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As the number of service requests for applications continues increasing due to various conditions, 
the limitations on the number of resources provide a barrier in providing the applications with the 
appropriate Quality of Service (QoS) assurances. As a result, an efficient scheduling mechanism is 
required to determine the order of handling application requests, as well as the appropriate use of a 
broadcast media and data transfer. In this paper an innovative approach, incorporating the Crossover 
and Mutation (CM)-centered Marine Predator Algorithm (MPA) is introduced for an effective resource 
allocation. This strategic resource allocation optimally schedules resources within the Vehicular Edge 
computing (VEC) network, ensuring the most efficient utilization. The proposed method begins by 
the meticulous feature extraction from the Vehicular network model, with attributes such as mobility 
patterns, transmission medium, bandwidth, storage capacity, and packet delivery ratio. For further 
analysis the Elephant Herding Lion Optimizer (EHLO) algorithm is employed to pinpoint the most 
critical attributes. Subsequently the Modified Fuzzy C-Means (MFCM) algorithm is used for efficient 
vehicle clustering centred on selected attributes. These clustered vehicle characteristics are then 
transferred and stored within the cloud server infrastructure. The performance of the proposed 
methodology is evaluated using MATLAB software using simulation method. This study offers a 
comprehensive solution to the resource allocation challenge in Vehicular Cloud Networks, addresses 
the burgeoning demands of modern applications while ensuring QoS assurances and signifies a 
significant advancement in the field of VEC.

Keywords  Vehicular edge computing (VEC), Crossover and mutation (CM), Marine predator algorithm 
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The goal of Vehicular Cloud Computing (VCC) is to improve the capabilities of automobiles in a networked 
world via the creative combination of cloud computing and vehicular networking1. Through the integration 
of cloud infrastructure and vehicular ad hoc networks (VANETs), Vehicle-Computer-Chat (VCC) enables 
automobiles to function as mobile computing platforms that can process, store, and share data in real-time2. This 
paradigm optimises computer processes, improves driving safety, and allows cars to access cloud resources on 
demand via dynamic resource allocation. Vehicle-to-vehicle cooperation (VCC) enables applications including 
data exchange for better traffic control and platooning for fuel economy3,4. Furthermore, edge computing 
integration facilitates data caching for effective retrieval and guarantees low-latency answers for crucial 
applications like collision avoidance5. Notwithstanding its promise, VCC encounters obstacles like as privacy 
issues, communication during high-mobility situations, and uninterrupted network maintenance. In the long 
run, VCC hopes to transform transportation networks by bringing in car diagnostics, improved navigation, and 
personalised services. The potential for a unified ecosystem that improves driving experiences, road safety, and 
the state of mobility overall exists due to the convergence of cloud and vehicular networks6,7.

For Vehicular Cloud Computing (VCC) to reach its full potential, a number of implementation-related 
obstacles must be overcome8. Securing sensitive data transferred between cars and cloud resources is the biggest 
problem, requiring strong privacy safeguards and defence against cyberattacks. Furthermore, since VCC is 
dynamic and highly mobile, it presents communication challenges because of changing network topologies, 
necessitating seamless connection solutions9. While integrating edge computing might help lower latency, careful 
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resource management is necessary to maximise cloud-edge interactions. For widespread deployment, smooth 
compatibility across several vehicle communication protocols is essential10,11. Establishing a robust vehicular 
communication infrastructure, placing cloud data centres strategically, and positioning edge computing nodes are 
necessary for the effective implementation of VCC. To ensure data security, advanced encryption, authentication 
methods, and cooperative key management protocols must be used. To develop standardised communication 
protocols and regulatory frameworks, industry players must collaborate closely together on this endeavour12,13. 
VCC has the potential to completely transform transportation by providing increased safety, efficiency, and 
a seamless, connected driving experience by tackling these technological, security, and interoperability issues 
from an integrated perspective14.

Numerous studies have been conducted to overcome the difficulties inherent in vehicular cloud computing 
(VCC), producing creative approaches and solutions15,16. Investigations into secure data aggregation, 
homomorphic encryption, and blockchain-based techniques improve data security and privacy while protecting 
private vehicle data and facilitating insightful analysis17. In order to effectively handle communication issues and 
provide continuous connection in the face of changing topologies and mobility, researchers have investigated 
dynamic routing methods, spectrum allocation, and vehicular network clustering18. In order to reduce 
latency and improve computation, research on workload offloading, resource management, and node location 
optimisation have been spurred by the efficient integration of edge computing. Research on cross-domain 
architectures and standardised communication protocols promotes interoperability; C-V2X technology is one 
example of such an endeavour19. Intelligent vehicle communication infrastructures and optimised cloud data 
centre networks have been suggested as necessary for the effective deployment of VCC, supporting resource 
responsiveness and availability. Intrusion detection systems and privacy-preserving techniques are examples of 
security advances that support safer and more private automotive settings. The advancement of VCC is fueled by 
these joint research initiatives, bringing in an era of connected, safe, and effective transportation20.

The main contributions in this paper are:
The work presented in this paper makes several significant contributions to the field of Vehicular Edge 

Computing (VEC) and resource allocation in Vehicular Ad Hoc Networks (VANETs):

•	 An innovative approach to resource allocation within Vehicular Edge Computing (VEC) networks is intro-
duced which presents a novel method to address the growing challenges associated with allocating resources 
effectively21.

•	 The study recognizes the surge in service requests driven by varying conditions and emphasizes the need for a 
strategic resource allocation mechanism. This mechanism aims to ensure the efficient delivery of applications 
while maintaining the desired Quality of Service (QoS) assurances.

•	 The work incorporates the Crossover and Mutation (CM)-centered Marine Predator Algorithm (MPA), 
which is a novel algorithm designed to optimize resource scheduling and utilization within VEC networks. 
This integration provides a unique solution to the resource allocation problem.

•	 The research utilizes the Elephant Herding Lion Optimizer (EHLO) algorithm to pinpoint critical attributes 
and employs the modified Fuzzy c-means (MFCM) algorithm for efficient vehicle clustering based on selected 
attributes. These algorithms enhance the precision and efficiency of the resource allocation system.

•	 The effectiveness of the suggested technique was assessed using performance metrics including energy con-
sumption, throughput, latency, and packet delivery ratio. Software called MATLAB was used to complete the 
implementation.

The remains of the article are structured as follows. Related work is included in “Literature review”. The proposed 
work’s technique is presented in “Proposed methodology”. The performance of the proposed approach is outlined 
in “Results and discussion”. The intended work is concluded in “Conclusion and future scope”.

Literature review
To ensure the efficient communication in the VANETs, constructing the cloud of RSUs and (or) the hybrid cloud 
are the typical ways for achieving the generality of the entire network. In this section, lots of existing work on the 
various clouds in the VANETs shall be briefly reviewed.

Qun et al.22 presented an energy-aware technique for load balancing in fog-based VANETs. They employed 
the ACO-ABC approach, which combines artificial bee colonies with ant colony optimization. The results of the 
Network Simulator 2 simulation indicated that the VANET’s energy usage increased as the number of nodes 
increased. Furthermore, when the number of jobs rose, the suggested method improved load balancing.

Gai et al.23 examined the Swarm Optimized Non-Dominated Sorting Genetic Algorithm (SONG) for 
optimizing delay and energy-aware facility placement in vehicular fog networks. SONG combines the Non-
dominated Sorting Genetic Algorithm (NSGA-II) and the Speed-constrained Particle Swarm Optimization 
(SMPSO), two popular Evolutionary Multi-Objective (EMO) techniques. The bounds of the delay-energy 
solutions and the related layout design were initially demonstrated by solving an example problem using the 
SONG approach. The performance of the SONG algorithm’s development was then assessed using real vehicle 
traces and three quality indicators: Inverted Generational Distance (IGD), Hyper-Volume (HV), and CPU delay 
gap.

In order to maximize the effectiveness of IoT task processing, Hameed et al.24 presented a dynamic cluster-
enabled capacity-based load-balancing technique for energy- and performance-aware vehicular fog distributed 
computing. This method creates clusters that act as pools of computer resources based on the position, speed, 
and direction of the vehicles. By detecting departure timings from clusters, the article also suggests a method for 
predicting a vehicle’s future position inside the dynamic network.
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A multi-objective method based on deep learning algorithms and differential evolution has been described 
by Taha et al.25 for VANETs. Here, the cluster algorithm uses the Kubernetes container-base to choose different 
cars that meet the requirements of the algorithm. As a result, we are able to carry out difficult operations for 
data owner automobiles. Our method uses a deep learning model to determine the fit complexity of sub-tasks, 
and the cars’ information is accessible on the master vehicle (data owner vehicle) when the vehicle enters the 
cluster. The MOTD-DE that has been suggested divides up subtasks among groups of cars in order to minimize 
task execution time and the number of vehicles required to complete it. Additionally, we take the subtasks to be 
autonomous.

Li et al.26 have presented a nature-inspired fuzzy-based resource allocation technique for automotive cloud 
computing called the Cuckoo Search Algorithm. Landlords may rent these resources, or cars can share them, 
for a variety of uses, including supplying the hardware required by automobile network services and apps. It 
is feasible to provide the automobile network’s expanding resource needs. The results demonstrated how the 
suggested approach performs better than other algorithms in terms of makespan, latency, and execution time. A 
resource allocation method for VANETS that draws inspiration from the banker’s algorithm has been introduced 
by Balzano et al.27. By using this approach, handle cars as processes that make requests and the roads as resources 
that need to be distributed. Then provide an algorithm to control the distribution of vehicles along the available 
pathways in order to lessen traffic congestion.

Vakili, Asrin’s21 study, titled “A new service composition method in the cloud-based Internet of Things environment 
using a grey wolf optimization algorithm and MapReduce framework,” presents an innovative approach to service 
composition within the IoT domain. The research leverages the Grey Wolf Optimization (GWO) algorithm 
alongside the MapReduce framework to address challenges in the cloud-based IoT environment, particularly 
in managing the complexity and efficiency of service composition. The method focuses on optimizing service 
performance, ensuring scalability, and reducing computational overhead, which are critical for handling the 
dynamic nature of IoT ecosystems. By integrating GWO and MapReduce, the study offers a robust solution to 
enhance resource utilization, minimize latency, and improve the overall efficiency of service delivery in cloud-
based IoT systems. This research contributes significantly to the development of advanced methodologies for 
IoT service management, paving the way for more efficient and scalable systems in the rapidly growing IoT 
landscape.

Heidari et al.28,29 conducted a comprehensive study on the reliability and availability of WSNs in industrial 
environments, addressing key challenges such as permanent faults, network resilience, and fault-tolerant 
mechanisms. Their research introduced a hybrid fault-tolerant model that integrates redundancy strategies, 
adaptive routing protocols, and predictive maintenance techniques to enhance the robustness of sensor networks.

Heidari, Arash30,31, and colleagues have made significant contributions to deepfake detection through two 
key studies in 2024. The first, “Deepfake detection using deep learning methods: A systematic and comprehensive 
review” (Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery), offers an extensive analysis 
of current deep learning techniques used for detecting deepfakes, reviewing their effectiveness and limitations. 
The second study, “A Novel Blockchain-Based Deepfake Detection Method Using Federated and Deep Learning 
Models” (Cognitive Computation), presents an innovative solution by combining blockchain technology 
with federated learning and deep learning models to ensure secure, privacy-preserving deepfake detection 
in decentralized systems. These works collectively advance the field of deepfake detection by proposing new 
methods for improved accuracy, security, and real-time performance, addressing critical challenges in media 
verification, cybersecurity, and ethical AI applications.

Heidari et al.32 introduced a cloud-based framework for non-destructive characterization, leveraging 
cloud computing, artificial intelligence (AI), and machine learning algorithms to improve material evaluation 
processes. Their study highlights the advantages of remote data processing and real-time analysis, allowing 
industries to perform large-scale material assessments without physical intervention.

Heidari, Arash33, and colleagues in their 2024 paper, “A reliable method for data aggregation on the industrial 
internet of things using a hybrid optimization algorithm and density correlation degree,” published in Cluster 
Computing, present a novel approach for optimizing data aggregation in Industrial Internet of Things (IIoT) 
environments. The proposed method leverages a hybrid optimization algorithm, which combines multiple 
techniques to enhance the efficiency and reliability of data aggregation. Additionally, the concept of density 
correlation degree is incorporated to improve the accuracy and relevance of the collected data. This approach 
is designed to address the challenges of large-scale data handling, sensor network reliability, and real-time data 
processing in IIoT applications, ultimately contributing to better decision-making and system performance. The 
work offers valuable insights into optimizing IIoT data management, making it more scalable and robust for 
industrial applications.

Heidari, Navimipour, and Unal34 proposed a secure intrusion detection platform by integrating blockchain 
technology and Radial Basis Function Neural Networks (RBFNNs) in their 2023 study published in IEEE 
Internet of Things Journal. Their research highlights the advantages of blockchain’s decentralized, tamper-proof 
ledger combined with AI-driven anomaly detection for securing drone networks. The authors emphasize that 
blockchain ensures data integrity, while RBFNNs enhance real-time intrusion detection with high accuracy and 
low false-positive rates.

Zanbouri et al.35 focuses on leveraging Glowworm Swarm Optimization (GSO) to balance key performance 
parameters such as latency, throughput, and energy consumption in IIoT networks. By utilizing blockchain 
technology, their approach enhances data security, decentralization, and fault tolerance, making it a robust 
solution for industrial automation.

Heidari et al.36, provide a comprehensive overview of ChatGPT’s architecture, functionalities, and potential 
use cases. Their research explores the core components of ChatGPT, including its natural language processing 
capabilities, training methodologies, and contextual adaptability.

Scientific Reports |         (2025) 15:9472 3| https://doi.org/10.1038/s41598-025-93365-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Amiri et al.37 provides a comprehensive overview of artificial intelligence techniques for climate change 
mitigation, highlighting the role of machine learning, deep learning, and optimization models in addressing 
climate adaptation, energy efficiency, and carbon footprint reduction. The study explores how AI can optimize 
renewable energy sources, improve smart grid performance, and develop predictive models for climate impact 
assessment.

Asadi et al.38 provide a comprehensive survey on evolving botnet threats and defense strategies, the latest 
advancements in botnet structures, including peer-to-peer (P2P) botnets, IoT-based botnets, and stealth 
malware techniques. By analyzing emerging attack methodologies, the authors highlight new trends in cyber 
threats that target critical infrastructure, cloud environments, and smart devices.

Heidari et al.39 propose a fuzzy logic-based multicriteria decision-making approach to mitigate broadcast 
storms in vehicular ad hoc networks (VANETs). This addresses the challenges of excessive message dissemination, 
which can lead to network congestion and increased latency. By leveraging fuzzy logic, the model dynamically 
evaluates multiple criteria, such as vehicle density, distance, and message priority, to optimize data dissemination 
and reduce broadcast redundancy. The proposed method enhances network performance by improving packet 
delivery rates and minimizing collision probability in high-density traffic scenarios.

Heidari et al.40 explore the enhancement of solar convection analysis using multi-core processors and GPUs to 
accelerate computational simulations. It focuses on improving the efficiency and accuracy of numerical models 
by leveraging parallel processing techniques to handle complex fluid dynamics and heat transfer computations. 
The proposed approach significantly reduces computation time while maintaining high precision, making it well-
suited for large-scale solar energy applications. The results demonstrate that GPU-based solutions outperform 
traditional CPU-based methods, providing a scalable framework for real-time solar convection analysis.

The reviewed research on resource allocation in vehicular ad hoc networks (VANETs) have multiple 
drawbacks when applied to multi-cloud systems. These techniques frequently have problems with scalability 
because they cannot properly handle the large-scale nature of multi-cloud systems with various vehicles and 
resources. Real-time performance is another issue, as many approaches fail to meet the stringent latency 
requirements of automotive applications such as autonomous driving. Security and privacy problems are 
also not sufficiently addressed, particularly in floating multi-cloud systems where inter-cloud connectivity 
introduces risks. Furthermore, complicated optimization algorithms might result in significant computing 
overhead, making them unsuitable for dynamic, real-time networks. These differences emphasize the need for 
more adaptable, efficient, and secure methods of resource allocation for VANETs in multi-cloud contexts.

Proposed methodology
The VEC optimization model is a multi-objective optimization model that aims to minimize service delay and 
energy consumption in Vehicular Edge Computing (VEC) networks, while also optimizing resource allocation 
in the cloud. It takes into account several factors, including the location and capacity of edge nodes, traffic 
demand between edge nodes and Personal Devices (PDs), communication costs between edge nodes, the energy 
consumption of edge nodes, and the availability of resources in the cloud.The model uses the adaptive Elephant 
Herding Lion Optimizer (EHLO) algorithm to select the most important features. EHLO is a swarm intelligence 
algorithm that combines clans and lion score information to identify the best path and reduce travel time. The 
modified Fuzzy c-means (MFCM) algorithm is then used to cluster vehicles into groups based on their residual 
energy and signal strength. This grouping helps connect vehicles with similar energy levels and communication 
capabilities, ultimately reducing service delay and energy consumption. Finally, the optimal facility locations 
in VEC networks and the optimal resource allocation in the cloud are determined using the Crossover and 
Mutation (CM)-cantered Marine Predator Algorithm (MPA) algorithm. Figure 1 shows a block diagram of the 
proposed technique.

Network model
Along the straight road are M Road Side Units (RSUs), each of which is linked to a MEC server. Vehicles may 
only reach an RSU inside the area in which it is situated. Each RSU covers a single region. The vehicle has the 
ability to transmit and receive information via communication with nearby cars or RSUs. P request vehicles 
with a Poisson distribution are deployed, as shown in Fig. 2, and are stated asV l (x ∈ {1, 2, ., P }). V-UEs are 
served by each RSUSy (y ∈ {1, 2, . . . , Q}). In order to multiplex spectrum, we assume that there is interference 
between RSUs because numerous RSUs share a same spectral resource. There are several channels K inside the 
bandwidthBw. In the orthogonal frequency-division multiple access (OFDMA) mode, which allows V-UEs to 
connect to RSUs, each V-UE channel inside an RSU is orthogonal to all other V-UE channels. The quantity of the 
calculation input datatx,y , ux,ywhich indicates the total number of CPU cycles needed to finish the computation 
job, and the maximum latency that the V-UE can withstand are T Max

x,y all indicative of the y compute-intensive 
task Fx,y =

{
tx,y, ux,y, T Max

x,y

}
that has to be done tx,yin this network’sV − UEx RSU41. Each V-UE has the 

option of carrying out its work locally on the device or remotely via computation offloading on the VEC server. 
Assumerx,y  that RSU y decides to unloadV − UEx. If V − UEythe RSU y transfers its workload to the VEC 
server, rx,y = 1and rx,y = 0in the event that it does not.

Local computing
Define ℵx,Las the V-UEs’ computing power, measured in CPU cycles per second. The calculation execution 

time is stated as EtL
x,yfollows when the job Fx,yis performed locally:

	
EtL

x,y = ux,y

ℵx,L
� (1)
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Fig. 2.  Model of network.

 

Fig. 1.  Overview of proposed methodology.
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The V-UE’s related energy usage for local execution may be found using,

	 EcL
x,y = ω(ℵx,L)2ux,y � (2)

In this case, ω = 10−26is a chip architecture-dependent coefficient.
Vehicular Edge Computing
Through a wireless link between users and cars, the xthUE may transfer the calculation work Ctxto the 

VEC for the VES computing technique. The job will then be computed for the UEs by the VES. As a result, 
communication time and calculation time are included in the overall time cost of doing the activity. The 
calculation input data size UExand the data rate provided by VEC RV EC,xdetermine the communication time 
expensesT V EC

x,com; as a result, we have

	
T V EC

x,com = Scdx

Ri
V EC,x

� (3)

Scdxindicates the amount of calculation data in this case. Let CrV EC,xbe the VES compute resource that is 
allocated toUEx. Afterwards, the task’s computation time costs may be computed asT cx,

	
T V EC

x,comp = ℜx

Cri
V EC,x

� (4)

As a result, the overall time required for the workUEx to be completed by VEC is provided by,

	 T V EC
x = T V EC

x,com + T V EC
t,comp� (5)

Feature extraction of vehicles
Feature extraction in this context would typically involve identifying and capturing relevant information or 
characteristics from vehicles and the network to enhance the resource allocation model. While the specific 
features for extraction may depend on the details of the work, here are selected features that could be considered 
for extraction in vehicular edge computing:

Location data  Gathering GPS coordinates and vehicle positions to enable location-based edge resource alloca-
tion and service optimization.

Network latency  Measuring the latency between vehicles and edge servers to ensure low-latency communica-
tion for time-sensitive applications.

Edge server workload  Monitoring the workload and resource utilization of edge servers to allocate tasks effi-
ciently.

Vehicle speed and acceleration  Extracting data on vehicle speed and acceleration to assess mobility patterns 
and optimize edge resource allocation accordingly.

Data rate and throughput  Capturing data transfer rates and throughput between vehicles and edge servers to 
ensure efficient data processing.

Service request queue  Analyzing the queue of service requests from vehicles to prioritize and allocate edge 
resources effectively.

Edge server availability  Tracking the availability and health status of edge servers to make resource allocation 
decisions based on reliability.

Power and energy consumption  Monitoring power usage and energy consumption of both vehicles and edge 
servers to optimize energy-efficient computing.

Weather conditions  Considering weather data (e.g., temperature, precipitation) to adapt resource allocation 
based on environmental factors.

These extracted features are essential for optimizing vehicular edge computing systems, ensuring efficient 
resource allocation, and meeting the specific requirements of applications and services running on vehicles.

Feature selection in vehicular edge computing using elephant herding Lion optimizer (EHLO)
Here, the future selection is selected from the vehicular edge computing-based feature extraction using Elephant 
Herding Lion Optimizer (EHLO). The elephant herding optimization algorithm is developed based on herding 
behaviour of elephants. Due to the gregarious character of the elephant, there are several factions of female 
elephants in the group, each of which is carrying a calf. Each group’s movement is influenced by its matriarch or 
leader elephant. But, it has the local optimum problem for complex data which may increase the poor searching 
capability. To solve that problem, this research methodology updates the position by using the Lion optimization 
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process. The proposed algorithm provides a global search with quick convergence rate. The proposed method 
has a high EHO search efficiency and a dynamic LOA capability that extends the life of vehicular edge nodes. 
Here, vehicular nodes of each cluster are considered as the elephant. The first step of the elephant optimization 
algorithm is to randomly generate population over the solution space. Every solution is represented by:

	 Ip = e1, e2, . . . . . . , en� (6)

Where, en specifies the dimensional space. Then, the fitness is evaluated for the proposed research methodology 
which considers the minimum amount power consumption energy(PV ), minimum amount of delay (D)and 
throughput. The fitness function (ft)is mathematically defined as follows,

	 Ft = Min (tp) , Min (PV , D)� (7)

Following that, each clan includes elephants, and the best and worst possibilities for every elephant in every 
family in this third stage are included in the status of every elephant P, except the matriarch Ci and a male 
elephant42. The elephant i = 1, 2, ...P is a sign of jth clan j = 1, 2, ...C and position Li,j. The position of the elephant 
as of right now ith is shown as,

	 Lnew,ci,j = Lci,j + α(Lbest,ci,j − Lci,j ) × r� (8)

Here Lnew,ci,j → updated position, Lci,j → old position, Lbest,ci,j → Position of best in the clan. α and 
r ∈ 0 to 1.

The ideal posture that represents the matriarch cannot be changed by using the aforementioned techniques. 
The most fitting clan member’s position update is given by,

	
Lnew,ci,j = β × Lcenter,cj and Lcenter,cj =

n∑
i=1

Lci,j /nl� (9)

Here, nlto the total number of elephants in each clan and β ∈ [0 1]
Various objectives, such as energy maximisation and delay reduction, may be achieved using the proposed 

approach, contingent on the intra- and inter-distances between vehicles and nodes. The proposed technique 
combines the EHO and LOA searching behaviour, as was previously discussed. Stated differently, the proposed 
approach may eliminate negative searchability while using enhanced searchability for convergence. Thus, the 
new role of a female lion may be explained as follows:

	 F L′ = F L + 2G × ηd{S1} + w(−1, 1) × tan(θ) × G × {S2}� (10)

Where, F L′ represents the new position of the female lion, F L specifies the female lion, G shows the distance 
between the female lion’s position and the selected point chosen by tournament selection among the pride’s 
territory, {S1} is a vector which its start point is the previous location of the female lion, and its direction is 
toward the selected position, and {S1} which is perpendicular to {S1}. Then, the nomad lions are also hunting 
the prey43. The nomad lions are generated as follows,

	
Nd(Oij) =

{
Oij

(ηd)j

if(ηd)j > (pb)i

otherwise � (11)

Where, Nd(Oij)is the current position of ithnomad lion, j is the dimension, (ηd)j is a uniform random number 
within [0, 1], and (pb)iis a probability that is calculated for each nomad lion independently. Then, mating process 
is carried out. Mating is an essential process that assures the lions’ survival, as well as providing an opportunity 
for information exchange among members. The mating operator is a linear combination of parents for producing 
two new offspring. For the mating process two offspring process is derived which is given as follows,

	
og1

j = τ ∗ F Lj +
∑ 1 − τ

Zi
∗ MLj ∗ Zi� (12)

	
og2

j = (1 − τ) ∗ F Lj +
∑ τ

Zi
∗ MLj ∗ Zi� (13)

Where, j is the dimension, Zi equals 1 if Lions are selected for mating, otherwise it equals 0, MLj  indicates the 
male lion and τ  is a randomly generated number with a normal distribution with mean value 0.5 and standard 
deviation 0.1. Finally, male elephants or the worst elephants would be taken away from their family groupings 
the lowest ranking changed to,

	 Lworst,ci,j = Lmin + (Lmax − Lmin + 1) × r� (14)

Where Lworst,ci,j → the clan’s worst male elephants, Lmax and Lmin →are, as well as the elephants’ permitted 
maximum and lowest range. The pseudocode for the proposed EHLO is given as follows,
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These selected features can help enhance the efficiency, performance, and responsiveness of vehicular edge 
computing systems by tailoring resource allocation and decision-making to the unique characteristics and 
requirements of the vehicles and the edge computing environment.

Vehicle clustering in vehicular edge computing using MFCM
After network formation, the cluster is formed by using the Modified Fuzzy C-Means Clustering (MFCM). FCM 
is an unsupervised clustering algorithm. The clusters are formed according to the distance between data points 
and the cluster centres are formed for each cluster. The main reason for choosing FCM is it gives flexibility. 
The work in the task set arecategorised using the MFCM clustering method, and the computing tasks of the 
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on board unit (OBU) are separated into three categories: computing, storage, and network bandwidth demand 
types. But it has random centroid selection which may provide an inaccurate clustering output and it uses 
the Euclidean distance which is not support for the large amount of data. So, here the centroid is selected by 
calculating modified deviation between each data point and maximum deviated input node is considered as the 
centroid and this research uses the Manhattan distance instead of Euclidean distance. The purpose of the cluster 
formation in this cluster head node is to minimize the following objective function (Fo):

	
Fo =

∑ ∑
Dl

uvTuv � (15)

Where, Dl
uv  is node v’s degree of belonging to cluster u, l is the any real number greater and Tuvis the job and 

each cluster centre, and the closest cluster centre was given the work assignment. First, the centroid point is 
selected by calculating standard deviation between nodes which expressed as follows,

	
Gi =

√
αs − µ

αn

� (16)

Where µ denotes the mean value and Gisignifies the cluster centre. Following the centre vector computation, the 
distance matrix is computed using the Manhattan distance calculation, and the result is as follows:

	 Tuv = |Gi+1 − Gi| + |αi+1 − αi|� (17)

Then, update the partition matrix for the jth step is derived as follows,

	
Dl

uv =
(

1/
∑

(Tuv/Tsv)2/l−1
)

� (18)

Where, s denotes the iteration step. The MFCM process is repeated until it converges. In this way the cluster is 
formed. The formed cluster is denoted as,

	 Hs = {h1, h2, h3, . . . hn} (or) Hs = hi, i = 1, 2, . . . , n� (19)

Where, Hs indicates the formed cluster sets and hn defines the n-number of clusters.
Finally, the obtained cluster heads are expressed as in Eq. (20):

	 LD = {l1, l2, . . . , ld} (Or) LD = lj � (20)

Where, LD defines the obtained cluster head set, and ld denotes the d-number of cluster heads.

Resource allocation in vehicular cloud using CM-centered marine predator algorithm
The CM-centered Marine Predator Algorithm (CM-MPA) is a hybrid heuristic optimization algorithm that 
combines various crossover and mutation techniques to explore a wide solution space effectively. It was specifically 
designed to optimize resource allocation in vehicular clouds, where the goal is to improve resource utilization, 
reduce latency, and enhance overall system performance while adapting to the ever-changing conditions 
and requirements of vehicular networks.Because it can adjust to the constantly changing circumstances and 
demands of vehicular networks, the CM-MPA is a good fit for optimising resource allocation in vehicular clouds. 
Because it employs a dynamic fitness function that considers the vehicular network’s present condition, the CM-
MPA is able to do this. Furthermore, the CM-MPA employs a range of search techniques, enabling it to locate 
answers fast and effectively. The primary fitness function is calculated by dividing the total delay time of all 
computing tasks by the degree of matching between each task and the scheduled cell. Here, the jobs assigned to 
each computing unit and their computing order are represented by a task list split into L blocks.

Assign tasks to natural numbers one through N in a random order first, and then choose the numbers starting 
at the zeroth place in the series. The tasks are scheduled to M computer units sequentially based on the resource 
limits of the computing unit and the task’s time constraints. The work is sent to the next computer unit if the 
current one is unable to complete it within the given restrictions44. Following the aforementioned procedures, a 
CM is ultimately encoded, resulting in the first step towards solving the task scheduling issue. To create an initial 
population with an individual size of X, X − 1 repeat the aforementioned procedure steps a number of times.

A fitness function that represents the accomplishment of all goals should be created in order to evaluate the 
chromosomes’ quality. Equation (21) is ℜdefinition of the fitness function.

	




ℜi (x) =
(

1
ffi(x)

)

ℜ (x) =
n∑

i=1
ℜi (x)

� (21)

where n is the quantity of target functions. ℜ (x) is both the value of individual x’s objective function i and its 
fitnessffi (x). A random selection of two chromosomes is made from the mating pool. It generates a random 
integer between 0 and 1. The gene location is arbitrarily chosen as the crossover point if the random number is 
less than the crossover probability. Equation (22) is the crossover probability function that we created based on 
the fitness of the individuals. A higher fitness level is correlated with a lower crossover probability setting.
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CP =





u1

(
1−

∑n

i=1
µi

ℜi(x)
ℜMax

i

)

1−
∑n

i=1
µi

ℜavg
i

ℜMax
i

, ℜi (x) ⩾ ℜavg
i (i = 1, 2, . . . n)

u2, ℜvi (x) < ℜavg
i (i = 1, 2, . . . n)

Ln
n

u2 else

� (22)

Here, µi is the weight coefficient, and is the ith fitness, µ1, . . . . . . ., µi, . . . ., µnwhich corresponds to the objective 
function i of individual x. ℜavg

i is the average of the ith fitness, and ℜMax
i  is the maximum of the xth fitness. The 

parameters in the crossover probability function, u1and u2, have values set as constants between 0 and 1. Ln

is the quantity of goal functions where the associated fitness values fall short of the mean fitness value. A high 
crossover probability is established if every fitness value for individual x is lower than the associated averages. A 
little crossover chance is established if each of individual I’s fitness values is higher than the associated averages. 
Furthermore, a lower setting of the crossover probability is associated with increased fitness. If not, the number 
of objective functions that result in matching fitness values that are less than the average fitness value is used to 
determine the crossover probability. This kind of crossover probability setting protects exceptional people from 
moving into the following generation.

	
GCM =

n∑
i=1

ui

[
1

nPs

nPs∑
x=1

(
F Fi (x)
F F Max

i

− F F avg
i

F F Max
i

)2
]

� (23)

Where GCM  the values of the goal function diverge. nPs is the number of population. The value of the specified 
mutation locationGCM  is changed to one of the other available values if the resulting number is less than the 
mutation probability. A substantial mutation probability is established when there is little variation between the 
individuals’ objective function values. If not, a low chance of mutation is established. Equation (23) defines the 
difference between the values of the goal function. This way of adjusting the mutation probability prevents the 
creation of a local optimum.

The selection of the MPA.
Every chromosome in the population is chosen by the MPA’s selection operation procedure, which chooses 

the chromosome with the highest fitness value21. The MPA optimisation procedure is broken down into three 
primary stages that each represent a particular velocity ratio and a day in the lives of a predator and prey:

•	 when the predator is going faster than the prey;
•	 when the predator and prey are travelling at almost the same speed; in low velocity ratio when the predator 

is moving faster than the prey.
•	 There is a predefined and allocated iteration duration for every defined phase.

These actions are designed to resemble how predators and prey move in the wild by adhering to the regulations 
governing that behaviour. Among these three stages are:

Phase 1  When there is a large speed ratio (Hs > 10), the predator travels more slowly than its prey, and its 
optimum foraging tactic is to move very little at all. This stage is in charge of investigating algorithms, and the 
corresponding mathematical formula is as follows

	
W hile I <

1
3 ∗ Max_I � (24)

	
−−−−−−−→
Stepsize x = Ω⃗y ⊗

(−→
Ex − Ω⃗y ⊗ −→

Px

)
, x = 1, 2, . . . n� (25)

	 −→px =
−→
Px + P ∗ Ω⃗ ⊗ −−−−−−→

Stepsizex� (26)

where Max_I  is the maximum number of iterations and I is the number of iterations that are currently in 
use. is a vector that depicts Ω⃗y  Brownian motion and is made up of a sequence of randomly generated integers 
based on a normal distribution. ⊗ symbolises entry-wise multiplications, 

−−−−−−−→
Stepsize x while the step size vector 

denotes the predator’s xth move. P = 0.5 remains constant. Ω⃗ is a vector of randomly generated numbers in 
the interval 0 to 1.

Phase 2  The prey and the predator travel at the same speed in the unit velocity ratio, and exploration eventually 
gives way to exploitation. The following is the formula.

	
W hile

1
3 ∗ Max_I < I <

2
3 ∗ Max_I � (27)

Regarding the first 50% of the population (Exploration)

	
−−−−−−−→
Stepsize x = Ω⃗Q ⊗

(−→
Ex − Ω⃗Q ⊗ −→

Px

)
, x = 1, 2, . . .

n

2 � (28)

	 −→px = −→
Px + P ∗ Ω⃗ ⊗ −−−−−−→

Stepsizex� (29)
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Regarding the latter half of the populace (exploitation)

	
−−−−−−−→
Stepsize x = Ω⃗y ⊗

(
Ω⃗y ⊗ −→

Ex − −→
Px

)
, x = n

2 , . . . ., n� (30)

	 −→px = −→
Ex + P ∗ cf. ⊗ −−−−−−→

Stepsizex� (31)

whereΩ⃗y  is a Levy distribution-based random number vector that symbolises Levy movement. cf  is an adaptive 
parameter that regulates the predator’s stride size. The following formula is used to calculate it:

	
cf =

(
1 − I

Max_I

)(
2∗ I

Max_I

)
� (32)

Currently, half of the population moves in two ways: half moves in a Brownian step (exploration) while the other 
half goes in a Levy step (exploitation). Make the shift from exploration to development by combining Levy and 
Brownian tactics.

Phase 3  When there is a low velocity ratio(Hs = 0.1), exploration gives way to exploitation because the pred-
ator travels more quickly than the prey. A predator’s Levy movement is its ideal foraging approach, and the 
formula is as follows

	
W hile I >

2
3 ∗ Max_I � (33)

	
−−−−−−−→
Stepsize x = Ω⃗Q ⊗

(
Ω⃗Q ⊗ −→

Ex − −→
Px

)
, x = 1, 2, . . . ., n� (34)

	 −→px = −→
Ex + P ∗ cf. ⊗ −−−−−−→

Stepsizex� (35)

In the natural world, fish gathering devices (FADs) and eddy current creation may have an impact on marine 
predator behaviour. The FADs effect is regarded in MPA as local optimum traps, and the following is the 
definition of its mathematical model:

	
−→px =

{ −→px + cf
[
M⃗min + Ω⃗ ⊗

(
M⃗max − M⃗min

)]
⊗ R⃗ if rand ⩽ fad

−→px + cf [fad (1 − rand) + rand] ⊗ (−−−−→prand1 − −−−−→prand2) if rand ⩾ fad
� (36)

where the likelihood that FADs will have an impact on the optimisation process is expressed as fad = 0.2. and 
M⃗min are vectors that represent the dimension’s upper and lower boundaries. A randomly generated number 
between 0 and 1 is denoted by rand. R⃗ is a binary vector that has two random elements that make up the Prey 
matrix−−−−→prand1 and −−−−→prand2. Its array is set to 0 when the value is more than 0.2 and to 1 when rand it is less than 
0.2. Ω⃗is a vector of random numbers made up of the produced numbers from 0 to 1. Because of their excellent 
memory, marine predators are able to recall the exact location of every successful kill. Storage in the cloud’s 
optimum resource allocation allows for the accomplishment of this operation. The effectiveness of the suggested 
research approach is examined in the next section.

Results and discussion
The MATALB software now includes the hybrid optimisation model that has been proposed for the multi-
cloud resource allocation method. In order to simulate the suggested method RU-VMM, we build a virtual 
environment using MATLAB R2022b (version 9.2) on a computer system with Intel(R) core (TM) i7-4790 
CPU@3.60 GHz 3.60 GHz, 8 GB RAM, and 64-bit Windows 10 operating system. The suggested approach can 
be evaluated using performance measures including throughput, delay, energy, SNR, and throughput. Every 
cloud is taken to have a distinct resource capacity, and each cloud’s physical host is also supposed to be distinct, 
in order to mimic the actual multi-cloud situation. The suggested hybrid EHLO model is contrasted with the 
traditional Drawer Algorithm (DA), Coati Optimisation Algorithm (COA), Particle Swarm Optimisation (PSO), 
and Genetic Algorithm (GA) models in order to evaluate the efficacy of the multi-cloud resource allocation 
model that was just provided.

A study of the SNR output in the suggested and current VEC approaches is shown in Fig. 3a. In this regard, 
the suggested method advances the idea of VEC centroid localization by giving weights to the coordinates of each 
surrounding vehicle based on SNR values and distances. When compared to the suggested research technique, 
the GA, COA, PSO, and GA achieve lower values, but the SNR value of the suggested method is over 1.94*105. 
because the superior ideal positioning function with the VEC is used in the suggested study technique. Figure 3b 
displays the delivery ratio findings for parcels with varying automobile speeds and density. A connection failure 
brought on by rising speed had an impact on the packet delivery ratio because the transmitters were unable to 
send the packets to the nearby vehicular unit. As a result, there is a link with rising network density and the 
connection breaks. Performance was significantly impacted by the connection disruption in terms of the packet 
loss stimulus rate. Vehicle packet collisions led to higher packet loss rates and higher vehicle densities, which in 
turn reduced overhead network functionality. According to the simulation findings, the suggested CM-MPA was 
more feasible to implement than DA, COA, PSO, and GA.
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The total energy received multiplied by the number of nodes and the energy transferred is known as energy 
efficiency. As a result, Fig. 4a displays the energy efficiency of the suggested and current study approach. Energy 
efficiency has somewhat improved for the amount of nodes, but it is still quite low when compared to the current 
approaches. This energy usage should be at its highest to improve communication and prevent the node from 
failing the network. When compared to the current methods, the suggested method achieves a greater energy 
efficiency. Figure 4b shows the outcomes of the data with various data rates. The network density and vehicle 
speeds affect the data rates differently. Due to the simulation, the vehicle travelled on both straight and curved 

Fig. 3.  Comparative analysis of (a) SNR and (b) delivery ratio.
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areas of the road at the lowest possible speed and throughput, resulting in the highest output at the boundaries of 
the roadways. When compared to other techniques that use the best possible vehicle selection for road segments, 
the suggested CM-MPA also improved network performance. A drop in throughput was seen in DA, COA, PSO, 
and GA. The optimum selection decreased the packet loss rate, and the selection of the ideally neighbouring 
vehicle hops effectively allows vehicles to be employed for connection determination and hence strictly prohibit 
energy waste by connecting dependability.

Fig. 4.  Comparative analysis of (a) energy efficiency and (b) throughput.
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A comparison of the energy savings and coefficient of variation (CV) in vehicle energy control (VEC) is 
shown in Fig. 5. The CV simulation models are shown in Fig. 5a. The data showed little changes since the arrival 
rate is Poisson. Still, there is a noticeable difference between the analytical results and the simulation results. 
Compared to other approaches now in use, such DA, COA, PSO, and GA, the suggested method has a lower CV. 
The best way to allocate VEC resources in order to consistently save 100% of the energy consumption using the 
suggested method is shown in Fig. 5b. On the other hand, when the number of automobiles rises, the savings for 
DA, COA, PSO, and GA decrease.

Fig. 5.  Comparative analysis of (a) coefficient of variance and (b) energy savings.
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The task execution time as a function of the resources allotted to it is shown in Fig. 6a. The suggested approach 
may distribute resources in a manner that minimises task execution time while still achieving the desired results. 
The job execution time utilising the suggested strategy is shown by the blue curve on the graph. When using a 
classic resource allocation technique like DA, COA, PSO, or GA, the task execution time is represented by the 
red, orange, violet, and green curves. The suggested approach may provide greater results with the same number 
of resources, as the picture illustrates. This is a result of the suggested method’s consideration of task execution 
time when allocating resources. The comparative study of a VEC system’s negative balance output as a function of 

Fig. 6.  Comparative analysis of (a) execution time and (b) negative balance.
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the system’s vehicle count is shown in Fig. 6b. The suggested approach can achieve the production requirements 
while allocating resources to vehicles in a manner that minimises the output of the negative balance. Using 
the suggested approach, the VEC system’s negative balance output is maximised at 98% for 100 to 500 cars. 
When 100 to 500 cars are involved, the negative balance output of the VEC system is minimised at 97%, 96.5%, 
96%, and 95%, respectively, when utilising conventional resource allocation techniques as DA, COA, PSO, or 
GA. Based on the aforementioned findings, we can say that, in comparison to other current approaches, the 
suggested strategy performs better than optimum resource allocation for VEC to cloud servers.

The proposed resource allocation method is little bit hard when it goes with more vehicular data sets, but 
compromising to the level expected as the proposed model integrates the Crossover and Mutation (CM)-
centered Marine Predator Algorithm (MPA), Elephant Herding Lion Optimizer (EHLO), and modified Fuzzy 
C-means (MFCM) clustering. It is mainly designed to handle the problems in view of adding more vehicular 
data sets. The MFCM-based clustering process confirms the efficient vehicle adding by dynamically adapting 
to the adding more vehicular data sets. CM-MPA minimizes the resource utility across more edge servers, by 
minimizes the latency to low level. Add on lightweight communication protocols and distributed processing 
architecture manages add on vehicular data sets. The simulations validate the systems’ ability to level the energy, 
low latency and high throughput when adding more vehicular data sets. Hence, these will help to maintain the 
scalability of this system to handle more vehicular data sets and more edge servers.

Conclusion and future scope
Conclusion
In this paper presented an innovative solution to address resource allocation challenges in Vehicular Edge 
Computing (VEC) networks. The increasing volume of service requests under various conditions necessitates 
a strategic resource allocation mechanism to ensure efficient application delivery while maintaining Quality 
of Service (QoS) standards. The proposed method, incorporating the Crossover and Mutation (CM)-centered 
Marine Predator Algorithm (MPA), focuses on optimizing resource scheduling and utilization within VEC 
networks. Key features of the Vehicular network model, including mobility patterns, transmission medium, 
bandwidth, storage capacity, and packet delivery ratio, are extracted and refined using the Elephant Herding 
Lion Optimizer (EHLO) and modified Fuzzy c-means (MFCM) algorithms. These refined attributes are 
stored within a cloud server infrastructure to create an agile resource allocation system. Extensive MATLAB 
simulations demonstrate the effectiveness of our approach in addressing resource allocation challenges, meeting 
modern application demands and ensuring QoS. In an increasingly interconnected world reliant on real-time 
data processing, this research offers potential to enhance VEC network performance and reliability for a more 
efficient and connected future.

Future scope
The suggested CM-MPA model for resource allocation in Vehicular Edge Computing (VEC) networks 
provides numerous opportunities for further investigation and enhancement. Scalability testing on large-scale 
vehicular networks with varying densities and traffic conditions can demonstrate its usefulness in real-world 
situations. Integrating the model with new technologies like 5G/6G networks, IoT-enabled cars, and smart city 
infrastructure might help to improve communication efficiency and support latency-sensitive applications. Its 
robustness will be enhanced by its capacity to react dynamically to unanticipated mobility patterns and changing 
network topologies. Optimization for energy efficiency, such as the use of renewable energy sources for edge 
servers, can help to increase sustainability. Expanding the approach to allow for cross-cloud interoperability 
will result in seamless resource management across many cloud platforms The suggested CM-MPA model for 
resource distribution at the vehicular edge enhances decision-making skills. Real-world deployment in actual 
vehicular networks and smart transportation systems will provide valuable insights while maintaining the 
model’s scalability and operational success.

Data availability
Data is provided within the manuscript or supplementary information files. The datasets generated and/or an-
alysed during the current study are available in the following repositorieshttps://github.com/IsaacAIML2023/
DSF-Enhanced-Novelty-for-Resource-allocation.
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