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Alumina has found wide application in technological and engineering fields. However, due to the 
environmental effects of the traditional Bayer process of production, there is a need for a more eco-
friendly and cost-effective procedure. The optimization of alumina extraction from microcline in nitric 
acid (HNO3) solution is considered in this work. The optimization exercise was performed with the 
optimization tools of response surface methodology (RSM) and particle swarm optimization (PSO). 
The optimum conditions predicted by RSM include 82.11 oC reaction temperature, 3.53 M HNO3 
concentration, 0.023 g/mL solid/liquid (S/L) ratio, 356.14 rpm stirring speed, and 99.92 min reaction 
time. At these conditions, about 83.21% alumina leaching rate was predicted. PSO however predicted 
optimum conditions of 90oC, 4 M, 0.021 g/mL, 420 rpm, and 118 min, respectively, for the parameters 
above. Hence, the two techniques were viable tools for the optimization exercise.
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Aluminium is the most common metal in the earth’s crust and the second most popular metal for making 
things. Due to its many unusual combinations of properties such as low density, corrosion resistance, electrical 
conductivity, ductility, and strength in alloys, aluminium and its compounds have found application in many 
industrial and commercial sectors such as food and drink packaging, aviation, automobile, building and 
construction, clothing, power cables, cooking utensils, to mention a few. On the other hand, alumina has been 
extensively deployed in progressive technological sectors, which include its application for the manufacture 
of microelectronics, good semiconductors, ceramics, biofuel and cell-fuel, insulators, high-strength materials, 
fireproof plastics, refractories, and high-grade polishes1. The metallic aluminium is not found in nature but 
occurs in the form of hydrated oxide or silicate (clay). The increasing demand for aluminium globally and 
the unavailability of bauxite in many countries increases the need to develop alternative technologies for the 
production of aluminium from low-grade ores2.

Researchers in many countries have put in rigorous effort into alumina extraction from natural sources other 
than bauxite, particularly clays3. The use of clay as the natural resource for alumina recovery is preferred due to 
the merits of the process such as its environment friendliness, ready availability, and cost-effectiveness. This is 
in contrast to the Bayer process which is characterized by the generation of toxic residues and their attendant 
negative environmental consequences as well as the incurred cost of residue disposal. The choice of this process 
(clay process) would also help create job opportunities in communities where it is found as well as improve the 
gross domestic product (GDP) of Nigeria and attract foreign investment to Africa in line with African Union 
Agenda 2063, as well as promote responsible consumption and production, innovation, economic growth and 
industrial revolution, in line with the United Nations (UN) sustainable development goals4.

Clays are hydrous aluminium silicates that usually contain small amounts of impurities such as calcium, 
magnesium, potassium, sodium, or iron. Many clay contain as much as 30–40% alumina5. One of the most 
common processes of clay formation is the chemical decomposition of feldspar. Among the various clay minerals, 
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microcline proves to be a feasible alternative for alumina production owing to its substantial aluminium content. 
Microcline (KAlSi3O8) is a key rock-forming mineral in many rocks, especially pegmatite, granite, syenite, 
and metamorphic gneisses. Microcline is usually found jointly with feldspar; as well as in syenite, granite, and 
pegmatites, critically characterizing acidic and neutral core igneous rocks6.

Leaching involves materials extraction from a solid by dissolving them in a liquid, either through natural 
means, or through an industrial process. Leaching has various commercial uses in the chemical processing 
industry, including recovery of metal from its ore with the aid of acid, and sugar from sugar beets with the 
aid of hot water2. In extractive metallurgy, leaching is normally applied on account of its cost-effectiveness, 
environment-friendliness, low-energy requirement, and the capability of processing ores of low-grade. The three 
procedures generally applied for the recovery of alumina from clays include: (1) leaching using acids such as 
H2SO4, HNO3 or HCl to remove alumina from clay after calcination, (2) sulphatization by sintering clay with 
ammonium sulphate and the subsequent removal of alumina by leaching using hot water, (3) alkali roasting 
by sintering of the clay with ammonium sulphate and the removal of alumina and silica by leaching using hot 
water1.

Most acid-leaching procedures for alumina recovery have been conducted with the conventional one factor 
per time1. This procedure takes a long time and wastes a lot of reagents. To overcome this challenge, statistical 
and optimization techniques such as RSM which is made up of advanced statistical and mathematical procedures 
applied for process enhancement and optimization are adopted7–9. Using this method, optimum points are 
determined for given independent variables with the aid of a second-order polynomial prediction equation. 
Widely applied in the chemical industry, RSM helps in the improvement of manufacturing processes as well as 
optimizing chemical reactions to obtain products of high yield and purity at reduced cost10,11.

On the other hand, PSO is a stochastic computation method12. Motivated by the social behaviour and 
intelligence of the insect swarm, PSO has continuously gained a rising reputation due to its ease and efficiency 
in performing hard optimization problems. It has been effectively applied in solving various optimization 
and engineering problems13–16. As obtainable in comparable evolutionary algorithms, PSO is an optimization 
technique that relies on a population often referred to as a swarm. Such a population comprises individual 
particles having specific positions and velocities produced at random during initialization. Particles look for a 
solution space and recall the overall best position it has established. Contrary to genetic algorithms, PSO does 
not need the process of encoding and special operators like crossover or mutation. The distinguishing feature of 
PSO is derived from particles’ individual experiences, collaboration among particles as well as their aptitude to 
share knowledge12.

In general, many investigators have tried to recover alumina from other alternative sources, such as kaolinitic 
clays using both alkaline and acid routes17–19. It was a common consensus that acids were more effective than 
bases in aluminium extraction1. Our previous publication on alumina recovery from microcline focused on the 
kinetics of the leaching process in nitric acid and hydrogen peroxide solution6. The process parameters were 
not optimized. Hence, in the present investigation, aluminium leaching from microcline through the nitric acid 
route was explored via optimization of process parameters. Process parameters that affect the leaching process 
were optimized and optimum points were determined using RSM and PSO.

Materials and methods
Materials
Sourcing and Preparation of samples
Microcline ore from Amagunze in south-eastern Nigeria was deployed for this work. The sample was ground, 
dried in the sun for two days, and calcined at 700 °C for 1 h to enhance its reactivity. The calcined microcline 
was further pulverized and sieved with < 75 μm ASTM standard test sieve and kept for further use. The solutions 
used in the experiment were prepared using analytical-grade nitric acid and deionized water.

Leaching experiments
Experiments were carried out according to the method described by Nnanwube and Onukwuli20 and Nnanwube 
et al.6. The stoichiometry of the process is illustrated in Eq. (1).

	 Al2O3(s) + 6HNO3(aq) −→ 2Al(NO3)3(aq) + 3H2O(l)� (1)

Design of experiment
The experimental design for alumina leaching from microcline via nitric acid leaching was executed with the 
central composite design of RSM. RSM is a set of mathematical and statistical tools which are helpful for the 
development of empirical models, enhancing and optimizing process parameters, as well as identifying the 
interaction between the factors that affect the response of interest, with a minimal number of experiments21,22. 
It utilizes numeric data from an associated experiment to establish a regression model as well as optimize a 
response which is affected by several of input factors.

The central composite design (CCD) of RSM is usually made up of a 2n factorial runs with 2n axial runs. The 
error in the experiment is estimated by centre runs (nc). The variables are examined at two levels. However, as the 
variable number (n) rises, the number of runs necessary for a whole duplicate of the design increases speedily. 
Since the individual effect of second-order cannot be evaluated independently by 2n factorial design, CCD was 
deployed to investigate the quadratic effects of the model for alumina recovery from Amagunze microcline21. 
In the statistical analysis, the response alongside the relevant parameters utilized in the process was modelled to 
optimize the process parameters for the response of interest. Statistical factors were evaluated using the analysis 
of variance (ANOVA)23.
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RSM involves three main steps which include the design of experiments, evaluation of coefficients in 
a developed mathematical model, and lastly, prediction of the response(s) and assessing the sufficiency of 
the model in the design space24. In this work, the five variables selected for the design include the reaction 
temperature (oC), S/L ratio (g/mL), nitric acid concentration (M), stirring speed (rpm), and reaction time (min). 
The range and levels of the factors deployed in the design are depicted in Table 125.

In carrying out the design, the variables in the experiments are presumed to be uninterrupted and measured 
by experiments with minimal errors. The design of the experiment was targeted at optimizing the response 
factor21. Hence, there is a need to find a proper estimate for the relation connecting the independent factors 
and the response. To minimize the error and the influence of unrestrained factors, the experimental run was 
arranged arbitrarily26. An empirical model generated using the response which relates it to the experimental 
variable is depicted by a second-degree polynomial equation presented as Eq. 227.

	
Y = β0 +

n∑
i=1

βi xi +
n−1∑
i=1

n∑
j=2

βij xi xj +
n∑

i=1

βii x2
i +ε� (2)

where Y denote the response predicted (alumina yield), β 0, β i, β ij , β ii, n denotes the constant coefficient, 
linear coefficient, interaction coefficient, quadratic coefficient, and number of factors in the experiments, 
respectively; xi and xj  denote the coded values of the variable parameters which affect the response, while 
ε denotes the models’ random error28,29. The codes are estimated as a function of the range of interest of each 
factor as depicted in Table 1. Equation (3) represents the coding of the test variables in developing the regression 
model30,31.

	 xi=
Xi−X∗

i
∆ Xi

� (3)

where xi denotes the ith independent factor of the dimensionless coded value; Xi denotes the uncoded value 
of the ith independent factor; X∗

i  denotes the uncoded value of the ith independent variable at the centre 
point, while ∆ Xi denote the step change32.

The final equation for the five factors and the error of the model is depicted as Eq. (4).

	

Y = β o + β 1A + β 2B + β 3C + β 4D + β 5E + β 12AB + β 13AC + β 14AD
+β 15AE + β 23BC + β 24BD + β 25BE + β 34CD + β 35CE + β 45DE
+β 11A2 + β 22B2 + β 33C2 + β 44D2 + β 55E2 + ϵ i

� (4)

 The standard particle swarm model
PSO was motivated by the swarming activities of animals and the social conduct of humans. A particle swarm 
consists of a populace of particles in which every particle is an object in motion33. It flies across the search 
space and is drawn to former locations it visited with a high fitness. Contrary to the entities in evolutionary 
estimation, particles do not reproduce nor be replaced by others34,35. In this model, the particles are prepared 
with a populace of arbitrary entrant solutions. The particles move iteratively across the d-dimension problem 
space to seek new solutions. Every particle possesses a position denoted by a position vector −→pi  (i denotes the 
particle index), as well as a velocity denoted by a velocity-vector −→vi . Every single particle recalls its own finest 
position so far in a vector 

−→
p#

i  and its jth dimensional value is p#
j . The overall best position vector in the swarm 

until now is then deposited in a vector 
−→
p∗  and its jth dimensional value is p∗

j . In the course of the iteration time 
t, the updated velocity from the former velocity to the new velocity is estimated by Eq. (5). The new position is 
then estimated by summing the former position and the new velocity using Eq. (6)36.

	 vij(t) = wvij(t-1) + ϵ1r1(p#
ij (t − 1) − pij(t − 1)) + ϵ2r2(p#

j (t − 1) − pij(t − 1))� (5)

	 pij(t) = pij(t-1) + vij(t)� (6)

where r1 and r2 are arbitrary numbers, equally spread within the interval [0, 1] for the jth dimension of the ith 
particle. ϵ1 and ϵ2 are positive constants representing the coefficient of the self-recognition component and the 
coefficient of the social components, respectively36. w denotes the inertia factor which controls the extent the 

Independent variable Unit Symbol

Coded variable levels

–α –1 0 +1 +α

Leaching temperature °C X1(A) 45 60 75 90 105

Acid concentration M X2(B) 0.5 2 3.5 5.0 6.5

Solid/liquid ratio g/ml X3(C) 0.01 0.02 0.03 0.04 0.05

Stirring rate rpm X4(D) 75 230 385 540 695

Leaching time min X5(E) 30 60 90 120 150

Table 1.  Factors and level of various parameters of CCD design for alumina recovery from Amagunze 
microcline.
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particles tend to follow their present direction in comparison to the learnt positions34,37. It varies linearly from 
1 to near zero for the period of the iterated processing. According to Eq. (5), a particle chooses where next to 
move, bearing in mind its peculiar experience, which depicts the reminiscence of its best former position and 
the experience of its most effective particle in the swarm36.

Results and discussion
Characterization
XRF analysis
The XRF results of both the raw and calcined samples had previously been reported6. The result shows the main 
oxides in the clay as Al2O3, SiO3 and Fe2O3, while the minor oxides are MgO, K2O and TiO2. Oxides found in 
traces include P2O5, SO3, CaO, Cr2O3, ZnO, Mn2O3 and SrO, as shown in Table 2.

Mineralogical analysis
The XRD result of the clay confirms the presence of microcline (KAlSi3O8) with major peaks at 21.07, 26.44, 
26.64, 27.11, and 27.45o 2θ, as earlier reported6. The XRD data is shown in Table 3 while the XRD pattern is 
shown in Fig. 1.

Statistical analysis
Statistical analysis of experimental data on alumina dissolution from microcline was performed with a rented 
version of Design Expert (DE) software 10.0.0. The CCD of RSM found in DE software was deployed to perform 
the regression analysis of the data generated from the experiment and plot the response surface and contour 
plots at the optimum conditions21,38. Several statistical indicators were used to fit the model and test the 
significance. F-test was used to examine the statistical importance of the models while the precision of the fitted 
polynomial model was established using the R2 values39. The probability value (p-value) was deployed to assess 

Fig. 1.  XRD pattern of microcline.

 

Component Raw sample (%) Calcined sample (%) Component Raw sample (%) Calcined sample (%)

SiO2 53.98 58.49 MgO 1.16 1.07

TiO2 1.38 1.06 CaO 0.62 2.35

Al2O3 27.25 27.75 K2O 3.61 3.63

Fe2O3 11.56 7.23 P2O5 0.14 0.07

Cr2O3 0.02 0.01 SO3 0.19 0.24

ZnO 0.01 0.01 SrO 0.06 0.04

MnO 0.02 0.03 Cl 0.003 0.02

Table 2.  XRF result of Raw and calcined Amagunze microcline6.
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the significant model terms at a 95% confidence interval. The experimental design, the coded, predicted and 
experimental values for this study, are depicted in Table 428.

For good quality model fitting, a test of significance for the regression model and separate model coefficients 
and lack-of-fit test is normally carried out. The sequential model sum of squares (Table 5) indicates that the 
quadratic vs. 2FI model is suggested with p-value of < 0.0001 and F-value of 76.71.

From the model summary statistics, it is shown that the R2, adjusted R2 and the predicted R2 values of the 
quadratic model (0.9936, 0.9819, and 0.9198) gave a better fitting in comparison with the 2FI (0.7696, 0.5535 
and − 2.0753) and the linear model (0.7493, 0.7010 and 0.6776) as depicted in Table 67. The results above show 
that the quadratic model gave a good description of the correlation between the independent factors and the 
response (dependent variable).

For the model not to be over-fitted, the variance between the adjusted R2 and predicted R2 should not be 
more than 0.2. From the results obtained in this work, the variance between the adjusted and predicted R2 for 
the quadratic model is 0.0117, indicating that the model is not over-fitted40,41. The adjusted R2 measures the 
extent of difference around the mean described by the model, adjusted for the model number of terms; while the 
predicted R2 measures the extent of difference in new data described by the model42.

The quadratic model also gave a minimum standard deviation of 0.69, indicating a close connection between 
the predicted and experimental values of the responses43.

The degree the model fits every point in the design is designated by the predicted residual error sum of squares 
(PRESS). It is estimated by first predicting where every single point should be from a model that comprises every 
other point except the one being considered.

To investigate if the process variables are statistically important or not, statistical analysis of variance 
(ANOVA) was performed. The ANOVA results are shown in Table 7.

The F-value for each variable indicates which variable had a considerable effect on the response which is 
the percentage of alumina leached44,45. The residual row shows the extent of disparity in the response that 
is yet to be explained while the Lack of Fit is the degree of variance between the model predictions and the 
observations10,46,47.

The F-value of 85.06 from the model implies the model is significant. There is just a 0.01% probability that 
an F-value as large as this could occur because of noise. The change associated with a term and its residual 
variance is indicated by the F-value of that term. The F-value of the independent factors A, B, C, D, and E 
were obtained as 259.00, 260.27, 300.11, 240.19 and 223.28, respectively, signifying that the effect of all the 
independent variables on the response was significantly high. “Prob > F” values less than 0.050 implies that the 
model terms are important. The “Lack of Fit F-value” of 0.66 indicates that the Lack of Fit is not significant when 
compared to the pure error. There is a 68.91% chance that a “Lack of Fit F-value” this large could happen because 
of noise48,49. The lack of fit being insignificant is good since it indicates that the model fits. The significant and 
non-significant terms were determined from the ANOVA table (Table 5) in line with their p-values. From the 
ANOVA results, reaction temperature (A), nitric acid concentration (B), S/L ratio (C), stirring rate (D), reaction 
time (E), reaction temperature and stirring rate (AD), reaction temperature and reaction time (AE), reaction 
temperature squared (A2), nitric acid concentration squared (B2), S/L ratio squared (C2), stirring rate squared 
(D2), reaction time squared (E2) are all significant10. The final polynomial predictive equation of the second 
order, after eliminating the insignificant terms is given in Eq. (7).

	
Y (%) = 80.36 + 3.38 ∗ A + 3.39 ∗ B − 3.64 ∗ C + 3.25 ∗ D + 3.14 ∗ E − 0.59 ∗ AD − 0.68 ∗ AE

−1.47 ∗ A2 − 2.25 ∗ B2 − 1.93 ∗ C2 − 2.27 ∗ D2 − 1.43 ∗ E2 � (7)

In terms of the actual factor values, the percentage yield of alumina is obtained and shown in Eq. (8).

identifed, with their relative intensity (%)

2θ d-Value (Å) Compound intensity (%) JCPDS file No.

20.86 4.25 Quartz (SiO2) 21.62 01-087-2096

21.07 4.21 Microcline (KAlSi3O8) 51.00 00-022-0687

25.68 3.47 Microcline (KAlSi3O8) 26.00 00-022-0687

26.44 3.37 Microcline (KAlSi3O8) 41.00 00-022-0687

26.64 3.34 Quartz (SiO2) 100.00 01-087-2096

27.11 3.29 Microcline (KAlSi3O8) 48.00 00-022-0687

27.45 3.25 Microcline (KAlSi3O8) 100.00 00-022-0687

36.55 2.46 Quartz (SiO2) 6.01 01-087-2096

39.47 2.28 Quartz (SiO2) 5.91 01-087-2096

Table 3.  The X-ray diffraction data of Microcline showing the angle 2θ and d-values of the compounds 
identified, with their relative intensity (%). JCPDS File No. : Joint Committee on Power Diffraction Standards 
File Number.

 

Scientific Reports |         (2025) 15:9111 5| https://doi.org/10.1038/s41598-025-93326-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Source Std Dev. R-Squared

Adjusted Predicted

PRESSR-Squared R-Squared

Linear 4.18 0.7493 0.7010 0.6776 584.15

2FI 5.11 0.7696 0.5535 –2.0753 5571.46

Quadratic 1.03 0.9936 0.9819 0.9198 145.29 Suggested

Cubic 1.08 0.9962 0.9802 0.7293 490.41 Aliased

Table 6.  Model summary statistics.

 

Source Sum of Squares df
Mean
Square F-Value p-value Prob > F

Mean vs. Total 1.721E + 005 1 1.721E + 005

Linear vs. Mean 1357.41 5 271.48 15.54 < 0.0001

2FI vs. Linear 36.77 10 3.68 0.14 0.9983

Quadratic vs. 2FI 405.84 5 81.17 76.71 < 0.0001 Suggested

Cubic vs. Quadratic 4.70 5 0.94 0.81 0.5814 Aliased

Table 5.  Sequential model sum of squares.

 

Run

A: Leaching 
temp. (oC)

B: Acid conc. 
(M)

C: S/L ratio 
(g/mL)

D: Stirring 
rate(rpm)

E: Leaching 
time (min) Yield (%)

Coded Real Coded Real Coded Real Coded Real Coded Real Exp. Pred.

1 0 75 0 3.5 0 0.03 0 385 + 2 150 81.8 80.90

2 0 75 0 3.5 0 0.03 0 385 –2 30 67.8 68.35

3 0 75 0 3.5 0 0.03 0 385 0 90 80.3 80.36

4 –1 60 + 1 5 + 1 0.04 –1 230 + 1 120 68.1 67.95

5 + 1 90 –1 2 + 1 0.04 –1 230 + 1 120 67.6 67.71

6 0 75 0 3.5 0 0.03 0 385 0 90 80.8 80.36

7 + 1 90 –1 2 + 1 0.04 + 1 540 –1 60 68.2 68.11

8 0 75 + 2 6.5 0 0.03 0 385 0 90 78.3 78.15

9 + 1 90 + 1 5 + 1 0.04 –1 230 –1 60 69.5 69.23

10 –1 60 + 1 5 + 1 0.04 + 1 540 –1 60 68.4 68.06

11 –2 45 0 3.5 0 0.03 0 385 0 90 67.4 67.72

12 0 75 0 3.5 0 0.03 0 385 0 90 80.3 80.36

13 –1 60 –1 2 + 1 0.04 + 1 540 + 1 120 68.2 68.23

14 + 2 105 0 3.5 0 0.03 0 385 0 90 81.9 81.23

15 –1 60 + 1 5 –1 0.02 + 1 540 + 1 120 79.8 80.23

16 + 1 90 –1 2 –1 0.02 –1 230 –1 60 69.2 69.36

17 –1 60 –1 2 –1 0.02 + 1 540 –1 60 69.3 69.38

18 –1 60 –1 2 –1 0.02 –1 230 + 1 120 69.1 69.37

19 + 1 90 + 1 5 + 1 0.04 + 1 540 + 1 120 79.7 79.96

20 0 75 0 3.5 –2 0.01 0 385 0 90 80.9 79.90

21 0 75 0 3.5 0 0.03 0 385 0 90 81.8 80.36

22 + 1 90 –1 2 –1 0.02 + 1 540 + 1 120 78.4 79.09

23 0 75 0 3.5 + 2 0.05 0 385 0 90 64.7 65.35

24 0 75 0 3.5 0 0.03 –2 75 0 90 64.6 64.77

25 0 75 0 3.5 0 0.03 0 385 0 90 78.3 80.36

26 + 1 90 + 1 5 –1 0.02 –1 230 + 1 120 80.1 80.61

27 + 1 90 + 1 5 –1 0.02 + 1 540 –1 60 80.7 81.01

28 –1 60 + 1 5 –1 0.02 –1 230 –1 60 68.2 68.10

29 0 75 0 3.5 0 0.03 + 2 695 0 90 78.3 77.78

30 0 75 0 3.5 0 0.03 0 385 0 90 80.3 80.36

31 –1 60 –1 2 + 1 0.04 –1 230 –1 60 50.2 49.70

32 0 75 –2 0.5 0 0.03 0 385 0 90 64.8 64.60

Table 4.  Experimental design for alumina leaching from microcline using nitric acid.
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Y (%) = −51.90 + 1.35 ∗ Leaching temp. + 9.62 ∗ Acid conc. + 162.72 ∗ S/L ratio
+0.12 ∗ Stirring rate + 0.53 ∗ Leaching time − 2.55E − 004 ∗ Leaching temp. ∗ Stirring rate
−1.51E − 003 ∗ Leaching temp. ∗ Leaching time − 6.54E − 003 ∗ Leaching temp.2

−1.00 ∗ Acid conc.2 − 19329.55 ∗ S/L ratio2 − 9.45E − 005 ∗ Stirring rate2 − 1.59E−
003 ∗ Leaching time2

� (8)

The coefficient of variation is estimated by dividing the standard deviation by the mean and multiplying by 
10010,48. Values less than 15% indicate a practically reproducible model. The coefficient of variation (CV) value 
of 1.40% obtained from this study illustrates that the model is practically reproducible. The signal-to-noise ratio 
depicted as the adequate precision is 37.846 as presented in Table 8. Ratios greater than 4 indicate that a good 
connection of signal-to-noise ratio exists. The mean is the overall average of all the response data. A value of 
73.34 was recorded from this study7,30.

The experimental results were also analyzed to verify the connection between the experimental and 
predicted alumina recovery. Figure 2 shows an adequate relationship between the experimental and predicted 
alumina yield. The result indicates also that the chosen model was sufficient for carrying out the prediction and 
optimization exercise50–52.

Effect of process parameters
The effect of the variables that influence the leaching of alumina from microcline in HNO3 solution was studied 
by conducting batch experiments at the pre-determined conditions obtained according to the experimental 
design. Experimental design was performed using the CCD of RSM, facilitated by the DE software by Stat Ease 
Inc., Minneapolis, USA. The interactive effect of the process variables was represented with contour and surface 
plots made with the software, according to the experimental results50,53–55. From the ANOVA results depicted 
in Table 7, the squared and individual effects of the factors were all significant with p-values < 0.0001, with the 
S/L ratio, acid concentration and leaching temperature, having the most significant effects, as specified by their 

Std. Dev. Mean C.V. % PRESS Adeq. Precision

1.03 73.34 1.40 145.29 37.846

Table 8.  Regression values.

 

Source Sum of Squares df
Mean
Square F-Value

p-value
Prob > F

Model 1800.02 20 90.00 85.06 < 0.0001

A-Leaching temp. 274.05 1 274.05 259.00 < 0.0001

B-Acid conc. 275.40 1 275.40 260.27 < 0.0001

C-S/L ratio 317.55 1 317.55 300.11 < 0.0001

D-Stirring rate 254.15 1 254.15 240.19 < 0.0001

E-Leaching time 236.25 1 236.25 223.28 < 0.0001

AB 0.076 1 0.076 0.071 0.7942

AC 4.10 1 4.10 3.88 0.0747

AD 5.64 1 5.64 5.33 0.0414

AE 7.43 1 7.43 7.02 0.0226

BC 4.73 1 4.73 4.47 0.0581

BD 1.76 1 1.76 1.66 0.2242

BE 1.89 1 1.89 1.79 0.2083

CD 3.52 1 3.52 3.32 0.0956

CE 3.33 1 3.33 3.15 0.1037

DE 4.31 1 4.31 4.07 0.0687

A2 63.43 1 63.43 59.94 < 0.0001

B2 147.90 1 147.90 139.78 < 0.0001

C2 109.60 1 109.60 103.58 < 0.0001

D2 151.21 1 151.21 142.91 < 0.0001

E2 60.23 1 60.23 56.92 < 0.0001

Residual 11.64 11 1.06

Lack of Fit 5.14 6 0.86 0.66 0.6891

Pure Error 6.50 5 1.30

Cor Total 1811.66 31

Table 7.  ANOVA for response surface quadratic model.
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F-values10. The interactive effects of stirring rate and leaching temperature (AD) as well as leaching temperature 
and leaching time (AE) were also found to be significant. Higher temperatures provide more energy for chemical 
reactions to occur faster, resulting in quicker dissolution of clay minerals. As temperature rises, the diffusion of 
ions through the clay particle’s surface layer is facilitated, allowing for better access of the acid to the reactive 
sites. Increased temperature can increase mass transfer between the liquid phase (acid solution) and the solid clay 
particles, further improving the leaching process. While higher temperatures generally lead to better leaching 
efficiency, there is usually an optimum temperature range beyond which other factors like excessive energy 
consumption or potential side reactions might become significant. As acid concentration rises, more hydrogen 
ions are available to react with the clay minerals, breaking down the chemical bonds and releasing elements like 
aluminium and silica into the solution. Excessively high acid concentrations can result in significant damage 
to the clay’s crystalline structure, potentially hindering further leaching by creating a less accessible surface 
area. For efficient clay leaching, finding the optimal acid concentration is crucial to maximizing the extraction 
of desired elements while minimizing unnecessary damage to the clay structure. When the solid/liquid ratio 
is high, fewer acid molecules are available to interact with each clay particle, limiting the reaction sites and 
slowing down the dissolution process. As more clay particles are present, diffusion of the dissolved ions away 
from the clay surface becomes more difficult, creating a concentration gradient that hinders further leaching. 
A lower solid/liquid ratio is generally preferred for efficient acid leaching of clays to maximize the contact 
between acid and clay particles. However, an optimum solid/liquid ratio is preferred for more efficient leaching. 
As stirring speed increases, the boundary layer surrounding clay particles thins, facilitating faster diffusion of 
the acid solution to the clay surface, thereby accelerating the leaching process. Better contact between the acid 
and clay particles due to increased stirring leads to a higher reaction rate, resulting in more minerals being 
dissolved within a given time frame. For more efficient leaching, optimum stirring speed should be used. As 
leaching time increases, more targeted elements are dissolved and removed from the clay structure, resulting in 
higher extraction efficiency. The initial phase of leaching often shows a rapid increase in extraction as the acid 
readily attacks the clay surface, with the rate gradually slowing down as the reaction progresses. Eventually, an 
equilibrium is reached where the rate of further extraction becomes negligible as most accessible minerals are 
already dissolved, indicating an optimal leaching time56.

The contour and response surface plots are represented in Fig. 3 (a-d). Figure 3 (a and b) depict the joint 
effect of temperature and stirring speed on alumina leaching from microcline10. The results reveal that the 
highest alumina yield was achieved within a reaction temperature range of (72-78oC) and a stirring rate range 
of (354–416) rpm. Other variables were kept constant at a nitric acid concentration of 3.5 M, S/L ratio of 0.03 g/
mL, and leaching time of 90 min. The percentage of alumina leached increased as the stirring rate was increased 
and attained a maximum at a stirring rate of 385 rpm. This shows that the stirring rate had a mild influence 
on the leaching rate of alumina57. On the other hand, the percentage alumina recovery rate increased with an 
increase in temperature up to a temperature of 75 o. This is ascribed to the destruction of the clay’s structure at a 
higher temperature. The plot displaying the collaborative effect of temperature and time is depicted in Fig. 3 (c 
and d). The plot reveals that maximum alumina recovery was achieved within a temperature range of (78-84oC) 

Fig. 2.  Plot of the predicted values versus the actual experimental values.
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and a reaction time value of (90–100 min) while other factors were held constant at a HNO3 concentration of 
3.5 M, S/L ratio of 0.03 g/mL and stirring speed of 385 rpm. The amount of alumina recovered increased with 
an increase in leaching temperature up to a leaching temperature of 75oC and then decreased. The decrease in 
alumina recovery upon attainment of a leaching temperature of 75oC can be ascribed to the obliteration of the 
clay’s structure at a higher temperature value10. The quantity of alumina leached was also found to increase as the 
leaching time was increased, up to 98 min and then decreased. The decrease in alumina recovery after 98 min 
may be due to the attainment of steady-state at a leaching time of 98 min.

Optimization using RSM and PSO
The optimization exercise was performed with the optimization apparatuses of the CCD of RSM in the design 
expert software and the particle swarm optimization in Matlab. In performing the RSM optimization exercise, 
the optimum points were selected based on cost implications which were aimed at reducing the cost of reagents, 
energy, and leaching time. Based on the above-named conditions, RSM predicted optimum conditions of 
82.11oC reaction temperature, 3.53 M nitric acid concentration, 0.023 g/mL S/L ratio, 356.14 rpm stirring speed, 
and 99.92 min reaction time, at which about 83.21% alumina leaching rate was recorded10. The result obtained 
above was authenticated by performing three separate experiments at which an average alumina leaching rate 
of about 82.12% was recorded. PSO optimization was performed using a PSO algorithm developed in Matlab. 
Equation 8 was used to develop the objective function which was carried out in a Matlab file. The five factors 
used for RSM optimization were selected as assessment variables for particle swarm optimization. Other factors 
necessary for the simulation work were properly set in the PSO algorithm10. The initial weight damping ratio, the 
weight, and the swarm size were set to be 0.99, 1.0, and 30, respectively. The personal learning coefficient was set 

Fig. 3.  3D response surface (a, c) and contour (b, d) plots on the effects of process variables on alumina yield.
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to be 1.2 while the global learning coefficient was set to be 2.058. At the conditions stated above, PSO predicted 
optimum conditions of 90oC reaction temperature, 4 M nitric acid concentration, 0.021 g/mL S/L ratio, 420 rpm 
stirring speed, and 118 min reaction time, at which about 82.56% alumina leaching rate was predicted. The 
optimum conditions above were authenticated by performing three separate experiments which contributed an 
estimated average value of 81. 37%. The PSO plot of the percentage alumina yield versus the number of iterations 
is depicted in Fig. 4. In the RSM procedure, the optimum conditions were chosen from an array of options 
based on economic considerations. However, in PSO optimization, the minimum likely obtainable values of the 
experimental parameters (factors) are predicted, since PSO is a minimization tool. From the results attained 
in both optimization methods, a difference 7.89oC (8.77%), 0.47 M (11.75%), 0.002 g/mL (8.70%), 63.86 rpm 
(15.20%), and 18.08 min (15.32%) were recorded for the reaction temperature, HNO3 concentration, S/L ratio, 
stirring speed, and reaction time, respectively. Hence, it can be inferred that the reaction time and stirring rate 
had a mild effect on the leaching process while the reaction temperature, HNO3 concentration, and solid/liquid 
ratio had a more significant influence on the leaching process. When compared to the results obtained from the 
kinetic study, the two optimization techniques were found to be viable for alumina recovery from microcline.

Conclusions
The optimum conditions for alumina dissolution from Amagunze microcline were determined in this study. The 
mineral phases found in the clay as determined by XRD showed the presence of microcline as the major mineral 
present. XRF analysis result showed that the main oxides in the clay include Al2O3, SiO3 and Fe2O3. Other oxides 
present in the clay sample include MgO, K2O, CaO, Mn2O3, TiO2, Cr2O3, ZnO, and SrO. Two optimization 
techniques which include the optimization tool found in the CCD of RSM of design expert software and the 
particle swarm optimization tool found in Matlab were used for the study. The optimum predicted conditions by 
RSM include reaction temperature of 82.11oC, HNO3 concentration of 3.53 M, S/L ratio of 0.023 g/mL, stirring 
speed of 356.14 rpm and reaction time of 99.92 min, at which about 83.21% alumina leaching rate was predicted, 
while about 82.56% alumina leaching prediction was recorded by PSO at a reaction temperature of 90oC, nitric 
acid concentration of 4 M, S/L ratio of 0.021 g/mL, stirring speed of 420 rpm, and reaction time of 118 min, 
respectively. Hence, the two optimization methods proved to be feasible for alumina leaching.

Data availability
All data generated or analyzed during this study are included in this published article [and its supplementary 
information files].
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Fig. 4.  PSO plot of alumina yield versus the number of iterations.
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