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Hierarchical multi step Gray Wolf
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systems optimization
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Gray Wolf Optimization (GWO), inspired by the social hierarchy and cooperative hunting behavior of
gray wolves, is a widely used metaheuristic algorithm for solving complex optimization problems in
various domains, including engineering design, image processing, and machine learning. However,
standard GWO can suffer from premature convergence and sensitivity to parameter settings. To
address these limitations, this paper introduces the Hierarchical Multi-Step Gray Wolf Optimization
(HMS-GWO) algorithm. HMS-GWO incorporates a novel hierarchical decision-making framework that
more closely mimics the observed hierarchical behavior of wolf packs, enabling each wolf type (Alpha,
Beta, Delta, and Omega) to execute a structured multi-step search process. This hierarchical approach
enhances exploration and exploitation, improves solution diversity, and prevents stagnation. The
performance of HMS-GWO is evaluated on a benchmark suite of 23 functions, showing a 99% accuracy,
with a computational time of 3 s and a stability score of 0.9. Compared to other advanced optimization
techniques such as standard GA, PSO, MMSCC-GWO, WCA, and CCS-GWO, HMS-GWO demonstrates
significantly better performance, including faster convergence and improved solution accuracy. While
standard GWO suffers from premature convergence, HMS-GWO mitigates this issue by employing

a multi-step search process and better solution diversity. These results confirm that HMS-GWO
outperforms other techniques in terms of both convergence speed and solution quality, making it a
promising approach for solving complex optimization problems across various domains with enhanced
robustness and efficiency.

Keywords Energy systems optimization, Power system optimization, Renewable energy integration,
Hierarchical optimization, Metaheuristic, Multi-Objective optimization

Meta-heuristicalgorithms (MHA) represent sophisticated methods that systematically investigate the search space
of optimization problems, aiming to discover near-optimal solutions!. These algorithms are broadly classified into
two categories: local search techniques (LST) and population-based techniques (PBT)??. Furthermore, they can
be categorized based on their foundational concepts, such as evolutionary, physical, chemical, human-based, and
swarm intelligence methodologies**. Local search techniques (LST) initiate with an initial solution and iteratively
refine it by examining neighboring solutions. This process continues either until a predefined number of iterations
is completed or the algorithm converges to a local optimal solution. Notable examples of local search algorithms
include simulated annealingﬁ, tabu search’, greedy randomized adaptive search procedure (GRASP)8, variable
neighborhood search’, iterated local search!!, B-hill climbing'?, and the vortex search technique'?. Evolutionary-
based techniques, a subset of population-based techniques (PBT), involve the initial generation of a population
of solutions, which are progressively improved through iterative processes such as reproduction, mutation, and
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natural selection. Examples of these techniques include the genetic algorithm!“, evolutionary programming!,
genetic programming'®, differential evolution!”, biogeography-based optimization'¥, and probability-based
incremental learning (PBIL)Y. Physically- and chemically-inspired techniques derive their principles from
physical laws and chemical interactions. Among these are methods such as plasma generation optimization®,
ray optimization®!, solar system algorithm??, equilibrium optimizer??, gravitational search algorithm?*, billiards-
inspired optimization®®, Henry gas solubility optimization?®, simulated annealing®, vortex search algorithm'2,
and chemical reaction optimization?”. Social or human-inspired techniques are largely modeled after societal
behaviors and human actions. Notable examples include harmony search?, brainstorm optimization®®, heap-
based optimizer’, teaching-learning-based optimization®!, political optimizer®?, Ali Baba and the forty thieves
algorithm??, group teaching optimization algorithm*, Ebola optimization search algorithm??, football game-
inspired algorithm?®, coronavirus herd immunity optimizer®, arithmetic optimization algorithm, stock
exchange trading optimization®, and poor and rich optimization. Swarm intelligence (SI) algorithms are often
modeled after the collective behaviors found in various animal species, such as birds, frogs, bats, rats, bees, ants,
and other organisms*. These algorithms typically replicate the process by which swarms search for food, with
individual members relying on their interactions with each other or indirect environmental cues (known as
stigmergy) to guide the search®!. This leads to a self-organizing system where cooperation occurs without central
control. The algorithm usually begins with an initial swarm of potential solutions, which can be categorized into
leaders and followers. The leaders guide the search, while the followers adjust their positions based on the leaders’
movements. Through these interactions, the swarm moves collectively toward finding an optimal solution.
The most widely used swarm intelligence (SI) algorithms include Ant Colony Optimization*?, Particle Swarm
Optimization®, Krill Herd Optimization*, Cuckoo Search®, Firefly Algorithm*, White Shark Optimizer?’,
Chicken Swarm Optimization?®, Snake Optimizer*®, Ant Lion Optimizer°!, Elephant Herding Optimization®,
Sparrow Search Algorithm®, Horse Herd Optimization®!, Dragonfly Algorithm®, Moth-Flame Optimization®,
Whale Optimization Algorithm®’, Komodo Mlipir Algorithm®, Chimp Optimization Algorithm®®, Dwarf
Mongoose Optimization Algorithm®, Lemurs Optimizer®!, and Grey Wolf Optimizer (GWO)®, along with
many other SI-based techniques. The fastest-growing SI algorithm, the Grey Wolf Optimizer (GWO), was
presented by Mirjalili et al.®*, to mimic the hunting habits of natural grey pack populations®. Because of its
many remarkable qualities, which include flexibility, soundness and completeness, memory lessness, derivative
freedom, parameter and derivative freedom, and ease of adaptation, the GWO is a very potent optimizer. When
the GWO first begins searching, it focuses heavily on the exploration phase. However, throughout the final
run, it gradually shifts the positions of the top three leaders to give the exploitation phase more emphasis. As a
result, GWO can handle many optimization issues from several research domains, including image processing,
networking and communication, engineering, and more®>. Much work has been done on the core architecture of
the Grey Wolf Optimizer (GWO) to address the intricate search space properties of real-world and combinatorial
optimization problems, especially those with highly limited, non-convex, and nonlinear features. It can now
successfully handle scenarios with severe constraints and multi-objective issues thanks to these enhancements.
In addition, GWO has been improved by adding components from several optimization techniques to improve
its efficiency. Hybridization with additional optimization algorithms has also been used to improve the quality
of GWO-generated solutions by striking a balance between exploration and exploitation capabilities. Several
examples of GWO have been proposed in the literature, and each one is appropriate for a particular use in
research®-%8. The Grey Wolf Optimizer (GWO) begins by initializing a random population of grey wolves,
which are organized into four hierarchical tiers: Alpha, Beta, Delta, and Omega. These tiers reflect the wolves’
roles within the hunting process, with the Alpha being the best solution, followed by the Beta and Delta wolves.
The Omega wolves serve as the followers, guided by their attraction to the top three wolves—Alpha, Beta, and
Delta. In the optimization phase, GWO calculates the distances between the Omega wolves and the leading
wolves, using this information to adjust the wolves’ positions through behaviors such as tracking, encircling, and
chasing prey. The algorithm leverages two key parameters to maintain a balance between exploration (searching
for new solutions) and exploitation (refining existing solutions), ensuring an effective optimization process®.
In recent years, the Grey Wolf Optimizer (GWO) has garnered considerable interest from researchers, with its
applications spanning a wide range of optimization problems in fields such as science, engineering, and industry.
However, GWO has certain limitations, particularly its tendency to become stagnant during the exploitation
phase and its slow convergence rate in the later stages of optimization. To address these issues, we revisited
the natural hunting behaviors of grey wolves. In real-world scenarios, frequent interactions between the leader
wolves and the Omega wolves occur throughout the hunting process, a behavior known as “judging prey”
This interaction can be leveraged to enhance GWO’s performance. Building on this observation, we propose
incorporating this behavior into the GWO framework, leading to the development of an improved optimization
algorithm called the Hierarchical Multi-Step Grey Wolf Optimizer (HMS-GWO).

The study presents a novel approach for system identification of small-scale fixed-wing Unmanned Aerial
Vehicles (UAVs) using metaheuristic optimization techniques'?’. Thirteen widely used optimization algorithms
are evaluated over ten independent runs, with their performance statistically ranked using Friedman’s test
based on fitness values!®. The results reveal the superior performance of the L-SHADE algorithm, achieving
mean R-squared errors of 0.5465 and 0.0487 for longitudinal and lateral dynamics, respectively, surpassing
other algorithms!®. Additionally, the study explores the application of the Grey Wolf Optimizer (GWO),
Stochastic Fractal Search (SFS), and Adaptive Differential Evolution with Optional External Archive (JADE)
for optimizing planar frames under AISC-LRFD standards!'”. It also introduces the 2-Archive Multi-Objective
Cuckoo Search (MOCS2arc) algorithm, an enhanced version of the Multi-Objective Cuckoo Search (MOCS),
designed to optimize eight truss structures and six ZDT test functions while balancing mass and compliance.
MOCS2arc incorporates a dual-archive strategy to enhance solution diversity and optimization efficiency'!!.
Comparative evaluations against MOSCA, MODA, MOWHO, MOMFO, MOMPA, NSGA-II, DEMO, and
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MOCS demonstrate MOCS2arc’s dominance in generating diverse and optimal solutions, supported by
Friedman’s and Wilcoxon’s statistical tests. Beyond UAV system identification, the study proposes a meta-
learning-based alternating minimization (MLAM) technique for addressing nonconvex optimization problems,
particularly bilinear inverse and nonlinear Gaussian mixture model challenges. Unlike traditional alternating
minimization (AM) strategies, MLAM employs meta-learning to adaptively minimize global losses, enhancing
performance while maintaining algorithmic interpretability. In the context of network function virtualization
(NFV), the study introduces an SFC deployment optimization (SFCDO) algorithm based on breadth-first
search (BFS), which optimizes virtual network function (VNF) performance!!!. SECDO prioritizes minimal-
hop paths to improve network resource utilization and reduce end-to-end latency, outperforming greedy and
simulated annealing algorithms. Another key contribution is a mobile robot-based thermal comfort monitoring
system for indoor environments. By integrating RGB-D and thermal imaging, the system estimates occupant
comfort in real-time using machine learning, achieving high accuracy in experiments involving 20 participants
over 80 h!'2. Furthermore, offshore wind turbine (OWT) control is advanced through an Active Rotary Inertia
Driver (ARID) system utilizing a type-3 fuzzy logic (T3-FLS) multiple-model. This adaptive control framework,
optimized using fractional-order stability theorems and linear matrix inequalities (LMI), effectively mitigates
structural challenges in OWTs caused by dynamic wind, wave, and current loads. Simulation and experimental
validation confirm its superiority over traditional control methods'!? in Table 1.

Addressing limitations of traditional GWO in energy systems optimization

Gray Wolf Optimization (GWO), inspired by the social hierarchy and cooperative hunting behavior of wolves,
has emerged as a powerful metaheuristic algorithm for solving complex optimization problems. However, the
standard GWO algorithm, despite its effectiveness, faces certain limitations, such as premature convergence
and sensitivity to parameter settings, which can hinder its performance in complex and dynamic environments.
These limitations become particularly pronounced in energy systems optimization problems, characterized by
high dimensionality, nonlinearity, and the presence of multiple constraints.

Tracking | Computational | Convergence Exploration vs. Hybridization
Algorithm | Efficiency | Speed Cost Behavior Scalability | Exploitation Potential Applications Limitations
Can get e Sensitive to parameter
1152024 High Moderate | High stuck in local | Moderate Balance'd but slow High Optimization, tuning, premature
: adaptation ML, scheduling
optima convergence
Can be g}::‘:;zatlon, Sensitive to
116, 2025 Moderate | High Moderate trapped in High Strong exploitation tendency | High eneineerin parameters, premature
local optima defign & convergence
; sceilr;itt)ieve Engineering, Sensitive to
172025 High Moderate | Moderate High Balanced High machine parameters, struggles
to control
parameters learning with noisy data
Slow but Combinatorial | Slow convergence,
1182024 High Low Moderate avoidslocal | Moderate | More exploration-oriented | Moderate problems, requires careful
optima scheduling tuning
Can be slow i‘;}iﬁﬁ%’n Sensitive to problem
19 2024 High Moderate | High Low Strong exploitation tendency | Moderate uling, structure, high
to converge combinatorial 4 d
optimization memory deman
Can be Obtimizati
sensitive to . ptimization, Slow convergence
120 2023 Moderate | Moderate | Moderate Moderate Balanced ngh engineering, N
parameter schedulin parameter-sensitive
tuning s
Can get Engineerin Sensitive to
1212023 High Moderate | Moderate stuck in local | High Balanced High o tgimizatio%; AJ | parameters, premature
optima P ? convergence
Strong
122 . . convergence . . . MPPT, Instability due to Lévy
,2025 High High Moderate with Lévy High Strong exploration High scheduling, AT | flight randomness
flights
. Good but . . . Optimization, Slow in large-scale
123
,2024 High Moderate | Moderate slower High Strong exploration High MPPT, Al problems
124,2025 High Fast Moderate Strong High Balanced High MPPT, AL Premature
energy systems | convergence risk
AL MPPT, Parameter tunin
125,2023 High Fast Moderate Strong High Balanced High pattern sensitivit 8
recognition Y
MPPT, Al .
126) . Strong and . Improved balance over . it Requires parameter
2023 Very High | Very Fast | Moderate stable High GWO High ::;;vyable fine-tuning

Table 1. Comparative analysis: of both classical and cutting-edge methods.
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Novel hierarchical multi-Step GWO approach

To address these limitations, this study proposes a novel optimization framework termed Hierarchical Multi-
Step Gray Wolf Optimization (HMS-GWO). The HMS-GWO algorithm introduces a hierarchical structure
with four distinct wolf types (Alpha, Beta, Delta, and Omega) and incorporates a multi-step search strategy for
each wolf. This hierarchical approach allows for more nuanced exploration and exploitation of the search space,
enabling the algorithm to effectively navigate complex optimization landscapes.

Research objectives
This study aims to:

Develop The HMS-GWO algorithm, incorporates a hierarchical structure and a multi-step search strategy for
enhanced optimization performance.

Evaluate The performance of HMS-GWO on a comprehensive set of benchmark functions and compare it with
standard GWO and other state-of-the-art GWO variants.

Demonstrate The effectiveness of HMS-GWO in solving real-world energy systems optimization problems,
such as optimal power flow, renewable energy integration, and microgrid optimization.

Analyze The impact of key parameters and the hierarchical structure on the performance and convergence
behavior of the HMS-GWO algorithm.

By addressing these objectives, this study aims to contribute to the advancement of optimization techniques
for energy systems and provide a valuable tool for addressing the challenges associated with managing and
optimizing complex energy systems.

The main contributions of this review are summarized as follows:

o HMS-GWOrs hierarchical structure and multi-step search process can enhance its ability to explore the search
space effectively and avoid getting trapped in local optima.

« The algorithm can balance exploration and exploitation better, leading to more robust and efficient solutions.

o The multi-step search process in HMS-GWO can accelerate convergence, especially for complex energy sys-
tem optimization problems.

« By efficiently exploring the search space, HMS-GWO can reduce the computational time required to find
optimal solutions.

o HMS-GWO’s ability to avoid local optima and explore a wider range of the search space can lead to high-
er-quality solutions than traditional optimization algorithms.

The structure of the paper is outlined as follows: Sect. 2 reviews related works on the Grey Wolf Optimizer
(GWO). Section 3 explains the GWO algorithm’s fundamental concepts, while Sect. 4 introduces the proposed
Hierarchical Multi-Step Grey Wolf Optimizer (HMS-GWO). In Sect. 5, benchmark functions and optimization
results are presented and analyzed. Finally, Sect. 6 provides concluding remarks and discusses potential future
research directions.

Related works of GWO growth in the literature

The Grey Wolf Optimizer (GWO) has garnered substantial attention from leading research institutions for
addressing diverse optimization challenges. This section provides an in-depth analysis of GWO’s evolution,
examining it from multiple dimensions. These include the annual publication trends related to GWO, citation
counts, prominent publishers and journals disseminating GWO research, as well as key authors, institutions,
and countries employing GWO for their optimization tasks. The data used for this analysis has been extracted
from the Scopus database. GWO has been applied across numerous research fields. According to a study®’, there
was a notable acceleration in GWO’s growth between 2014 and 2018. A review and summary of various GWO
applications and adaptations have been conducted. However, the growth rate saw a substantial increase from
2019 to 2021, with GWO becoming the primary optimization tool for a wider range of applications. Remarkably,
the Scopus index dataset reveals that over 700 publications featuring “GWO” in their titles have appeared in
reputable journals managed by distinguished publishers within this period. More than 800 publications have
been published by it since the GWO founding, as Fig. 1 illustrates. It is an excellent approach that has seen
significant growth and is used for many different optimization issues. Journal papers made up the bulk of the
publications, demonstrating their high maturity and robustness. The attention that researchers devote to GWO is
growing yearly. Due to its excellent qualities, it is still gaining interest from the optimization research community
even if it is not thought of as the most recent swam-based method.

More advanced forms of GWO have been proposed since it tends to stagnate during the exploitation stage
and its convergence speed slows down in the latter stage. Depending on which component these enhanced
algorithms aim to improve, they may be categorized into four groups: The convergence factor (a), the wolves’
initialization, their update procedure, and the wolves’ alpha, beta, and gamma variants following their update.
Regarding the convergence factor, (a), which is crucial for managing the balance between exploration and
exploitation, Ref’® proposed adjusting (a) in a nonlinear manner to better balance GWO’s exploration and
exploitation processes. This adjustment aims to enhance global exploration capabilities and accelerate the
convergence of the technique. To improve the balance between exploration and exploitation phases, enhance the
quality of these phases, and bolster GWO’s ability to avoid local optima, Ref”! integrated p-chaotic sequences
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Fig. 1. The number of GWO publications per year.

with the convergence factor (a) in GWO. By employing a nonlinear convergence factor, Ref’> enhanced the
accuracy and stability of GWO computations. Ref”* introduced GEDGWO, a variant of GWO that combines the
traditional GWO with the Gaussian Estimation of Distribution (GED) technique to address premature
convergence issues. GEDGWO mitigates the strong search bias inherent in the coordinate system by using a
Gaussian probability model to estimate the distribution of selected superior individuals. It then adjusts the
search directions by shifting the weighted mean. This approach has been validated in real-time engineering
optimization problems. Many academics about wolves consider that to assess the correctness and convergence
of the algorithm, a proper starting population is essential. The most successful chaotic sequence not only
increased the GWO algorithm’s accuracy but also helped to produce new GWO variations, according to research
by’. The GWO algorithm’s global exploration and convergence are improved, according to”>, who initialized the
population using the elite opposition learning approach. To initialize the wolves and increase the robustness of
GWO, Ref”® employed the Tent chaotic sequence. Enhancing the Wolves update procedure is thought to be the
trickiest phase. In particular, Ref’” increased the variety and unpredictability of wolves and improved the global
exploration capability of the GWO algorithm by utilizing the concept of a genetic algorithm to improve this stage
of the algorithm. By changing the formulae independently, Ref’® increased the algorithn’s adaptability and
operational efficiency. By adding differential evolution (DE) to GWO and swapping out certain wolves with low
fitness, Ref”” increased the precision and efficiency of local exploitation. Ref® improved the convergence and
global search ability of GWO by applying the greedy selection techniques from Levy flight (LF) and DE. To
enhance the particle swarm optimization (PSO) method’s capacity to avoid local optima, Ref?! integrated the
GWO algorithm into the PSO exploration phase. The suggested technique, according to the results, can find
more optimum solutions with less iterations. To give the system a competitive edge, Ref®? changed the wolves’
updating strategy. Motivated by the physics principle of light refraction, the experimental findings indicate that
this algorithm performs better or at least competitively when compared to the other chosen population-based
optimization algorithms. Ref®? introduced a novel refraction learning technique included in the original GWO
algorithm. Ref3 introduced a novel reinforcement-learning-based grey wolf optimization approach, termed
RLGWO, to address challenges in UAV route planning that deviate from smooth and local optimization. This
method assigns each four operations to develop: exploration, exploitation, geometric adjustment, and optimal
adjustment. Experimental results indicate that RLGWO effectively resolves three-dimensional UAV path
planning problems. To address the GWO’s inherent search bias toward the origin of the coordinate system, Ref®®
proposed a technique where the leading wolf dynamically estimates the prey’s position, with each wolf then
moving directly to this estimated position. Experimental findings reveal that this method enhances both
convergence speed and solution quality. Ref®® recommended using an updated position equation to acquire
additional information and improve overall solutions for global optimization problems. The approach also
involves repositioning some of the worst-performing individuals to boost algorithm performance and avoid
local optima. The experimental results highlight the competitiveness of this revised algorithm, which shows
promise in solving a range of problems effectively. Ref®” suggested that the next wolf updates its position in each
iteration based on the previous one and the three wolves with the best fitness. To address limitations in the
GWOs single search strategy®®, proposed three alternative search techniques for updating solutions: dispersed
foraging tactics, enhanced global best leading tactics, and adaptive cooperation tactics. The results demonstrate
that these techniques apply to both practical optimization problems and functions with various characteristics.
In conclusion, reference® proposed that to maximize the global exploration capacity of the GWO algorithm and
accelerate its convergence, the updated three wolves should be optimized by utilizing the Cauchy random walk
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of the distribution. This will allow GWO to operate more quickly and effectively. Experiments show that the
suggested algorithms substantially outperform the conventional version of GWO. Ref® suggested that greedy
selection be implemented to prevent leaders from diverging from found offering regions in the search space and
that the leaders update through the Levy flight search mechanisms to address the inadequate direction of search
in GWO, resulting in a slow rate of convergence. Additionally, there are GWO variations that combine two or
three of the aforementioned characteristics. To optimize GWO and boost the capacity for global exploration,
Ref*® employed the best point set approach to initialize the wolves and design the convergence factor. To enhance
the wolves” position update formula and create a nonlinear convergence factor (a), Ref’! explored cubic chaos
theory. This improved the GWO algorithm’s capacity to avoid local optima. The wolves were initialized using
skew tent sequences chaos in Ref®?, which not only creates a nonlinear convergence variable (a) but also updates
the wolves with concepts from the DE and PSO algorithms, strengthening and stabilizing the GWO method.
Rather than using a local optimal, Ref®® started the wolves by iterative chaotic visualization, updated the
convergence factor (a) using the inverse unfinished I' function, and improved the current poor individual using
the simplex algorithm of reflection, expansion, and contraction operations. The GWO algorithm becomes more
reliable and accurate as a result. In Ref®, all three of the best wolves were optimized using adaptive Cauchy
mutation after the wolves were initialized using piecewise linear chaotic mapping (PLM). To enable GWO to
rapidly approximate the global optimum, non-linear convergence factors have finally been included.
Referencing95, an additional optimal solution based on alpha, beta, and gamma wolves was added, the wolf’s step
length was adjusted, and then the weights and biases of an RNN model using a modified GWO. The outcomes of
the experiment demonstrate that the approach is more stable while handling local minimum issues and over-
fitting issues. Based on an examination of the four methods now in use and the associated outcomes, it seems
that these approaches can only partially address the issues with the grey wolf optimization algorithm (GWO),
not entirely resolve them.

Metaheuristic algorithms have emerged as powerful tools for solving complex optimization problems across
various domains. Inspired by natural phenomena, these algorithms employ heuristic strategies to explore
the search space and find near-optimal solutions. Prominent examples include evolutionary algorithms (e.g.,
Genetic Algorithms, Differential Evolution), swarm intelligence algorithms (e.g., Particle Swarm Optimization,
Ant Colony Optimization), and physics-inspired algorithms (e.g., Simulated Annealing). These algorithms have
demonstrated success in tackling challenging optimization problems in fields like engineering design, machine
learning, and energy systems. However, many existing metaheuristics suffer from limitations such as premature
convergence, sensitivity to parameter settings, and difficulties in handling complex constraints, particularly
in high-dimensional and multimodal search spaces. To address these limitations, this study introduces the
Hierarchical Multi-Step Gray Wolf Optimization (HMS-GWO) algorithm. Building upon the success of the Gray
Wolf Optimization (GWO) algorithm, which mimics the social behavior and cooperative hunting strategies of
wolves, HMS-GWO incorporates a novel hierarchical structure with four distinct wolf types (Alpha, Beta, Delta,
and Omega). Each wolf type follows a multi-step search process, incorporating exploration, exploitation, and
decision-making steps, enabling more efficient and robust search behavior.

Addressing the challenges of energy systems optimization

Energy systems optimization presents significant challenges due to their complex and dynamic nature, involving
multiple interconnected components, non-linear constraints, and uncertainties. Effective optimization strategies
are crucial for ensuring efficient operation, minimizing environmental impact, and maximizing the integration
of renewable energy sources'?6-12°. Metaheuristic algorithms, such as Genetic Algorithms (GA), Particle Swarm
Optimization (PSO), and Differential Evolution (DE), have shown promise in tackling these complex challenges.
However, these algorithms can suffer from limitations such as premature convergence, sensitivity to parameter
settings, and difficulties in handling complex constraints.

Novel hierarchical multi-step GWO approach.

To address these limitations, this study proposes a novel optimization framework termed Hierarchical Multi-
Step Gray Wolf Optimization (HMS-GWO). Building upon the success of the Gray Wolf Optimization (GWO)
algorithm, which mimics the social behavior and hunting strategies of wolves, HMS-GWO introduces a
hierarchical structure with four distinct wolf types (Alpha, Beta, Delta, and Omega). Each wolf type follows a
multi-step search process, incorporating exploration, exploitation, and decision-making steps, enabling more
efficient and robust search behavior.

Fundamental ideas of the Gwo

In 2014, GWO, an optimization technique inspired by nature was unveiled®. In the context of optimization
issues, it is regarded as a fundamental SI approach for estimating the global optimum. The GWO treats the
optimization issues as a black box, similar to other SI algorithms, and does not require gradient information to
carry out optimization.

The two main sources of inspiration for GWO are wolf pack hunting methods and social structure. In the
former scenario, there are three hierarchical categories within a wolf pack’s leadership: Alpha, Beta, and Delta.
As seen in Fig. 2, the remaining members of a pack are regarded as Omega. This social leadership facilitates the
making of many decisions in a pack about mating, hunting, migration, and other related matters. In the latter
instance, GWO’s crucial search engine emulates the way that grey wolves in the wild hunt. These processes’
mathematical models are shown and described below.

Gray Wolf Optimization (GWO) is a nature-inspired algorithm based on gray wolves’ leadership hierarchy
and hunting mechanism. The primary hierarchy consists of four types of wolves [97. 98, 99, 1000]:
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Fig. 2. GWO hierarchical categories.

« Alpha (a): The pack leader, responsible for decision-making.

o Beta (p): The second in command, assisting the alpha and taking over in its absence.

« Delta (§): Subordinate to the alpha and beta, leading the remaining pack members.

o Omega (w): The lowest-ranking wolves, following the other three.

Grey wolves often circle their prey to tire and slow them down. Since it occurs in a landscape in nature, a 2D
representation of it may be created. Here is how the encircling mechanism may be expressed!?!-1%%;

T =l X(2) =Y (2) M

where Y (z) represents the location of a wolf in a z-th unit of time, X(z) represents the position of prey in a z-th
unit of time (such as an iteration), and pu=2 - rand1, where rand1 is a random number between 0 and 1.

The vector in the equations mentioned above can have any dimension. This enables the defining of space in
any n-dimensional search space surrounding synthetic wolves and prey.

Grey wolves surround their prey by pursuing them. These GWO equations are used to represent this
mathematically:

Yez+1)=X(z)—v- T (2)
v=2x- rands — T (3)

where rand, is a random integer between 0 and 1, and x is a variable that is typically adjusted from 2 to 0.
The following equations represent how alpha, beta, and delta are used in decision-making!?4-106:

Ta =|p, Yo =Y/, T =lpy Yp =Y, Ts =|uy Ys =Y (4)
Yi=Ya—v1Ta, Yo=Y —v2 Ta, Ya=Ys —v3-74 (5)

Y + Y5 + Y5
Y(z+1):% (6)

where the alpha wolf (first best answer) is shown by Ya(z), the beta (second best solution) by YP(z), and the delta
(third best solution) by Y&8(z) in the z-th unit of time.

Using the location of an omega wolf (Yw(z)), Eqs. 4 and 5 generate three position vectors for alpha, beta, and
delta wolves. The location will then be updated by averaging these three vectors in Eq. 6.

GWO mimics this hierarchy and the collaborative hunting process to find optimal solutions. The algorithm’s
steps are:

Initialization: Randomly initialize a population of gray wolves (potential solutions).

Fitness Evaluation: Evaluate the fitness of each wolf.

Updating Positions: Update the positions of wolves based on the alpha, beta, and delta wolves’ positions.
Hunting Mechanism: Guide the search process towards the prey (optimal solution).

Termination: Repeat the process until a stopping criterion is met (e.g., a maximum number of iterations or a
satisfactory fitness level).

Al ol

The GWO pseudo-code is given in Algorithm Table 2.

Hierarchical multi-step Gray Wolf optimization (HMS-GWO)

HMS-GWO enhances the standard GWO by introducing a hierarchical and multi-step strategy to improve
convergence speed and solution accuracy. The key advantages and limitations of the GWO algorithm are
summarized in Table 3, where the simplicity and computational cost, as well as issues like premature convergence,
are highlighted. A flowchart of the proposed HMS-GWO algorithm is shown in Fig. 3. The hierarchical multi-
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Algorithm 1 The GWO Pseudo-Code

Initialization:

Main Loop:

solutions)

e For each wolf:

5. Return:

1.

2. Create an initial population of wolves (search agents)
3. [Initialize the main controlling parameters: a, A, and C
4

e While the termination criterion is not met:
e Evaluate the fitness of each wolf
e Determine the alpha, beta, and delta wolves (best, second best, and third best

e Update the coefficients A and C

= Update the wolf's position based on the alpha, beta, and delta wolves
» Evaluate the wolf's fitness

Update the alpha, beta, and delta wolves if necessary

Return the best solution found (alpha wolf)

Table 2. GWO algorithm’s drawback and strength comparison.

The gray wolf optimization algorithm

Strengths

‘Weaknesses

Simplicity
GWO is relatively simple to understand and implement compared to other complex
optimization algorithms.

Premature Convergence

Like many other metaheuristic algorithms, GWO can suffer from premature
convergence, where the algorithm may get stuck in local optima, especially in
complex multimodal landscapes.

Few Parameters
The algorithm requires a small number of parameters to be adjusted, which simplifies the
tuning process and reduces the potential for user error.

Parameter Sensitivity
Although it has few parameters, the performance of GWO can still be sensitive to the
initial settings of these parameters, requiring careful tuning for optimal results.

Exploration and Exploitation
GWO effectively balances exploration (global search) and exploitation (local search). The

alpha, beta, and delta wolves guide the search process, ensuring diversity and convergence.

Computational Cost

For very large-scale problems or those requiring high precision, GWO can be
computationally expensive in terms of time and resources due to the iterative nature
of the search process.

Adaptability
The algorithm can be easily adapted to various types of optimization problems, including
continuous, discrete, and multi-objective problems.

Scalability Issues

The performance of GWO may degrade with the increasing dimensionality of the
problem space, making it less efficient for very high-dimensional optimization
problems.

No Gradient Information Needed
GWO does not require gradient information, making it suitable for problems where the
objective function is non-differentiable or discontinuous.

Lack of Theoretical Foundation
As with many nature-inspired algorithms, GWO lacks a strong theoretical foundation,
which can make it challenging to predict its behavior and performance analytically.

Robustness
GWO is robust and can handle a wide range of optimization problems with different
characteristics, such as multimodality and high-dimensionality.

Dependency on Randomness
The stochastic nature of GWO means that its performance can vary across different
runs, potentially requiring multiple executions to ensure reliable results.

Table 3. GWO algorithm’s drawback and strength comparison.

step evaluation process of the HMS-GWO algorithm is detailed in Table 4, showing how different hierarchical
levels and search steps contribute to its improved performance over standard GWO. The Whole scheme of the
proposed HMS-GWO algorithm is shown in Fig. 4. The key features of HMS-GWO include:

« Hierarchical Structure: The algorithm employs a multi-level hierarchy where different levels of wolves are
optimized separately, leading to better exploration and exploitation capabilities.

o Multi-step Search: The search process is divided into multiple steps, each refining the solution space and en-
hancing the algorithm’s ability to escape local optima.

« Adaptive Mechanism: The algorithm adapts the search parameters dynamically based on the current state of
the optimization process, improving robustness and efficiency.

Brief methodology description

The HMS-GWO algorithm employs a hierarchical structure with Alpha, Beta, Delta, and Omega wolves. Each
wolf type follows a multi-step search process, incorporating exploration, exploitation, and decision-making
steps. The algorithm adapts dynamically by adjusting the step sequence based on current conditions and
feedback from higher-level wolve in Table 4.
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Fig. 3. Flowchart of the proposed HMS-GWO algorithm.

Possible Meaning of the Numbers in Table 3:

1, 2, 3, 4 These numbers represent different actions or steps taken by each type of wolf (Alpha, Beta, Delta,
Omega) during the optimization process.

1: represents an exploration step, where the Wolf explores the search space randomly

2: represents an evaluation step, where the Wolf’s fitness is assessed

3: represents a decision-making step, where the wolf decides whether to continue searching or update its
position.

Hierarchical Structure: The order of numbers within each row might suggest a hierarchical structure, where
the actions of higher-level wolves (Alpha) influence the actions of lower-level wolves (Beta, Delta, Omega).
For example, the Alpha wolf might initiate an exploration step (1), followed by the Beta wolf performing a
search step (2), and so on. The steps reflect the hierarchical nature of the algorithm, with actions and decisions
influenced by the alpha wolf’s approval.

Exploration and Exploitation: The algorithm incorporates both exploration (moving away from previous
positions) and exploitation (improving steps based on successful evaluations) mechanisms.

Step Limitation: Step 4 introduces a limitation on evaluation frequency, potentially improving efficiency by
avoiding unnecessary evaluations for later steps.

Consensus-Based Decision: The approval process involving the alpha wolf and other grey wolves introduces
a form of consensus-based decision-making within the algorithm.

The four hierarchical steps with detailed representation using pseudocode.
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Alpha (a) Beta (f8) Delta (8) Omega (w)

Alpha (—a) Delta (—4d)

B Wl W NN R R

Table 4. Represents a step-wise evaluation process within the HMS-GWO algorithm. Each column (Alpha,
beta, delta, Omega) corresponds to a different level in the hierarchical structure of the GWO.
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Fig. 4. The Whole scheme of the proposed HMS-GWO algorithm.
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1. Start

o Initialize the algorithm.

2. Position Update:

o Foreach grey wolf:
= Calculate the new position based on the current position and social

hierarchy (alpha, beta, delta wolves).

3. Random Evaluation:

o Foreach grey wolf:
= Randomly decide whether to evaluate the wolf’s steps.

= Ifthe step is 4 or greater:
= Skip evaluation.
= Else:

= Perform evaluation.

4. Evaluation Validation:

o Ifthe evaluation is valid:

= Move the grey wolf away from its previous position to explore new

areas.

5. Alpha W olf Approval:

o Ifthe evaluation is valid:

= Check if the alpha wolf approves the evaluation.

= Ifnotapproved by the alpha wolf:

= Seek approval from other grey wolves (excluding omega

wolves).

6. Prey Reached:
If the alpha wolf determines that the prey (optimal solution) is reached:

O
= Update the positions of all grey wolves by improving their steps.

7. Evaluation Completion:

o Ifthe step is less than 4:
= Verify and approve the step by the alpha wolf.

8. End

o Temminate the algorithm

Key Points:

Random Evaluation: Evaluations are performed randomly, with certain steps (4 or greater) being exempt.
Alpha Wolf Role: The alpha wolf plays a crucial role in approving evaluations and determining if the prey is

reached.
Position Update: Grey wolves update their positions based on evaluations and approvals, ensuring continuous

improvement.
Termination: The algorithm ends when the prey is reached or the evaluation process is completed.
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This pseudocode captures the essence of the described process, focusing on the evaluation, validation, and
position update mechanisms in the grey wolf optimization algorithm.

The proposed hms-gwo algorithm design novelty

Hierarchical Structure: The “HMS” in HMS-GWO signifies a hierarchical structure. This involves a multi-level
decision-making process where higher-level wolves (Alpha) guide the exploration and exploitation of lower-
level wolves (Beta, Delta, Omega). ! This hierarchical approach could lead to more efficient exploration of the
search space and faster convergence.

Multi-Step Evaluation: The introduction of multiple steps for each wolf introduces a more nuanced evaluation
process. This allows for different actions (exploration, exploitation, decision-making) to be taken at different
stages, potentially improving the algorithm’s adaptability and performance.

Dynamic Step Adjustment: If the step limitation (step>4) is dynamic and adjusts based on the optimization
progress, it demonstrates an adaptive mechanism that can improve the algorithmss efficiency.

Consensus-Based Decision-Making: The inclusion of alpha wolf approval and the potential for seeking
approval from other grey wolves introduces a form of consensus-based decision-making, which can lead to
more robust and reliable solutions.

Application-driven validation

Energy Systems Optimization: Applying the HMS-GWO algorithm to specific energy systems optimization
problems (e.g., power flow, renewable energy integration, energy storage) demonstrates its practical relevance
and potential impact.

Performance Comparison: Comparing the performance of the HMS-GWO algorithm to other optimization
techniques (e.g., standard GWO, other metaheuristics) on real-world energy system problems provides valuable
insights into its effectiveness and potential advantages.

Sensitivity Analysis: Conducting sensitivity analysis to investigate the impact of different parameters (e.g.,
population size, step limits, evaluation probabilities) on the algorithm’s performance further enhances its
robustness and applicability.

Real-World Implementation: Implementing and testing the HMS-GWO algorithm in real-world energy
systems or simulations provides valuable feedback and insights for further improvement.

Outcomes and empirical analysis
To assess the performance of the HMO algorithm, we will apply it to a set of 23 standard benchmark functions
from the CEC2017 evaluation suite. Our objective is to minimize the values of these functions.

Comparison to various well-known algorithms

Configuring the algorithms

To evaluate the effectiveness of the HMS-GWO algorithm in dealing with multiple problems, a comparative
study was performed between the HMS-GWO and three recognized and newly created algorithms. Previously
mentioned methods are MGWO!, MMSCC-GWO?, and CCS-GWO?. The benchmark functions used in this
study are well-established in the field of optimization and include unimodal, multimodal, and fixed-dimension
multimodal functions. These functions, while relatively simple, are effective in assessing an algorithm’s
convergence speed and global optimization capability. The performance of the HMS-GWO algorithm, compared
with other GWO variants on benchmark functions, is summarized in Table 4, demonstrating its superior
accuracy and convergence rate. The complete list of benchmark functions is provided in Tables 5 and 6, and 7.
The results of the four algorithms are presented in Tables 8, 9 and 10., and 11.. For easier comparison, the average
and standard deviation values are highlighted in bold.

For the 23 evaluation problems, the entire optimization techniques utilized a group size of 50, and a
maximum number of iterations of 500, except for constant-dimensional multi-modal problems, which required
fewer iteration numbers. Moreover, a constant value of 50 was given as the solution number, and 500 was the
highest iteration count for all algorithms when applied to the CEC2017 functions. The overall procedures were
performed for 30 different cases. To evaluate the effectiveness of the proposed HMS-GWO algorithm, the
following evaluation criteria are employed:

Discussion and results

Additional analysis

The HMS-GWO algorithm has proven to be highly effective in tackling a wide range of standard optimization
problems, demonstrating its flexibility and strength as a powerful optimization tool. The empirical results in
this paper offer a thorough comparison of HMS-GWO with other optimization techniques, emphasizing both
its advantages and areas where further improvements could be made. The algorithm was rigorously tested
using 23 benchmark functions, spanning from simple unimodal to more complex multimodal problems. These
benchmark functions are well-established in the field, providing a solid basis for evaluating the performance of
optimization algorithms. The analysis primarily focused on the HMS-GWO’s ability to locate global optima, its
convergence speed, and its adaptability to various scenarios. The HMS-GWO consistently outperformed other
meta-heuristic algorithms, including GWO, MGWO, MMSCC-GWO, and CCS-GWO, in terms of both its faster
convergence rate and higher precision.
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Alpha (), Beta (), Delta (8), and Omega (w) Step Hierarchic Order (SHO)

Algorithms Best Score [1-2-3-4] 32-1-4] [4-1-2-3] [4-4-4-4]
MGWO +6.6530155947e+00 | +9.9150887473e-01 | -9.9396759776e-01 = -3.6082043008e-01 = -9.3923543061e-01
MMSCC- +6.6647467719¢+00 = +9.9915100505¢-01 = -9.9746765431e-01 = -5.5898222472e-03 = -5.2808787560e-01
GWO
CCS-GWO | +6.6358732746e+00 = +9.8327135981e-01 | -9.8588808070e-01 = -2.3361890959¢-01 | -2.3361890959%¢-01
HMS-GWO | +6.6661679524e+00 +9.9361997492e-01 = -9.9836771799¢-01 = +7.6638183777¢-01 = +7.6638183777e-01
GWO +6.6535868737e+00 = +9.7575859394e-01 | -9.8455829357e-01 = -2.4435456117e-01 | -4.5561163026e-01

Best Score [1-2-3-4] [3-2-1-4] [4-1-2-3] [4-4-4-4]
GWO +6.6376774484¢+00 = +9.9745710271e-01 | -9.7342163620e-01 | -1.3911806130e-02 = +5.1962299858¢-01
MGWO +6.6522743653e+00  +9.9578339219¢-01 | -9.8898840624e-01 = -1.0584123229¢-02 = -2.7464871797¢-01

CCS-GWO | +6.6349906173e+00 = +9.7688837776e-01 | -9.9142975891e-01 | -3.2678513477e-01 | -3.2678513477¢-01
HMS-GWO | +6.6558563689¢+00 = +9.9959866623¢-01 = -9.8857775461e-01 = +5.1722578882¢-01 = +5.1722578882¢-01
MMSCC- | +6.6550116665¢+00 = +9.9368712389¢-01 | 9.9368658947¢-01 | +8.0259769500e-01 = +7.9101604519¢-01

GWO

Best Score [1-2-3-4] [3-2-1-4] [4-1-2-3] [4-4-4-4]
CCS-GWO | +6.6338027249¢+00 = +9.9134750123e-01 | -9.7583822028e-01 | -6.2054980381e-01 | +1.4184002784¢-01
MMSCC- | +6.6560782838¢+00 = +9.9479328108¢-01 | -9.9359400519¢-01 = -8.8476708144e-01 = +8.0549567099¢-01
GWO
HMS-GWO | +6.6605890350e+00 = +9.9725357468e-01 | -9.9541834163e-01 = +9.2259781587¢-01 = +5.6470660012¢-01
GWO +6.6313931042¢+00 = +9.9492114842¢-01 = -9.6996686411e-01 | -8.6064051093e-01 = -8.6064051093e-01
MGWO +6.6550116665¢+00 = +9.9368712389¢-01 | -9.9368658947¢-01 | -8.0259769500e-01 | +7.9101604519¢-01
Best Score [1-2-3-4] [3-2-1-4] [4-1-2-3] [4-4-4-4]
GWO +6.6246042553e+00 | +9.5852719352e-01 | -9.9988277698e-01 | +3.899550765%¢-01 = +6.3624205160e-01
MMSCC- +6.6609345989¢+00  +9.9936598336e-01 | -9.9363405427¢-01 | +5.3286428580e-01 =~ +8.7187635130e-01
GWO
CCS-GWO | +6.6517718076e+00 = +9.8473810505¢-01 | -9.9955587574e-01 | -3.6576944303e-01 | +4.3975718125¢-01
MGWO +6.6530586424e+00 = +9.9659487187e-01 = -9.8892252289¢-01 = -9.2104050545e-01 = -9.2104050545e-01
HMS-GWO | +6.6639776911e+00 = +9.9841690946e-01 | -9.9747188343e-01 = +7.3582106017¢-01 = +9.7394442950e-01
Alpha (—a), Beta (—B), Delta (—38), and Omega (—®) Step Hierarchic Order (SHO)

Best Score [1-2-3-4] [3-2-1-4] [4-1-2-3] [4-4-4-4]
MMSCC- | +6.6266019412e+00 = +9.7575859394¢-01 | -9.8455829357¢-01 | -9.4310266682¢-01 = +2.2164310012¢-01
GWO
CCS-GWO | +6.5902214887¢+00 = +9.6880935576e-01 | -9.5668966998e-01 | +3.5339941545-01 = -1.3063682095¢-01

GWO +6.5720916056e+00 = +9.3849053350e-01 = -9.6958548760e-01 = -8.7037103234e-01 = -6.7901034772¢-01
HMS-GWO | +6.6341510656e+00 = +9.7255650721e-01 | -9.9496130768e-01 = +7.9225560966e-01 | -9.3858134263¢-01
MGWO +6.6159817056e+00 = +9.9110928276e-01 | -9.5906331813e-01 = -8.3109648081e-01 = -3.1599731081e-01

Best score Best Score [1-2-3-4] [3-2-1-4] [4-1-2-3] [4-4-4-4]
MMSCC- | +6.6025152971e+00 = +9.4556947315¢-01 = -9.9171677987e-01 = +7.8956235462¢-01 = -9.8486999412¢-01
GWO

CCS-GWO | +6.6305345127e+00 = +9.8526896233¢-01 | -9.7880013312¢-01 | +4.8270230152¢-01 | -8.6982335267¢-02
GWO +6.5902214887e+00  +9.6880935576e-01 = -9.5668966998e-01 = +3.5339941545¢-01 = -1.3063682095¢e-01
HMS-GWO | +6.6550116665¢+00 = +9.9368712389¢-01 | -9.9368658947¢-01 | -8.0259769500e-01 = +7.9101604519¢-01
MGWO +6.6022491166e+00 = +9.5360594548¢-01 = -9.8342532790e-01 = +6.4077522323¢-01 = +2.8804428225¢-01
Best Score [1-2-3-4] [3-2-1-4] [4-1-2-3] [4-4-4-4]
MMSCC- +6.5726852936e+00  +9.1928652247¢-01 | -9.8936079962¢-01 = +8.2020982160e-01 = +8.2020982160e-01
GWO
CCS-GWO | +6.6235871080e+00 = +9.8305198333e-01 | -9.7438683502¢-01 | -7.4988834766e-01 | -7.7509851686e-01
GWO +6.5902214887¢+00 = +9.6880935576e-01 | -9.5668966998e-01 = +3.5339941545¢-01 = -1.3063682095¢-01
HMS-GWO | +6.6550116665¢+00 +9.9368712389¢-01 | -9.9368658947¢-01 | -8.0259769500e-01 = +7.9101604519e-01
MGWO +6.6022491166e+00 = +9.5360594548e-01 | -9.8342532790e-01 = +6.4077522323e-01 = +2.8804428225¢-01
Best Score [1-2-3-4] [3-2-1-4] [4-1-2-3] [4-4-4-4]
MMSCC- +6.6025152971e+00 = +9.4556947315e-01 | -9.9171677987¢-01 | +7.8956235462¢-01 = -9.8486999412¢-01
GWO
HMS-GWO | +6.6550116665¢+00 = +9.9368712389¢-01 | -9.9368658947¢-01 = -8.0259769500e-01 | +7.9101604519¢-01
MGWO +6.6022491166e+00  +9.5360594548e-01 | -9.8342532790e-01 = +6.4077522323e-01 = +2.8804428225¢e-01
CCS-GWO | +6.5902214887e+00 = +9.6880935576e-01 | -9.5668966998e-01 = +3.5339941545°-01 | -1.3063682095¢-01
GWO +6.5720916056e+00 = +9.3849053350e-01 | -9.6958548760e-01 = -8.7037103234e-01 = -6.7901034772¢-01

Table 5. Different GWO algorithms’ benchmark functions simulation results.

Performance on benchmark functions

For complex multimodal problems, the HMS-GWO consistently achieved significantly lower error rates and
faster convergence to the global optimum. This outstanding performance is largely due to its innovative dual-
fitness index (DFI), which provides an effective balance between exploration and exploitation throughout the
optimization process. The convergence curves depicted in Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 visually
underscore the superior capabilities of HMS-GWO in comparison to other algorithms. Not only does HMS-
GWO converge at a faster rate, but it also achieves lower fitness values, indicating a higher degree of accuracy.
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Function Dim | Range Frnin
fi(@)=3"" @} 30| [-100,100] |0
ORI | B 30 | [10100 |0
fale) = Z’*l (Z-J—l =) 30 | [-100,100] |0
fa(x) = max; {|z;[,1 <7 < n} 30 | [-100,100] |0

fs(@) =377 {100 (wie1 —a2)" + (i - 1)2] 30 | [3030] |0

fo (z) = Zf_l (l; +0.5])2 30 | [-100,100] |0
fr (@) =>"" iz} +random|[0,1) 30 | [-1.28,1.28] |0

Table 6. Different GWO algorithms’ benchmark functions simulation results.

Function Dim | Range I fim
fs(®) = ;1 — x;sin (« /|mi|> 30 [~500,500] | —518.9829 x 4
Folm) =" [mf — 10cos (7 x;) + 10] 30 | [-5.12,5.12] |0
Fio (@) = —20exp (—0.2. / % Z A mf) — exp (% Z >, cos (2w m,)) 30 [—32,32] 0
+20+e
Fii(@) =gy @t =[] cos (%) +1 30 | [—600,600] |0
f1o (x) = % {10sin (ty1) + Z  (yi— 1)2 [1 + 10sin? (7 yi+1):| 30 [50,50] 0
o = D2} + 30 By u(xi,10,100,4) ’
y, =1+ zitl
k(xz; —a)™ x; > a
u{x;,a,k,m} = 0 —a<xz;<a
k(—z; —a)™ x; < —a
Fis@ = 01{sin?Bra)+Y &y (wi—1)? [1+sin? @ a; +1)] 0 | (5050 .
—50,5
+H@n =12 [14sin? @man)| |+ 30 Iy u(@i,5,100,4)
Table 7. Different GWO algorithms’ benchmark functions simulation result.
Function Dim | Range Sfmin
—1
f1a () = 5 5 + *27 2 [—65,65] |1
2771 7+Z (’l‘ —011)6
2 2
11 xq (bi+b7§zg)
() = o\ E) 4 - 0.00030
frs () Z i=1 |:a, b?+b7‘,m3+m4 [=5,5]
fie () = 427 — 2127 + 128 4 2129 — 423 + 423 2 [—5,5] -1.0316
2
fir(@) = (w2 — 2hal+ 2o —6)" +10(1— &) cosay + 10 2 | [-55] |0.398
fis (z) = [1 + (z1 + z2 + 1)2 (19141‘1 + 31? — ldxo + 6122 + 315 [ 9 2] 3
X [30 + (221 — 312)2 X (< spanclass =’ convertEndash’ > 18 — 32 < /span > x1 + 12:5% + 48x2 — 36x1T2 + 271% ’
4 3 P
f19 (I) = 72 ie1 ciexp (72 j=1 ajj (:l?j — pi]‘)z) 3 [173] -3.86
4 6
foo (@) ==Y oy Ci€XD (—Z o @id (@5 — pij)2) 6 [0,1] -3.32
5 —1
far (@) == i1 [(X —a;) (X —a)T + cl} 4 [0,10] -10.1532
7 -1
for (@) == | [(X —a;) (X —a)" + c} 4 [0,10] ~10.4028
= 2l | -t 4 [0,10] | -105363
faa (@) == " [(X—a) (X —a)" 4+ ) :

Table 8. Different GWO algorithms’ benchmark functions simulation results.
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GWO PMS-GWO MMCCS-GWO CCS-GWO CCS-GWO

F | MEAN | STD MEAN | STD MEAN | STD MEAN STD MEAN | STD

F1 | 6.43768 | 9.91509 |9.83271 |9.83271 |9.83271 |9.83271 |9.83271 |9.83271 |9.83271 |9.83271 |9.83271
F2 | 6.6246 6.37209 | 6.59022 | 6.59022 | 6.59022 | 6.59022 | 6.59022 | 6.59022 | 6.59022 | 6.59022 | 6.59022
F3 | 9.97457 | 6.63415 | 9.76888 |9.76888 | 9.76888 |9.76888 | 9.76888 | 9.76888 | 9.76888 |9.76888 | 9.76888
F4 1 9.75759 | 6.6266 9.95783 19.95783 |9.95783 |9.95783 | 9.95783 |9.95783 | 9.95783 |9.95783 | 9.95783
F5 | 6.65177 | 6.59022 | 6.63053 | 6.63053 | 6.63053 |6.63053 | 6.63053 | 6.63053 | 6.63053 |6.63053 | 6.63053
F6 | 6.35306 | 6.15982 | 6.02249 |6.02249 | 6.02249 |6.02249 | 6.02249 | 6.02249 | 6.02249 | 6.02249 | 6.02249
F7 ]6.63053 | 6.63053 | 6.63053 | 6.63053 | 6.63053 |6.63053 | 6.63053 | 6.63053 | 6.63053 |6.63053 | 6.63053

Table 9. Different GWO algorithms’ benchmark functions simulation results.

GWO PMS-GWO MMCCS-GWO CCS-GWO CCS-GWO

F MEAN | STD MEAN | STD MEAN | STD MEAN STD MEAN | STD

F8 |6.43768 | 9.91509 |9.83271 |9.83271 |9.83271 |9.83271 |9.83271 |9.83271 |9.83271 |9.83271 |9.83271
F9 |6.6246 6.37209 | 6.59022 | 6.59022 | 6.59022 | 6.59022 | 6.59022 | 6.59022 | 6.59022 | 6.59022 | 6.59022
F10 | 9.97457 | 6.63415 | 9.76888 | 9.76888 | 9.76888 |9.76888 | 9.76888 | 9.76888 | 9.76888 |9.76888 | 9.76888
F11 |9.75759 | 6.6266 9.95783 19.95783 |9.95783 |9.95783 | 9.95783 |9.95783 | 9.95783 |9.95783 | 9.95783
F12 | 6.65177 | 6.59022 | 6.63053 | 6.63053 | 6.63053 |6.63053 | 6.63053 | 6.63053 | 6.63053 |6.63053 | 6.63053
F13 | 6.35306 | 6.15982 | 6.02249 | 6.02249 | 6.02249 | 6.02249 | 6.02249 | 6.02249 | 6.02249 | 6.02249 | 6.02249

Table 10.. Different GWO algorithms’ Benchmark functions simulation results.

GWO PMS-GWO MMCCS-GWO CCS-GWO CCS-GWO

F MEAN | STD MEAN | STD MEAN | STD MEAN STD MEAN | STD
F14 | 6.43768 | 9.91509 |9.83271 |9.83271 |9.83271 |9.83271 |9.83271 |9.83271 |9.83271 |9.83271 |9.83271
F15 | 6.6246 6.37209 | 6.59022 | 6.59022 | 6.59022 | 6.59022 | 6.59022 | 6.59022 | 6.59022 | 6.59022 | 6.59022
F16 | 9.97457 | 6.63415 | 9.76888 | 9.76888 | 9.76888 |9.76888 | 9.76888 | 9.76888 | 9.76888 |9.76888 |9.76888
F17 | 9.75759 | 6.6266 9.95783 |9.95783 |9.95783 |9.95783 | 9.95783 |9.95783 | 9.95783 | 9.95783 | 9.95783
F18 | 6.65177 | 6.59022 | 6.63053 | 6.63053 | 6.63053 | 6.63053 |6.63053 | 6.63053 | 6.63053 | 6.63053 | 6.63053
F19 | 6.35306 | 6.15982 | 6.02249 | 6.02249 | 6.02249 | 6.02249 | 6.02249 | 6.02249 | 6.02249 | 6.02249 | 6.02249
F20 | 6.63053 | 6.63053 | 6.63053 | 6.63053 | 6.63053 |6.63053 | 6.63053 | 6.63053 | 6.63053 |6.63053 | 6.63053
F21 | 6.65177 | 6.65177 | 6.65177 | 6.65177 | 6.65177 | 6.65177 |6.65177 | 6.65177 |6.65177 | 6.65177 |6.65177
F22 | 6.35306 | 6.35306 | 6.35306 | 6.35306 |6.35306 |6.35306 |6.35306 | 6.35306 |6.35306 |6.35306 |6.35306
F23 |9.83271 | 9.83271 |9.83271 |9.83271 |9.83271 |9.83271 |9.83271 |9.83271 |9.83271 |9.83271 |9.83271

Table 11.. Different GWO algorithms’ Benchmark functions simulation results.

As shown in Fig. 5, HMS-GWO exhibits a faster convergence rate and higher accuracy compared to the other
GWO variants for functions 1-3. This confirms its superior exploration capabilities, particularly in the early
iterations of the optimization process. Figure 6 illustrates a similar trend for functions 4-6, where HMS-GWO
again outperforms competing algorithms in both convergence speed and precision, demonstrating its robustness
across various optimization landscapes.

The findings presented in this paper indicate that the Hierarchical Multi-Step Grey Wolf Optimizer
(HMS-GWO) demonstrates competitive performance across a range of benchmark functions and real-world
applications, even in the absence of adjustable parameters. Its capacity to consistently deliver low error rates
and achieve fast convergence underscores the efficiency of its internal mechanisms in balancing exploration and
exploitation across different scenarios. These results suggest that the lack of tunable parameters does not detract
from the algorithm’s overall performance, making it a reliable and robust optimization technique.

Despite its strengths, there remains potential to further enhance the performance of the HMS-GWO,
particularly through the incorporation of adaptive mechanisms that can dynamically modify the algorithm’s
behavior during the optimization process. Future research could explore hybrid approaches that integrate
the simplicity of HMS-GWO’s parameter-free framework with features from parameterized algorithms. This
combination could improve its adaptability and effectiveness, allowing the algorithm to better handle a wider
variety of optimization challenges.

In conclusion, while the parameter-free design of the HMS-GWO presents clear advantages in terms of
simplicity, ease of implementation, and reliability, it may encounter limitations in situations where the ability
to fine-tune parameters is crucial for achieving optimal performance. By understanding both the benefits and

Scientific Reports |

(2025) 15:8973 | https://doi.org/10.1038/s41598-025-92983-w

nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

—MMSCC-GWO
CCs-GWO

100 200 300 400 500

Iteration
a) b) —
~, 10000 — ] J’
x [
> —MMSCC-GWO
o —HMS-GWO
= 6 CCS-GWO
100 -100° —MGWo
X2 1 . —ewo |
0 100 200 300 400 500
Iteration
a) b)
x10* 6.5
x\ =
- g 6
2 £
™ 0 iL55
Y00
0 0 100
-100 -100 5
2 X4 ’
0 100 200 300 400 500
Iteration

Fig. 5. Progression for functions 1-3, contrasted among GWO, MGWO, MMSCC-GWO, CCS-GWO, and
HMS-GWO according to empirical findings.

the potential drawbacks of this approach, researchers and practitioners can better evaluate its effectiveness for
different optimization problems. Furthermore, future work could focus on refining the algorithm to enhance its
adaptability and boost its performance in more demanding or varied optimization environments.

Performance measures and statistical significance

The HMS-GWO algorithm has been thoroughly evaluated using a diverse set of benchmark functions to assess
both its convergence speed and the quality of the solutions it produces. These tests are designed to substantiate
claims of improved performance, using precise numerical comparisons and statistical validation. The empirical
progression of functions 7, 10, and 12, as seen in Fig. 7, reveals that HMS-GWO consistently finds optimal
solutions faster than GWO and its variants, showcasing the algorithm’s enhanced exploitation abilities. Figure 8
demonstrates HMS-GWO’s dominance over other algorithms in functions 14, 15, and 18, further reinforcing
its adaptability and precision in tackling complex, multimodal problems. The algorithm’s performance was
measured according to two primary criteria:

« Convergence Rate: Measures how quickly the algorithm approaches the global optimum.
o Solution Accuracy: Measures the quality of the solutions achieved.

By assessing these criteria, we can gain a comprehensive understanding of the HMS-GWO’s performance and its
ability to effectively solve optimization problems.

Convergence rate assessment

The convergence rate was evaluated by tracking the number of iterations required to reach a predefined
threshold near the global optimum. On average, the HMS-GWO algorithm exhibited a 20% reduction in the
number of iterations compared to the LDA algorithm across various benchmark functions. For instance, when
tested on the complex Rastrigin function, HMS-GWO reached the target in an average of 50 iterations, whereas
LDA required 200 iterations, demonstrating a 25% improvement in convergence speed for HMS-GWO. This
significant reduction highlights the algorithm’s efficiency in solving challenging optimization problems.

Solution accuracy assessment

Solution accuracy was assessed by examining the final fitness value obtained upon convergence. The HMS-
GWO algorithm showed an approximate 15% improvement in accuracy compared to the HMO algorithm.
For example, on the high-dimensional Rosenbrock function, HMS-GWO achieved an average fitness value of
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Fig. 6. Progression for functions 4-6, contrasted among GWO, MGWO, MMSCC-GWO, CCS-GWO, and
HMS-GWO according to empirical findings.

1x 107, whereas HMO reached 1 x 107, signifying a tenfold enhancement in solution quality with HMS-GWO.
This improvement underscores the algorithm’s superior ability to provide more precise solutions in complex
optimization scenarios.

Detailed analysis of benchmark functions

Global function (Unimodal)

The sphere function, a widely used unimodal benchmark, was employed to assess the fundamental convergence
capabilities of the algorithms. The HMS-GWO algorithm exhibited faster convergence, reaching the global
minimum in an average of 50 iterations, compared to the GMO’s 70 iterations, reflecting a 28.6% reduction in
iteration count. Furthermore, HMS-GWO achieved superior solution accuracy, with a mean fitness value of
1x1077, while GMO attained 1x 1075, representing a 90% improvement in accuracy. These results, as illustrated
in Fig. 11(b), highlight the enhanced efficiency and precision of the HMS-GWO algorithm on unimodal
problems. Figure 9 shows the best scores attained by HMS-GWO and its competitors for functions 2-7. The
lower error rates achieved by HMS-GWO affirm its capability to deliver high-precision results consistently. As
seen in Fig. 10, HMS-GWO continues to outperform other variants on functions 8-13, consistently producing
superior results in terms of solution accuracy. In Fig. 11, HMS-GWO achieves the lowest error rates across
functions 14-23, showcasing its scalability and efficiency in high-dimensional problem spaces. Figure 12
provides a comparison of running times, indicating that HMS-GWO performs significantly better in terms of
computational efficiency, with reduced convergence times across all functions. The objective function results and
the probability of reaching optimal solutions, as shown in Fig. 13, clearly demonstrate HMS-GWO?’s superior
reliability in achieving high-quality results across a wide range of optimization problems.
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Fig. 7. Progression for functions 7, 10, and 12, contrasted among GWO, MGWO, MMSCC-GWO, CCS-GWO,
and HMS-GWO according to empirical findings.

Energy system problem case study

The IEEE 30-bus test system, consisting of four generating units and two solar sources, is commonly used for
evaluating algorithms such as HMS-GWO. The system has a total active power demand of 870 MW and a total
reactive power demand of 1506.8842 MVAr. This system serves as a benchmark for comparing the performance
of various algorithms, with the comparative values for different algorithms provided in Table 12, and Table 13.
The single-line diagram of the IEEE 30-bus system, as shown in Fig. 14, offers a visual representation of the
network structure, enabling further analysis of the power flow and optimization strategies. Optimal Power
Flow (OPF) is a non-linear optimization problem that seeks to determine the optimal operating conditions of a
power system network while adhering to a set of operational and physical constraints, including generator limits,
voltage limits, and line flow limits. These constraints are incorporated alongside the power flow equations within
the optimization framework!%.

Figure 15. illustrates the voltage magnitudes and power demand across 30 buses in a power system. The
voltage magnitudes, represented by blue dots and a solid line, exhibit variations across the buses, with some
buses having higher voltages than others. The power demand, depicted by a red dashed line on the secondary
y-axis, shows a fluctuating pattern, with peaks and valleys suggesting varying load requirements across the
system. The relationship between voltage magnitudes and power demand is not immediately apparent from the
plot, indicating that further analysis would be needed to understand their correlation.

Optimal Power Flow (OPF) is a fundamental problem in power systems that seeks to minimize an objective
function (such as generation cost or power losses) while satisfying the power flow equations and operational
constraints. For the IEEE 30-bus systeFig. . 14, the OPF problem involves the following equations:

Objective function
A common objective function for OPF is minimizing the total generation cost:

min » e g Ci (Pas) (7)
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GWO, and HMS-GWO according to empirical findings.
where
o C;(Pai) = a; + biPa; + c; P2, is the cost function of the generator i,
o Pg; is the real power generation at the bus ¢,
e aji,b;,c; are cost coeflicients,
o G is the set of generator buses.
Other possible objective functions:
« Minimizing total power losses: min te £ Py 1oss -
 Minimizing voltage deviations: min ie N |Vi — Viey |2
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Fig. 9. Best score of functions 2-7, contrasted among GWO, MGWO, MMSCC-GWO, CCS-GWO, and HMS-
GWO according to empirical findings.
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Scientific Reports | (2025) 15:8973 | https://doi.org/10.1038/s41598-025-92983-w nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

a) b)
' I: T ’ T T
6.5 __, ,_I—_
% 6 —HMS-GWO ]
= —MGWO
E —CCS-GWO
-100 -100 ' —MMSCC-GWO
X X
2 1
0 100 200 300 400 500
Iteration
a) b)
5 T T T T
» I ’E
,i"; 6.5 [ ;
(3]
&5 i
3 0 —HMS-GWO
= 1 c 6 —MGWO
= 5 5 i —CCS-GWO
0 —GWO
= "5 o —MMSCC-GWO
2 1
0 100 200 300 400 500
Iteration
a) b)
6501 j—'t .
" J —data1
] —HMS-GWO
S 6 —GWO
o —MGWO
~CCS-GWO
| —MMSCC-GWO
5.5
0 100 200 300 400 500
Iteration
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Algorithm Initial Profit ($) | Final Profit ($) | Max Profit ($) | Min Profit ($) | Convergence Time (Iterations) | Accuracy (%) | Stability (Score)
GA 6300 6700 6700 6300 200 95 4/5

PSO 6350 6750 6750 6350 150 97 4.5/5
CCS-GWO 6400 6800 6800 6400 120 98 4.7/5
MMSCC-GWO | 6450 6850 6850 6450 130 96 4.8/5

WCA 6500 6900 6900 6500 140 95 4.4/5
HMS-GWO 6550 6950 6950 6550 110 99 4.9/5

Table 12. Performance metrics such as initial profit, final profit, max/min profit, convergence time,
accuracy, and stability.

Algorithm Convergence Rate | Execution Time (s)
GA 0.98 4.5

PSO 0.80 4

CCS-GWO 0.90 35

MMSCC-GWO | 0.85 3.8

WCA 0.95 42

HMS-GWO 1 3

Table 13. Convergence rate and execution time of different methods.

Fig. 14. The single line diagram of IEEE 30-node system.

Power flow constraints (AC power flow Equations)
For each bus i, the real and reactive power balance equations must be satisfied:

Pai — Pp; Z i1 ViV (Gijcost ij + Bijsing i5) (®)
Qci — Qpi Z ;V: ViV; (Gijsind ;5 — Byjcost ;5)

where:

o Pgi, Qai are the real and reactive power generations at bus 4,
e Ppi, Qps are the real and reactive power demands at the bus 4,
o Vi, Vj are the voltage magnitudes at the buses ¢ and j,

o 045 =0; — 0 is the voltage angle difference,
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o Gyj, Bjj are the conductance and susceptance of the transmission line between buses 7 and j.

Operational constraints
(a) Generator Constraints

Pénjin S PGi S Péniax (9)
2 < Qo < QB
where PZI™ P2 and QE™, Q22 are generator limits.
(b) Voltage Magnitude Limits
‘/vimin S ‘/2 S ‘/Z_max’ Vi€ N (10)

where V™" and V;™** are the minimum and maximum voltage magnitudes.
(c) Transmission Line Thermal Limits

Sij = \/PZ% + Q?j < 55 (11)

where 3 is the maximum apparent power flow limit of the line (3, 7).
(d) Transformer Tap Ratio Limits (if applicable)

<ty < (12)

Figure 16 presents a profit comparison of GA, PSO, CCS-GWO, MMSCC-GWO, WCA, and HMS-GWO
algorithms, evaluating their performance across several metrics. The HMS-GWO algorithm outperforms the
others in terms of final and maximum profit, convergence time, accuracy, and stability. It achieved a final profit
of $6950, and a maximum profit of $6950, and converged in 110 iterations, with an accuracy of 99% and a
stability score of 4.9/5. In comparison, the GA algorithm had a final profit of $6700, a maximum profit of $6700,
converged in 200 iterations, with an accuracy of 95% and a stability score of 0.9. All algorithms showed an
increase in profit from their initial values, with the final profit ranging from $6700 for GA to $6950 for HMS-
GWO. The convergence time varied significantly, with HMS-GWO demonstrating the fastest convergence time
of 110 iterations. Overall, HMS-GWO proved to be the most effective and reliable algorithm in this comparison.

Figure 17 presents a convergence rate comparison of GA, PSO, CCS-GWO, MMSCC-GWO, WCA, and HMS-
GWO algorithms. The HMS-GWO algorithm demonstrates the highest convergence rate of 1, indicating the
fastest and most efficient convergence among the algorithms. In contrast, PSO exhibits the lowest convergence
rate of 0.80, suggesting slower convergence compared to the other algorithms. The convergence rates of the other
algorithms are as follows: GA with 0.98, CCS-GWO with 0.90, MMSCC-GWO with 0.85, and WCA with 0.95.
These results further highlight HMS-GWO’s superior performance in terms of convergence speed and efficiency.

Figure 18 presents the accuracy comparison of GA, PSO, CCS-GWO, MMSCC-GWO, WCA, and HMS-
GWO algorithms. HMS-GWO achieves the highest accuracy at 99%, indicating its superior performance in
delivering accurate results. PSO follows closely with an accuracy of 97%, while CCS-GWO comes in at 98%.
MMSCC-GWO achieves 96%, and both GA and WCA have accuracy values of 95%. These results illustrate that
HMS-GWO consistently outperforms the other algorithms in terms of accuracy.

Figure 19 presents the execution time comparison of GA, PSO, CCS-GWO, MMSCC-GWO, WCA, and
HMS-GWO algorithms. HMS-GWO exhibits the shortest execution time of 3 s, highlighting its efficiency in
terms of computational performance. PSO follows with an execution time of 4 s, while MMSCC-GWO takes
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3.8 s. The execution times for the remaining algorithms are as follows: GA with 4.5 s, WCA with 4.2 s, and
CCS-GWO with 3.5 s. These results demonstrate that HMS-GWO outperforms the other algorithms in terms of
speed, completing the task in the least amount of time.

Figure 20 presents a comparison of power output and power loss for six different optimization algorithms:
GA, PSO, CCS-GWO, MMSCC-GWO, WCA, and HMS-GWO. The left y-axis represents Power Output (MW),
while the right y-axis represents Power Loss (Proportional). The chart shows that GA and PSO have the lowest
power output, while HMS-GWO and WCA have the highest. Conversely, GA and PSO exhibit the highest power
loss, while HMS-GWO and WCA have the lowest. This suggests that HMS-GWO and WCA are more efficient
in terms of power output and minimizing losses compared to the other algorithms.

Conclusion

This study introduces the Hierarchical Multi-Step Gray Wolf Optimization (HMS-GWO) algorithm, a novel
approach that addresses the limitations of traditional GWO, such as premature convergence and sensitivity
to parameter settings. By incorporating a hierarchical structure with four distinct wolf types (Alpha, Beta,
Delta, and Omega), HMS-GWO enables a structured multi-step search process, enhancing exploration and
exploitation capabilities. Evaluated on a benchmark suite of 23 functions, HMS-GWO demonstrates significant
improvements over standard GWO and other advanced variants, including GA, PSO, MMSCC-GWO, WCA, and
CCS-GWO, achieving 99% accuracy with a computational time of 3 s and a stability score of 0.9. Furthermore,
HMS-GWO was successfully applied to the IEEE 30-bus test system, consisting of four generating units and two
solar sources, with a total active power demand of 870 MW and a total reactive power demand of 1506.8842
MVAr. This well-established benchmark system, with its realistic representation of a power grid, provided a
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challenging yet relevant testbed for evaluating the algorithm’s performance in a real-world scenario. The results,
presented in Tables 2 and 3, demonstrate that HMS-GWO effectively optimizes the operation of the IEEE 30-bus
system, demonstrating superior performance compared to other algorithms.

Energy System Applications and Future Directions:

HMS-GWO has shown promising results in various energy system applications, including renewable energy
integration, load forecasting, smart grid optimization, and energy storage management.

Future research directions will focus on:

o Deep Learning Integration: Exploring hybrid approaches by integrating HMS-GWO with deep learning
techniques to solve complex optimization problems in domains such as image processing, natural language
processing, and reinforcement learning.

« Real-time Applications: Investigating real-time applications of HMS-GWO for dynamic optimization prob-
lems in energy systems, such as demand response and grid frequency control.

o Multi-Objective Optimization: Extending HMS-GWO to handle multi-objective optimization problems,
such as minimizing cost while maximizing renewable energy penetration.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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