
Global sensitivity analysis of 
structural seismic demand based 
on information entropy
Xiuzhen Wang1,2, Zhaoxia Xu1,3 & Chuanzhi Sun1,2

To improve the computational efficiency of global sensitivity analysis (GSA) for complex structures, 
this study proposed a new importance analysis method (IE) based on the low deviation sequences and 
orthogonal polynomials to study the influence of parameters’ uncertainty on three structural seismic 
demands. A comparative investigation utilizing nonlinear time history analysis for these seismic 
demands was conducted using OpenSEES. The variance-based importance analysis method and the 
Tornado graphic sensitivity analysis method were employed to validate the accuracy of the proposed 
approach. The results regarding the order of importance are nearly consistent across methods, 
demonstrating the effectiveness of our proposed method. Notably, the sample size required by this 
new method is only 1024 to achieve reliable results, which is significantly lower than existing sampling 
methods that necessitate thousands of samples for effective importance analysis; thus, enhancing 
overall efficiency. Furthermore, the findings indicate that the influence of representative value of 
gravity load (Ms) on seismic demands is relatively substantial, whereas the influence of modulus of 
elasticity of concrete (Ec) is comparatively minor.

Keywords  Information entropy, Importance analysis, Orthogonal polynomial estimation, Nonlinear time 
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As is well known, earthquakes significantly impact building structures. The study of uncertainties in evaluating 
building performance under seismic loading has long been a crucial aspect of structural seismic research1,2. 
In recent years, numerous methods for researching uncertainty have emerged, providing robust support for 
the advancement of structural seismic studies. For example, Xing et al.3 investigated the dynamic response of 
high-rise buildings equipped with one-outrigger systems subjected to two types of seismic hazards using deep 
neural networks. Ding et al.4 proposed a probabilistic machine learning (ML) method alongside a probabilistic 
approach derived from the Poisson binomial distribution model to assess the seismic vulnerability of various 
building combinations. Kurmi and Haldar5 evaluated how functional openings in upper fillers affect the 
seismic performance and failure mechanisms of Un-Reinforced Masonry (URM) infills within open ground 
storey (OGS) reinforced concrete (RC) buildings across different design levels. Ye and Hua6 comprehensively 
considered the uncertainties brought by the records, structural design parameters and modeling in the process 
of seismic performance evaluation, and established a seismic performance evaluation system for middle and 
high-rise cold-formed thin-walled steel (CFS) structures considering various uncertainties.

In parameter uncertainty analysis of structural systems, the global sensitivity analysis (GSA, often dubbed 
importance analysis, IS) approach is garnering growing attention. IS may quantify the impact of the input 
parameters on the statistical characteristics of the output response in engineering from the whole uncertainty 
range of the input random parameters7–10. The variance-based and moment-independence-based importance 
analysis methods are frequently employed for IS of structural systems. For instance, using GSA in conjunction 
with an enhanced Latin hypercube sampling technique, Khaneghahi et al.11 examine the effects of each 
random variable and their interactions on the variance of the responses. Xu and Wang12 developed a moment-
independent importance analysis method combined with orthogonal polynomial estimation to investigate 
the effects of random parameters on structural seismic demands. Ling et al.13 proposed a novel approach that 
integrates adaptive Kriging with the multiplicative dimensionality reduction method (M-DRM) to derive the 
time-dependent global reliability sensitivity index, significantly reducing computational effort.
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It is important to note that different sources of uncertainty are seldom considered comprehensively in 
structural seismic analysis. Consequently, some researchers have introduced entropy theory and developed a 
GSA method based on information entropy. For instance, Yazdani et al.14 examined the impact of uncertainties 
in ground motion variables and structural parameters on the inelastic response of concrete structures using 
an entropy-based GSA method. Kala15 proposed an alternative global sensitivity measure by approximating 
differential entropy through dome-shaped functionals with non-negative values. Du and Padgett16 incorporated 
joint entropy from information theory to quantify the uncertainty associated with unconditional multivariate 
seismic demands for general multi-response structural systems.

However, the commonly employed IS method necessitates double-layer sampling, which is computationally 
intensive and not conducive to practical engineering applications. Furthermore, even when utilizing single-
layer sampling methods such as simplified Monte Carlo simulations, thousands of samples are required to 
achieve reliable results in IS, thereby diminishing operational efficiency17–19. Given that sampling input random 
parameters is a critical component of importance analysis, this study develops an orthogonal polynomial 
estimation (OPE) combined with information entropy to conduct importance analyses regarding seismic 
demand for structures. The uncertainty of random parameters was simulated using Sobol series, while probability 
density functions for output responses were approximated via Hermite orthogonal polynomials. Subsequently, 
the importance index based on information entropy was calculated to provide a comprehensive evaluation of 
how parameter uncertainty influences structural seismic demands.

The variance-based importance analysis method is a classical approach20, often considered an exact 
solution and widely employed to validate the accuracy of new methodologies21–24. Additionally, the Tornado 
graphical method has gained popularity in economic decision analysis due to its straightforward principles 
and ease of calculation. In recent years, it has also been applied in sensitivity analyses concerning seismic losses 
in buildings25–27. Consequently, this study calculates the variance-based importance index for comparative 
purposes to assess the accuracy of the proposed methodology. Furthermore, this research introduces a novel 
importance index designed to evaluate the impact of parameter uncertainty on structural seismic demand, 
thereby providing significant insights for enhancing computational efficiency within the realms of structural 
and earthquake engineering.

Analytical method
Information entropy importance index
For an output response Y = g(X), when the random variable X is considered as the realized value xi, the 
probability density function of Y is denoted as fY |Xi=xi

(y), and the uncertainty of Xi has been eliminated, so 
the impact of Xi  on the output response Y based on information entropy can be defined as follow28:

	 εi =
∣∣HY − HY |Xi=xi

∣∣� (1)

where, HY    represents the original entropy of the output response Y, and HY = − ∫
DY

fY (y) log fY (y)dy; 
HY |Xi

= xi  denotes the conditional entropy of the output response, which is obtained by 
HY |Xi=xi

= − ∫
DY

fY |Xi=xi
(y) log fY |Xi=xi

(y)dy.

According to Eq. (1) and in conjunction with the definition of importance index8, the average impact on the 
output response can be expressed as follow:

	

εi =E
(∣∣HY − HY |Xi=xi

∣∣ )
HY − HY |Xi=xi

∣∣

≈ 1
N0

N0∑
j=1

∣∣∣HY − HY |Xi=xij

∣∣∣ � (2)

where, DXi   denotes the variation range of random parameters, E(·) represents the mathematical expectation, 
the sample Xij(j = 1, 2, · · · , N0)  is generated according to the probability density function of Xi, and 
HY |Xi=xij

  refers to the conditional entropy when Xi assumes the value of Xij(j = 1, 2, · · · , N0).

The solution method of information entropy importance index
The explicit expression of the probability density function fY (y) is often unknown in practical engineering 
applications, necessitating the use of estimation methods to obtain it. The estimated value 

∧
fY (y) of fY (y) 

can be derived when the sample yk(k = 1, 2, · · ·, N) of Y is given. Numerous estimation methods exist for 
obtaining 

∧
fY (y), including histogram estimation29, Orthogonal polynomial estimation (OPE)30, kernel density 

estimation31, maximum entropy principle estimation32, etc. It is important to note that parameter estimation 
methods typically require prior knowledge, which may lead to fitting results that significantly deviate from 
actual conditions. In contrast, non-parametric estimations directly fit the distribution based on the inherent 
characteristics of the data samples themselves, without making assumptions about the underlying distribution 
type. This advantage renders non-parametric methods highly valued in both statistical theory and practical 
applications. Among non-parametric estimation techniques, OPE stands out as a representative method due to 
its straightforward principles and high precision. It allows for direct fitting of probability distributions according 
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to the characteristics of the data samples with considerable accuracy. Consequently, OPE has been employed in 
this study to estimate fY (y).

According to Feiler33, if the moment µ1, µ2, · · · µr(r ⩾ 3)  exists and the characteristic function Φ  of the 
probability distribution meets the condition that |Φ|v    (v ⩾ 1)  is integrable, then the polynomial fn  that 
obtained by inverse Fourier transform exists when n ≥ v, where fn  represents the finite term of the characteristic 
function Φ  expanded via Taylor series. Furthermore, the variable x satisfy the follow equation when n → ∞:

	
fn(x) − ϕ(x)(1 +

r∑
k=3

n− k
2 +1Pk(x)) = 0

(
n− r

2 +1)
� (3)

where, Pk(x)  represents a real polynomial which does not depend on n and r but only on the moments 
µ1, µ2, · · · µr ; and ϕ(x)  represents normally distribution.

The aforementioned theorem demonstrates that the probability density function f(x) can be approximated 
through the expansion of the higher-order moment, with this expansion represented as a correction coefficient 
multiplied by the normal distribution. Therefore, f(x)  can be defined as a function that expanded into a 
polynomial with a weight function ϕ(x). To estimate f(x)  because of its simplicity and ease of operation, 
Hermite orthogonal polynomial is chosen in this study, which is expressed as follow:

	
Hn(x) = (−1)nex2 dn(e−x2

)
dxn

, n = 0, 1, · · · � (4)

If Z = g(X) = g(x1, x2, · · · xn),  and f(X) is the probability density function of X, then the origin moments 
of each order are expressed as follow:

	
Mk(g) =

∫ +∞

−∞
(g(X))kf(X)dX, k = 1, 2, · · · , N � (5)

Let Y = z−µz
σz

= g(X)−M1(g)√
M2(g)−M1(g)2

  be the new function, then the origin moments of each order are equal to the 

center moments, namely:

	
Mk(g) = µk(Y ) =

∫ +∞

−∞
Y kf(X)dX, k = 1, 2, · · · , N � (6)

Take f(X)  as a weight function when it represents a specific type of probability distribution, and the accuracy 
and efficiency are higher when the corresponding type of Gaussian integration point is used. For example, in the 
cases of normal distribution, exponential distribution, and uniform distribution, the type of weight function is 
respectively e−x2

, e−x  and 1. Then the corresponding Gaussian integral points can be used respectively.
Therefore, the process of approximating probability density function using orthogonal polynomials is briefly 

described as follows: let ρ(x)  denote a weight function, the orthogonal polynomial defined on the corresponding 
interval [a, b]  is expressed as follow:

	
ωk(x) =

k∑
m=0

Akmxm, k = 0, 1, 2, · · · � (7)

  where Akm  represents a fixed constant. Based on the properties of orthogonal polynomials, it can be stated 
that there are:

	

∫ b

a

ρ(x)ωi(x)ωj(x)dx =
{

hi, i = j;
0, i ̸= j. � (8)

Then f(x) can be obtained by:

	
f(x) ≈ ρ(x)

N∑
k=0

akωk(x)� (9)

 where ak   denotes an undetermined coefficient, which determined by ak =
k∑

m=0
Akmµm(x)/hk ; the weight 

function is ρ(x) = 1√
2πσ

e
(− (x−µ)2

2σ2 )
,  or a standardized function is adopted, and the weight function is 

ϕ(y) = 1√
2π

e(− y2
2 ), the integration interval is (−∞, +∞), and the coefficient of the highest order term of the 

polynomial is 1.
To sum up, the computational procedures are outlined as follows:
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	(1)	� Generate N samples of random parameter using Sobol series. After extensive experimentation, it was deter-
mined that the error in both the mean and standard deviation does not exceed 5/10,000 when the sample 
size exceeds 500.

	(2)	� Establish the calculation model utilizing OpenSees, inputting the sample values of random parameters to 
obtain the output response yk(k = 1, 2, · · ·, N) of various seismic requirements Y.

	(3)	� Employ the Hermite orthogonal polynomial estimation method to calculate estimated values 
∧

fY (y) of 
fY (y)  for different seismic demands Y, followed by an estimation of their original entropy HY .

	(4)	� Repeat steps (2) and (3) to estimate the conditional entropies HY |Xi=xij
 of various seismic demands Y.

	(5)	� Calculate 
∣∣HY − HY |Xi=xi

∣∣ of the difference between the original entropy and the conditional entropy, 
subsequently deriving the importance index εi based on the information entropy as described in Eq. (2).

The flowchart is shown in Fig. 1.

Verification method
In importance analysis, the Monte Carlo-based variance method (abbreviated as VAR) is considered the most 
classic approach and is typically regarded as an exact solution. To test and validate the proposed method, we 
employ the variance importance analysis method for comparison. Both the information entropy importance 
analysis method and the variance importance analysis method are capable of examining changes in output 
responses when random parameters assume all possible values, thus falling under Global Sensitivity Analysis 
(GSA). In contrast, traditional sensitivity analysis methods belong to Local Sensitivity Analysis (LSA), which 
can only assess changes in output responses when random parameters take on specific values. To elucidate the 

Fig. 1.  The flowchart of the proposed method.

 

Scientific Reports |         (2025) 15:8447 4| https://doi.org/10.1038/s41598-025-93150-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


differences between GSA and LSA, the Tornado graph method—a technique associated with LSA—also has 
been used to conduct sensitivity analyses. The results obtained from this approach are then compared with those 
derived from both the proposed method and the variance-based methodology.

According to Satteli34, the importance index δν
i   of the MC-based variance method is expressed as follow:

	

δν
i =Var(E(Y |X i))

Var(Y )

=Var(Y ) − E(Var(Y |X i))
Var(Y )

� (10)

where Var(·) means variance, and Var(E(Y|Xi)) is the conditional variance of mathematical expectation of the 
structural seismic demand Y; E(Var(Y|Xi)) means the expectation of the conditional variance of Y; Xi is a random 
parameter Xi, or a group of random parameters [Xi1, Xi2, · · · , Xir] (1 ⩽ i1 ⩽ · · · ⩽ ir ⩽ n).

Due to space constraints, a detailed introduction to the Tornado graphics method is no longer provided. 
Please refer to references26,27,35 for further information.

Case study
A reinforced concrete frame structure
A 3-span, 7-story reinforced concrete frame structure equipped with viscous dampers is presented as an 
engineering example for importance analysis, as illustrated in Fig.  2. The specifications of this structure are 
detailed as follows: the standard floor height measures 3600 mm, while the bottom floor height is 4200 mm; 
the slab thickness is set at 120  mm, and all column spacing are uniformly spaced at 6000  mm. The viscous 
damper features a damping index of 1, with concrete classified as C40 and reinforcement designated as HRB335. 
Furthermore, the details regarding input variables are provided in Table 1, and information pertaining to beam 
and column sections can be found in Table 2.

The finite element analysis model for nonlinear time history analysis in this study is established using 
OPENSEES. The seismic wave employed is the El Centro seismic wave, and the viscous damper is simulated 
through a Maxwell element. For the column and beam, a nonlinear fiber beam-column element is utilized, while 
the concrete material is represented by the Concrete02 element, and the Steel02 material model is adopted for 
steel reinforcement. Considering that the existing sampling method requires thousands of samples to get good 
results, which takes a lot of time to perform finite element simulation on the structure. Aiming at this problem, 
the Sobol sequence is adopted for sampling in this study. With several hundred samples, improved outcomes 
can be obtained while maintaining high computational efficiency. The process can be summarized as follows:

	(1)	� Drawing N samples according to the joint distribution density of each random parameter; thus, the sample 
matrix A = n×N (n is the number of variables) is expressed as:

	

A =




X
(1)
1 · · · X

(1)
i · · · X

(1)
n

X
(2)
1 · · · X

(2)
i · · · X

(2)
n

...
. . .

...
X

(N)
1 · · · X

(N)
i · · · X

(N)
n




	(2)	� Replacing the elements in the i-th column of matrix A with the mean of the i-th random parameter, the 
matrix B is obtained as:

	

B =




X
(1)
1 · · · X

(1)
i · · · X

(1)
n

X
(2)
1 · · · X

(2)
i · · · X

(2)
n

...
. . .

...
X

(N)
1 · · · X

(N)
i · · · X

(N)
n




	(3)	� Substituting the sample matrices A and B into the finite element model for nonlinear time history analysis, 
respectively, and obtain the corresponding unconditional output responses Y = (y1, y2, · · · yN )T    and 
conditional output responses Y |Xi = (y1 |x̄i , y2 |x̄i , · · · yN |x̄i )T .

The relationships between the unconditional sample values of the three seismic demands and their corresponding 
damping ratios are illustrated in Fig. 3. It is evident that these relationships exhibit inconsistencies. For instance, 
both the maximum interstory displacement angle demand and the roof displacement demand appear to be 
roughly inversely related to the damping ratio, while the relationship between base shear force demand and 
damping ratio is less pronounced. Overall, the effects of damping ratio on these three types of seismic demands 
demonstrate considerable variability. This variability arises from the fact that these seismic demands are 
influenced not solely by a single random parameter—namely, the damping ratio—but also by eight additional 
random parameters selected for importance analysis in this study. The relationships among these three seismic 
demands and other random parameters show similar patterns; therefore, they are not included here due to space 
constraints.
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The effects of 8 random parameters on three kinds of seismic demands are illustrated in Fig. 4. As observed 
from Fig. 4, the results calculated by the proposed method (IE) closely align with those derived from the variance-
based method (VAR), indicating that the proposed method yields accurate results. The analysis presented in 
Fig. 4 reveals that the eight random parameters exert varying degrees of influence on the three seismic demands. 
For example, Fig. 4a demonstrates that the representative value of gravity load and damping ratio significantly 
impact the roof displacement demand of the structure, followed by yield strength of reinforcement and 
compressive strength of concrete; other factors exhibit minimal influence. In Fig. 4b, it is evident that base shear 

Fig. 2.  Structure diagram: (a) Building plans; (b) Building elevation.
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demand is predominantly affected by three random parameters: yield strength of reinforcement, representative 
value of gravity load, and compressive strength of concrete, while other random parameters have little effects. 
Furthermore, as shown in Fig. 4c, damping ratio has a substantial effect on maximum inter-story displacement 
angle demand for the structure, followed by yield strength of steel bars; however, elastic modulus of steel bars, 
compressive strength of concrete, elastic modulus of concrete, and stiffness characteristics associated with 
viscous dampers show little to no influence on this parameter.

Additionally, when sample size N ≤ 256 is considered, there exists considerable variation in importance 
ranking among each random parameter concerning output response; conversely, when N ≥ 384 is applied, 
this ranking remains relatively stable with only minor changes observed in importance index values for each 
parameter. This suggests that larger sample sizes enhance result accuracy significantly. Notably depicted in Fig. 4 
is that at N = 1024—results generated through the proposed method remain consistent—satisfying established 
accuracy requirements.

In addition, When the sample size N ≤ 256, the importance ranking of each random parameter on the output 
response is quite different, while when N ≥ 384, the importance ranking basically remains unchanged, and the 
value of the importance index of each random parameter also change very little. It indicates that the larger the 
sample size N, the more accuracy the results. As shown in Fig. 4, when N = 1024, the results obtained by the 
proposed method remains unchanged, which can meet the accuracy requirements. Compared to the variance 
method that relies on Monte Carlo, which requires thousands of samples, it is obvious that the proposed method 
in this study significantly improves the computing efficiency.

The rankings of the importance effect of each random parameter are shown in Fig. 5, where N = 1024. It can 
be seen from Fig. 5 that the random parameters exert varying degrees of influence on the three seismic demands. 

Fig. 3.  The relation of seismic demands and damping ratio, (a) (top displacement demand), (b) base shear 
demand, (c) maximal story drift angle demand.

 

Floor Column section/(mm×mm)

Area of reinforcement/mm2

Beam section/(mm×mm)

Area of reinforcement/mm2

Middle position of section Edge position of section Top of section Bottom of section

1 600 × 600 2281 3800

300 × 600

1256 1964

2 ~ 4 500 × 500 1570 2544 1017 1520

5 ~ 7 500 × 500 1206 2010 804 1017

Table 2.  Section information.

 

Random parameters Units Symbol Distributions Means Variation coefficients References

Compressive strength of concrete MPa fc Normal 34.82 0.14 36

Modulus of elasticity of concrete MPa Ec Normal 33,904 0.08 37

Modulus of elasticity of steel MPa Es Normal 228,559 0.033 38

Yield strength of steel rebars MPa fy Lognormal 384 0.078 36

Structural damping ratio ζ Normal 0.055 0.2 25

Stiffness of viscous damper kN·mm− 1 k Normal 100 0.1

Damping coefficient of viscous damper kN·s·mm− 1 c Normal 3 0.1

Representative value of gravity load kN/m2 Ms Normal 6 0.1 36

Table 1.  Statistical information of random parameters.
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For example, the representative value of gravity load (Ms) and the structural damping ratio (ζ) significantly impact 
the top displacement demand; conversely, ζ has a lesser effect on the base shear demand. The steel strength (fy) 
and the representative value of gravity load (Ms) have a pronounced influence on base shear demand but exhibit 
a reduced impact on maximal story drift angle demand. In addition, there is a notable discrepancy between 
the values of importance indices derived from information entropy (IE) and those obtained through variance 

Fig. 4.  Importance index for case study 1, (a) Top displacement demand (IE), (b) Top displacement demand 
(VAR), (c) Base shear demand (IE), (d) Base shear demand (VAR), (e) Maximal story drift angle demand (IE), 
(f) Maximal story drift angle demand (VAR).
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analysis (VAR). Generally, values calculated using VAR tend to be higher than those determined by IE. This 
difference arises from the distinct interpretations associated with each method for assessing importance indices.

The results obtained by Tornado graphic method are shown in Fig. 6. It is obviously that the importance effect 
of each parameter on the three seismic demands are different. For example, Fig. 6a shows that the representative 
value of gravity load Ms, damping ratio ζ and compressive strength of concrete fc exert a more substantial 
influence on the top displacement demand, whereas the stiffness of the viscous damper k and the elastic 
modulus of concrete Ec have less influence. Figure 6b indicates that the yield strength of steel bar fy, structural 
quality Ms and compressive strength of concrete fc have a greater influence on the base shear demand of the 
structural, while the elastic modulus of concrete Ec has the least influence. From Fig. 6c, the damping ratio ζ and 
compressive strength of concrete fc have a greater impact on the maximal story drift angle demand, while the 
elastic modulus of concrete Ec has the least influence. Overall, the ranking of the importance effect of the eight 
random parameters on the three structural seismic demands are as follows, respectively: Ms>ζ>fc>c>Es>fy>k>Ec, 
fy>Ms>fc>ζ>Es>k>c>Ec and ζ>fy>c>Ms>Es>fc>k>Ec.

A steel-concrete frame structure
A three-span, seven-story steel-concrete frame structure, the steel strength grade is Q345, and the welded 
H-section is used. The section steel in the beam is H140 × 440 × 10 × 16, and the section steel in the columns of 
floors 1 ~ 4 and 5 ~ 7 are respectively H400 × 400 × 11 × 18 and H300 × 300 × 10 × 15. The statistical characteristics 

Fig. 5.  Comparison of importance index, (a) Top displacement demand, (b) Base shear demand, (c) Maximal 
story drift angle demand.
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of the random parameters are detailed in Table 3; all other parameters remain consistent with those presented in 
Case study 1. Due to the limitation of space, the structure diagram is not provided herein. The configuration of 
the cross-section reinforcement is shown in Table 4, and the ground motion records are shown in Table 5. The 
PGA is uniformly adjusted to 0.6 g, acting on the longitudinal direction of the structure.

The important effects of 8 random parameters on the three structural seismic demands under different ground 
motion records are shown in Fig. 7. It can be seen from Fig. 7a–f that the results obtained by the proposed method 
(IE) and the variance method (VAR) exhibit a high degree of consistency, thereby validating the accuracy of the 
proposed method. It shows that the effect of random parameters on structural seismic demands varies across 
different ground motion records. For example, Fig. 7a shows that the importance orderings of the 8 parameters 
on the top displacement demand obtained by IE under the 7 ground motion records are as follows, respectively: 

Serial number Earthquake Magnitude Occurrence time

RSN902 Big Bear-01 6.5 1992

RSN3747 Cape Mendocino 7.0 1992

RSN130 Friuli_ Italy-02 5.9 1976

RSN6 Imperial Valley-02 7.0 1940

RSN1083 Northridge-01 6.7 1994

RSN947 Northridge-01 6.7 1994

RSN578 TaiwanSMART1(45) 7.3 1986

Table 5.  Ground motion records.

 

Storey Column section/(mm×mm) Area of reinforcement/mm2 Beam section/(mm×mm) Area of reinforcement/mm2

1
600 × 600

6082
300 × 600

2280

2 ~ 7 4072 1526

Table 4.  Section information.

 

Random parameters Units Symbol Distributions Means Variation coefficients

Structural damping ratio ζ Normal 0.05 0.239

Modulus of elasticity of section steel MPa Ess Normal 228,559 0.033

Yield strength of section steel MPa fys Normal 396 0.078

Table 3.  Statistical characteristics of random parameters.

 

Fig. 6.  Sensitivity ordering of random parameters, (a) top displacement demand, (b) base shear demand, (c) 
maximal story drift angle demand.
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ζ>Ms>fc>fy>Ess>fys>Es>Ec, ζ>fys>fc>Ms>Ess>fy>Es>Ec, ζ>Ms>fys>fc>fy>Ess>Es>Ec, ζ>fys>Ms>fy>Ess>fc>Es>Ec, 
fys>Ms>ζ>fy>Ess>fc>Es>Ec, fys>Ms>ζ>fy>Ess>fc>Es>Ec and Ms>ζ>fys>fy>Ess>fc>Es>Ec. Obviously, the orderings are 
not consistent, and similar discrepancies are observed for the other two seismic demands.

Considering the characteristics of the results under most ground motion records, for the top displacement 
demand, the information entropy importance indices of ζ, Ms and fys tend to be larger compared to those of Ess, 

Fig. 7.  Comparison of importance index, (a) Top displacement demand (IE), (b) Top displacement demand 
(VAR), (c) Base shear demand (IE), (d) Base shear demand (VAR), (e) Maximal story drift angle demand (IE), 
(f) Maximal story drift angle demand (VAR).
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Es and Ec which remain smaller. For the base shear demand, the information entropy importance indices of fys, fc 
and Ms are larger, while those of Ess, Es and Ec are smaller under most ground motion records. For the maximal 
story drift angle demand, the information entropy importance indices of Ms, fys and ζ are larger, while those of 
Ess, Es and Ec remain comparatively smaller under most ground motion records.

Taking the ground motion record RSN902 as an example, the results obtained by IE and VAR are 
shown in Fig.  8. Notable differences exist between the results of the two methods, which can be attributed 
to the different meanings of the index expressed by the two analysis methods. The importance rankings of 8 
random parameters for the three seismic demands derived from IE are respectively ζ>fys>Ms>fy>Ess>fc>Es>Ec, 
fys>ζ>Ms>fy>fc>Ess>Es>Ec, Ms>ζ>fc>Ess>Es>fy>fys>Ec, which are nearly consistent with those obtained by VAR. 
It can be seen that the random parameter has different influence degrees on different seismic demands. For 
example, Ms has a greater impact on the base shear demand and the maximal story drift angle demand, but has 
a small influence on the top displacement demand. fys has a greater impact on the structural top displacement 
demand and the base shear demand, but has a small influence on the maximal story drift angle demand.

The results obtained by the Tornado graphic method under the ground motion record RSN902 are shown 
in Fig. 9. it can be seen form Fig. 8a,b that ζ, fys and Ms have greater influence on the top displacement demand, 
while Es and Ec have comparatively smaller influence. In Fig.  8c, Ms, ζ and fc have greater influence on the 

Fig. 8.  Comparison of importance index, (a) Top displacement demand, (b) Base shear demand, (c) Maximal 
story drift angle demand.
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maximal story drift angle demand, while fy and Ec have smaller influence. In general, the importance rankings 
of 8 random parameters for the three seismic demands are ζ>fys>Ms>fy>fc>Ess>Es>Ec, fys>Ms>ζ>fy>fc>Ess>Ec>Es, 
Ms>fc>ζ>Ess>fys>Es>fy>Ec, respectively. These findings indicate that the relative significance of identical random 
parameters varies across different seismic demands.

Discussions
In order to compare the influence of random variables obtained by the three methods on different seismic 
demands, the importance orderings of the random parameters obtained by the three methods to the three 
structures seismic demands are listed in Tables 6 and 7, respectively.

As shown in Table  6, it is evident that the representative value of gravity load Ms and damping ratio ζ 
significantly impact the top displacement demand. Conversely, the stiffness of the viscous damper k and the 
elastic modulus of the concrete Ec exert a lesser influence. The yield strength of steel bar fy and representative 
value of gravity load Ms have great influence on the base shear demand of structure, while the elastic modulus 
of concrete Ec has little influence. The damping ratio ζ and the yield strength of steel bar fy have a great influence 
on the maximal story drift angle of the structure, while the elastic modulus of concrete Ec has little influence. 
Taken the top displacement demand of structure as an example, the importance orderings of the random 
parameters obtained by the three methods respectively are Ms>ζ>fy>fc>Es>c>k>Ec, ζ>Ms>fy>fc>c>Es>k>Ec and 
Ms>ζ>fc>c>Es>fy>k>Ec. It is clear that the results obtained by IE and VAR closely aligned, whereas those derived 
from Tornado graphic method differ notably from both approaches.

As shown in Table 7, there are some differences in the orderings produced by various methods for the same 
set of random parameters. Nevertheless, these rankings generally exhibit a close correspondence with one 

Random parameters Top displacement Base shear Maximal story drift angle

fy 3-3-6* 1-1-1 2-2-2

Es 5-6-5 5-4-5 5-5-5

Ms 1-2-1 2-2-2 4-4-4

ζ 2-1-2 4-5-4 1-1-1

fc 4-4-3 3-3-3 7-7-6

Ec 8-8-8 7-8-8 6-6-8

c 6-5-4 6-6-7 3-3-3

k 7-7-7 8-7-6 8-8-7

Table 6.  Importance ordering of random parameters for case study 1. 3-3-6*means that, the first number 
3 represent the importance ordering obtained by information entropy, the second number 3 represent the 
importance ordering obtained by MC and the third number 6 represent the importance ordering obtained by 
Tornado graphic method, respectively. The same as others.

 

Fig. 9.  Sensitivity ordering of random parameters, (a) top displacement demand, (b) base shear demand, (c) 
maximal story drift angle demand.
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another. The random parameters ζ, fys and Ms have greater influence on the top displacement demand and base 
shear demand, while Ec and Es have lesser influence. The random parameters Ms, ζ, and fc have greater influence 
on the maximal story drift angle, while Ec and fy have lesser influence.

Conclusion
The influence of random parameters on the three seismic demands are investigated in this study using the 
importance analysis method based on information entropy. The results from two case studies align well with 
those obtained through the variance method, indicating that the proposed approach is both accurate and 
effective. Additionally, the Tornado graphic method is employed for comparative purposes. The conclusions 
drawn are as follows:

	(1)	� The importance orderings regarding the influence of random parameters on structural seismic demands, 
as determined by the proposed method, is consistent with the findings derived from the variance-based 
importance analysis method. This consistency verifies the accuracy of the proposed method.

	(2)	� Improved results can be achieved when utilizing a sample size of N = 1024 based on the proposed method; 
conversely, the variance-based importance analysis requires thousands of samples to yield comparable out-
comes. Thus, the required sample size for the proposed method is significantly smaller than that needed for 
variance-based methods, leading to a marked increase in efficiency.

	(3)	� For the frame structure, identical random parameters exhibit varying degrees of influence on the three 
structural seismic demands. In case study 1, Ms and ζ exert considerable effects the top displacement de-
mand, fy and Ms significantly impact the base shear demand, and ζ and fy greatly affect the maximal story 
drift angle, while Ec has little influence on all the three structural seismic demands. In case study 2, ζ, fys 
and Ms have greater influence on the top displacement demand and base shear demand, Ms, ζ, and fc have 
greater influence on the maximal story drift angle, while Ec has lesser influence on all the three structural 
seismic demands.

	(4)	� According to Tables 6 and 7, the influence of Ms on the seismic demands is relatively large, whereas Ec 
demonstrates minimal impact.

	(5)	� When the importance of the frame structure is analyzed with a single ground motion record and multiple 
ground motion records, the importance orderings of each parameter on seismic demands remain relatively 
consistent.

In summary, this study proposed an efficient importance analysis method based on information entropy to 
evaluate the influence of parameter uncertainty on structural seismic demands and identify parameters with 
higher impact. By controlling the uncertainty associated with these parameters, it is possible to enhance 
structural safety effectively and provide valuable insights for optimization in structural design.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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