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Optimization of alumina leaching
from microcline using particle
swarm optimization and response
surface methodology
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Alumina has found wide application in technological and engineering fields. However, due to the
environmental effects of the traditional Bayer process of production, there is a need for a more eco-
friendly and cost-effective procedure. The optimization of alumina extraction from microcline in nitric
acid (HNO,) solution is considered in this work. The optimization exercise was performed with the
optimization tools of response surface methodology (RSM) and particle swarm optimization (PSO).
The optimum conditions predicted by RSM include 82.11 °C reaction temperature, 3.53 M HNO,
concentration, 0.023 g/mL solid/liquid (S/L) ratio, 356.14 rpm stirring speed, and 99.92 min reaction
time. At these conditions, about 83.21% alumina leaching rate was predicted. PSO however predicted
optimum conditions of 90°C, 4 M, 0.021 g/mL, 420 rpm, and 118 min, respectively, for the parameters
above. Hence, the two techniques were viable tools for the optimization exercise.
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Aluminium is the most common metal in the earth’s crust and the second most popular metal for making
things. Due to its many unusual combinations of properties such as low density, corrosion resistance, electrical
conductivity, ductility, and strength in alloys, aluminium and its compounds have found application in many
industrial and commercial sectors such as food and drink packaging, aviation, automobile, building and
construction, clothing, power cables, cooking utensils, to mention a few. On the other hand, alumina has been
extensively deployed in progressive technological sectors, which include its application for the manufacture
of microelectronics, good semiconductors, ceramics, biofuel and cell-fuel, insulators, high-strength materials,
fireproof plastics, refractories, and high-grade polishes!. The metallic aluminium is not found in nature but
occurs in the form of hydrated oxide or silicate (clay). The increasing demand for aluminium globally and
the unavailability of bauxite in many countries increases the need to develop alternative technologies for the
production of aluminium from low-grade ores?.

Researchers in many countries have put in rigorous effort into alumina extraction from natural sources other
than bauxite, particularly clays®. The use of clay as the natural resource for alumina recovery is preferred due to
the merits of the process such as its environment friendliness, ready availability, and cost-effectiveness. This is
in contrast to the Bayer process which is characterized by the generation of toxic residues and their attendant
negative environmental consequences as well as the incurred cost of residue disposal. The choice of this process
(clay process) would also help create job opportunities in communities where it is found as well as improve the
gross domestic product (GDP) of Nigeria and attract foreign investment to Africa in line with African Union
Agenda 2063, as well as promote responsible consumption and production, innovation, economic growth and
industrial revolution, in line with the United Nations (UN) sustainable development goals®.

Clays are hydrous aluminium silicates that usually contain small amounts of impurities such as calcium,
magnesium, potassium, sodium, or iron. Many clay contain as much as 30-40% alumina’®. One of the most
common processes of clay formation is the chemical decomposition of feldspar. Among the various clay minerals,
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microcline proves to be a feasible alternative for alumina production owing to its substantial aluminium content.
Microcline (KAIlSi,Oy) is a key rock-forming mineral in many rocks, especially pegmatite, granite, syenite,
and metamorphic gneisses. Microcline is usually found jointly with feldspar; as well as in syenite, granite, and
pegmatites, critically characterizing acidic and neutral core igneous rocks®.

Leaching involves materials extraction from a solid by dissolving them in a liquid, either through natural
means, or through an industrial process. Leaching has various commercial uses in the chemical processing
industry, including recovery of metal from its ore with the aid of acid, and sugar from sugar beets with the
aid of hot water?. In extractive metallurgy, leaching is normally applied on account of its cost-effectiveness,
environment-friendliness, low-energy requirement, and the capability of processing ores of low-grade. The three
procedures generally applied for the recovery of alumina from clays include: (1) leaching using acids such as
H,S0,, HNO, or HCI to remove alumina from clay after calcination, (2) sulphatization by sintering clay with
ammonium sulphate and the subsequent removal of alumina by leaching using hot water, (3) alkali roasting
by sintering of the clay with ammonium sulphate and the removal of alumina and silica by leaching using hot
water!.

Most acid-leaching procedures for alumina recovery have been conducted with the conventional one factor
per time!. This procedure takes a long time and wastes a lot of reagents. To overcome this challenge, statistical
and optimization techniques such as RSM which is made up of advanced statistical and mathematical procedures
applied for process enhancement and optimization are adopted’~. Using this method, optimum points are
determined for given independent variables with the aid of a second-order polynomial prediction equation.
Widely applied in the chemical industry, RSM helps in the improvement of manufacturing processes as well as
optimizing chemical reactions to obtain products of high yield and purity at reduced cost'®!!.

On the other hand, PSO is a stochastic computation method!'?. Motivated by the social behaviour and
intelligence of the insect swarm, PSO has continuously gained a rising reputation due to its ease and efficiency
in performing hard optimization problems. It has been effectively applied in solving various optimization
and engineering problems!3~16. As obtainable in comparable evolutionary algorithms, PSO is an optimization
technique that relies on a population often referred to as a swarm. Such a population comprises individual
particles having specific positions and velocities produced at random during initialization. Particles look for a
solution space and recall the overall best position it has established. Contrary to genetic algorithms, PSO does
not need the process of encoding and special operators like crossover or mutation. The distinguishing feature of
PSO is derived from particles’ individual experiences, collaboration among particles as well as their aptitude to
share knowledge!2.

In general, many investigators have tried to recover alumina from other alternative sources, such as kaolinitic
clays using both alkaline and acid routes'’*°. It was a common consensus that acids were more effective than
bases in aluminium extraction!. Our previous publication on alumina recovery from microcline focused on the
kinetics of the leaching process in nitric acid and hydrogen peroxide solution®. The process parameters were
not optimized. Hence, in the present investigation, aluminium leaching from microcline through the nitric acid
route was explored via optimization of process parameters. Process parameters that affect the leaching process
were optimized and optimum points were determined using RSM and PSO.

Materials and methods

Materials

Sourcing and Preparation of samples

Microcline ore from Amagunze in south-eastern Nigeria was deployed for this work. The sample was ground,
dried in the sun for two days, and calcined at 700 °C for 1 h to enhance its reactivity. The calcined microcline
was further pulverized and sieved with <75 um ASTM standard test sieve and kept for further use. The solutions
used in the experiment were prepared using analytical-grade nitric acid and deionized water.

Leaching experiments
Experiments were carried out according to the method described by Nnanwube and Onukwuli?* and Nnanwube
et al.. The stoichiometry of the process is illustrated in Eq. (1).

AlgOg(S) + 6HN03(aq) — 2A1(NOg)3<aq> + 3H20(1) (1)

Design of experiment

The experimental design for alumina leaching from microcline via nitric acid leaching was executed with the
central composite design of RSM. RSM is a set of mathematical and statistical tools which are helpful for the
development of empirical models, enhancing and optimizing process parameters, as well as identifying the
interaction between the factors that affect the response of interest, with a minimal number of experiments?!-?2,
It utilizes numeric data from an associated experiment to establish a regression model as well as optimize a
response which is affected by several of input factors.

The central composite design (CCD) of RSM is usually made up of a 2" factorial runs with 2" axial runs. The
error in the experiment is estimated by centre runs (n ). The variables are examined at two levels. However, as the
variable number (n) rises, the number of runs necessary for a whole duplicate of the design increases speedily.
Since the individual effect of second-order cannot be evaluated independently by 2" factorial design, CCD was
deployed to investigate the quadratic effects of the model for alumina recovery from Amagunze microcline?!.
In the statistical analysis, the response alongside the relevant parameters utilized in the process was modelled to
optimize the process parameters for the response of interest. Statistical factors were evaluated using the analysis
of variance (ANOVA)?3.
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RSM involves three main steps which include the design of experiments, evaluation of coefficients in
a developed mathematical model, and lastly, prediction of the response(s) and assessing the sufficiency of
the model in the design space?’. In this work, the five variables selected for the design include the reaction
temperature (°C), S/L ratio (g/mL), nitric acid concentration (M), stirring speed (rpm), and reaction time (min).
The range and levels of the factors deployed in the design are depicted in Table 12°.

In carrying out the design, the variables in the experiments are presumed to be uninterrupted and measured
by experiments with minimal errors. The design of the experiment was targeted at optimizing the response
factor?!. Hence, there is a need to find a proper estimate for the relation connecting the independent factors
and the response. To minimize the error and the influence of unrestrained factors, the experimental run was
arranged arbitrarily?®. An empirical model generated using the response which relates it to the experimental
variable is depicted by a second-degree polynomial equation presented as Eq. 2%.

n n-1 n n
Y:BO+Zﬁixi+ZZﬁ1jxix1+Zﬁn‘x?+5 ()
i=1 i=1 j=2 i—1

where Y denote the response predicted (alumina yield), 84,8, 8;;, B ;;» n denotes the constant coefficient,
linear coefficient, interaction coefficient, quadratic coeflicient, and number of factors in the experiments,
respectively; x; and z; denote the coded values of the variable parameters which affect the response, while
¢ denotes the models’ random error?®?. The codes are estimated as a function of the range of interest of each
factor as depicted in Table 1. Equation (3) represents the coding of the test variables in developing the regression
model*%3L.

Ti= (3)

where z; denotes the i independent factor of the dimensionless coded value; X; denotes the uncoded value
of the 7*" independent factor; X;* denotes the uncoded value of the ‘" independent variable at the centre
point, while A X; denote the step change®2.

The final equation for the five factors and the error of the model is depicted as Eq. (4).

Y:BO+,6’1A+ﬁ2B+,830+B4D+ﬂ5E+612AB+ﬂ13AC+514AD
+B15AE + B 53BC + 804 BD + 3 o5 BE+ 3 3,CD + B 35;CE + 845 DE (4)
+8 11A2+522BQ+533C2+544D2+555E2+5i

The standard particle swarm model

PSO was motivated by the swarming activities of animals and the social conduct of humans. A particle swarm
consists of a populace of particles in which every particle is an object in motion3?. It flies across the search
space and is drawn to former locations it visited with a high fitness. Contrary to the entities in evolutionary
estimation, particles do not reproduce nor be replaced by others***. In this model, the particles are prepared
with a populace of arbitrary entrant solutions. The particles move iteratively across the d-dimension problem
space to seek new solutions. Every particle possesses a position denoted by a position vector p; (i denotes the
particle index), as well as a_velocity denoted by a velocity-vector v;. Every single particle recalls its own finest
position so far in a vector p?* and its jth dimensional value is pf. The overall best position vector in the swarm

until now is then deposited in a vector 177 and its jth dimensional value is pj. In the course of the iteration time

t, the updated velocity from the former velocity to the new velocity is estimated by Eq. (5). The new position is
then estimated by summing the former position and the new velocity using Eq. (6)*°.

vij (t) = woij (1) + exr1 (pf; (t = 1) — pij(t — 1)) + eara(pl (t — 1) — pij(t — 1)) (5)

pij () = pij(t-1) + vi5(t) (6)

where 71 and rj are arbitrary numbers, equally spread within the interval [0, 1] for the jth dimension of the ith
particle. €1 and ez are positive constants representing the coefficient of the self-recognition component and the
coefficient of the social components, respectively®. w denotes the inertia factor which controls the extent the

Coded variable levels

Independent variable | Unit | Symbol | -a |-1 |0 +1 | +a
Leaching temperature | °C X,(A) 45 60 75 90 105
Acid concentration M X,(B) 05 |2 35 |50 |65

Solid/liquid ratio g/ml | X,(C) 0.01 |0.02 | 0.03 | 0.04 | 0.05
Stirring rate rpm | X,(D) 75 230 | 385 |540 | 695
Leaching time min | X,(E) 30 60 |90 120 | 150

Table 1. Factors and level of various parameters of CCD design for alumina recovery from Amagunze
microcline.
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Comp t | Raw ple (%) | Calcined ple (%) | Comp t | Raw ple (%) | Calcined sample (%)
SiO, 53.98 58.49 MgO 1.16 1.07
TiO, 1.38 1.06 CaO 0.62 235
ALO, 27.25 27.75 K,0 3.61 3.63
Fe,0, 11.56 7.23 PO, 0.14 0.07
Cr,0, 0.02 0.01 S0, 0.19 024
ZnO 0.01 0.01 SrO 0.06 0.04
MnO 0.02 0.03 Cl 0.003 0.02

Table 2. XRF result of Raw and calcined Amagunze microcline®.

Sample ID: UMYU- Katsina 151, Sample name: Amagunze Clay, Temp: 25.0°C
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Fig. 1. XRD pattern of microcline.

particles tend to follow their present direction in comparison to the learnt positions*+%. It varies linearly from
1 to near zero for the period of the iterated processing. According to Eq. (5), a particle chooses where next to
move, bearing in mind its peculiar experience, which depicts the reminiscence of its best former position and

the experience of its most effective particle in the swarm3®.

Results and discussion

Characterization

XRF analysis

The XRF results of both the raw and calcined samples had previously been reported®. The result shows the main
oxides in the clay as AL,O,, SiO, and Fe,O,, while the minor oxides are MgO, K,O and TiO,. Oxides found in
traces include P,0,, SO,, Ca0, Cr,0,, ZnO, Mn,0, and SrO, as shown in Table 2.

Mineralogical analysis

The XRD result of the clay confirms the presence of microcline (KAlSisos) with major peaks at 21.07, 26.44,
26.64, 27.11, and 27.45° 26, as earlier reportedﬁ. The XRD data is shown in Table 3 while the XRD pattern is
shown in Fig. 1.

Statistical analysis

Statistical analysis of experimental data on alumina dissolution from microcline was performed with a rented
version of Design Expert (DE) software 10.0.0. The CCD of RSM found in DE software was deployed to perform
the regression analysis of the data generated from the experiment and plot the response surface and contour
plots at the optimum conditions?""*. Several statistical indicators were used to fit the model and test the
significance. F-test was used to examine the statistical importance of the models while the precision of the fitted
polynomial model was established using the R? values®. The probability value (p-value) was deployed to assess
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identifed, with their relative intensity (%)

20 | d-Value (A) | Compound intensity (%) | JCPDS file No.
20.86 | 4.25 Quartz (SiOZ) 21.62 01-087-2096
21.07 | 4.21 Microcline (KAlSiSOx) 51.00 00-022-0687
25.68 | 3.47 Microcline (KAlSi308) 26.00 00-022-0687
26.44 | 3.37 Microcline (KAlSi308) 41.00 00-022-0687
26.64 | 3.34 Quartz (Si0,) 100.00 01-087-2096
27.11 | 3.29 Microcline (KAlSisos) 48.00 00-022-0687
27.45 | 3.25 Microcline (KAlSi308) 100.00 00-022-0687
36.55 | 2.46 Quartz (SiOZ) 6.01 01-087-2096
39.47 | 2.28 Quartz (SiOZ) 591 01-087-2096

Table 3. The X-ray diffraction data of Microcline showing the angle 26 and d-values of the compounds
identified, with their relative intensity (%). JCPDS File No. : Joint Committee on Power Diffraction Standards
File Number.

the significant model terms at a 95% confidence interval. The experimental design, the coded, predicted and
experimental values for this study, are depicted in Table 428,

For good quality model fitting, a test of significance for the regression model and separate model coefficients
and lack-of-fit test is normally carried out. The sequential model sum of squares (Table 5) indicates that the
quadratic vs. 2FI model is suggested with p-value of <0.0001 and F-value of 76.71.

From the model summary statistics, it is shown that the R?, adjusted R? and the predicted R? values of the
quadratic model (0.9936, 0.9819, and 0.9198) gave a better fitting in comparison with the 2FI (0.7696, 0.5535
and -2.0753) and the linear model (0.7493, 0.7010 and 0.6776) as depicted in Table 6’. The results above show
that the quadratic model gave a good description of the correlation between the independent factors and the
response (dependent variable).

For the model not to be over-fitted, the variance between the adjusted R? and predicted R? should not be
more than 0.2. From the results obtained in this work, the variance between the adjusted and predicted R? for
the quadratic model is 0.0117, indicating that the model is not over-fitted®*!. The adjusted R?> measures the
extent of difference around the mean described by the model, adjusted for the model number of terms; while the
predicted R? measures the extent of difference in new data described by the model*.

The quadratic model also gave a minimum standard deviation of 0.69, indicating a close connection between
the predicted and experimental values of the responses*.

The degree the model fits every point in the design is designated by the predicted residual error sum of squares
(PRESS). It is estimated by first predicting where every single point should be from a model that comprises every
other point except the one being considered.

To investigate if the process variables are statistically important or not, statistical analysis of variance
(ANOVA) was performed. The ANOVA results are shown in Table 7.

The F-value for each variable indicates which variable had a considerable effect on the response which is
the percentage of alumina leached*»*. The residual row shows the extent of disparity in the response that
is yet to be explained while the Lack of Fit is the degree of variance between the model predictions and the
observations! 4647,

The F-value of 85.06 from the model implies the model is significant. There is just a 0.01% probability that
an F-value as large as this could occur because of noise. The change associated with a term and its residual
variance is indicated by the F-value of that term. The F-value of the independent factors A, B, C, D, and E
were obtained as 259.00, 260.27, 300.11, 240.19 and 223.28, respectively, signifying that the effect of all the
independent variables on the response was significantly high. “Prob > F” values less than 0.050 implies that the
model terms are important. The “Lack of Fit F-value” of 0.66 indicates that the Lack of Fit is not significant when
compared to the pure error. There is a 68.91% chance that a “Lack of Fit F-value” this large could happen because
of noise?®*. The lack of fit being insignificant is good since it indicates that the model fits. The significant and
non-significant terms were determined from the ANOVA table (Table 5) in line with their p-values. From the
ANOVA results, reaction temperature (A), nitric acid concentration (B), S/L ratio (C), stirring rate (D), reaction
time (E), reaction temperature and stirring rate (AD), reaction temperature and reaction time (AE), reaction
temperature squared (A2), nitric acid concentration squared (B?), S/L ratio squared (C?), stirring rate squared
(D?), reaction time squared (E?) are all significant'®. The final polynomial predictive equation of the second
order, after eliminating the insignificant terms is given in Eq. (7).

Y (%) =80.36 +3.38%* A +3.39%xB —3.64«C+3.25%D+3.14%xE — 0.59 x AD — 0.68 x AE 7
—1.47% A% —2.25+%+B2 —1.93%C? —2.27 «+ D? — 1.43 « E?

In terms of the actual factor values, the percentage yield of alumina is obtained and shown in Eq. (8).
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A:Leaching | B: Acid conc. | C: S/Lratio | D: Stirring E: Leaching
temp. (°C) ™M) (g/mL) rate(rpm) time (min) Yield (%)
Run | Coded | Real | Coded | Real | Coded | Real | Coded | Real | Coded | Real | Exp. | Pred.
1 0 75 0 3.5 0 0.03 |0 385 | +2 150 | 81.8 | 80.90
2 0 75 0 35 0 003 |0 385 | -2 30 67.8 | 68.35
3 0 75 0 3.5 0 0.03 |0 385 |0 90 80.3 | 80.36
4 -1 60 +1 5 +1 0.04 | -1 230 | +1 120 | 68.1 | 67.95
5 +1 90 -1 2 +1 0.04 | -1 230 | +1 120 | 67.6 | 67.71
6 0 75 0 35 0 0.03 |0 385 |0 90 80.8 | 80.36
7 +1 90 -1 2 +1 0.04 | +1 540 | -1 60 68.2 | 68.11
8 0 75 +2 6.5 0 0.03 |0 385 |0 90 78.3 | 78.15
9 +1 90 +1 5 +1 0.04 | -1 230 | -1 60 69.5 | 69.23
10 -1 60 +1 5 +1 0.04 | +1 540 | -1 60 68.4 | 68.06
11 -2 45 0 3.5 0 0.03 |0 385 |0 90 67.4 | 67.72
12 0 75 0 35 0 003 |0 385 |0 90 80.3 | 80.36
13 -1 60 -1 2 +1 0.04 | +1 540 | +1 120 | 68.2 | 68.23
14 +2 105 |0 3.5 0 0.03 |0 385 |0 90 81.9 | 81.23
15 -1 60 +1 5 -1 0.02 | +1 540 | +1 120 | 79.8 | 80.23
16 +1 90 -1 2 -1 0.02 | -1 230 | -1 60 69.2 | 69.36
17 -1 60 -1 2 -1 0.02 |+1 540 | -1 60 69.3 | 69.38
18 -1 60 -1 2 -1 0.02 | -1 230 | +1 120 | 69.1 | 69.37
19 +1 90 +1 5 +1 0.04 | +1 540 | +1 120 | 79.7 | 79.96
20 0 75 0 3.5 -2 0.01 385 |0 90 80.9 | 79.90
21 0 75 0 3.5 0 003 |0 385 |0 90 81.8 | 80.36
22 +1 90 -1 2 -1 0.02 | +1 540 | +1 120 | 78.4 | 79.09
23 0 75 0 3.5 +2 0.05 |0 385 |0 90 64.7 | 65.35
24 0 75 0 3.5 0 0.03 | -2 75 0 90 64.6 | 64.77
25 0 75 0 3.5 0 0.03 |0 385 |0 90 78.3 | 80.36
26 +1 90 +1 5 -1 0.02 | -1 230 | +1 120 | 80.1 | 80.61
27 +1 90 +1 5 -1 0.02 | +1 540 | -1 60 80.7 | 81.01
28 -1 60 +1 5 -1 0.02 | -1 230 | -1 60 68.2 | 68.10
29 0 75 0 3.5 0 0.03 | +2 695 |0 90 78.3 | 77.78
30 0 75 0 3.5 0 0.03 |0 385 |0 90 80.3 | 80.36
31 -1 60 -1 2 +1 0.04 | -1 230 | -1 60 50.2 | 49.70
32 0 75 -2 0.5 0 003 |0 385 |0 90 64.8 | 64.60

Table 4. Experimental design for alumina leaching from microcline using nitric acid.

Source Sum of Squares | df Isvfle::re F-Value | p-value Prob>F

Mean vs. Total 1.721E+005 1 | 1.721E+005

Linear vs. Mean 1357.41 5 |271.48 15.54 <0.0001

2FI vs. Linear 36.77 10 | 3.68 0.14 0.9983

Quadratic vs. 2FI 405.84 5 |81.17 76.71 <0.0001 Suggested

Cubic vs. Quadratic | 4.70 5 1094 0.81 0.5814 Aliased
Table 5. Sequential model sum of squares.

Adjusted | Predicted

Source Std Dev. | R-Squared | R-Squared | R-Squared | PRESS

Linear 4.18 0.7493 0.7010 0.6776 584.15

2FI 5.11 0.7696 0.5535 -2.0753 5571.46

Quadratic | 1.03 0.9936 0.9819 0.9198 14529 | Suggested

Cubic 1.08 0.9962 0.9802 0.7293 490.41 | Aliased

Table 6. Model summary statistics.
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Mean p-value
Source Sum of Squares | df | Square | F-Value | Prob>F
Model 1800.02 20 | 90.00 | 85.06 |<0.0001
A-Leaching temp. | 274.05 1 |274.05 |259.00 |<0.0001
B-Acid conc. 275.40 1127540 |260.27 | <0.0001
C-S/L ratio 317.55 1|317.55 |300.11 | <0.0001
D-Stirring rate 254.15 1 |254.15 |240.19 |<0.0001
E-Leaching time 236.25 1 ]236.25 |223.28 <0.0001
AB 0.076 1 0.076 0.071 0.7942
AC 4.10 1 4.10 3.88 0.0747
AD 5.64 1 5.64 533 0.0414
AE 7.43 1 7.43 7.02 0.0226
BC 4.73 1 4.73 4.47 0.0581
BD 1.76 1 1.76 1.66 0.2242
BE 1.89 1 1.89 1.79 0.2083
CD 3.52 1 3.52 3.32 0.0956
CE 3.33 1 3.33 3.15 0.1037
DE 4.31 1 431 4.07 0.0687
A? 63.43 1| 6343 | 59.94 |<0.0001
B? 147.90 1| 147.90 |139.78 | <0.0001
c? 109.60 1 ]109.60 |103.58 | <0.0001
D? 151.21 1|151.21 | 14291 |<0.0001
E? 60.23 1| 60.23 | 56.92 |<0.0001
Residual 11.64 11 1.06
Lack of Fit 5.14 6 0.86 0.66 0.6891
Pure Error 6.50 5 1.30
Cor Total 1811.66 31

Table 7. ANOVA for response surface quadratic model.

Std. Dev. | Mean | C.V. % | PRESS | Adeq. Precision

1.03 73.34 | 1.40 145.29 | 37.846

Table 8. Regression values.

Y (%) = —51.90 4 1.35 * Leaching temp. + 9.62 * Acid conc. 4+ 162.72 x S /L ratio
40.12 * Stirring rate 4+ 0.53 * Leaching time — 2.55E — 004 * Leaching temp. * Stirring rate
—1.51E — 003 % Leaching temp. * Leaching time — 6.54E — 003 * Leaching temp.? (8)
—1.00 % Acid conc.? — 19329.55 * S/Lratio? — 9.45E — 005 * Stirring rate® — 1.59E—
003 * Leaching time?

The coeflicient of variation is estimated by dividing the standard deviation by the mean and multiplying by
100'%48, Values less than 15% indicate a practically reproducible model. The coefficient of variation (CV) value
of 1.40% obtained from this study illustrates that the model is practically reproducible. The signal-to-noise ratio
depicted as the adequate precision is 37.846 as presented in Table 8. Ratios greater than 4 indicate that a good
connection of signal-to-noise ratio exists. The mean is the overall average of all the response data. A value of
73.34 was recorded from this study”*.

The experimental results were also analyzed to verify the connection between the experimental and
predicted alumina recovery. Figure 2 shows an adequate relationship between the experimental and predicted
alumina yield. The result indicates also that the chosen model was sufficient for carrying out the prediction and
optimization exercise®®->2,

Effect of process parameters

The effect of the variables that influence the leaching of alumina from microcline in HNO, solution was studied
by conducting batch experiments at the pre-determined conditions obtained according to the experimental
design. Experimental design was performed using the CCD of RSM, facilitated by the DE software by Stat Ease
Inc., Minneapolis, USA. The interactive effect of the process variables was represented with contour and surface
plots made with the software, according to the experimental results*>>*->>, From the ANOVA results depicted
in Table 7, the squared and individual effects of the factors were all significant with p-values <0.0001, with the
S/L ratio, acid concentration and leaching temperature, having the most significant effects, as specified by their
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Fig. 2. Plot of the predicted values versus the actual experimental values.

F-values!”. The interactive effects of stirring rate and leaching temperature (AD) as well as leaching temperature
and leaching time (AE) were also found to be significant. Higher temperatures provide more energy for chemical
reactions to occur faster, resulting in quicker dissolution of clay minerals. As temperature rises, the diffusion of
ions through the clay particle’s surface layer is facilitated, allowing for better access of the acid to the reactive
sites. Increased temperature can increase mass transfer between the liquid phase (acid solution) and the solid clay
particles, further improving the leaching process. While higher temperatures generally lead to better leaching
efficiency, there is usually an optimum temperature range beyond which other factors like excessive energy
consumption or potential side reactions might become significant. As acid concentration rises, more hydrogen
ions are available to react with the clay minerals, breaking down the chemical bonds and releasing elements like
aluminium and silica into the solution. Excessively high acid concentrations can result in significant damage
to the clay’s crystalline structure, potentially hindering further leaching by creating a less accessible surface
area. For efficient clay leaching, finding the optimal acid concentration is crucial to maximizing the extraction
of desired elements while minimizing unnecessary damage to the clay structure. When the solid/liquid ratio
is high, fewer acid molecules are available to interact with each clay particle, limiting the reaction sites and
slowing down the dissolution process. As more clay particles are present, diffusion of the dissolved ions away
from the clay surface becomes more difficult, creating a concentration gradient that hinders further leaching.
A lower solid/liquid ratio is generally preferred for efficient acid leaching of clays to maximize the contact
between acid and clay particles. However, an optimum solid/liquid ratio is preferred for more efficient leaching.
As stirring speed increases, the boundary layer surrounding clay particles thins, facilitating faster diffusion of
the acid solution to the clay surface, thereby accelerating the leaching process. Better contact between the acid
and clay particles due to increased stirring leads to a higher reaction rate, resulting in more minerals being
dissolved within a given time frame. For more efficient leaching, optimum stirring speed should be used. As
leaching time increases, more targeted elements are dissolved and removed from the clay structure, resulting in
higher extraction efficiency. The initial phase of leaching often shows a rapid increase in extraction as the acid
readily attacks the clay surface, with the rate gradually slowing down as the reaction progresses. Eventually, an
equilibrium is reached where the rate of further extraction becomes negligible as most accessible minerals are
already dissolved, indicating an optimal leaching time®®.

The contour and response surface plots are represented in Fig. 3 (a-d). Figure 3 (a and b) depict the joint
effect of temperature and stirring speed on alumina leaching from microcline'®. The results reveal that the
highest alumina yield was achieved within a reaction temperature range of (72-78°C) and a stirring rate range
of (354-416) rpm. Other variables were kept constant at a nitric acid concentration of 3.5 M, S/L ratio of 0.03 g/
mL, and leaching time of 90 min. The percentage of alumina leached increased as the stirring rate was increased
and attained a maximum at a stirring rate of 385 rpm. This shows that the stirring rate had a mild influence
on the leaching rate of alumina®. On the other hand, the percentage alumina recovery rate increased with an
increase in temperature up to a temperature of 75 °. This is ascribed to the destruction of the clay’s structure at a
higher temperature. The plot displaying the collaborative effect of temperature and time is depicted in Fig. 3 (c
and d). The plot reveals that maximum alumina recovery was achieved within a temperature range of (78-84°C)
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Fig. 3. 3D response surface (a, ¢) and contour (b, d) plots on the effects of process variables on alumina yield.

and a reaction time value of (90-100 min) while other factors were held constant at a HNO, concentration of
3.5 M, S/L ratio of 0.03 g/mL and stirring speed of 385 rpm. The amount of alumina recovered increased with
an increase in leaching temperature up to a leaching temperature of 75°C and then decreased. The decrease in
alumina recovery upon attainment of a leaching temperature of 75°C can be ascribed to the obliteration of the
clay’s structure at a higher temperature value!'?. The quantity of alumina leached was also found to increase as the
leaching time was increased, up to 98 min and then decreased. The decrease in alumina recovery after 98 min
may be due to the attainment of steady-state at a leaching time of 98 min.

Optimization using RSM and PSO

The optimization exercise was performed with the optimization apparatuses of the CCD of RSM in the design
expert software and the particle swarm optimization in Matlab. In performing the RSM optimization exercise,
the optimum points were selected based on cost implications which were aimed at reducing the cost of reagents,
energy, and leaching time. Based on the above-named conditions, RSM predicted optimum conditions of
82.11°C reaction temperature, 3.53 M nitric acid concentration, 0.023 g/mL S/L ratio, 356.14 rpm stirring speed,
and 99.92 min reaction time, at which about 83.21% alumina leaching rate was recorded!?. The result obtained
above was authenticated by performing three separate experiments at which an average alumina leaching rate
of about 82.12% was recorded. PSO optimization was performed using a PSO algorithm developed in Matlab.
Equation 8 was used to develop the objective function which was carried out in a Matlab file. The five factors
used for RSM optimization were selected as assessment variables for particle swarm optimization. Other factors
necessary for the simulation work were properly set in the PSO algorithm!?. The initial weight damping ratio, the
weight, and the swarm size were set to be 0.99, 1.0, and 30, respectively. The personal learning coefficient was set
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Fig. 4. PSO plot of alumina yield versus the number of iterations.

to be 1.2 while the global learning coefficient was set to be 2.0%%. At the conditions stated above, PSO predicted
optimum conditions of 90°C reaction temperature, 4 M nitric acid concentration, 0.021 g/mL S/L ratio, 420 rpm
stirring speed, and 118 min reaction time, at which about 82.56% alumina leaching rate was predicted. The
optimum conditions above were authenticated by performing three separate experiments which contributed an
estimated average value of 81. 37%. The PSO plot of the percentage alumina yield versus the number of iterations
is depicted in Fig. 4. In the RSM procedure, the optimum conditions were chosen from an array of options
based on economic considerations. However, in PSO optimization, the minimum likely obtainable values of the
experimental parameters (factors) are predicted, since PSO is a minimization tool. From the results attained
in both optimization methods, a difference 7.89°C (8.77%), 0.47 M (11.75%), 0.002 g/mL (8.70%), 63.86 rpm
(15.20%), and 18.08 min (15.32%) were recorded for the reaction temperature, HNO, concentration, S/L ratio,
stirring speed, and reaction time, respectively. Hence, it can be inferred that the reaction time and stirring rate
had a mild effect on the leaching process while the reaction temperature, HNO, concentration, and solid/liquid
ratio had a more significant influence on the leaching process. When compared to the results obtained from the
kinetic study, the two optimization techniques were found to be viable for alumina recovery from microcline.

Conclusions

The optimum conditions for alumina dissolution from Amagunze microcline were determined in this study. The
mineral phases found in the clay as determined by XRD showed the presence of microcline as the major mineral
present. XRF analysis result showed that the main oxides in the clay include Al,O,, SiO, and Fe,O,. Other oxides
present in the clay sample include MgO, K,0, Ca0, Mn203, TiO,, Cr203, ZnQO, and SrO. Two optimization
techniques which include the optimization tool found in the CCD of RSM of design expert software and the
particle swarm optimization tool found in Matlab were used for the study. The optimum predicted conditions by
RSM include reaction temperature of 82.11°C, HNO, concentration of 3.53 M, S/L ratio of 0.023 g/mL, stirring
speed of 356.14 rpm and reaction time of 99.92 min, at which about 83.21% alumina leaching rate was predicted,
while about 82.56% alumina leaching prediction was recorded by PSO at a reaction temperature of 90°C, nitric
acid concentration of 4 M, S/L ratio of 0.021 g/mL, stirring speed of 420 rpm, and reaction time of 118 min,
respectively. Hence, the two optimization methods proved to be feasible for alumina leaching.

Data availability
All data generated or analyzed during this study are included in this published article [and its supplementary
information files].
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