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in the detection of accessory
ostium in coronal cone beam
computed tomographic images
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Accessory ostium [AO] is one of the important anatomical variations in the maxillary sinus. AO is

often associated with sinus pathology. Radiographic imaging plays a very important role in the
detection of AO. Deep learning models have been used in maxillofacial imaging for interpretation and
segmentation. However, there have been no research papers investigating the effectiveness of CNN

in detecting AO in radiographs. To fill this gap of knowledge, we conducted a study to determine the
accuracy of deep learning models in detecting AO in coronal CBCT images. Two examiners collected 454
coronal section images (227 with AO and 227 without AO) from 856 large field of view [FOV] cone beam
tomography [CBCT] scans in the dental radiology archives of a teaching hospital. The collected images
were then pre-processed and augmented to obtain 1260 images. Three pre-trained models, the Visual
Geometry Group of the University of Oxford-16 layers [VGG16], MobileNetV2, and ResNet101V2,

were used as base models. The performance of all the models was analyzed, and ResNet101v2 was
selected for classification of images. Fine-tuning approach was employed with L1 (Lasso regression)
regularization to avoid overfitting. The test accuracy and loss of the ResNet-101V2 classification model
was 0.81 and 0.51, respectively. The precision, recall, F1-score, and AUC of the classification model
were 0.82, 0.81, 0.81, and 0.87 respectively. ResNet-101V2 showed good accuracy in the detection

of AO from coronal CBCT images. The present study used cropped two-dimensional images of CBCT
scans. Future work can be carried out to determine the accuracy of deep learning models in the
detection of AO in three-dimensional CBCT scans.

Keywords Maxillary sinus, Cone beam computed tomography, Nasal bones, Artificial intelligence

The close proximity of the maxillary posterior teeth with the maxillary sinus and the application of sinus lift
procedures for dental implants made maxillary sinus an important anatomical site”. However, the primary
ostium, which is the main pathway for the drainage of the maxillary sinus, is located in an unfavorable location®.
In addition to the difficult location, the primary ostium is also susceptible to blockage during inflammation®.
Accessory ostium [AO], also called the Girade’s orifice, is one of the important anatomical variations in the
maxillary sinus®. The AOs may be located unilaterally or bilaterally, either as solitary or multiple apertures,
between the uncinate process and inferior turbinate®’. AO tends to occur more frequently on the posterior
fontanelle, which is part of the lateral nasal wall covered only by mucoperiosteum?®.

Studies using computed tomography [CT], cone beam computed tomography [CBCT], endoscopy and
cadaveric analysis have shown a wide range of variations in the prevalence of AO%'°. Some studies have reported
the association between AO and sinus pathologies>!?. The presence of AO leads to an increase in the ventilation
of the sinus; however, it also leads to reverse drainage into the sinus from the middle meatus into the sinus!l.
The reverse drainage a causes reduction in the level of nitrous oxide and a buildup of mucous in the maxillary
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sinus, leading to pathologies like retention cyst, mucosal thickening, and maxillary sinusitis'>!?. Recent studies
have shown that CBCT can be effectively used for imaging the anatomy of the sinonasal structures and AO with
precision and lower radiation dose!'®!4.

Artificial intelligence models have been explored for detection and segmentation anatomical structures in the
craniofacial region'>16. Deep learning models which, are a subset of machine learning and artificial intelligence,
have shown promising results in interpreting medical images when combined with residual neural networks'”-'°.
Experts suggest that the use of AI makes radiology workflow efficient by reducing image reading time, speeding
disease detection, and improving diagnostic accuracy?.

Tasks such as segmentation of the maxillary sinus, upper airway space, and detection of sinus pathology have
been achieved using deep learning models with high accuracy?'~%3. Deep learning models have shown promising
results in the detection of nasal septal deviation and fracture of the nasal bones!®24,

However, there is no research exploring the use of neural networks in the detection of AO using radiographic
images. To fill this gap of knowledge, we conducted a study to determine the accuracy of the deep learning model
in the detection of AO in coronal CBCT images.

Materials and methods

We conducted a retrospective cross-sectional study using the radiology archives of University Dental Hospital,
Sharjah, United Arab Emirates between 1st January 2024 and 30th June 2024. The CBCT scans were made
for various diagnostic purposes using Planmeca Viso 7 (Finland) at 95 kilovoltage peak (kVp), 5 milliampere
(mA), and 0.2-millimeter (mm) resolution. Two examiners with 10 years of clinical experience screened 3278
CBCT scans to obtain 856 scans, which were obtained with a large field of view (FOV) with a region of coverage
extending from the base of the mandible to the cranial base (20 x 17 cm).

CBCT scans of patients below the age of 18 years and scans of patients with a history of trauma and tumors
in the sinonasal region were excluded from the study. CBCT scans of patients with congenital deformities of
the sinonasal region and cleft palate were excluded from the study. CBCT scans of patients with history of nasal
polyps, choanal atresia, acute sinusitis, and severe nasal septal deviation (deviated septum contacting the lateral
nasal wall) were excluded from the study.

The two examiners analyzed 856 CBCT scans for AO. In case of a disagreement between the examiners, a
third examiner with equal experience was called in to detect the presence of AO. The inter-rater reliability was
calculated, and 10% of the scans were re-evaluated by each of the examiners after 2 weeks to obtain intra-rater
reliability.

The examiners scrolled the coronal CBCT sections from the mesial side of the maxillary first premolar to the
distal side of the maxillary second molar. The examiners then cropped the image from coronal CBCT sections at
the site of AO. To maintain uniformity in cropping the images, the medial boundary was set at the nasal septum
to distally the vertical line crossing the middle of the sinus. Inferiorly one centimeter below the level of the hard
palate and superiorly at the level of the cribriform plate (Fig. 1).

The images were saved in the Joint Photographic Experts Group (JPEG) format and labeled with the letter
‘A preceding the patient’s hospital registration number. Example: 706788RA (R/L implies right or left side). The
examiners obtained 227 images from the 856 CBCT scans. Since these were the highest possible number of
images we could get from our radiology archives, we followed the convenience sampling. We then obtained 227
coronal images from the CBCT images without AO following the same boundaries and labelled them as ‘N’ after
the registration number. Example: 65097LN. To maintain uniformity, all the ‘N’ images were cropped from the
coronal section coinciding with the medial aspect of the maxillary first molar. The outline of the methodology
(data reprocessing, image classification, and image classification) followed in our study is shown in Fig. 2.

The images were first segregated into two separate folders (Data cleaning) based on the presence and absence
of AO. As a part of preprocessing, the images were resized and subjected to a sharpening filter using TmageFilter,
a package of Python Imaging Library (PIL) available in python Fig. 3.

The custom dataset had a total 454 images of two classes (227 normal images and 227 accessory ostium
images). Among the 227 images, 118 were from the right side and 109 from the left side. Whereas 114 normal
images were obtained from the right side and 113 from the right side. To avoid overfitting of the model, a data
augmentation technique was used to create 1260 (630 normal and 630 accessory ostium) images by using 420
images from the training data set. The rest of the 34 images were kept for testing of the model. The overall
distribution of images for training, validation, and testing is presented in Table 1.

The “ImageDataGenerator from tensorflow.keras.preprocessing.image” package was used to increase the
multiplicity of data for training models like rotating, shifting, zooming, and width shift of the images Fig. 4.

The parameters of “ImageDataGenerator” are also shown below in Fig. 5. Rotation range was set at 7 (this
parameter specifies the range of degrees [0-180] within which the images can be rotated). Rotation augments the
model’s robustness to orientation changes?>2°. The width shift range was set at 0.2, and the height shift range was
set at 0.2 (these parameters specify the range of horizontal and vertical shifts [as a fraction of the image size] that
can be applied to the images). Width shift enhances the model’s robustness to object positioning and reduces
overfitting to specific object locations?>?°. The zoom range was set at 0.2 (this parameter specifies the range of
zoom factors [as a fraction of the original image size] that can be applied to the images). Object size variations
reduce overfitting of the model to specific object sizes*>?°. Horizontal flip was set at false, meaning disabled.
(This parameter specifies whether the images should be flipped horizontally [mirrored]). Fill mode was set at
nearest, (this parameter specifies how to fill the newly created pixels when applying transformations [rotation,
shifting]. In our study, the nearest neighbour interpolation method is used.

Three pre-trained models: Visual Geometry Group of the University of Oxford-16 layers [VGG16],
MobileNetV2, and ResNet101V2, were used as base models. They were chosen as the base models due to
their performance in previous deep learning studies in the sinonasal region, well-established architectures,
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Fig. 1. Coronal CBCT image with showing supero-inferior and medio-lateral boundaries for cropping. The
yellow arrow is pointing at the AO.

strong feature extraction capabilities, availability of pre-trained weights, and balance between accuracy and
computational costs!®. The performance of all models was analyzed (Table 2 and Fig. 6), and ResNet101v2 was
selected as a base model.

We used the fine-tuning approach in our study (Fig. 7). In the initial steps, pre-processing and augmentation
of the input data. The base model was then frozen, and a classification layer was added over it. Training and
evaluation of the base model was then carried, out followed by unfreezing some of the top layers. Retraining
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Model Architecture

Model: “sequential 1*

Layer (type) Output Shape
resnet101v2 (Functional) (None, 8, 8, 2048)
c
.9 average pooling2d 1 (Average (None, 1, 1, 2048)
H -~
Data Clean"’]g o © flatten 1 (Flatten) {None, 2048)
-
& ? s dropout 1 (Dropout) (None, 2048)
E g batch norsalization 1 (Batch (None, 2048)
Preprocessing = dense 1 (Dense) tWone, 2
< arans: 42,638,850
Trainable params: 25,306,626
Non-trainable params: 17,332,224

+

Fine Tune Base Model and

Custom layers

Classified Images
Normal Abnormal

Fig. 2. Flowchart of the steps followed in the present study. In the first step, coronal CBCT images were
preprocessed. This was followed by image augmentation (rotation, shift width, zoom). In the next step,
fine-tuning of the base model and custom layers was carried out. In the last step the classification output
(normal =without AQ, abnormal =with AO) of the model was obtained.

of the whole model (lower training rate) was carried out, followed by evaluation. The fine-tuning was repeated
if an improvement in performance was observed. This cycle was repeated till a pause in the improvement of
performance metrics was noticed. The main idea of the proposed fine-tuning framework was to achieve a gradual
increase in the level of layers that are to be unfrozen and tuned. To avoid overfitting, L1 regularization, also
known as Lasso regularization, was used. It added a penalty term to the model’s loss function, which encourages
the model to reduce the magnitude of its weights?”. The model was trained with the following hyperparameters:
20 epochs, batch size 32, Adam optimizer with a learning rate of le-5, binary-crossentropy loss function, and
sigmoid activation function for the top layer classification.

The analysis was performed on a local workstation running Ubuntu with Intel(R) Core (TM) M-5Y71 CPU
@ 1.20 GHz, 1.40 GHz, and 8GB RAM, using Python to build the system using the deep learning frameworks
Keras with TensorFlow as a back end.

Statistical analysis
The inter-rater and intra-rater reliability was evaluated using the Kappa Cohen test. The performance metrics of
the model was evaluated in terms of accuracy, precision, F1-score, and area under curve (AUC).

Results
In the present study, the examiners analyzed 856 CBCTs and found AOs in 207 scans with an estimated prevalence
0f 24.18%. Among the 207 CBCT scans, 20 showed bilateral AOs [40 AOs], 98 showed right unilateral AOs, and
89 showed left unilateral AOs. Therefore, the total number of AOs was 227.

The inter-rater reliability between the two examiners for the detection of AO was 0.87, indicating almost
perfect agreement. The intra-rater reliability for examiners 1 and 2 was 0.91 and 0.95, respectively.

The evaluation of performance metrics of the classification model revealed a training accuracy of 99%, and
a valid accuracy of 81% (Fig. 8). The training and valid loss is shown in Fig. 9. The formula used for calculating
accuracy = (TN+TP)/(TP+FP+TN+FN) [TN=True negative, True Positive, FP =False positive, FN = False
negative].

The test accuracy and test loss of the unseen dataset was 0.81 and 0.51 respectively (Fig. 10).

The classification report of model (in terms of accuracy, precision, F1-score) and confusion matrix is shown
in Figs. 11 and 12. The AUC value found to be at 0.87 are shown in Fig. 13.
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Original image Preprocessed image

C

sharpened img = cv2.addWeighted(img, 2.3, cv2.GaussianBlur(img, (©, ©), 5), -1, 0)

Fig. 3. Showing (A) Original image subjected to ImageFilter feature leading to (B) Preprocessed image. (C)
Snap of the code for imagefilter in PIL.

Images Training | Validation | Testing
Accessory ostium images | 502 126 51
Normal images 502 126 51

Table 1. The distribution of images for training, validation, and testing of the classification model.

Discussion
Studies have revealed that the prevalence of AOs is as high as 30% in patients with chronic sinusitis and 10-20%

in healthy individuals, suggesting a strong link between the existence of AM and sinus pathologies®**?°. In the
present study, the prevalence of AOs in the CBCT scans of healthy individuals was estimated at 24.15%.
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Original image 7 degrees rotate Shift width 20% Zoom in 20%

Fig. 4. Showing sample of original image (A), augmentation using rotation (B), shift width (C) and zoom (D).

A

# Define 1mage augmentation parameters
datagen = ImageDataGenerator(

rotation range=7,

width shift range=0.2,
height shift range=0.2,

zoom range=0.2,

horizontal flip=False,

fill mode='nearest'

Fig. 5. Showing the parameters set in TmageDataGenerator’ for augmentation of images.

Performance (on 20 epochs) | VGG16 | MobileNetV2 | ResNet101V2
Training Accuracy 55 98 99

Valid Accuracy 51 66.67 81

Table 2. Performance parameters of pre-trained models VGG16, MobileNetV2 and ResNet101V2.
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Fig. 6. Showing loss curves and accuracy curves of pretrained base models (VGG16, MobileNetV2).

Some researchers believe that AO leads to the re-entry of the mucous that is drained out of the maxillary
sinus through the primary ostium®. This complication associated with AO is known as “two-hole syndrome”™!.
The AO-linked mucous recirculation has been associated with chronic sinusitis®2. The close proximity of the
sinus to the posterior teeth makes the sinus pathology important to dental professionals.

In the present study, the inter-rater agreement for the detection was 0.87 for the detection of AO. A previous
study in the same region for the detection of AO in CBCT scans using two observers has reported similar (0.83)
inter-rater agreement values'?. However, slightly lower (0.67) inter-rater agreement was reported in a study
conducted at the University of Hong Kong!.

In the present study, we used the ImageDataGenerator to increase the multiplicity of data for training models,
like rotating, shifting, zooming, and width shifting of the images. A recently published study using CBCT images
in different planes of the maxillofacial region also used ImageDataGenerator with settings: rotation of 15 degrees,
height and width shift of 0.1, and zoom by a factor of 0.5%>.

In general radiology studies, ImageDataGenerator has been used to generate a large number of chest x-ray
images for the detection of COVID-19 using deep convolutional neural networks DCNN>*. Flipping, rotation,
and translation are the common methods used for augmentation of CT images®. Similar augmentation methods
were used by the ImageDataGenerator used in our study to increase the data pool.

Recently, studies have revealed that deep learning models exhibit good performance metrics in image
classification and segmentation®®%’. In the present study, we used the ResNet-101V2 classification of model with
a test accuracy of 81%. Recently published studies revealed that ResNet-101 showed higher accuracy compared
to ResNet-50 and ResNet-152 in the classification chest X-rays for COVID related changes®. In another
study ResNet showed best performance in classification of dental radiographs®. Another recent study using
ResNet-101V?2 for the detection of furcal bone loss showed a test accuracy of 91%%. The valid accuracy of the
classification model used in our study was 81%, and the probability of misclassification is 19% (Fig. 14).

The probable factors for misclassification in our model could be due to a relatively smaller data set. The other
reason could be due to wide variations in the anatomical position of the lateral nasal wall and the AO in the
coronal CBCT images!~*.

Some recently published studies have used ResNet in the radiographic evaluation of the sino-nasal region
A pretrained ResNet al.ong with a Swin transformer showed 99% accuracy in detecting boundaries of maxillary
sinus pathologies in CBCT scans*. Similarly, another study on the classification of sinus pathologies in CT scans
using ResNet showed an accuracy of 95%*.

In the present study, the ResNet-101V2 classifier showed an AUC value of 0.87 in the detection of AO. There
is pre-activation of weights in version 2.00 of ResNet101, thus leading to better generalization compared to

16,44
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Fig. 7. Flow chart showing steps in the training and fine-tuning of the model used in the study. Training and
evaluation of the base model was then carried out, followed by unfreezing some of the top layers. Retraining
of the whole model was carried out, followed by evaluation. If performance metrics improved, the cycle was
continued. The cycle was stopped till no further improvement was exhibited by the model.

version 1.00%. Version 2.00 also produces a more normalized and regularized output signal leading to reduced
overfitting®.

Though there are no studies exploring the accuracy of deep learning models in the detection of AO, one
recent study has used ResNet-101V2 for the detection of nasal septum deviation in coronal CBCT images'.
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Fig. 8. Training accuracy and valid accuracy curve of the classification model ResNet101V2.

The AUC value of the classifier model used in that study (0.83) was slightly lower than in our study'®. Slightly
higher AUC values (0.92) were reported when ResNet-101 was used to detect sinusitis in paranasal sinus [PNS]
radiographs®’. The mild variation in the AUC could be due to the difference in the region of interest [ROI] and
quantity of training datasets in these studies.

We carried out fine-tuning of the classification model in our study. Fine tuning improves the speed and
computing efficiency of the Al model*®. Since our dataset was comparatively smaller, we used the transfer
learning technique. In this technique, the model is initially trained on a smaller dataset, and the features that
have been grasped are readapted for use on training a different dataset*®.

In the present study, we used L1 regularization, also known as Least Absolute Shrinkage and Selection
Operator (LASSO) regularization to reduce overfitting. A recently published study used L1 regularization in
ResNet to construct a compact model for reading ECG signals®.

Most of the recently published research papers on the application of deep learning models in the sino-nasal
region focus on the classification of sinus pathologies, detection of deviated nasal septum, and detection of
concha!>!1%0, We have made an attempt to pioneer a study in the Al-based detection of AO in CBCT scans.
We were able to develop an AI model for the detection of AO with an accuracy of 0.81 and an AUC of 0.87.
We can further develop our model to detect AO in three-dimensional CT scans using the present study as the
foundation.

However, there are some limitations in our study. Firstly, we have used two-dimensional cropped coronal
sections from the CBCT scan and not 3D CBCT scans. The major challenges in developing a classification model
for 3D CBCT scans are (1) complex 3D anatomical representations. (2) requires higher computing resources and
(3) higher computational costs’".

The other limitation is a smaller dataset because of the lack of availability of large FOV CBCT scans,
which are not frequently made in a dental imaging setup. The main disadvantage of using a smaller dataset is
overfitting®2. Overfitting leads to reduced generalizability and transferability of the classification model, causing
poor performance when used on newer datasets®. The generalizability of our model is further affected because
our data was obtained from one hospital setup. Future studies involving three-dimensional CBCT scans and
larger dataset from different hospitals can be carried out with different deep learning models to further support
our findings.

Conclusion
ResNet-101V2 showed good accuracy in detection of AO from coronal CBCT images. The findings of the present
study can provide a base for future Al-based imaging studies on AO and other sino-nasal variations.
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Fig. 9. Training loss and valid loss curve of the classification model ResNet101V2.

1 # Evaluate model
2 loss, accuracy = model.evaluate(test ds)
3 print("Test Accuracy:", accuracy)

8/8 [

] - 156s 19s/step - loss: 0.5156 - accuracy: 0.8135

Test Accuracy: 0.8134920597076416

Fig. 10. Screenshot showing accuracy of the classification model on unseen data (data not used for training).
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Classification Report

precision recall fl-score support

Normal 0.85 0.76 0.80 126
Abnormal 0.78 0.87 0.82 126
accuracy 0.81 252
macro avg 0.82 0.81 0.81 252
weighted avg 0.82 0.81 0.81 252

Fig. 11. Screenshot showing classification report of the model ResNet101V2 used in our study. Macro-
averaged (macro avg) indicates the metrics with equal contribution from all classes. Weighted-averaged
(weighted avg) indicates the metrics with contributions from individual classes weighted by their size.

Confusion Matrix

Normal
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> >
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Fig. 12. Confusion Matrix for ResNet101V2 classifier showing the actual and predictive values.
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Fig. 13. ROC-AUC Curve of each class. Class 0 indicative of normal images and Class 1 indicative of images
with accessory ostium.
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Predicted: Abriormal Predicted: Abniormal
Actual: Abniormal Actual: Abniormal

Predicted: Norma Predicted; Normal
Actual: Abnorma Actual: Normal

Predicted: Normal Predicted: Normal
Actual: Normal Actual: Normal

Fig. 14. Screenshot of the model classification showing an example of misclassification. Actual abnormal
image (with AO) been predicted as normal (without AO) highlighted by yellow circle.

Data availability
The datasets generated and/or analysed during the current study are available in the Figshare repository [https:/
/doi.org/10.6084/m9.figshare.28094912].
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