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Global sensitivity analysis of
structural seismic demand based
on information entropy

Xiuzhen Wang'?, Zhaoxia Xu*3"“ & Chuanzhi Sun*?

To improve the computational efficiency of global sensitivity analysis (GSA) for complex structures,
this study proposed a new importance analysis method (IE) based on the low deviation sequences and
orthogonal polynomials to study the influence of parameters’ uncertainty on three structural seismic
demands. A comparative investigation utilizing nonlinear time history analysis for these seismic
demands was conducted using OpenSEES. The variance-based importance analysis method and the
Tornado graphic sensitivity analysis method were employed to validate the accuracy of the proposed
approach. The results regarding the order of importance are nearly consistent across methods,
demonstrating the effectiveness of our proposed method. Notably, the sample size required by this
new method is only 1024 to achieve reliable results, which is significantly lower than existing sampling
methods that necessitate thousands of samples for effective importance analysis; thus, enhancing
overall efficiency. Furthermore, the findings indicate that the influence of representative value of
gravity load (M) on seismic demands is relatively substantial, whereas the influence of modulus of
elasticity of concrete (E,) is comparatively minor.

Keywords Information entropy, Importance analysis, Orthogonal polynomial estimation, Nonlinear time
history analysis, Seismic demand

As is well known, earthquakes significantly impact building structures. The study of uncertainties in evaluating
building performance under seismic loading has long been a crucial aspect of structural seismic research!2.
In recent years, numerous methods for researching uncertainty have emerged, providing robust support for
the advancement of structural seismic studies. For example, Xing et al.® investigated the dynamic response of
high-rise buildings equipped with one-outrigger systems subjected to two types of seismic hazards using deep
neural networks. Ding et al.! proposed a probabilistic machine learning (ML) method alongside a probabilistic
approach derived from the Poisson binomial distribution model to assess the seismic vulnerability of various
building combinations. Kurmi and Haldar®> evaluated how functional openings in upper fillers affect the
seismic performance and failure mechanisms of Un-Reinforced Masonry (URM) infills within open ground
storey (OGS) reinforced concrete (RC) buildings across different design levels. Ye and Hua® comprehensively
considered the uncertainties brought by the records, structural design parameters and modeling in the process
of seismic performance evaluation, and established a seismic performance evaluation system for middle and
high-rise cold-formed thin-walled steel (CFS) structures considering various uncertainties.

In parameter uncertainty analysis of structural systems, the global sensitivity analysis (GSA, often dubbed
importance analysis, IS) approach is garnering growing attention. IS may quantify the impact of the input
parameters on the statistical characteristics of the output response in engineering from the whole uncertainty
range of the input random parameters’-!%. The variance-based and moment-independence-based importance
analysis methods are frequently employed for IS of structural systems. For instance, using GSA in conjunction
with an enhanced Latin hypercube sampling technique, Khaneghahi et al.!! examine the effects of each
random variable and their interactions on the variance of the responses. Xu and Wang!? developed a moment-
independent importance analysis method combined with orthogonal polynomial estimation to investigate
the effects of random parameters on structural seismic demands. Ling et al.!* proposed a novel approach that
integrates adaptive Kriging with the multiplicative dimensionality reduction method (M-DRM) to derive the
time-dependent global reliability sensitivity index, significantly reducing computational effort.
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It is important to note that different sources of uncertainty are seldom considered comprehensively in
structural seismic analysis. Consequently, some researchers have introduced entropy theory and developed a
GSA method based on information entropy. For instance, Yazdani et al.'* examined the impact of uncertainties
in ground motion variables and structural parameters on the inelastic response of concrete structures using
an entropy-based GSA method. Kala'® proposed an alternative global sensitivity measure by approximating
differential entropy through dome-shaped functionals with non-negative values. Du and Padgett!® incorporated
joint entropy from information theory to quantify the uncertainty associated with unconditional multivariate
seismic demands for general multi-response structural systems.

However, the commonly employed IS method necessitates double-layer sampling, which is computationally
intensive and not conducive to practical engineering applications. Furthermore, even when utilizing single-
layer sampling methods such as simplified Monte Carlo simulations, thousands of samples are required to
achieve reliable results in IS, thereby diminishing operational efficiency!’~1°. Given that sampling input random
parameters is a critical component of importance analysis, this study develops an orthogonal polynomial
estimation (OPE) combined with information entropy to conduct importance analyses regarding seismic
demand for structures. The uncertainty of random parameters was simulated using Sobol series, while probability
density functions for output responses were approximated via Hermite orthogonal polynomials. Subsequently,
the importance index based on information entropy was calculated to provide a comprehensive evaluation of
how parameter uncertainty influences structural seismic demands.

The variance-based importance analysis method is a classical approach?, often considered an exact
solution and widely employed to validate the accuracy of new methodologies?!~2*. Additionally, the Tornado
graphical method has gained popularity in economic decision analysis due to its straightforward principles
and ease of calculation. In recent years, it has also been applied in sensitivity analyses concerning seismic losses
in buildings*>?’. Consequently, this study calculates the variance-based importance index for comparative
purposes to assess the accuracy of the proposed methodology. Furthermore, this research introduces a novel
importance index designed to evaluate the impact of parameter uncertainty on structural seismic demand,
thereby providing significant insights for enhancing computational efficiency within the realms of structural
and earthquake engineering.

Analytical method

Information entropy importance index

For an output response Y = g(X ), when the random variable X is considered as the realized value z;, the
probability density function of Y is denoted as fy|x,=s, (¥), and the uncertainty of X; has been eliminated, so
the impact of X; on the output response Y based on information entropy can be defined as follow?®:

€ = |HY — Hy|x;=x;

(1)

where, Hy represents the original entropy of the output response Y, and Hy = — [ fy(y)log fy (v)dy;
D

Hy|x, =x; denotes the conditional entropy of the output response, which is obtained by

Hy|\x,—e; = — [ fyixi==; (W) 108 fy|x,=<, (¥)dy.

D
According to E(E (1) and in conjunction with the definition of importance index?, the average impact on the
output response can be expressed as follow:

g =F (‘HY — Hy|x,=a,
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where, Dx; denotes the variation range of random parameters, E(-) represents the mathematical expectation,
the sample X;;(j =1,2,---,Np) is generated according to the probability density function of X;, and
HY|X1;:fEij refers to the conditional entropy when X; assumes the value of X;;(j7 = 1,2,---, No).

The solution method of information entropy importance index
The explicit expression of the probability density function fy (y) is often unknown in practiﬁal engineering

applications, necessitating the use of estimation methods to obtain it. The estimated value fy (y) of fy (y)
can be derixed when the sample y(k = 1,2,-- -, N) of Y is given. Numerous estimation methods exist for
obtaining fy (y), including histogram estimation®, Orthogonal polynomial estimation (OPE)*, kernel density

estimation’!, maximum entropy principle estimation®?, etc. It is important to note that parameter estimation
methods typically require prior knowledge, which may lead to fitting results that significantly deviate from
actual conditions. In contrast, non-parametric estimations directly fit the distribution based on the inherent
characteristics of the data samples themselves, without making assumptions about the underlying distribution
type. This advantage renders non-parametric methods highly valued in both statistical theory and practical
applications. Among non-parametric estimation techniques, OPE stands out as a representative method due to
its straightforward principles and high precision. It allows for direct fitting of probability distributions according
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to the characteristics of the data samples with considerable accuracy. Consequently, OPE has been employed in
this study to estimate fy (y).

According to Feiler®, if the moment p1, o, - - - ur(r > 3) exists and the characteristic function ® of the
probability distribution meets the condition that |®|” (v > 1) is integrable, then the polynomial f,, that
obtained by inverse Fourier transform exists whenn > v, where f,, represents the finite term of the characteristic
function ® expanded via Taylor series. Furthermore, the variable x satisfy the follow equation when n — oo:

Fal@) = 6(@)(1+ Y 05 P(a)) = 0 (72 H) 3)
k=3

where, Py(z) represents a real polynomial which does not depend on #n and r but only on the moments
H1, f2, - - fir; and ¢(x) represents normally distribution.

The aforementioned theorem demonstrates that the probability density function f(x) can be approximated
through the expansion of the higher-order moment, with this expansion represented as a correction coeflicient
multiplied by the normal distribution. Therefore, f(z) can be defined as a function that expanded into a
polynomial with a weight function ¢(z). To estimate f(x) because of its simplicity and ease of operation,
Hermite orthogonal polynomial is chosen in this study, which is expressed as follow:

gyt 4
H”(x)_( 1) € dl’n vn_07]~a ()

If Z = g(X) = g(z1,x2, - - Tn), and f(X) is the probability density function of X, then the origin moments
of each order are expressed as follow:

+oo
Mile) = [ @) 0N k=120 N ®)
LetY = 2=tz — 9 Mi(9) _ e the new function, then the origin moments of each order are equal to the
7= VM (9)—M1(9)2

center moments, namely:

+oo

—o0

Take f(X) as a weight function when it represents a specific type of probability distribution, and the accuracy
and efficiency are higher when the corresponding type of Gaussian integration point is used. For example, in the
cases of normal giistribution, exponential distribution, and uniform distribution, the type of weight function is
respectively e”* , e~ “ and 1. Then the corresponding Gaussian integral points can be used respectively.

Therefore, the process of approximating probability density function using orthogonal polynomials is briefly
described as follows: let p(z) denote a weight function, the orthogonal polynomial defined on the corresponding
interval [a, b] is expressed as follow:

k(@) =Y Agma™ b =0,1,2, - 7)

where A, represents a fixed constant. Based on the properties of orthogonal polynomials, it can be stated
that there are:

b .
/ p(a)wi (2)w; (z)dz = { g 2 8)
Then f(x) can be obtained by:
N
f(@) = p() Y axw(x) ©)
k=0

k
where ar, denotes an undetermined coefficient, which determined by ax = > Appm ftm (z)/hi; the weight
m=0
C
252 ), or a standardized function is adopted, and the weight function is

L (=

function is p(z) = 7=

. 2
o(y) = \/% =% the integration interval is (—o0, +00), and the coefficient of the highest order term of the

polynomial is 1.
To sum up, the computational procedures are outlined as follows:
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Generate N samples of random parameter using Sobol series. After extensive experimentation, it was deter-
mined that the error in both the mean and standard deviation does not exceed 5/10,000 when the sample
size exceeds 500.

Establish the calculation model utilizing OpenSees, inputting the sample values of random parameters to
obtain the output response yx(k = 1,2, - - -, N) of various seismic requirements Y. N
Employ the Hermite orthogonal polynomial estimation method to calculate estimated values fy (y) of

fy (y) for different seismic demands Y, followed by an estimation of their original entropy Hy .
Repeat steps (2) and (3) to estimate the conditional entropies H. V| Xi=as; of various seismic demands Y.

Calculate |H y — Hy|x,—s, | of the difference between the original entropy and the conditional entropy,

subsequently deriving the importance index €; based on the information entropy as described in Eq. (2).

The flowchart is shown in Fig. 1.

Verification method

In importance analysis, the Monte Carlo-based variance method (abbreviated as VAR) is considered the most
classic approach and is typically regarded as an exact solution. To test and validate the proposed method, we
employ the variance importance analysis method for comparison. Both the information entropy importance
analysis method and the variance importance analysis method are capable of examining changes in output
responses when random parameters assume all possible values, thus falling under Global Sensitivity Analysis
(GSA). In contrast, traditional sensitivity analysis methods belong to Local Sensitivity Analysis (LSA), which
can only assess changes in output responses when random parameters take on specific values. To elucidate the

Draw N samples of random
parameter by Sobol series

v

v

Construct the sample matrix Select a sample value of X; to
XX, X5, ..., X)) of random » construct a conditional sample X;
variables of random variables
Establish the nonlinear time history
B analysis model based on OpenSees
\ 4 v
Substitute X into the calculation Substitute X into calculation
model to obtain the unconditional model to obtain the conditional

output response Y

output response Y|X;

&

Construct the solution method based on the

v

Orthogonal polynomial estimation (OPE) g

A 4

Calculate f) () based on OPE Calculatefy,_y (y)based on OPE
\4 \4
Estimate the original entropy Hy Estimate conditional entropies /7 v|x,=x,

v

Calculate ¢, by Eq.(2)

End

Fig. 1. The flowchart of the proposed method.
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differences between GSA and LSA, the Tornado graph method—a technique associated with LSA—also has
been used to conduct sensitivity analyses. The results obtained from this approach are then compared with those
derived from both the proposed method and the variance-based methodology.

According to Satteli*, the importance index &} of the MC-based variance method is expressed as follow:

gy _Ver(E(Y1X,)
v Var(Y)
_ Var(Y) — E(Var(Y] X))
Var(Y)

(10)

where Var(-) means variance, and Var(E(Y|X))) is the conditional variance of mathematical expectation of the
structural seismic demand Y; E(Var(Y|Xl.)) means the expectation of the conditional variance of Y; X; is a random
parameter X, or a group of random parameters [X;1, Xi2, -+, Xir] (1 < é1 < -+ < i < ).

Due to space constraints, a detailed introduction to the Tornado graphics method is no longer provided.
Please refer to references?®?”3 for further information.

Case study

A reinforced concrete frame structure

A 3-span, 7-story reinforced concrete frame structure equipped with viscous dampers is presented as an
engineering example for importance analysis, as illustrated in Fig. 2. The specifications of this structure are
detailed as follows: the standard floor height measures 3600 mm, while the bottom floor height is 4200 mm;
the slab thickness is set at 120 mm, and all column spacing are uniformly spaced at 6000 mm. The viscous
damper features a damping index of 1, with concrete classified as C40 and reinforcement designated as HRB335.
Furthermore, the details regarding input variables are provided in Table 1, and information pertaining to beam
and column sections can be found in Table 2.

The finite element analysis model for nonlinear time history analysis in this study is established using
OPENSEES. The seismic wave employed is the El Centro seismic wave, and the viscous damper is simulated
through a Maxwell element. For the column and beam, a nonlinear fiber beam-column element is utilized, while
the concrete material is represented by the Concrete02 element, and the Steel02 material model is adopted for
steel reinforcement. Considering that the existing sampling method requires thousands of samples to get good
results, which takes a lot of time to perform finite element simulation on the structure. Aiming at this problem,
the Sobol sequence is adopted for sampling in this study. With several hundred samples, improved outcomes
can be obtained while maintaining high computational efficiency. The process can be summarized as follows:

(1) Drawing N samples according to the joint distribution density of each random parameter; thus, the sample

matrix A =nxN (n is the number of variables) is expressed as:

X}U .. ‘Xz'(l) oo x

x®» x®oo xP
A= . )
xM ---XEN)--- x N

(2) Replacing the elements in the i-th column of matrix A with the mean of the i-th random parameter, the
matrix B is obtained as:

xM o oaxWos o xW
X£2> XD x @

B =
X{N) ---XZ.(M--- XN

(3) Substituting the sample matrices A and B into the finite element model for nonlinear time history analysis,
respectively, and obtain the corresponding unconditional output responses Y = (y1,y2,---y~)? and
conditional output responses Y | X; = (y1 | ,y2 |Ti ,- -y~ |Ti)

The relationships between the unconditional sample values of the three seismic demands and their corresponding
damping ratios are illustrated in Fig. 3. It is evident that these relationships exhibit inconsistencies. For instance,
both the maximum interstory displacement angle demand and the roof displacement demand appear to be
roughly inversely related to the damping ratio, while the relationship between base shear force demand and
damping ratio is less pronounced. Overall, the effects of damping ratio on these three types of seismic demands
demonstrate considerable variability. This variability arises from the fact that these seismic demands are
influenced not solely by a single random parameter—namely, the damping ratio—but also by eight additional
random parameters selected for importance analysis in this study. The relationships among these three seismic
demands and other random parameters show similar patterns; therefore, they are not included here due to space
constraints.

Scientific Reports |

(2025) 15:8447 | https://doi.org/10.1038/s41598-025-93150-x nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

A
ol
]
=3
O
| {
!
jl
]
=3
O
| :
6000 | 6000 + 6000 {
(@)
A
S
Dirl6 - birlé
[ g g A
A ) . I
| o
Dirl2— S 2 18
| ' I
_v OA - 0 —d ¥V
i 500
4
O‘
St 2 Dirl§
4
A
Dirl4 S S o
= 3
28 "
Dir22 ‘ U
300 = S < 600
Dir20 - Dir22
“ v .
‘k v v v A
_ . .
Dirl4 g S - 18
.. v \J e .o d oy
Dir25
30006000 |, 6000 |, 6000 « 0,

(b)

Fig. 2. Structure diagram: (a) Building plans; (b) Building elevation.

The effects of 8 random parameters on three kinds of seismic demands are illustrated in Fig. 4. As observed
from Fig. 4, the results calculated by the proposed method (IE) closely align with those derived from the variance-
based method (VAR), indicating that the proposed method yields accurate results. The analysis presented in
Fig. 4 reveals that the eight random parameters exert varying degrees of influence on the three seismic demands.
For example, Fig. 4a demonstrates that the representative value of gravity load and damping ratio significantly
impact the roof displacement demand of the structure, followed by yield strength of reinforcement and
compressive strength of concrete; other factors exhibit minimal influence. In Fig. 4b, it is evident that base shear
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Random parameters Units Symbol | Distributions | Means | Variation coefficients | References
Compressive strength of concrete MPa A Normal 34.82 0.14 3
Modulus of elasticity of concrete MPa E, Normal 33904 |0.08 37
Modulus of elasticity of steel MPa E, Normal 228,559 | 0.033 38

Yield strength of steel rebars MPa 1 Lognormal 384 0.078 3
Structural damping ratio ( Normal 0.055 | 0.2 =

Stiffness of viscous damper kKN-mm~! |k Normal 100 0.1

Damping coefficient of viscous damper | kN-smm™! | ¢ Normal 3 0.1

Representative value of gravity load kN/m? M, Normal 6 0.1 3

Table 1. Statistical information of random parameters.

(a)

Area of reinforcement/mm? Area of reinforcement/mm?

Floor | Column section/(mmxmm) | Middle position of section | Edge position of section | Beam section/(mmxmm) | Top of section | Bottom of section

1 600 x 600 2281 3800 1256 1964

2~4 | 500x500 1570 2544 300x 600 1017 1520

5~7 | 500x500 1206 2010 804 1017

Table 2. Section information.
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Fig. 3. The relation of seismic demands and damping ratio, (a) (top displacement demand), (b) base shear
demand, (¢) maximal story drift angle demand.

demand is predominantly affected by three random parameters: yield strength of reinforcement, representative
value of gravity load, and compressive strength of concrete, while other random parameters have little effects.
Furthermore, as shown in Fig. 4c, damping ratio has a substantial effect on maximum inter-story displacement
angle demand for the structure, followed by yield strength of steel bars; however, elastic modulus of steel bars,
compressive strength of concrete, elastic modulus of concrete, and stiffness characteristics associated with
viscous dampers show little to no influence on this parameter.

Additionally, when sample size N<256 is considered, there exists considerable variation in importance
ranking among each random parameter concerning output response; conversely, when N>384 is applied,
this ranking remains relatively stable with only minor changes observed in importance index values for each
parameter. This suggests that larger sample sizes enhance result accuracy significantly. Notably depicted in Fig. 4
is that at N=1024—results generated through the proposed method remain consistent—satisfying established
accuracy requirements.

In addition, When the sample size N <256, the importance ranking of each random parameter on the output
response is quite different, while when N>384, the importance ranking basically remains unchanged, and the
value of the importance index of each random parameter also change very little. It indicates that the larger the
sample size N, the more accuracy the results. As shown in Fig. 4, when N=1024, the results obtained by the
proposed method remains unchanged, which can meet the accuracy requirements. Compared to the variance
method that relies on Monte Carlo, which requires thousands of samples, it is obvious that the proposed method
in this study significantly improves the computing efficiency.

The rankings of the importance effect of each random parameter are shown in Fig. 5, where N=1024. It can
be seen from Fig. 5 that the random parameters exert varying degrees of influence on the three seismic demands.
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Fig. 4. Importance index for case study 1, (a) Top displacement demand (IE), (b) Top displacement demand
(VAR), (c) Base shear demand (IE), (d) Base shear demand (VAR), (e) Maximal story drift angle demand (IE),
(f) Maximal story drift angle demand (VAR).

For example, the representative value of gravity load (M) and the structural damping ratio ({) significantly impact
the top displacement demand; conversely, { has a lesser effect on the base shear demand. The steel strength (f)
and the representative value of gravity load (M) have a pronounced influence on base shear demand but exhibit
a reduced impact on maximal story drift angle demand. In addition, there is a notable discrepancy between
the values of importance indices derived from information entropy (IE) and those obtained through variance
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Fig. 5. Comparison of importance index, (a) Top displacement demand, (b) Base shear demand, (c¢) Maximal
story drift angle demand.

analysis (VAR). Generally, values calculated using VAR tend to be higher than those determined by IE. This
difference arises from the distinct interpretations associated with each method for assessing importance indices.

The results obtained by Tornado graphic method are shown in Fig. 6. It is obviously that the importance effect
of each parameter on the three seismic demands are different. For example, Fig. 6a shows that the representative
value of gravity load M, damping ratio { and compressive strength of concrete f, exert a more substantial
influence on the top displacement demand, whereas the stiffness of the viscous damper k and the elastic
modulus of concrete E_ have less influence. Figure 6b indicates that the yield strength of steel bar f, structural
quality M, and compressive strength of concrete f, have a greater influence on the base shear demand of the
structural, while the elastic modulus of concrete E_ has the least influence. From Fig. 6, the damping ratio {and
compressive strength of concrete f_ have a greater impact on the maximal story drift angle demand, while the
elastic modulus of concrete E_has the least influence. Overall, the ranking of the importance effect of the eight
random parameters on the three structural seismic demands are as follows, respectively: MS>(>fE >c>ES>); >k>E,
fy >M>f>(>E >k>c>E_and (>fy >c>M>E >f >k>E.

A steel-concrete frame structure

A three-span, seven-story steel-concrete frame structure, the steel strength grade is Q345, and the welded
H-section is used. The section steel in the beam is H140 x 440 x 10 x 16, and the section steel in the columns of
floors 1 ~4 and 5~ 7 are respectively H400 x 400 x 11 x 18 and H300 x 300 x 10 x 15. The statistical characteristics
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Fig. 6. Sensitivity ordering of random parameters, (a) top displacement demand, (b) base shear demand, (c)
maximal story drift angle demand.

Random parameters Units | Symbol | Distributions | Means | Variation coefficients
Structural damping ratio ¢ Normal 0.05 0.2%
Modulus of elasticity of section steel | MPa | E Normal 228,559 | 0.033
Yield strength of section steel MPa fy < Normal 396 0.078

Table 3. Statistical characteristics of random parameters.

Storey | Column section/(mmxmm) | Area of reinforcement/mm? | Beam section/(mmxmm) | Area of reinforcement/mm?

1 6082 2280
600 x 600 300x 600
2~7 4072 1526

Table 4. Section information.

Serial number | Earthquake Magnitude | Occurrence time
RSN902 Big Bear-01 6.5 1992
RSN3747 Cape Mendocino 7.0 1992
RSN130 Friuli_ Italy-02 5.9 1976
RSN6 Imperial Valley-02 7.0 1940
RSN1083 Northridge-01 6.7 1994
RSN947 Northridge-01 6.7 1994
RSN578 TaiwanSMART1(45) | 7.3 1986

Table 5. Ground motion records.

of the random parameters are detailed in Table 3; all other parameters remain consistent with those presented in
Case study 1. Due to the limitation of space, the structure diagram is not provided herein. The configuration of
the cross-section reinforcement is shown in Table 4, and the ground motion records are shown in Table 5. The
PGA is uniformly adjusted to 0.6 g, acting on the longitudinal direction of the structure.

The important effects of 8 random parameters on the three structural seismic demands under different ground
motion records are shown in Fig. 7. It can be seen from Fig. 7a—f that the results obtained by the proposed method
(IE) and the variance method (VAR) exhibit a high degree of consistency, thereby validating the accuracy of the
proposed method. It shows that the effect of random parameters on structural seismic demands varies across
different ground motion records. For example, Fig. 7a shows that the importance orderings of the 8 parameters
on the top displacement demand obtained by IE under the 7 ground motion records are as follows, respectively:
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Fig. 7. Comparison of importance index, (a) Top displacement demand (IE), (b) Top displacement demand
(VAR), (c) Base shear demand (IE), (d) Base shear demand (VAR), (e) Maximal story drift angle demand (IE),
(f) Maximal story drift angle demand (VAR).

OM>f>f >E >f >E>E, f >f>M>E >f>E>E, (M>f >f>f>E >E>E, ({>f >M>f>E >f>E>E,
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chs>Ms>(?f >ESS>fC>E.S>.EC, > S>(>fy.> f>E>E and M >(>f > > SS>f€> >E,. Obviously, the orderings are
not consistent, and similar discrepancies are observed for the other'two seismic demands.

Considering the characteristics of the results under most ground motion records, for the top displacement
demand, the information entropy importance indices of {, M, and f,_ tend to be larger compared to those of E ,
s s
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E_ and E, which remain smaller. For the base shear demand, the information entropy importance indices of f .
and M, are larger, while those of E_, E_and E_ are smaller under most ground motion records. For the maximal
story drift angle demand, the 1nformat10n entropy importance indices of M, f and ( are larger, while those of
E_, E and E_remain comparatively smaller under most ground motion records.

Taklng the ground motion record RSN902 as an example, the results obtained by IE and VAR are
shown in Fig. 8. Notable differences exist between the results of the two methods, which can be attributed
to the different meanings of the index expressed by the two analysis methods. The importance rankings of 8
random parameters for the three seismic demands derived from IE are respectively (>f >M >f >E >f>E>E,,
f,o0M >f >f>E >E>E, M>(>f>E_>E >f >f >E_, which are nearly consistent with those obtained by VAR.
It can be seen that the random parameter *has different influence degrees on different seismic demands. For
example, M_ has a greater impact on the base shear demand and the maximal story drift angle demand, but has
a small influence on the top displacement demand. f has a greater impact on the structural top displacement
demand and the base shear demand, but has a small influence on the maximal story drift angle demand.

The results obtained by the Tornado graphic method under the ground motion record RSN902 are shown
in Fig. 9. it can be seen form Fig. 8a,b that ¢, f and M_ have greater influence on the top displacement demand,
while E_ and E_ have comparatively smaller influence. In Fig. 8¢, M,, { and f, have greater influence on the
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VAR 777 VAR
o 04 N\ IE . 04 NNIE |
< 3 - %
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(@] o
Q jon
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Fig. 8. Comparison of importance index, (a) Top displacement demand, (b) Base shear demand, (c) Maximal
story drift angle demand.
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Fig. 9. Sensitivity ordering of random parameters, (a) top displacement demand, (b) base shear demand, (c)
maximal story drift angle demand.

Random parameters | Top displacement | Base shear | Maximal story drift angle
fY 3-3-6* 1-1-1 2-2-2
E 5-6-5 5-4-5 5-5-5
M, 1-2-1 2-2-2 4-4-4
¢ 212 4-5-4 1-1-1
f 4-4-3 3-3-3 7-7-6
E, 8-8-8 7-8-8 6-6-8
c 6-5-4 6-6-7 3-3-3
k 7-7-7 8-7-6 8-8-7

Table 6. Importance ordering of random parameters for case study 1. 3-3-6*means that, the first number

3 represent the importance ordering obtained by information entropy, the second number 3 represent the
importance ordering obtained by MC and the third number 6 represent the importance ordering obtained by
Tornado graphic method, respectively. The same as others.

maximal story drift angle demand, while fy and E_have smaller influence. In general, the importance rankings
of 8 random parameters for the three seisthic demands are {>f, >M I PI>ESESE, f >M >(>f >f>E >E>E,
M>f>(>E, >f >E >f >E, respectively. These findings indicate that the relative 51gn1ﬁcance of idéntical random
parameters Varies actoss different seismic demands.

Discussions

In order to compare the influence of random variables obtained by the three methods on different seismic
demands, the importance orderings of the random parameters obtained by the three methods to the three
structures seismic demands are listed in Tables 6 and 7, respectively.

As shown in Table 6, it is evident that the representative value of gravity load M, and damping ratio {
significantly impact the top displacement demand. Conversely, the stiffness of the viscous damper k and the
elastic modulus of the concrete E, exert a lesser influence. The yield strength of steel bar f and representative
value of gravity load M_ have great influence on the base shear demand of structure, while'the elastic modulus
of concrete E_has little influence. The damping ratio { and the yield strength of steel bar f, have a great influence
on the maximal story drift angle of the structure, while the elastic modulus of concrete E_ has little influence.
Taken the top displacement demand of structure as an example, the importance orderings of the random
parameters obtained by the three methods respectively are M >(>f >f>E>c>k>E,, (>M, >f >f>c>E>k>E_and
M >(>f >c>E >f >k>E_. 1t is clear that the results obtained by IE and VAR closely ahgned ‘Whereas those derived

y
from Tornado graphlc method differ notably from both approaches.

As shown in Table 7, there are some differences in the orderings produced by various methods for the same

set of random parameters. Nevertheless, these rankings generally exhibit a close correspondence with one
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Random parameters | Top displacement | Base shear | Maximal story drift angle
£, 4-4-4 4-4-4 6-7-7
E, 8-7-8 6-7-8 5-5-6
M, 3-3-3 2-2-2 1-1-1
¢ 1-1-1 3-3-3 2-2-3
1. 6-6-5 5-5-5 3-4-2
E, 7-8-7 8-8-7 8-8-8
£ 2-2-2 1-1-1 7-6-5
E, 5-5-6 7-6-6 434

Table 7. Importance ordering of random parameters for case study 2. 4-4-4*means that, the first number

4 represent the importance ordering obtained by information entropy, the second number 4 represent the
importance ordering obtained by MC and the third number 4 represent the importance ordering obtained by
Tornado graphic method, respectively. The same as others.

another. The random parameters (, f and M_ have greater influence on the top displacement demand and base
shear demand, while E_and E_ have Tesser influence. The random parameters M, {, and f_have greater influence
on the maximal story drift angle, while E_and f have lesser influence.

Conclusion

The influence of random parameters on the three seismic demands are investigated in this study using the
importance analysis method based on information entropy. The results from two case studies align well with
those obtained through the variance method, indicating that the proposed approach is both accurate and
effective. Additionally, the Tornado graphic method is employed for comparative purposes. The conclusions
drawn are as follows:

(1) The importance orderings regarding the influence of random parameters on structural seismic demands,
as determined by the proposed method, is consistent with the findings derived from the variance-based
importance analysis method. This consistency verifies the accuracy of the proposed method.

(2) Improved results can be achieved when utilizing a sample size of N=1024 based on the proposed method;
conversely, the variance-based importance analysis requires thousands of samples to yield comparable out-
comes. Thus, the required sample size for the proposed method is significantly smaller than that needed for
variance-based methods, leading to a marked increase in efficiency.

(3) For the frame structure, identical random parameters exhibit varying degrees of influence on the three
structural seismic demands. In case study 1, M, and { exert considerable effects the top displacement de-
mand, fy and M_ significantly impact the base shear demand, and (and ]S, greatly affect the maximal story
drift angle, while E_has little influence on all the three structural seismic demands. In case study 2, ¢, f, .
and M have greater influence on the top displacement demand and base shear demand, M, ¢, and fC have
greater influence on the maximal story drift angle, while E_has lesser influence on all the three structural
seismic demands.

(4) According to Tables 6 and 7, the influence of M_ on the seismic demands is relatively large, whereas E,
demonstrates minimal impact.

(5) When the importance of the frame structure is analyzed with a single ground motion record and multiple
ground motion records, the importance orderings of each parameter on seismic demands remain relatively
consistent.

In summary, this study proposed an efficient importance analysis method based on information entropy to
evaluate the influence of parameter uncertainty on structural seismic demands and identify parameters with
higher impact. By controlling the uncertainty associated with these parameters, it is possible to enhance
structural safety effectively and provide valuable insights for optimization in structural design.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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