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This paper presents GreenMU, an innovative proposed novel framework designed to address the two 
main challenges: energy efficiency as one of the main research components and detection performance 
in intrusion detection systems. In the proposed research paper study, by integrating advanced machine 
learning techniques such as random forest classifier and support vector machines classifier with 
knowledge distillation and adaptive energy-aware optimization, GreenMU achieves a balanced trade-
off between computational efficiency and cybersecurity accuracy. The proposed MUGuard algorithm 
is at the framework’s core, which dynamically adjusts computational complexity based on real-time 
actual energy constraints and the evolving threat landscape. Extensive simulations conducted on the 
KDD 1999 dataset demonstrate that GreenMU achieves a detection accuracy close to 99%, significantly 
surpassing standard baseline models while reducing energy consumption by 31%. Furthermore, the 
framework improves computational efficiency, reducing processing time by 15% and making it highly 
effective for resource-constrained environments such as IoT and edge computing. This research paper 
study highlights the potential of green artificial intelligence in advancing cybersecurity, providing a 
scalable, sustainable, and high-performing solution to modern intrusion detection challenges.
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The increasing trend of cyber security attacks and the necessity to identify harmful actions in heterogeneous 
but resource-limited environments has inspired advanced Intrusion Detection Systems (IDS) to detect 
intrusion attempts promptly. Traditional signature-based intrusion detection systems are becoming increasingly 
ineffective to organised and novel threats (zero-day attacks and polymorphic malware) whose patterns rarely 
correspond to any attack signatures provided to the system1. In order to combat these limitations, there are 
proposed Intrusion detection systems (IDS) based on Machine Learning (ML). Because ML models learn from 
large amounts of data, they can detect new, emerging threats that were likely undetectable before, making them 
an alternative approach to traditional cybersecurity2,3. Machine learning in cyber-security has great  potential, 
yet the scalability issue poses a huge question: energy consumption. Modern ML algorithms (and deep  learning 
models in particular) usually depend on much computational power to perform well. Therefore, they have high 
energy consumption, a problem that worsens at large-scale and constrained environments (e.g., mobile devices 
and edge computing)4. As a result, Green AI has been introduced, emphasising research that  develops models 
and techniques that critically do not exhaust resources and are eco-friendly with their computational footprint5,6. 
Optimizing ML Models for Energy Efficiency The scalability and practicality of IDS  in resource-constrained 
environments depend on the development of efficient ML models7,8. In the last few years,  several approaches 
have been proposed to enhance efficiency and optimise the energy usage of ML techniques while ensuring strong 
detection capabilities. To improve the energy efficiency of deep learning  models with little to no loss of accuracy, 
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techniques like knowledge distillation, model pruning, and quantisation have been heavily researched to 
reduce the complexity of deep learning models9–12. While these approaches have  been found to explore energy 
efficiency, further research is needed to integrate these optimisation methods at run-time level in network-
based intrusion detection systems against cyber-attack systems due to the required optimisation between energy 
consumption and detection performances. To this end, we present GreenMU, a new optimisation framework that 
advances the state-of-the-art  for simulation-based integration of energy-efficient machine learning methods in 
the context of intrusion detection systems. This ensemble framework  integrates RF and SVM classifiers with 
knowledge distillation and adaptive energy-aware optimization Algorithm. At the core of this framework is the 
MUGuard algorithm, which continuously mitigates the energy cost by adaptively allocating the computational 
task in response to available energy and characteristics  of the cybersecurity threat landscape, thus maintaining 
an optimal performance/energy trade-off13. Extensive simulations show that GreenMU can minimise energy 
consumption (up to 30%) and maximise detection accuracy (up to 10%) compared to  conventional IDS 
techniques. This demonstrates the promise of incorporating Green AI in Intrusion Detection Systems, yielding 
a new class of Intrusion Detection Systems that are sustainable and efficient in performance while considering 
the energy consumption of healthcare cybersecurity systems and will maintain high performance without 
compromising on energy efficiency or security14,15. The paper is organised as follows: We have explained the 
GreenMU framework and presented the MUGuard algorithm, simulation setup, results, and comparative study 
to  assess the performance of our proposed framework. Figure 1 shows the main steps of  GreenMU framework 

Fig. 1.  Overview of the GreenMU Framework.

 

Scientific Reports |        (2025) 15:13376 2| https://doi.org/10.1038/s41598-025-93254-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


pertaining to data preprocessing, model training, knowledge distillation and energy-aware optimization of the 
final models.

The overall  architecture, seen in Fig. 1, starts with raw input data and then goes to preprocessing and feature 
extraction. This system then calculates machine learning models, such as Random Forest classifiers and Support 
Vector Machines, using knowledge distillation to reduce energy consumption. Its output  is combined to get 
the final output through an energy-aware and efficient optimization that maintains the computation load and 
detection performance.

Related works
The recent incorporation  of green artificial intelligence, machine learning models, and cybersecurity has 
received massive attention due to the ever-increasing demand for energy-efficient and sustainable solutions in 
advanced and robust cybersecurity systems. Optimizing the trade-off between energy consumption in terms 
of usage and performance detection in intrusion detection systems has become a matter of current interest  to 
the research community. Much research has been conducted to explore Green AI to train machine learning 
models  in an environmentally friendly manner. For example, Zhang et al. (2023) combined lightweight  neural 
networks and energy harvesting techniques and reported up to 25% energy savings with no classification 
accuracy loss. They proposed energy-efficient algorithms16. Similarly, the researchers of this research17 created 
an energy-aware and contextual deep learning architecture to enhance  the model efficiency and change energy 
consumption by the complexity of the input data18. Many ML model-based methods are utilized in intrusion 
detection to improve  detection accuracy. A Novel Attack Algorithm  by Liu et al. (2023) In  their work, support 
vector machines and researchers used random forests to model effective and efficient Intrusion Detection System 
models while emphasizing threat detection and mitigation in real-time18. Further, Kumar and Singh (2024) also 
investigated knowledge distillation for model efficiency with a novel approach while maintaining the detection 
accuracy of Intrusion Detection systems, and they reported that knowledge distillation can significantly reduce 
the  computational impact load of Intrusion Detection systems19. Different techniques have improved the energy-
aware  optimization of machine learning models for cybersecurity. Xu et al. (2022) investigated the potential of 
a feedback loop from merging Green AI and reinforcement  learning, which can reduce energy usage costs by 
achieving 35% savings and reducing the minor degradation of IDS performance20. Relatedly,  Patel et al. (2023) 
integrated energy-aware  neural networks with adaptive algorithms to balance accuracy and energy by designing 
two algorithms to optimize energy in real time to deliver energy-efficient Intrusion Detection systems21. In22,], it 
also investigated the embedding of energy-efficient machine learning within Cybersecurity tools. They introduced 
an energy-aware Intrusion detection system scheme that dynamically adjusts the complexity of the Machine 
Learning models  according to the available computational resources. This model showed a 21%  improvement 
in energy efficiency compared to traditional Machine Learning based Intrusion Detection Systems. In contrast23, 
proposed a hybrid architecture based on ensemble learning methods with energy awareness that balances robust 
security and minimum energy cost in resource-constrained environments23. In addition, recent works have 
addressed the limitations  of deploying IDS systems with energy constraints in real-time. In Intrusion Detection 
System applications, Zhang and Wei (2022) investigated Deep Reinforcement Learning to  achieve a balance 
between more robust security detection accuracy and energy-aware consumption. Additionally, their model has 
achieved an excellent real-time performance and exploited only 32% of the energy consumption compared to 
the conventional  IDS models24. Moreover, some researchers have also implemented lightweight convolutional 
neural networks to solve the high computational efforts in IDS tasks, which achieved remarkable accuracy 
values and high energy efficiency25,26. As Liu  et al. (2023) point out, sustainability is one of the most urgent 
issues in the AI field, including but not limited to the cybersecurity domain. We introduced a framework that 
incorporates both Green AI  and sustainable cybersecurity practices. Such a framework enables the deployment 
of more efficient approaches to resource consumption in the cyber defence systems,  which are still being built 
while keeping the detection models accurate and dependable27. Recent work by Han et al. (2024) discusses how 
approaches for AI model compression can curb the energy footprint of the  security models when performance 
requirements are stringent, as in the case of resource-starved edge computing environments28. The research will 
continue to show  how Green AI and energy-aware models can be used, but there is some room here around 
new frameworks that can co-opt sustainability with security such that these become part of normal operation in 
cybersecurity with industries that have energy constraints.

Overview of the GreenMU framework
A  simulation-based green optimization framework to integrate energy efficiency into Intrusion Detection 
Systems GreenMU is a simulation-based optimization platform tailored for integrated formulating and solving 
the energy-efficient Intrusion Detection Systems. The framework elegantly balances computational efficiency 
and Green  AI by combining machine learning strategies with principles of Green AI. This section outlines 
the framework’s main elements, the methods used, and the logic behind how it works. Central to GreenMU is 
the need to mitigate  the effect of time-varying cybersecurity threats in resource-constrained environments. As 
shown in Fig. 2 below, our proposed approach incorporates advanced machine learning classifiers such as the 
random forest classifier and support vector machines classifier with energy-aware optimization methods such as 
the Knowledge Distillation feature and Adaptive Energy-Aware Optimization to accomplish this. Mathematical 
models clarify and introduce feedback at each  framework stage, making the optimization more transparent.

GreenMU is designed to strike a balance between detection performance  and energy consumption. It should 
be able to  cope with real-time energy limitations while having a very strong detection rate against cyber-attacks 
that are continuously changing.
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Data input and preprocessing
In the first stage of GreenMU, we process the raw network data. The Input Layer receives unstructured 
traffic, such as packet headers and payload, which are then stored for preprocessing. The Preprocessing layer 
preprocesses this raw data into the desired structured format for ML models. Min-max scaling for normalization 
is an important preprocessing step that scales them to the same range.

	
Xnorm = X − Xmin

Xmax − Xmin
� (1)

In the above Eq. 1, X  represents a raw base feature value while Xmin​ and Xmax are the minimum and maximum 
feature values, respectively. Normalization helps improve the performance  of models by standardizing features 
and simultaneously lowering the computational cost. In addition, feature extraction includes statistical metrics 
such as packet size distribution characteristics, inter-arrival timings, and protocol characteristics. These  metrics 
are essential for anomaly detection. Preprocessed reduced  the data dimension by 15% and led to a speed-up of 
20% in training. The Input Layer is the basis of GreenMU, which collects raw  network data for preprocessing. 
The layer  presents a data acquisition rate model for dynamically quantifying the incoming data load and 
allocating resources accordingly.

	
Drate (t) =

∑ N

i=1P i

t
� (2)

where:

•	 In the above equation Drate (t) is data acquisition rate at time t,
•	 Pi represents the size (in bytes) of the i − th packets,
•	 N  represents the total number of packets within t

With this equation, we guarantee that the system will be able to detect in real time how much traffic has entered 
it and react by increasing or decreasing buffers or changing the throughput  of preprocessing accordingly. This 
step of the Preprocessing Layer provides feature extraction, cleaning,  and normalization for raw data to be set in 
a structured form. We introduce a new scaling equation where features are weighted differently, with  emphasis 
on essential features:

Fig. 2.  Proposed GreenMU Framework.
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Xw−norm = ω · X − Xmin

Xmax − Xmin
� (3)

where:

•	 Xw−norm  in the Eq. 3 is the normalized value of the feature X ,
•	 ω  is the importance weight assigned to X ,
•	 Xmin and Xmax  in the Eq. 3 are the feature’s minimum and maximum values.

This equation mask and improves accuracy and efficiency by dynamically weighing ω  features based on their 
contribution to classifying a prediction and reducing the impact  of irrelevant features.

Classification layer
A model selection equation that balances lightweight and high-complexity models according to threat complexity 
and system energy available is then applied to  the Classification Layer:

	
M (t) =

{
Mlight if CT C < Tlow and Eavail > Emin
Mcomplex if CT C ⩾ Thigh or Eavail ⩽ Emin

� (4)

where:

•	 M (t) is the selected model at time t,
•	 Eavail is the available energy,
•	 Emin is the standard minimum energy required for operation,
•	 Tlow  and Thigh are complexity thresholds.

This process decides where to utilize cost-effective computing resources based on real-time conditions that the 
system might  encounter.

Knowledge distillation layer
A Knowledge Distillation Layer that introduces a parameter reduction efficiency metric to measure the 
effectiveness of  pruning and distillation. The Knowledge Distillation Layer helps compress computations in 
practical scenarios where  a larger “teacher” model is used to generate predictions, which are then distilled into 
a smaller “student” model. A loss function governs this process, one that incorporates soft-label outputs of the 
teacher  accompanied by hard-label supervision:

	 LKD = α · Lsoft(ps , pt) + β · Lhard (yt, ys)� (5)

Here, Lsoft term measures the standard efficient Kullback-Leibler divergence between the scenerio student’s 
predictions ps and the teacher’s predictions pt, while Lhard  term evaluates the cross-entropy loss between the 
student’s predictions (ys) and the true labels (yt)By incorporating the knowledge distillation attribute, the base 
model size was reduced by 40%, and energy consumption decreased by 25%.

MUGuard optimization layer
The MUGuard Optimization Layer keeps the GreenMU framework within certain energy boundaries. The 
equation is designed to monitor energy consumption dynamically:

	
ERC =

∑ n

i=1Ei

t
� (6)

In the above Eq. 6, Ei represents the energy consumed by a standard task i and t is the time interval. If ERC  
exceeds the energy threshold ET , the system triggers optimization strategies, which include dynamic load 
balancing and model complexity reduction.

Performance and energy trade-off
The efficient effectiveness of the proposed GreenMU framework is validated using a trade-off equation that 
balances main detection accuracy which is significant

	 T = ω 1 · DA − ω 2 · E� (7)

where T  is the trade-off score, and ω 1​, ω 2 are standard weights representing the importance of main accuracy 
and energy savings, respectively. Experimental Simulations on the standard KDD 1999 dataset demonstrated 
a 31% reduction in energy consumption while maintaining a detection accuracy of 97.8%. GreenMU is an 
architecture composed of multiple interrelated modules working closely to provide energy-efficient intrusion 
detection through performance-optimized detections. GreenMU framework architecture is a modular system 
that aims to optimize the energy used by the system and, at the same time, provide an efficient method of 
detecting intrusions It consists of multiple layers that are all interconnected, each one is responsible for a 
different task to be performed using network traffic data for processing and analysis, then network traffic data 
optimization. It starts with the Input Layer, where the raw input data (system logs, traffic packets, etc.) from the 
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Network is collected in real-time. This layer preserves everything essential and does not drop content, which 
becomes the basis for further processing.

As shown in Fig. 3 above, the Preprocessing Layer prepares the raw input in a manner that can be fed into 
machine learning models. It includes extraction to determine necessary features, normalization  to scale values, 
and cleansing to eliminate vague noise or unimportant data information. The data frame then moves to the next 
Classification Layer after being pre-processed; this uses machine learning  classifiers such as Random Forest 
classifiers and Support Vector Machine classifiers to classify the network traffic as benign or malicious. Also, 
feature selection is applied to avoid computational costs instead of using data attributes  that do not have the 
most significant impact. The Knowledge Distillation Layer improves model efficiency by distilling knowledge 
from larger, more accurate models  to smaller, more energy-efficient designated models. Approaches such as 
pruning the model and knowledge transfer can make a model tiny so that  the model has the same performance 
with low energy. The Optimization Layer—central to the framework—is driven by the MUGuard algorithm. 
This layer scales computing resources and energy savings in real-time according to fluctuating constraints 
and  the complexity of emerging threats. Its  adaptive energy aware optimization, dynamic load balancing, and 
real-time energy monitoring minimize energy consumption and detection performance at run time. Here, in 
this layer  called the Output Layer, where we process all insights and output from each input taken out from 
framework layers, we can find the implementation of Green AI concepts. The outputs can be actionable, such as 
detection outputs, threat  classification, and options to assist in the decision-making process, such as alerting or 
triggering automated responses. Within this framework, the data flows in an organized manner from the bottom-
level raw data to the top-level refined data as they ensure that machine learning and energy-aware strategies are 
seamlessly integrated. The modular design  shared within the GreenMU framework allows for scalability and 
efficiency where the sustainability of adaptation forms a central part of the solutions for contemporary intrusion 
detection problems.

Proposed algrithm: MUGuard
MUGuard  is a new, state-of-the-art, and energy-efficient application-level intrusion detection algorithm for 
resource-constrained environments in the construct of the GreenMU framework. It adapts to the network real-
time situations and uses modularity strategy to determine  the best tradeoff between detection precision and 
energy consumption.The proposed algorithm MUGuard initialises with an energy threshold defined as (ET )
derived from the system’s energy budget (EB), ensuring adaptability to energy constraints. Input network data 
(ND) which undergoes standard preprocessing, including normalization and feature extraction, to derive 

key features defined (F ) like data packet size and communication protocol type. Each data segment (di) is 
analysed to compute a threat complexity score (T C), combining entropy (H( di )) and variability (σ ( di )) . 
Low-complexity defined threats are handled by lightweight models (Mlight ),while high-complexity models 
(Mcomplex ) are reserved for standard sophisticated attacks. The Knowledge Distillation Layer improves model 

efficiency through a dual-loss function whereby the teacher (complexity) model passes knowledge to the student 
(lightweight) model. The parameter reduction metric allows redundant parameters to be dropped for significant 
energy savings. A real-time energy monitoring system calculates the rate of energy consumption. Then, the 
algorithm triggers optimization mechanisms, such as dynamic load balancing and reducing model complexity. 
The MUGuard is one of the energy-efficient algorithm designs that use a structured, sequential approach that 
balances energy efficiency and abstractness in detection ability for intrusion detection systems. First, an energy 
threshold is estimated according to an energy budget, and the current energy budget value is used to limit energy 
consumption. The primary network data is then pre-processed by normalisation feature for input features and 
then feature extraction for discovering patterns of interest to detect possible threats; the data becomes input to 
the CNN. After pre-processing, each data segment’s Threat Complexity (TC) is classified. Lightweight models 
are implemented for low-complexity threats, whilst high-complexity models are used to detect critical threats 
to mitigate energy costs accurately. The proposed algorithm represented below in Fig. 4 employs the Knowledge 
Distillation feature to enhance resource utilisation, transferring knowledge from high-complexity teacher 
models to more minor, energy-efficient student models.

This process involves parameter pruning that removes unnecessary parameters from the model sparing 
operational  efficiency for the cost of performance. Figure 5 shows MUGuard Optimization Workflow.

The algorithm consistently measures Real-Time Energy Consumption. In scenarios where energy exceeds 
a certain threshold, model complexity is adaptively reduced, and load balancing is  employed to redistribute 
computational tasks. Ultimately, the algorithm produces Detection Results and  an Energy Usage Report 
containing actionable insights with an ideal energy versus detection accuracy trade-off. The MUGuard 
algorithm employs  knowledge distillation and model compression to reduce its computational footprint 
without compromising the algorithm’s detection performance. In this process, the main, well-performing teacher 
models impart their  knowledge to smaller and receiver node energy-efficient standard student models. This 
allows lightweight models to keep essential knowledge needed for intrusion  detection without high resource 
consumption. These frameworks can be described in terms of the key algorithms such as model pruning to 
remove unnecessary parameters that  complicate the model, knowledge distillation to provide student model 
representations acquired by teacher-defined base models, and finally, model compression to reduce its memory 

Fig. 3.  Proposed Framework components.

 

Scientific Reports |        (2025) 15:13376 6| https://doi.org/10.1038/s41598-025-93254-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fig. 5.  MUGuard Optimization Workflow.

 

Fig. 4.  Proposed Algorithm MUGuard.
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and energy consumption requirements under preserving the accuracy of the system. The third pillar, where  the 
first two pillars reflect the energy-accuracy trade-off, which is the key part of MUGuard design between energy 
consumption and detection accuracy. Even when lightweight models have low energy consumption,  they 
sacrifice precision to handle complex threats. On the other hand, low-complexity models are less accurate but 
require many times less energy. MUGuard balances these trade-offs by activating high-complexity models only 
for higher threat use cases while taking the lightweight path for working detections. With a detection accuracy 
of 99%, this model can reduce the energy consumption of  the IDS by 30% when compared to a traditional 
Intrusion Detection System while optimising the energy, which does not endanger security. As a result, the 
algorithm is flexible and computationally efficient for deployment in low-resource environments  such as edge 
devices and IoT systems.

Simulation setup and methodology
Table 1 below summarizes the simulation environment and configuration parameters that we used in our initial 
research to assess how well the GreenMU framework with the MUGuard algorithm functions practically and 
efficiently. This section presents the experimental and simulation environment, dataset, standard evaluation 
metrics, and simulation parameter for evaluating the energy efficiency of the proposed system as well as its 
efficiency at detecting and analysing features.

Dataset description
The KDD 1999 dataset is a benchmark dataset that is widely used to measure the performance of an intrusion 
detection system. The dataset used raw network traffic from a military network-based dataset that focuses on 
detecting malicious activity. KDD 1999 dataset is often used as validation data for intrusion detection systems. 
Therefore, we deploy this established detection benchmark to validate the GreenMU framework. It is an essential 
playground for this work concerning detection accuracy and energy efficiency, which are the two key metrics 
for the proposed framework. We selected this dataset firstly because it contains diverse attack types. Secondly, 
the KDD dataset is widely used to evaluate the performance of intrusion detection and its effectiveness in 
confirming the energy-efficient architecture of the GreenMU framework. Some essential features of the data sets 
are shown in Table 2.

Performance evaluation and results analysis
This part evaluates the performance of the GreenMU framework with the MUGuard algorithm through large-
scale simulation experiments on  the KDD 1999 dataset. The analysis includes  three significant aspects: detection 
performance, energy consumption, and computational complexity. Results are compared with baseline models 
to emphasize the improvements provided by the framework. These results highlight the proposed framework’s 
ability to achieve high detection quality and energy-efficient characteristics.

As shown in Fig. 6 above, The  results show that the proposed MUGuard algorithm remarkably improves 
energy-efficient intrusion detection. This leads to energy  savings of up to 30%, by dynamically optimizing 
computational resources and improving system efficiency and energy consumption. Moreover, the algorithm 
boosts detection performance and attains accuracy of up to 99%, higher than  conventional models. Built with 
modular engineering, developers can scale the system to function equally  well in many frameworks, from 

Table 2.  Dataset Description.

 

Table 1.  Simulative hardware and software specification.
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resource-scarce to edge devices and IoT networks. Such gains demonstrate the ability of MUGuard to cater 
to the real needs of contemporary IDS deployments and highlight a successful balance between performance 
and  sustainability. Simulations were  carried out across multiple intrusion detection scenarios to evaluate 
GreenMU’s efficiency. Below are the  performance metrics:

The results obtained in Table 3 show  that the GreenMU framework, associated with the MUGuard algorithm, 
can increase the energy efficiency of IDS without compromising detection performance, thereby making it 
possible to deploy it in resource-constrained environments.

The metrics considered are detection accuracy, energy  consumption and computational complexity. 
A discussion of trade-offs and compromises between energy  efficiency and detection performance is also 
provided. As shown in Fig. 7, the detection accuracy of  GreenMU was compared to that of the baseline models, 
Random Forest, 1D-CNN, and S2CGAN-IDS. The baseline models achieve detection accuracies of 90%, 
92%, and 98.7%,  respectively, while the proposed GreenMU framework outperforms them all, reaching an 
impressive accuracy of 99%. GreenMU achieves this superior performance  due to its advanced capability to deal 
effectively with multi-class, complex, and dynamic cyber threats, making it a robust intrusion detection solution. 
A comparison between GreenMU and baseline models on three metrics: energy consumption, detection 
accuracy, and processing  time, is presented in Fig. 7. Energy Consumption was reduced to 28%, reducing 30% 
compared  to the Random Forest baseline and reached 99%, 10% accuracy improvement compared to Random 
Forest. This also improved by 15%, which means better  computing efficiency.

Metric Baseline (Random Forest) (%) Baseline (1D-CNN) (%) Baseline (S2CGAN-IDS) (%) GreenMU framework (%) Improvement

Energy consumption 40 38 35 28 30% reduction (vs. RF)

Detection accuracy 90 92 98.70 99 10% increase (vs. RF)

Processing time reduction 0 5 8 15 15% improvement (vs. RF)

Table 3.  GreenMU performance table.

 

Fig. 6.  MUGuard Energy vs. Accuracy Trade-off.
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Table  4; Fig.  8 compare GreenMU against baseline models  in terms of precision, recall, and F1-score. 
We retain the best value for  each metric with 96% precision, 97.2% recall and 96.8% F1-score for GreenMU. 
This shows that it has better precision and almost same  recall, as we reduced the number of false positives 
considerably. GreenMU is a better performer in terms of F1-score and as a balanced F1-score shows  that it is 
overall robust so GreenMU can provide an effective solution to intrusion detection than existing models.

Table 5 above shows the Accuracy, Precision, Recall, and F1-Score of compared Intrusion detection models. 
The standard 1D-CNN with Genetic Algorithm Optimization and S2CGAN-Intrustion detection system models 
have a highly efficient accuracy of  98.7%, respectively. GreenMU framework proposed with the MUGuard 
algorithm ensures balance, where the overall metrics improve significantly, accomplishing 99% accuracy, 96% 
precision, 97.3% recall and 97% F1-Score, which are higher than all the models tested, thus proving to  be 
both robust and energy efficient. The results indicate that GreenMU is effective at static and  advanced threat 
detection.

Fig. 8.   Standard Metrics Precision, Recall, F1-Score result analysis.

 

Metric Baseline (Random Forest) Baseline (1D-CNN) Baseline (S2CGAN-IDS) GreenMU framework

Precision (%) 88 91 94.5 96

Recall (%) 85 90 93.8 97.2

F1-Score (%) 86.4 90.5 94.1 96.8

Table 4.  Standard metrics comparison.

 

Fig. 7.  Accuracy comparison Baseline Models and GreenMU Performance comparison baseline models and 
GreenMU.
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Conclusion
In this paper, we propose GreenMU, a new framework for optimising the trade-off between energy 
consumption  and detection accuracy of IDS. The framework utilises machine learning techniques (e.g., 
Random Forest and SVM) alongside knowledge distillation and adaptive energy-aware optimization to 
balance computational  efficiency and cybersecurity effectiveness. GreenMU uses the MUGuard algorithm, 
which focuses on adapting computational complexity to energy  constraints and the ever-evolving nature of 
cybersecurity threats. Experiments performed on the KDD 1999 dataset show that GreenMU is effective; it can 
detect the attacks with 99% accuracy 10%  higher than baseline models—with 30% less energy consumption 
and 15% less processing time. The results  presented in this work demonstrate the extensive applicability of 
GreenMU in performance or resource-constrained systems like Internet of Things (IoT) devices and Edge 
Computing, where traditional IDS frameworks are limited. The  modular architecture of the framework assures 
scalability and adaptability, making it deployable across different environments. Thus, this study showcases the 
feasibility  of Green AI principles applied in IDS and presents the broader potential of energy-efficient machine 
learning in tackling modern cybersecurity challenges.

Future enhancement
The GreenMU framework demonstrates a considerable improvement over  the previous state-of-the-art energy-
efficient intrusion detection methods, but there is still room for improvement. Future research will use more 
recent data sets like NSL-KDD and CICIDS 2017  to validate the framework for modern attacks and new 
threats like ransomware and zero-day vulnerabilities further. More sophisticated deep learning  modalities such 
as CNN and Transformers can push the boundary of detection accuracy and scalability to new best-in-class 
levels. Real-life deployment and online testing of GreenMU would be crucial for validating the performance 
and robustness of  our approach in practical scenarios. To make the framework more suitable for the edge-
device through  model quantisation and federated learning, for example. Posted in Computing The fact that it 
can be utilized unsupervised to identify new threats and has explainable AI elements so that the user can see 
and understand how the decision is made will make the tool even more flexible and increase confidence. The 
framework will become adaptable  to the evolving threat landscape over time, with real-time dataset updates and 
dynamic pipelines for continuous learning. These upgrades will reinforce GreenMU as a scalable, sustainable, 
and efficient solution for  Information technology that meets modern cybersecurity challenges.

Data availability
The data used to support the findings of this study are included in the article.
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