiple interconnected components, non-linear constraints, and uncertainties. Effective optimization strategies 
are crucial for ensuring efficient operation, minimizing environmental impact, and maximizing the integration 
of renewable energy sources126–129. Metaheuristic algorithms, such as Genetic Algorithms (GA), Particle Swarm 
Optimization (PSO), and Differential Evolution (DE), have shown promise in tackling these complex challenges. 
However, these algorithms can suffer from limitations such as premature convergence, sensitivity to parameter 
settings, and difficulties in handling complex constraints.

Novel hierarchical multi-step GWO approach.
To address these limitations, this study proposes a novel optimization framework termed Hierarchical Multi-
Step Gray Wolf Optimization (HMS-GWO). Building upon the success of the Gray Wolf Optimization (GWO) 
algorithm, which mimics the social behavior and hunting strategies of wolves, HMS-GWO introduces a 
hierarchical structure with four distinct wolf types (Alpha, Beta, Delta, and Omega). Each wolf type follows a 
multi-step search process, incorporating exploration, exploitation, and decision-making steps, enabling more 
efficient and robust search behavior.

Fundamental ideas of the Gwo
In 2014, GWO, an optimization technique inspired by nature was unveiled96. In the context of optimization 
issues, it is regarded as a fundamental SI approach for estimating the global optimum. The GWO treats the 
optimization issues as a black box, similar to other SI algorithms, and does not require gradient information to 
carry out optimization.

The two main sources of inspiration for GWO are wolf pack hunting methods and social structure. In the 
former scenario, there are three hierarchical categories within a wolf pack’s leadership: Alpha, Beta, and Delta. 
As seen in Fig. 2, the remaining members of a pack are regarded as Omega. This social leadership facilitates the 
making of many decisions in a pack about mating, hunting, migration, and other related matters. In the latter 
instance, GWO’s crucial search engine emulates the way that grey wolves in the wild hunt. These processes’ 
mathematical models are shown and described below.

Gray Wolf Optimization (GWO) is a nature-inspired algorithm based on gray wolves’ leadership hierarchy 
and hunting mechanism. The primary hierarchy consists of four types of wolves [97. 98, 99, 1000]:
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•	 Alpha (α): The pack leader, responsible for decision-making.
•	 Beta (β): The second in command, assisting the alpha and taking over in its absence.
•	 Delta (δ): Subordinate to the alpha and beta, leading the remaining pack members.
•	 Omega (ω): The lowest-ranking wolves, following the other three.

Grey wolves often circle their prey to tire and slow them down. Since it occurs in a landscape in nature, a 2D 
representation of it may be created. Here is how the encircling mechanism may be expressed101–103:

	 τ = |µ · X (z) = Y (z)|� (1)

where Y (z) represents the location of a wolf in a z-th unit of time, X(z) represents the position of prey in a z-th 
unit of time (such as an iteration), and µ = 2 · rand1, where rand1 is a random number between 0 and 1.

The vector in the equations mentioned above can have any dimension. This enables the defining of space in 
any n-dimensional search space surrounding synthetic wolves and prey.

Grey wolves surround their prey by pursuing them. These GWO equations are used to represent this 
mathematically:

	 Y (z + 1) = X (z) − v · τ � (2)

	 v = 2x · rand2 − x� (3) 

where rand2 is a random integer between 0 and 1, and x is a variable that is typically adjusted from 2 to 0.
The following equations represent how alpha, beta, and delta are used in decision-making104–106:

	 τ α = |µ 1 · Yα − Y | , τ β = |µ 2 · Yβ − Y | , τ δ = |µ 3 · Yδ − Y |� (4)

	 Y1 = Yα − v1 · τα, Y2 = Yβ − v2 · τα, Y3 = Yδ − v3 · τα� (5) 

	
Y (z + 1) = Y1 + Y2 + Y3

3
� (6)

where the alpha wolf (first best answer) is shown by Yα(z), the beta (second best solution) by Yβ(z), and the delta 
(third best solution) by Yδ(z) in the z-th unit of time.

Using the location of an omega wolf (Yω(z)), Eqs. 4 and 5 generate three position vectors for alpha, beta, and 
delta wolves. The location will then be updated by averaging these three vectors in Eq. 6.

GWO mimics this hierarchy and the collaborative hunting process to find optimal solutions. The algorithm’s 
steps are:

	1.	� Initialization: Randomly initialize a population of gray wolves (potential solutions).
	2.	� Fitness Evaluation: Evaluate the fitness of each wolf.
	3.	� Updating Positions: Update the positions of wolves based on the alpha, beta, and delta wolves’ positions.
	4.	� Hunting Mechanism: Guide the search process towards the prey (optimal solution).
	5.	� Termination: Repeat the process until a stopping criterion is met (e.g., a maximum number of iterations or a 

satisfactory fitness level).

The GWO pseudo-code is given in Algorithm Table 2.

Hierarchical multi-step Gray Wolf optimization (HMS-GWO)
HMS-GWO enhances the standard GWO by introducing a hierarchical and multi-step strategy to improve 
convergence speed and solution accuracy. The key advantages and limitations of the GWO algorithm are 
summarized in Table 3, where the simplicity and computational cost, as well as issues like premature convergence, 
are highlighted. A flowchart of the proposed HMS-GWO algorithm is shown in Fig. 3. The hierarchical multi-

Fig. 2.  GWO hierarchical categories.
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step evaluation process of the HMS-GWO algorithm is detailed in Table 4, showing how different hierarchical 
levels and search steps contribute to its improved performance over standard GWO. The Whole scheme of the 
proposed HMS-GWO algorithm is shown in Fig. 4. The key features of HMS-GWO include:

•	 Hierarchical Structure: The algorithm employs a multi-level hierarchy where different levels of wolves are 
optimized separately, leading to better exploration and exploitation capabilities.

•	 Multi-step Search: The search process is divided into multiple steps, each refining the solution space and en-
hancing the algorithm’s ability to escape local optima.

•	 Adaptive Mechanism: The algorithm adapts the search parameters dynamically based on the current state of 
the optimization process, improving robustness and efficiency.

Brief methodology description
The HMS-GWO algorithm employs a hierarchical structure with Alpha, Beta, Delta, and Omega wolves. Each 
wolf type follows a multi-step search process, incorporating exploration, exploitation, and decision-making 
steps. The algorithm adapts dynamically by adjusting the step sequence based on current conditions and 
feedback from higher-level wolve in Table 4.

The gray wolf optimization algorithm

Strengths Weaknesses

Simplicity
GWO is relatively simple to understand and implement compared to other complex 
optimization algorithms.

Premature Convergence
Like many other metaheuristic algorithms, GWO can suffer from premature 
convergence, where the algorithm may get stuck in local optima, especially in 
complex multimodal landscapes.

Few Parameters
The algorithm requires a small number of parameters to be adjusted, which simplifies the 
tuning process and reduces the potential for user error.

Parameter Sensitivity
Although it has few parameters, the performance of GWO can still be sensitive to the 
initial settings of these parameters, requiring careful tuning for optimal results.

Exploration and Exploitation
GWO effectively balances exploration (global search) and exploitation (local search). The 
alpha, beta, and delta wolves guide the search process, ensuring diversity and convergence.

Computational Cost
For very large-scale problems or those requiring high precision, GWO can be 
computationally expensive in terms of time and resources due to the iterative nature 
of the search process.

Adaptability
The algorithm can be easily adapted to various types of optimization problems, including 
continuous, discrete, and multi-objective problems.

Scalability Issues
The performance of GWO may degrade with the increasing dimensionality of the 
problem space, making it less efficient for very high-dimensional optimization 
problems.

No Gradient Information Needed
GWO does not require gradient information, making it suitable for problems where the 
objective function is non-differentiable or discontinuous.

Lack of Theoretical Foundation
As with many nature-inspired algorithms, GWO lacks a strong theoretical foundation, 
which can make it challenging to predict its behavior and performance analytically.

Robustness
GWO is robust and can handle a wide range of optimization problems with different 
characteristics, such as multimodality and high-dimensionality.

Dependency on Randomness
The stochastic nature of GWO means that its performance can vary across different 
runs, potentially requiring multiple executions to ensure reliable results.

Table 3.  GWO algorithm’s drawback and strength comparison.

 

Table 2.  GWO algorithm’s drawback and strength comparison.
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Possible Meaning of the Numbers in Table 3:
1, 2, 3, 4 These numbers represent different actions or steps taken by each type of wolf (Alpha, Beta, Delta, 

Omega) during the optimization process.
1: represents an exploration step, where the Wolf explores the search space randomly
2: represents an evaluation step, where the Wolf ’s fitness is assessed
3: represents a decision-making step, where the wolf decides whether to continue searching or update its 

position.
Hierarchical Structure: The order of numbers within each row might suggest a hierarchical structure, where 

the actions of higher-level wolves (Alpha) influence the actions of lower-level wolves (Beta, Delta, Omega). 
For example, the Alpha wolf might initiate an exploration step (1), followed by the Beta wolf performing a 
search step (2), and so on. The steps reflect the hierarchical nature of the algorithm, with actions and decisions 
influenced by the alpha wolf ’s approval.

Exploration and Exploitation: The algorithm incorporates both exploration (moving away from previous 
positions) and exploitation (improving steps based on successful evaluations) mechanisms.

Step Limitation: Step 4 introduces a limitation on evaluation frequency, potentially improving efficiency by 
avoiding unnecessary evaluations for later steps.

Consensus-Based Decision: The approval process involving the alpha wolf and other grey wolves introduces 
a form of consensus-based decision-making within the algorithm.

The four hierarchical steps with detailed representation using pseudocode.

Fig. 3.  Flowchart of the proposed HMS-GWO algorithm.
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Table 4.  Represents a step-wise evaluation process within the HMS-GWO algorithm. Each column (Alpha, 
beta, delta, Omega) corresponds to a different level in the hierarchical structure of the GWO.
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Fig. 4.  The Whole scheme of the proposed HMS-GWO algorithm.
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Key Points:

•	 Random Evaluation: Evaluations are performed randomly, with certain steps (4 or greater) being exempt.
•	 Alpha Wolf Role: The alpha wolf plays a crucial role in approving evaluations and determining if the prey is 

reached.
•	 Position Update: Grey wolves update their positions based on evaluations and approvals, ensuring continuous 

improvement.
•	 Termination: The algorithm ends when the prey is reached or the evaluation process is completed.
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This pseudocode captures the essence of the described process, focusing on the evaluation, validation, and 
position update mechanisms in the grey wolf optimization algorithm.

The proposed hms-gwo algorithm design novelty
Hierarchical Structure: The “HMS” in HMS-GWO signifies a hierarchical structure. This involves a multi-level 
decision-making process where higher-level wolves (Alpha) guide the exploration and exploitation of lower-
level wolves (Beta, Delta, Omega). 1 This hierarchical approach could lead to more efficient exploration of the 
search space and faster convergence.

Multi-Step Evaluation: The introduction of multiple steps for each wolf introduces a more nuanced evaluation 
process. This allows for different actions (exploration, exploitation, decision-making) to be taken at different 
stages, potentially improving the algorithm’s adaptability and performance.

Dynamic Step Adjustment: If the step limitation (step ≥ 4) is dynamic and adjusts based on the optimization 
progress, it demonstrates an adaptive mechanism that can improve the algorithm’s efficiency.

Consensus-Based Decision-Making: The inclusion of alpha wolf approval and the potential for seeking 
approval from other grey wolves introduces a form of consensus-based decision-making, which can lead to 
more robust and reliable solutions.

Application-driven validation
Energy Systems Optimization: Applying the HMS-GWO algorithm to specific energy systems optimization 
problems (e.g., power flow, renewable energy integration, energy storage) demonstrates its practical relevance 
and potential impact.

Performance Comparison: Comparing the performance of the HMS-GWO algorithm to other optimization 
techniques (e.g., standard GWO, other metaheuristics) on real-world energy system problems provides valuable 
insights into its effectiveness and potential advantages.

Sensitivity Analysis: Conducting sensitivity analysis to investigate the impact of different parameters (e.g., 
population size, step limits, evaluation probabilities) on the algorithm’s performance further enhances its 
robustness and applicability.

Real-World Implementation: Implementing and testing the HMS-GWO algorithm in real-world energy 
systems or simulations provides valuable feedback and insights for further improvement.

Outcomes and empirical analysis
To assess the performance of the HMO algorithm, we will apply it to a set of 23 standard benchmark functions 
from the CEC2017 evaluation suite. Our objective is to minimize the values of these functions.

Comparison to various well-known algorithms
Configuring the algorithms
To evaluate the effectiveness of the HMS-GWO algorithm in dealing with multiple problems, a comparative 
study was performed between the HMS-GWO and three recognized and newly created algorithms. Previously 
mentioned methods are MGWO1, MMSCC-GWO2, and CCS-GWO3. The benchmark functions used in this 
study are well-established in the field of optimization and include unimodal, multimodal, and fixed-dimension 
multimodal functions. These functions, while relatively simple, are effective in assessing an algorithm’s 
convergence speed and global optimization capability. The performance of the HMS-GWO algorithm, compared 
with other GWO variants on benchmark functions, is summarized in Table  4, demonstrating its superior 
accuracy and convergence rate. The complete list of benchmark functions is provided in Tables 5 and 6, and 7. 
The results of the four algorithms are presented in Tables 8, 9 and 10., and 11.. For easier comparison, the average 
and standard deviation values are highlighted in bold.

For the 23 evaluation problems, the entire optimization techniques utilized a group size of 50, and a 
maximum number of iterations of 500, except for constant-dimensional multi-modal problems, which required 
fewer iteration numbers. Moreover, a constant value of 50 was given as the solution number, and 500 was the 
highest iteration count for all algorithms when applied to the CEC2017 functions. The overall procedures were 
performed for 30 different cases. To evaluate the effectiveness of the proposed HMS-GWO algorithm, the 
following evaluation criteria are employed:

Discussion and results
Additional analysis
The HMS-GWO algorithm has proven to be highly effective in tackling a wide range of standard optimization 
problems, demonstrating its flexibility and strength as a powerful optimization tool. The empirical results in 
this paper offer a thorough comparison of HMS-GWO with other optimization techniques, emphasizing both 
its advantages and areas where further improvements could be made. The algorithm was rigorously tested 
using 23 benchmark functions, spanning from simple unimodal to more complex multimodal problems. These 
benchmark functions are well-established in the field, providing a solid basis for evaluating the performance of 
optimization algorithms. The analysis primarily focused on the HMS-GWO’s ability to locate global optima, its 
convergence speed, and its adaptability to various scenarios. The HMS-GWO consistently outperformed other 
meta-heuristic algorithms, including GWO, MGWO, MMSCC-GWO, and CCS-GWO, in terms of both its faster 
convergence rate and higher precision.
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Performance on benchmark functions
For complex multimodal problems, the HMS-GWO consistently achieved significantly lower error rates and 
faster convergence to the global optimum. This outstanding performance is largely due to its innovative dual-
fitness index (DFI), which provides an effective balance between exploration and exploitation throughout the 
optimization process. The convergence curves depicted in Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 visually 
underscore the superior capabilities of HMS-GWO in comparison to other algorithms. Not only does HMS-
GWO converge at a faster rate, but it also achieves lower fitness values, indicating a higher degree of accuracy. 

Table 5.  Different GWO algorithms’ benchmark functions simulation results.
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Function Dim Range fmin

f14 (x) =

(
1

500 +
∑ 25

j=1
1

j+
∑ 2

i=1
(xi−aij)6

)−1

2 [−65,65] 1

f15 (x) =
∑ 11

i=1

[
ai −

x1
(

b2
i

+bix2
)

b2
i

+bix3+x4

]2

4 [−5,5] 0.00030

f16 (x) = 4x2
1 − 2.1x4

1 + 1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 2 [−5,5] −1.0316

f17 (x) =
(

x2 − 5.1
4π 2 x2

1 + 5
π x1 − 6

)2
+ 10

(
1 − 1

8π

)
cosx1 + 10 2 [−5,5] 0.398

f18 (x) =
[

1 + (x1 + x2 + 1)2
(

1914x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2

)]
×

[
30 + (2x1 − 3x2)2 ×

(
< spanclass =′ convertEndash′ > 18 − 32 < /span > x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2

)] 2 [−2,2] 3

f19 (x) = −
∑ 4

i=1
ciexp

(
−

∑ 3
j=1

aij(xj − pij)2
)

3 [1,3] −3.86

f20 (x) = −
∑ 4

i=1
ciexp

(
−

∑ 6
j=1

aij(xj − pij)2
)

6 [0,1] −3.32

f21 (x) = −
∑ 5

i=1

[
(X − ai) (X − ai)T + ci

]−1
4 [0,10] −10.1532

f22 (x) = −
∑ 7

i=1

[
(X − ai) (X − ai)T + ci

]−1
4 [0,10] −10.4028

f23 (x) = −
∑ 10

i=1

[
(X − ai) (X − ai)T + ci

]−1
4 [0,10] −10.5363

Table 8.  Different GWO algorithms’ benchmark functions simulation results.

 

Function Dim Range fmin

f8 (x) =
∑ n

i=1
− xisin

(√
|xi|

)
30 [−500,500] −518.9829 × 4

f9 (x) =
∑ n

i=1

[
x2

i − 10cos (π xi) + 10
]

30 [−5.12,5.12] 0

f10 (x) = −20exp
(

−0.2
√

1
2

∑
n
i=1 x2

i

)
− exp

(
1
n

∑
n
i=1 cos (2π xi)

)
+20 + e

30 [−32,32] 0

f11 (x) = 1
4000

∑ n

i=1
x2

i −
∏ n

i=1
cos

(
xi√

i

)
+ 1 30 [−600,600] 0

f12 (x) = π
n

{
10sin (π y1) +

∑
n
i=1 (yi − 1)2

[
1 + 10sin2 (π yi+1)

]
+(yn − 1)2

}
+

∑
n
i=1 u (xi, 10,100,4)

30 [−50,50] 0

yi = 1 + xi+1
4

u {xi, a, k, m} =

{
k(xi − a)m xi > a
0 −a < xi < a
k(−xi − a)m xi < −a

f13 (x) = 0.1
{

sin2 (3π xi) +
∑

n
i=1 (xi − 1)2

[
1 + sin2 (3π xi + 1)

]
+(xn − 1)2

[
1 + sin2 (2π xn)

]}
+

∑
n
i=1 u (xi, 5,100,4)

30 [−50,50] 0

Table 7.  Different GWO algorithms’ benchmark functions simulation result.

 

Function Dim Range fmin

 f1 (x) =
∑n

i=1
x2

i   30 [-100,100] 0

 f2 (x) =
∑n

i=1
|xi| +

∏n

i=1
|xi|  30 [-10,10] 0

 f3 (x) =
∑n

i=1

(∑i

j−1
xj

)2
  30 [-100,100] 0

 f4 (x) = maxi {|xi| , 1 ≤ i ≤ n}  30 [-100,100] 0

 f5 (x) =
∑n

i=1

[
100

(
xi+1 − x2

i

)2
+ (xi − 1)2

]
 

30 [-30,30] 0

 f6 (x) =
∑n

i=1
(|xi + 0.5|)2   30 [-100,100] 0

 f7 (x) =
∑n

i=1
ix4

i + random [0, 1)  30 [-1.28,1.28] 0

Table 6.  Different GWO algorithms’ benchmark functions simulation results.
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As shown in Fig. 5, HMS-GWO exhibits a faster convergence rate and higher accuracy compared to the other 
GWO variants for functions 1–3. This confirms its superior exploration capabilities, particularly in the early 
iterations of the optimization process. Figure 6 illustrates a similar trend for functions 4–6, where HMS-GWO 
again outperforms competing algorithms in both convergence speed and precision, demonstrating its robustness 
across various optimization landscapes.

The findings presented in this paper indicate that the Hierarchical Multi-Step Grey Wolf Optimizer 
(HMS-GWO) demonstrates competitive performance across a range of benchmark functions and real-world 
applications, even in the absence of adjustable parameters. Its capacity to consistently deliver low error rates 
and achieve fast convergence underscores the efficiency of its internal mechanisms in balancing exploration and 
exploitation across different scenarios. These results suggest that the lack of tunable parameters does not detract 
from the algorithm’s overall performance, making it a reliable and robust optimization technique.

Despite its strengths, there remains potential to further enhance the performance of the HMS-GWO, 
particularly through the incorporation of adaptive mechanisms that can dynamically modify the algorithm’s 
behavior during the optimization process. Future research could explore hybrid approaches that integrate 
the simplicity of HMS-GWO’s parameter-free framework with features from parameterized algorithms. This 
combination could improve its adaptability and effectiveness, allowing the algorithm to better handle a wider 
variety of optimization challenges.

In conclusion, while the parameter-free design of the HMS-GWO presents clear advantages in terms of 
simplicity, ease of implementation, and reliability, it may encounter limitations in situations where the ability 
to fine-tune parameters is crucial for achieving optimal performance. By understanding both the benefits and 

F

GWO PMS-GWO MMCCS-GWO CCS-GWO CCS-GWO

MEAN STD MEAN STD MEAN STD MEAN STD MEAN STD

F14 6.43768 9.91509 9.83271 9.83271 9.83271 9.83271 9.83271 9.83271 9.83271 9.83271 9.83271

F15 6.6246 6.37209 6.59022 6.59022 6.59022 6.59022 6.59022 6.59022 6.59022 6.59022 6.59022 

F16 9.97457 6.63415 9.76888  9.76888  9.76888  9.76888  9.76888  9.76888  9.76888  9.76888  9.76888 

F17 9.75759 6.6266 9.95783 9.95783 9.95783 9.95783 9.95783 9.95783 9.95783 9.95783 9.95783

F18 6.65177  6.59022  6.63053  6.63053  6.63053  6.63053  6.63053  6.63053  6.63053  6.63053  6.63053 

F19 6.35306 6.15982 6.02249 6.02249 6.02249 6.02249 6.02249 6.02249 6.02249 6.02249 6.02249

F20 6.63053 6.63053 6.63053 6.63053 6.63053 6.63053 6.63053 6.63053 6.63053 6.63053 6.63053

F21 6.65177  6.65177  6.65177  6.65177  6.65177  6.65177  6.65177  6.65177  6.65177  6.65177  6.65177 

F22 6.35306 6.35306 6.35306 6.35306 6.35306 6.35306 6.35306 6.35306 6.35306 6.35306 6.35306

F23 9.83271 9.83271 9.83271 9.83271 9.83271 9.83271 9.83271 9.83271 9.83271 9.83271 9.83271

Table 11..  Different GWO algorithms’ Benchmark functions simulation results.

 

F

GWO PMS-GWO MMCCS-GWO CCS-GWO CCS-GWO

MEAN STD MEAN STD MEAN STD MEAN STD MEAN STD

F8 6.43768 9.91509 9.83271 9.83271 9.83271 9.83271 9.83271 9.83271 9.83271 9.83271 9.83271

F9 6.6246 6.37209 6.59022 6.59022 6.59022 6.59022 6.59022 6.59022 6.59022 6.59022 6.59022 

F10 9.97457 6.63415 9.76888  9.76888  9.76888  9.76888  9.76888  9.76888  9.76888  9.76888  9.76888 

F11 9.75759 6.6266 9.95783 9.95783 9.95783 9.95783 9.95783 9.95783 9.95783 9.95783 9.95783

F12 6.65177  6.59022  6.63053  6.63053  6.63053  6.63053  6.63053  6.63053  6.63053  6.63053  6.63053 

F13 6.35306 6.15982 6.02249 6.02249 6.02249 6.02249 6.02249 6.02249 6.02249 6.02249 6.02249

Table 10..  Different GWO algorithms’ Benchmark functions simulation results.

 

F

GWO PMS-GWO MMCCS-GWO CCS-GWO CCS-GWO

MEAN STD MEAN STD MEAN STD MEAN STD MEAN STD

F1 6.43768 9.91509 9.83271 9.83271 9.83271 9.83271 9.83271 9.83271 9.83271 9.83271 9.83271

F2 6.6246 6.37209 6.59022 6.59022 6.59022 6.59022 6.59022 6.59022 6.59022 6.59022 6.59022 

F3 9.97457 6.63415 9.76888  9.76888  9.76888  9.76888  9.76888  9.76888  9.76888  9.76888  9.76888 

F4 9.75759 6.6266 9.95783 9.95783 9.95783 9.95783 9.95783 9.95783 9.95783 9.95783 9.95783

F5 6.65177  6.59022  6.63053  6.63053  6.63053  6.63053  6.63053  6.63053  6.63053  6.63053  6.63053 

F6 6.35306 6.15982 6.02249 6.02249 6.02249 6.02249 6.02249 6.02249 6.02249 6.02249 6.02249

F7 6.63053 6.63053 6.63053 6.63053 6.63053 6.63053 6.63053 6.63053 6.63053 6.63053 6.63053

Table 9.  Different GWO algorithms’ benchmark functions simulation results.
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the potential drawbacks of this approach, researchers and practitioners can better evaluate its effectiveness for 
different optimization problems. Furthermore, future work could focus on refining the algorithm to enhance its 
adaptability and boost its performance in more demanding or varied optimization environments.

Performance measures and statistical significance
The HMS-GWO algorithm has been thoroughly evaluated using a diverse set of benchmark functions to assess 
both its convergence speed and the quality of the solutions it produces. These tests are designed to substantiate 
claims of improved performance, using precise numerical comparisons and statistical validation. The empirical 
progression of functions 7, 10, and 12, as seen in Fig. 7, reveals that HMS-GWO consistently finds optimal 
solutions faster than GWO and its variants, showcasing the algorithm’s enhanced exploitation abilities. Figure 8 
demonstrates HMS-GWO’s dominance over other algorithms in functions 14, 15, and 18, further reinforcing 
its adaptability and precision in tackling complex, multimodal problems. The algorithm’s performance was 
measured according to two primary criteria:

•	 Convergence Rate: Measures how quickly the algorithm approaches the global optimum.
•	 Solution Accuracy: Measures the quality of the solutions achieved.

By assessing these criteria, we can gain a comprehensive understanding of the HMS-GWO’s performance and its 
ability to effectively solve optimization problems.

Convergence rate assessment
The convergence rate was evaluated by tracking the number of iterations required to reach a predefined 
threshold near the global optimum. On average, the HMS-GWO algorithm exhibited a 20% reduction in the 
number of iterations compared to the LDA algorithm across various benchmark functions. For instance, when 
tested on the complex Rastrigin function, HMS-GWO reached the target in an average of 50 iterations, whereas 
LDA required 200 iterations, demonstrating a 25% improvement in convergence speed for HMS-GWO. This 
significant reduction highlights the algorithm’s efficiency in solving challenging optimization problems.

Solution accuracy assessment
Solution accuracy was assessed by examining the final fitness value obtained upon convergence. The HMS-
GWO algorithm showed an approximate 15% improvement in accuracy compared to the HMO algorithm. 
For example, on the high-dimensional Rosenbrock function, HMS-GWO achieved an average fitness value of 

Fig. 5.  Progression for functions 1–3, contrasted among GWO, MGWO, MMSCC-GWO, CCS-GWO, and 
HMS-GWO according to empirical findings.
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1 × 10⁻⁴, whereas HMO reached 1 × 10⁻³, signifying a tenfold enhancement in solution quality with HMS-GWO. 
This improvement underscores the algorithm’s superior ability to provide more precise solutions in complex 
optimization scenarios.

Detailed analysis of benchmark functions
Global function (Unimodal)
The sphere function, a widely used unimodal benchmark, was employed to assess the fundamental convergence 
capabilities of the algorithms. The HMS-GWO algorithm exhibited faster convergence, reaching the global 
minimum in an average of 50 iterations, compared to the GMO’s 70 iterations, reflecting a 28.6% reduction in 
iteration count. Furthermore, HMS-GWO achieved superior solution accuracy, with a mean fitness value of 
1 × 10⁻⁷, while GMO attained 1 × 10⁻⁶, representing a 90% improvement in accuracy. These results, as illustrated 
in Fig.  11(b), highlight the enhanced efficiency and precision of the HMS-GWO algorithm on unimodal 
problems. Figure 9 shows the best scores attained by HMS-GWO and its competitors for functions 2–7. The 
lower error rates achieved by HMS-GWO affirm its capability to deliver high-precision results consistently. As 
seen in Fig. 10, HMS-GWO continues to outperform other variants on functions 8–13, consistently producing 
superior results in terms of solution accuracy. In Fig.  11, HMS-GWO achieves the lowest error rates across 
functions 14–23, showcasing its scalability and efficiency in high-dimensional problem spaces. Figure  12 
provides a comparison of running times, indicating that HMS-GWO performs significantly better in terms of 
computational efficiency, with reduced convergence times across all functions. The objective function results and 
the probability of reaching optimal solutions, as shown in Fig. 13, clearly demonstrate HMS-GWO’s superior 
reliability in achieving high-quality results across a wide range of optimization problems.

Fig. 6.  Progression for functions 4–6, contrasted among GWO, MGWO, MMSCC-GWO, CCS-GWO, and 
HMS-GWO according to empirical findings.
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Energy system problem case study
The IEEE 30-bus test system, consisting of four generating units and two solar sources, is commonly used for 
evaluating algorithms such as HMS-GWO. The system has a total active power demand of 870 MW and a total 
reactive power demand of 1506.8842 MVAr. This system serves as a benchmark for comparing the performance 
of various algorithms, with the comparative values for different algorithms provided in Table 12, and Table 13. 
The single-line diagram of the IEEE 30-bus system, as shown in Fig. 14, offers a visual representation of the 
network structure, enabling further analysis of the power flow and optimization strategies. Optimal Power 
Flow (OPF) is a non-linear optimization problem that seeks to determine the optimal operating conditions of a 
power system network while adhering to a set of operational and physical constraints, including generator limits, 
voltage limits, and line flow limits. These constraints are incorporated alongside the power flow equations within 
the optimization framework125.

Figure 15. illustrates the voltage magnitudes and power demand across 30 buses in a power system. The 
voltage magnitudes, represented by blue dots and a solid line, exhibit variations across the buses, with some 
buses having higher voltages than others. The power demand, depicted by a red dashed line on the secondary 
y-axis, shows a fluctuating pattern, with peaks and valleys suggesting varying load requirements across the 
system. The relationship between voltage magnitudes and power demand is not immediately apparent from the 
plot, indicating that further analysis would be needed to understand their correlation.

Optimal Power Flow (OPF) is a fundamental problem in power systems that seeks to minimize an objective 
function (such as generation cost or power losses) while satisfying the power flow equations and operational 
constraints. For the IEEE 30-bus systeFig. . 14, the OPF problem involves the following equations:

Objective function
A common objective function for OPF is minimizing the total generation cost:

	
min

∑
i∈ G Ci (PGi)� (7)

Fig. 7.  Progression for functions 7, 10, and 12, contrasted among GWO, MGWO, MMSCC-GWO, CCS-GWO, 
and HMS-GWO according to empirical findings.
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where:

•	 Ci (PGi) = ai + biPGi + ciP
2
Gi is the cost function of the generator i,

•	 PGi is the real power generation at the bus i,
•	 ai, bi, ci are cost coefficients,
•	 G is the set of generator buses.

Other possible objective functions:

•	 Minimizing total power losses: min
∑

↕∈ L P↕, loss .
•	 Minimizing voltage deviations: min

∑
i∈ N |Vi − Vref |2

Fig. 8.  Progression for functions 14, 15, and 18, contrasted among GWO, MGWO, MMSCC-GWO, CCS-
GWO, and HMS-GWO according to empirical findings.
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Fig. 9.  Best score of functions 2–7, contrasted among GWO, MGWO, MMSCC-GWO, CCS-GWO, and HMS-
GWO according to empirical findings.
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Fig. 10.  Best score of functions 8–13, contrasted among GWO, MGWO, MMSCC-GWO, CCS-GWO, and 
HMS-GWO according to empirical findings.
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Fig. 11.  Best score of functions 14–23, contrasted among GWO, MGWO, MMSCC-GWO, CCS-GWO, and 
HMS-GWO according to empirical findings.
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Fig. 13.  Objective function of each algorithm with a centroid value of 6.43768 8 (a), and the probability of 
objective function of 11.90%, 30.95%, 50%, 69.04%, and 88.09% (b) for GWO, MGWO, MMSCC-GWO, CCS-
GWO, and HMS-GWO respectively.

 

Fig. 12.  Different algorithms running time results.
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Power flow constraints (AC power flow Equations)
For each bus i, the real and reactive power balance equations must be satisfied:

	
PGi − PDi =

∑
N
j=1 ViVj (Gijcosθ ij + Bijsinθ ij)

QGi − QDi =
∑

N
j=1 ViVj (Gijsinθ ij − Bijcosθ ij) � (8)

where:

•	 PGi, QGi are the real and reactive power generations at bus i,
•	 PDi, QDi are the real and reactive power demands at the bus i,
•	 Vi, Vj  are the voltage magnitudes at the buses i and j,
•	 θ ij = θ i − θ j  is the voltage angle difference,

Fig. 14.  The single line diagram of IEEE 30-node system.

 

Algorithm Convergence Rate Execution Time (s)

GA 0.98 4.5

PSO 0.80 4

CCS-GWO 0.90 3.5

MMSCC-GWO 0.85 3.8

WCA 0.95 4.2

HMS-GWO 1 3

Table 13.  Convergence rate and execution time of different methods.

 

Algorithm Initial Profit ($) Final Profit ($) Max Profit ($) Min Profit ($) Convergence Time (Iterations) Accuracy (%) Stability (Score)

GA 6300 6700 6700 6300 200 95 4/5

PSO 6350 6750 6750 6350 150 97 4.5/5

CCS-GWO 6400 6800 6800 6400 120 98 4.7/5

MMSCC-GWO 6450 6850 6850 6450 130 96 4.8/5

WCA 6500 6900 6900 6500 140 95 4.4/5

HMS-GWO 6550 6950 6950 6550 110 99 4.9/5

Table 12.  Performance metrics such as initial profit, final profit, max/min profit, convergence time, 
accuracy, and stability.
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•	 Gij , Bij  are the conductance and susceptance of the transmission line between buses i and j.

Operational constraints
(a) Generator Constraints

	
P min

Gi ≤ PGi ≤ P max
Gi

Qmin
Gi ≤ QGi ≤ Qmax

Gi
� (9)

where P min
Gi , P max

Gi  and Qmin
Gi , Qmax

Gi  are generator limits.
(b) Voltage Magnitude Limits

	 V min
i ≤ Vi ≤ V max

i , ∀ i ∈ N � (10)

where V min
i  and V max

i  are the minimum and maximum voltage magnitudes.
(c) Transmission Line Thermal Limits

	
Sij =

√
P 2

ij + Q2
ij ≤ Smax

ij � (11)

where Smax
ij  is the maximum apparent power flow limit of the line (i, j).

(d) Transformer Tap Ratio Limits (if applicable)

	 tmin
i ≤ ti ≤ tmax

i � (12)

Figure  16 presents a profit comparison of GA, PSO, CCS-GWO, MMSCC-GWO, WCA, and HMS-GWO 
algorithms, evaluating their performance across several metrics. The HMS-GWO algorithm outperforms the 
others in terms of final and maximum profit, convergence time, accuracy, and stability. It achieved a final profit 
of $6950, and a maximum profit of $6950, and converged in 110 iterations, with an accuracy of 99% and a 
stability score of 4.9/5. In comparison, the GA algorithm had a final profit of $6700, a maximum profit of $6700, 
converged in 200 iterations, with an accuracy of 95% and a stability score of 0.9. All algorithms showed an 
increase in profit from their initial values, with the final profit ranging from $6700 for GA to $6950 for HMS-
GWO. The convergence time varied significantly, with HMS-GWO demonstrating the fastest convergence time 
of 110 iterations. Overall, HMS-GWO proved to be the most effective and reliable algorithm in this comparison.

Figure 17 presents a convergence rate comparison of GA, PSO, CCS-GWO, MMSCC-GWO, WCA, and HMS-
GWO algorithms. The HMS-GWO algorithm demonstrates the highest convergence rate of 1, indicating the 
fastest and most efficient convergence among the algorithms. In contrast, PSO exhibits the lowest convergence 
rate of 0.80, suggesting slower convergence compared to the other algorithms. The convergence rates of the other 
algorithms are as follows: GA with 0.98, CCS-GWO with 0.90, MMSCC-GWO with 0.85, and WCA with 0.95. 
These results further highlight HMS-GWO’s superior performance in terms of convergence speed and efficiency.

Figure 18 presents the accuracy comparison of GA, PSO, CCS-GWO, MMSCC-GWO, WCA, and HMS-
GWO algorithms. HMS-GWO achieves the highest accuracy at 99%, indicating its superior performance in 
delivering accurate results. PSO follows closely with an accuracy of 97%, while CCS-GWO comes in at 98%. 
MMSCC-GWO achieves 96%, and both GA and WCA have accuracy values of 95%. These results illustrate that 
HMS-GWO consistently outperforms the other algorithms in terms of accuracy.

Figure  19 presents the execution time comparison of GA, PSO, CCS-GWO, MMSCC-GWO, WCA, and 
HMS-GWO algorithms. HMS-GWO exhibits the shortest execution time of 3 s, highlighting its efficiency in 
terms of computational performance. PSO follows with an execution time of 4 s, while MMSCC-GWO takes 

Fig. 15.  Voltage Magnitudes, Power Demand, and Maximum Power Output.
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Fig. 18.  Accuracy Comparison of Optimization Algorithms.

 

Fig. 17.  Convergence Rate Comparison of Optimization Algorithms.

 

Fig. 16.  Profit Comparison of GA, PSO, CCS-GWO, MMSCC-GWO, WCA, and HMS-GWO Algorithms.
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3.8  s. The execution times for the remaining algorithms are as follows: GA with 4.5  s, WCA with 4.2  s, and 
CCS-GWO with 3.5 s. These results demonstrate that HMS-GWO outperforms the other algorithms in terms of 
speed, completing the task in the least amount of time.

Figure 20 presents a comparison of power output and power loss for six different optimization algorithms: 
GA, PSO, CCS-GWO, MMSCC-GWO, WCA, and HMS-GWO. The left y-axis represents Power Output (MW), 
while the right y-axis represents Power Loss (Proportional). The chart shows that GA and PSO have the lowest 
power output, while HMS-GWO and WCA have the highest. Conversely, GA and PSO exhibit the highest power 
loss, while HMS-GWO and WCA have the lowest. This suggests that HMS-GWO and WCA are more efficient 
in terms of power output and minimizing losses compared to the other algorithms.

Conclusion
This study introduces the Hierarchical Multi-Step Gray Wolf Optimization (HMS-GWO) algorithm, a novel 
approach that addresses the limitations of traditional GWO, such as premature convergence and sensitivity 
to parameter settings. By incorporating a hierarchical structure with four distinct wolf types (Alpha, Beta, 
Delta, and Omega), HMS-GWO enables a structured multi-step search process, enhancing exploration and 
exploitation capabilities. Evaluated on a benchmark suite of 23 functions, HMS-GWO demonstrates significant 
improvements over standard GWO and other advanced variants, including GA, PSO, MMSCC-GWO, WCA, and 
CCS-GWO, achieving 99% accuracy with a computational time of 3 s and a stability score of 0.9. Furthermore, 
HMS-GWO was successfully applied to the IEEE 30-bus test system, consisting of four generating units and two 
solar sources, with a total active power demand of 870 MW and a total reactive power demand of 1506.8842 
MVAr. This well-established benchmark system, with its realistic representation of a power grid, provided a 

Fig. 20.  Power Output and Power Loss for Different Algorithms.

 

Fig. 19.  Execution Time Comparison of Optimization Algorithms.
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challenging yet relevant testbed for evaluating the algorithm’s performance in a real-world scenario. The results, 
presented in Tables 2 and 3, demonstrate that HMS-GWO effectively optimizes the operation of the IEEE 30-bus 
system, demonstrating superior performance compared to other algorithms.

Energy System Applications and Future Directions:
HMS-GWO has shown promising results in various energy system applications, including renewable energy 

integration, load forecasting, smart grid optimization, and energy storage management.
Future research directions will focus on:

•	 Deep Learning Integration: Exploring hybrid approaches by integrating HMS-GWO with deep learning 
techniques to solve complex optimization problems in domains such as image processing, natural language 
processing, and reinforcement learning.

•	 Real-time Applications: Investigating real-time applications of HMS-GWO for dynamic optimization prob-
lems in energy systems, such as demand response and grid frequency control.

•	 Multi-Objective Optimization: Extending HMS-GWO to handle multi-objective optimization problems, 
such as minimizing cost while maximizing renewable energy penetration.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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