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Floods are among the natural disasters that pose significant threats to both urban and rural 
infrastructure, as well as the lives and properties of individuals. Streamflow prediction is essential for 
obtaining hydrological information and is critical for a variety of water resource projects. While precise 
daily streamflow predictions are indispensable, forecasting streamflow according to the limited data 
can help reduce computational time and enhance the efficacy of flood early warning systems. The 
purpose of this research is streamflow forecasting with the Long Short-Term Memory (LSTM) approach 
for the next 20 years. The peak streamflow extracted from the LSTM model was entered into HEC-
RAS software and obtained flood zone maps and hazard maps. Furthermore, the effectiveness of the 
proposed method was assessed through statistical analysis, including the coefficient of determination 
(R2), Mean absolute error (MAE), Root mean square error (RMSE), Nash–Sutcliffe efficiency (NSE), 
Kling-Gupta efficiency (KGE) and Mean bias error (MBE). In addition to the numerical comparison, the 
models were evaluated. Their performances were evaluated based on graphical plotting, including 
scatter plot, violin plot, box plot and Taylor diagram. In the chosen model (MD-8), the values RMSE 
(m3/s), R2, MAE, NSE, KGE and MBE are 4.57, 0.98, 2.56, 0.98, 0.94 and 0.17 during the training period, 
respectively, and 6.40, 0.92, 3.81, 0.89, 0.87 and 0.09 during the testing period, respectively. The 
simulation was tailored to the daily streamflow series of the Nesa river in Iran, which spans over 40 
years. It is evaluated the results of generating flood zone maps using both the 2D HEC-RAS and LSTM 
models. The water inflow volume into the reservoir was found to be 76.3 million cubic meters, based on 
the peak streamflow predicted by the LSTM approach. The present model results demonstrate that the 
volume of water inflow into the reservoir for return periods of 25, 100 and 500 years were calculated as 
76.26, 148.73 and 149.22 million cubic meters, respectively. Additionally, the Difference Flood Hazard 
(DFH) maps are obtained, illustrating the difference in flood hazard under various conditions.
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Enhancing flood forecasting with the integration of process-based and Deep Learning Models is a critical focus 
in studying natural disasters. Floods pose various destructive consequences that put everything associated with 
humans at risk1. Many deaths and significant harm to livelihoods, property, infrastructure, and utility services 
result from this danger2. The occurrence of floods is typically attributed to natural events, resulting from severe 
weather conditions that lead to the overflowing of main rivers and their smaller branches, inundating adjacent 
areas3.

The flood phenomenon is also considered one of these natural disasters, which has increased in number and 
extent over the years due to human intervention. In general, the phenomenon of flood occurs when the soil, 
and plants cannot absorb rain or runoff from melting snow and the rivers do not have the capacity to pass these 
waters. The overflow of these waters from the main bed of the river and the occupation of the plains around it 
can damage residential houses, offices and facilities, ultimately putting human lives at risk. Although arid and 
semi-arid regions make up the majority of Iran, it has always been exposed to flood risks. Due to flood modeling 
and forecasting, it is necessary to identify the factors causing and intensifying it, investigate the damages, and 
prevent and reduce the damages4. Flood modeling involves a technical approach that can offer accurate details 
about the flood profile, encompassing factors that influence flooding, such as rainfall, surface waterflow, and 
characteristics of the watershed5.
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The Hydrologic Engineering Center’s River Analysis System (HEC-RAS) software is considered as one of 
the most widely used tools for investigating flood simulations because of its significantly improved capacity to 
simulate canals and natural rivers6,7.

Flood modelling necessitates a two-dimensional modeling; in this aspect, HEC-RAS represents 
groundbreaking research in the subcontinent and throughout the world. The water surface elevation determines 
the accuracy of the flood map. Although GIS and HEC-RAS 1D models may be inadequate to portray actual 
circumstances, automated floodplain mapping and analysis using HEC-RAS (2D) will provide more efficient, 
effective, and consistent results8.

In a research by Sarchani et al. in 2020, they combined flood study with one-dimensional and two-dimensional 
HEC-RAS on a river in Greece named Crete to calculate the flood risk map in the catchment area. To ensure the 
accuracy of parameters such as the Manning coefficient of the river, they used a simultaneous analysis method. 
The results of the simulation can be helpful in creating flood risk maps9. While this study focuses on natural 
flood dynamics, dam failure scenarios (e.g., structural breaches or overtopping) could exacerbate inundation 
risks downstream. For instance, in 2022, Hosseinzadeh-Tabrizi et al. utilized a 2D HEC-RAS model to simulate 
the flood downstream of the Sattar Khan Dam, located in the northwest of Iran. The importance of this issue is 
the location of Ahar city downstream of the dam. Their research investigated the population and infrastructure 
of this area based on two dam failure scenarios. The results indicated that certain population centers downstream 
of the dam area are at flooding risk in case of dam break. The study calculated the arrival time of the flood and 
the maximum velocity in the affected regions. The aim of their research was to aid in the development of a 
comprehensive crisis management plan10. In 2022, Mohammadi et al. assessed the performance of numerical 
simulations in replicating river flood zones within the Azarshahr Qushqura River area. They also contrasted the 
1D and 2D hydraulic models of HEC-RAS. The flood flow hydraulic characteristics, such as the velocity and 
depth of the flow at various cross sections, were assessed. Findings indicated that the two-dimensional model 
HEC-RAS displayed the least error in the water surface level (flow depth) in comparison with other hydraulic 
parameters of flood flow, as opposed to the one-dimensional model11.

In a study by Vashist and Singh in 2023, a 2D hydrodynamic model was utilized for charting flood inundation 
for the Krishna River. Flood maps were generated using Digital Elevation Models (DEMs) with different 
resolutions. The impact of alterations in upstream boundary data on the extent of the flooded area was also 
investigated in their study. The simulated outcomes obtained from the 12.5-m resolution DEM demonstrated 
reasonable agreement with the validation data and closely matched the documented inundated regions2.

The Keser watershed was the focus of a 2023 research study, which involved numerical modeling of flood 
hydrographs. This was conducted to aid in disaster risk reduction and the efficient management of water 
resources, particularly for the development of an Emergency Action Plan (EAP) for the Tugu Dam. This study 
focused on calculating peak discharge. Based on the calculations, the flood discharge calculated utilizing the 
HEC-HMS model was 451.1 m3/s. The values of peak discharge calculated using the Gamma, Nakayasu and 
Snyder methods were 410.4, 424.2 and 439.4 m3/s, respectively12.

In 2023, Shaikh et al. evaluated the flood event of 2006 in the low-lying areas of Surat city, India, using the 
HEC-RAS model for 2D hydrodynamic modeling within a GIS framework. In this study, a 30-meter resolution 
digital elevation model of Surat city was obtained from SRTM data. The discharge hydrograph from the Ukai 
Dam during the flood event, along with normal depth, was considered as the upstream and downstream 
boundary conditions for the simulation. The simulated flood results, when compared to the observed flood 
mapping of 2006, showed correlation coefficient values of R2 = 0.96, NSE = 0.90, and RMSE = 0.66 m13.

In 2024, El-Bagoury and Gad assessed the risks of flash floods, calculating the volume of flood discharge in 
two drainage basins in southeastern Egypt that had experienced several devastating floods. Their study revealed 
that the effects of floods caused by torrential rains were more severe in areas near the mouth of the Nile River. 
To mitigate these risks, they recommended the construction of five dams, each with a height of ten meters, to 
create a water storage lake14.

In the last decade, information-based frameworks such as Machine Learning (ML) and Deep Learning (DL) 
approaches have attracted attention in the fields of hydrological studies and water management15. Numerous 
factors aided the development of DL in hydrology, which include: (a) availability of substantial amounts of 
information, (b) quick development in the concurrent processing systems with multi-core capabilities, GPU 
technology, (c) specific software frameworks including TensorFlow and keras that allow developing tiered deep 
learning structures without investigating complicated mathematical aspects, (d) effective optimization results 
attaining nearly optimal outcomes, and (e) enhanced regularization techniques to counteract overfitting16.

The development of the LSTM model involved utilizing deep learning techniques, and it has been 
operationalized as a conventional machine learning method to forecast daily inflow. After that, it became very 
popular as one of the successful deep learners in the field of artificial neural networks. The term “deep learning” 
was first introduced to Descartes Machine Learning and Artificial Neural Networks by Eisenberg and her 
colleagues17. It should be noted that various discussions have been carried out regarding the use of machine 
learning (ML) models across different areas of hydrology and flow estimation18. Neural network approaches, 
such as LSTM, due to their consecutive structure, can exploit complex properties more efficiently than traditional 
machine learning models, assuming that adequate information is supplied19. Moreover, Liu et al.20 announced 
that the Long Short-Term Memory model, which features built-in storage, is capable of learning and retaining 
long-term connections in the input-output relationship across various climate conditions. Cheng et al.21 used 
ML algorithms to forecast long-term flow on both a daily and monthly basis. Neural network models, recurrent 
neural networks, and a robust technique for understanding time dynamics for an extended duration or capturing 
nonlinear correlations are used to predict flow in terms of daily and monthly rates associated with a prolonged 
duration. Findings of this study showed that the LSTM managed to advance daily flow predicting and would be 
useful in supporting a framework for decision processes for hydrological management.
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A recent study was conducted in the region of southwestern India called Kerala, which has an annual mean 
rainfall of approximately 3,000 mm, using deep neural networks. In this research, flood forecasting has been 
investigated using in-depth training. Forecasting was analyzed using meteorological data focusing on LSTM and 
RNN-GRU approaches and evaluated by RMSE and MAE criteria22.

The long short-term memory (LSTM) network has been widely utilized due to its recurrent architecture 
and distinctive gating system. This approach has demonstrated significant potential in hydrological forecasting, 
including flood alerts and river level predictions23. Latif and Ahmed utilized deep learning and machine learning 
algorithms to predict the daily inflow of the Dukan Dam on the Zab River in the Kurdistan Region of Iraq. They 
compared the performance of the deep learning algorithm with that of the enhanced Boosted Regression Tree 
(BRT). The results indicated that the root mean square error (RMSE) for the Long Short-Term Memory (LSTM) 
model demonstrated significantly superior accuracy. The LSTM model exhibited high reliability and accuracy, 
making it a valuable tool for predictions24. Li et al.25 proposed anew hybrid method that merges traditional 
physical models with historical data to train LSTM networks. Using the NAM hydrological model and the HD 
hydraulic model, on the Jinhua basin in China to evaluate the effectiveness of LSTM models trained on different 
datasets. Results show that LSTM models trained on mixed datasets, particularly those with a simulated-to-
measured data ratio of less than 2:1, perform better, achieving lower RMSE and MAE values. This hybrid model 
represents a significant advancement in flood forecasting, offering a viable solution to issues of computational 
efficiency and data scarcity. Dtissibe et al.16 has experienced on the Far-North region of Cameroon, flood 
prediction techniques in the area are mainly based on physical models and often produce inadequate outcomes. 
This study investigates the use of artificial intelligence, particularly machine learning and deep learning 
algorithms, to enhance flood forecasting. The research compares different models, such as one-dimensional 
convolutional neural networks, Long Short-Term Memory (LSTM), and Multi-Layer Perceptron, utilizing 
temperature and rainfall time series data as inputs. Performance is assessed using metrics like Nash–Sutcliffe 
Efficiency and Root Mean Squared Error. The results show that the LSTM model excels in both short-term and 
long-term flood forecasting, exhibiting strong performance and generalization capabilities.

Although the utilization of deep learning and LSTM model concepts has grown in popularity, an extensive 
discussion of deep learning concepts, methodologies, deployments, challenges, research deficiencies, and future 
possibilities and its combination with numerical models in hydrology is still lacking, which is the main reason 
for this review.

Consequently, this study’s contribution is centered on employing the LSTM model to determine the daily 
peak streamflow and generate flood hazard maps through 2D HEC-RAS. Subsequently, the hazard maps depict 
potential flooding cases with return periods of 25, 100, and 500 years. By examining the flood hazard maps and 
the reservoir volume, it is tried to evaluate the capability of the reservoir to contain the flood volume.

Materials and methods
Introduction of study area
Streamflow prediction of the Nesa river which is located in the country of Iran between longitudes 55°17 to 
61°11’E and latitudes 27°52° to 34°7°N with an area of 760 square kilometers is considered a pertinent case study 
to fulfill the aims of this investigation (Fig. 1). Additionally, the average altitude of the basin is about 2424.7 m. 
The length of the main river under study is about 22.4 km and the tributary is 12.4 km.

The average annual rainfall in the area is 400 mm, and in most places it is less than 100 mm, with the highest 
amount is in the winter season. The maximum monthly rainfall is in January, February and March and the 
minimum is in July and August. The economic development of the Bam region greatly depends on the Nesa Dam 
and the flow downstream, which also has significant environmental and hydrological implications.

For the purpose of simulating streamflow forecasting, a range of daily discharge data spanning from 1978 to 
2019 was gathered for this research. The total number of daily discharge data points is 14,976. Out of this total, 
11,980 are selected as training data and 2996 are designated as test data.

The Yalkhari hydrometric station is located 8 km from the Nesa Dam. Figure 2 shows the daily discharge 
during these years at this specific station. The years 1979 and 2002 lacked data and were therefore excluded from 
the calculations. The hydrological characteristics of the research area are presented in Table 1.

Methodology
In hydrology, the process of streamflow prediction is extremely important26,27. In this study, an investigation 
is conducted to assess how different forecasting models perform. The LSTM network is frequently utilized for 
handling time-series data due to its impressive memory capacity, giving it inherent benefits for processing such 
data28. Nowadays, significant progress has been achieved in methodologies and practical applications through 
the advancements of deep learning. According to the results obtained, it is obvious that the implementation 
of the created LSTM model demonstrates significant and improved accuracy, making it a dependable and 
trustworthy tool for forecasting streamflow and other hydrological factors. As mentioned earlier in the literature 
review, numerous research studies confirm the significance and reliability of LSTM, either on its own or when 
integrated with other algorithms in hybrid models24. LSTM has proven to be an effective tool for sequence 
modeling in various tasks, as it has the ability to retain past information for prediction purposes. In their study, 
Fu et al.29 introduced the outcomes of an improved LSTM model and demonstrated its clear benefits in handling 
continuous streamflow data during the arid periods in the Kelantan River, located in Malaysia. Rainfall and 
inflow were the input parameters of their study.

The implementation of the model can be effective, depending on prior studies. the authors compared24 BRT 
and DL prediction models using daily discharge data from Dokan Dam, on the Lesser Zab River. Training and 
testing subsets were created from thedataset. The data was divided into two parts: 80% for training and 20% 
for testing. The authors16 utilized a dataset comprising historical temperature and rainfall time series from the 
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Far-North region of Cameroon. Temperature and rainfall values were recorded weekly or monthly from 1980 
to 2020. The dataset was divided as follows: 80% was used for model training and 20% for model testing. In the 
present study, the ratio of 80:20 was considered for the dataset.

With repeated tests, the ratio of 80:20 was found to yield the best results for the dataset. Other ratios, such as 
70:30, decreased the accuracy and negatively impacted the model’s performance.

In this part, there is a description of the Long Short-Term Memory Network (LSTM) used for forecasting 
streamflow and modeling 2D HEC-RAS, a widely used hydraulic model for flood zone mapping and inundation. 
The purpose of this research is to utilize a deep learning model for long-term forecasting and to integrate it with 
the HEC-RAS numerical model. This approach aims to assess potential measures for mitigating high-risk floods 
while considering the presence of a reservoir. By using deep learning and a large dataset, the LSTM (Long Short-
Term Memory) model was identified as suitable for sequential data analysis, particularly in tasks such as time 
series prediction, due to its superior performance in these contexts.

Deep learning, as a subset of machine learning, is particularly effective for solving complex problems. 
Previous studies and analyses of time series data indicate that the LSTM model is the most effective solution for 
the specific needs of this research. It is important to note that deep neural networks, including LSTM, require 
substantial amounts of data and powerful hardware to process this data effectively in order to achieve optimal 
performance. Consequently, the LSTM model was selected as the primary model after thorough investigation.

Fig. 1.  Representation of the study area geographical location using ArcGIS 10.8 software.
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In the present study, the LSTM model was developed using Python and Keras. The model consists of four 
levels of neurons (200-100-80-30) and activation functions. The model underwent training for 100 epochs, after 
which it made predictions using the testing data. Nine different models (MD) have been proposed to choose the 
most accurate input parameter (Table 2).

Table 2.  Representation of daily inflow time series data considered for proposed model combinations.

 

basin
Length (The 
study area) (km) Area (km2)

Annual 
streamflow (mm)

Average 
altitude of the 
basin (m)

Average slope 
of the river 
(%)

Basin perimeter 
(km)

ravelius 
coefficient

Equivalent rectangle

Length (km)
Width 
(km)

Nesa 22.4 760 400 2424.7 2.3 170.2 1.7 73.6 11.5

Table 1.  Hydrological characteristics of the Nesa river basin.

 

Fig. 2.  The Yalkhari station discharge values on a daily basis for 40 years.
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Introduction of LSTM model
Long Short-Term Memory (LSTM), suggested by Hochreiter and Schmidhuber30, is a modified version 
designed to address the limitations of the Recurrent Neural Network (RNN) and overcome the issues of gradient 
explosion or vanishing31. The LSTM model developed in the present study includes three layers: input, hidden, 
and output layers. The LSTM model’s design is shown in Fig. 332,33. The sequential input x = {x1, x2, …, xN} 
and the output chain y = {y1, y2…, yN} are linked by the forget door, which determines whether the current 
data should beforgotten or remembered. At a particular time stage t, the calculation can be performed in the 
following manner34:

	 ht = H (whhht−1 + whxxt + bh ) t > 0� (1)

Where bh is the forget door bias, Whh and Whx represent the forget weight matrix and the forget-hidden weight 
matrix, and H represents the nonlinear activation function. Tanh and ReLU are the most common choices for 
H activation in recursive networks. The parameter 

∼
ctmemorizes the up-to-date data and the forget door ft 

concludes the data updating. They are presented as follows:

	 ft = σ (wxfxt + whfht−1 + bf)� (2)

	
∼
ct = tanh (wxixt + whiht−1 + bi)� (3)

where Wxf and Whf denote the weight matrix. The weights and biases are also displayed with the W and b symbol. 
The bias vectors for the input door and the cell state update are depicted sequentially as bf and bi. Afterward, the 
new state of the memory cell, ct, is updated in the following manner:

	
ct =

(
ft*ct−1 + it ∗ ∼

ct

)
� (4)

where ct−1 represents the previous state of the memory cell, and the * represents element-wise product. The 
output door handles the output activations at the end. The hidden layer, which is sent to a subsequent time stage, 
is defined as follows:

	 ht = ot*tanh (ct)� (5)

	 ot = σ (wx0xt + wh0ht−1 + b0)� (6)

where the output weight matrix is represented as wxo, bo is the output door bias and who represents the output-
concealed weight matrix.

Implementation of LSTM model
The procedure for the implementation of the LSTM model consists of the following steps;

	 i.	� To begin, the sequence data containing input parameters needs to be loaded, with the time steps aligned 
with the day value associated with streamflow. In LSTM, the model learns to remember relevant informa-
tion from past time steps (or previous elements in the sequence) and uses that information to make predic-
tions or generate output at the current time step. Each time step represents a moment in time or a specific 
position in the sequence and is typically represented as a column in the input data matrix.

Fig. 3.  Representation of the LSTM layer.
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	ii.	� Next, it’s time to split the training and testing data into separate partitions. In the present study, the pro-
posed LSTM model has been trained on 80% of the time-series data, and 20% of the time-series data has 
been chosen to test the mFig.  Fig. 4.

	iii.	� The next step involves normalizing the data in order to achieve a zero mean and unit variance, which will 
improve the fitting and prevent the training from diverging.

	iv.	� Finally, the responses and predictors need to be prepared.

	 Qt = f
(
Qt−1 .Qt−2 . . . . .Qt−m

)
� (7)

After repeated stages, different hyper-parameters are set. The hyper-parameters used in the LSTM model are 
presented in Table 3 as follows:

Model performance evaluation
Performance evaluation criteria in hydrological studies can be classified into various categories, each with 
corresponding mathematical relationships. To assess the performance and accuracy of the model, a range of 

Algorithm Parameters

LSTM

Hyperparameter Value

Input size 1

Output size 1

Hidden layers 4

Hidden nodes 200-100-80-30

Learning rate 0.001

Batch size 2

Epochs 100-80-50

Time steps 1, 2, …, 2000

Table 3.  The presentation of Hyper-parameters used in the LSTM.

 

Fig. 4.  The Yalkhari station discharge values on a daily basis for 40 years.
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statistical and hydrological criteria were utilized to derive quantitative results. These include: the Mean Absolute 
Error (MAE), coefficient of determination (R2), Root Mean Square Error (RMSE), the Nash Sutcliffe model 
Efficiency coefficient (NSE), Kling-Gupta efficiency (KGE) and Mean bias error (MBE), which were employed 
to evaluate the performance and accuracy of the model. In an ideal model, the MAE should be minimized and 
close to zero, while the R2 should be maximized and close to one. This indicates that the model accounts for a 
considerable amount of the variance in the data. These criteria are calculated using the following Eqs35,36.

	
MAE = 1

N

∑
|xi − yi| � (8)

	

R2 =
∑N

i=1(Xi − X)(yi − y)√∑N
i=1(Xi − X)2

∑N
i=1(yi − y)2

� (9)

	
RMSE =

√
1
N

∑ N

i=1
(xi − yi)2� (10)

	

NSE = 1 −
∑ N

i=1(yi − xi)2

∑ N
i=1

(
xi−

−
x
)2 � (11)

	
KGE = 1 −

√√√√(R(xi.yi) − 1)2 +

(
var(yi)

1
2

var(xi)
1
2

− 1

)2

+

(
−
y
−
x

− 1

)2

� (12)

	
MBE = 1

N

∑
( xi − yi)� (13)

In which xi and yi represent the observational and computational values in the chronological step of i, respectively. 
N denotes the total number steps, while x and y represent the average computational and observational values, 
respectively, in the given order.

Numerical model: 2D HEC-RAS
The peak discharges for the basin, in addition to the land use maps, were utilized as inputs for the 2D HEC-RAS 
approach, which allowed the simulation of the variability and distribution of the flow pathway. The model then 
generated flood velocity and depth maps to determine the regions that were flooded and determine locations with 
hazards14. The two-dimensional HEC-RAS model has been employed for the analysis of reservoir operations37, 
and to enhance the urban flood risk assessment maps38. The 2D mesh’s flow field is computed using the diffusion 
wave approximation approach, which results in a shorter computation time and a reduction in the possibility 
of model instability in comparison to the shallow water Eqs14,39. The computational domain is divided into grid 
cells, and HEC-RAS produces a comprehensive hydraulic property table for all cells. The model’s water surface 
profiles, created with various hydraulic design elements, can assist decision-makers in investing resources to 
better prepare for disasters and enhance the life quality. This is achieved by analyzing the severity of flooding and 
flood inundation areas to improve the level of preparedness. In this research, the diffusion wave equations were 
used in 2D HEC-RAS v 6.5 Beta, ArcGIS v 10.8 was utilized to create flood depth maps.

In the application of the HEC-RAS model, geometric data and flow data are two fundamental components. 
Creating geometric data, which determines the river channel, longitudinal profile of the river, left and right 
banks of the floodplain, and drawing the cross-section and flow direction, is the first step in simulating the flood 
for different return periods using the HEC-RAS model. Topographic maps and DEM are utilized to transfer the 
output to the HEC-RAS software. Subsequently, the RAS mapper tool is utilized to obtain the extent of flood 
protection and hazard maps. The necessity of flood study in the period of different returns is to measure or 
estimate the magnitude of peak flows. By analyzing flood frequency based on instantaneous maximum values 
and probability distribution functions, the estimated best instantaneous maximum discharge can be determined. 
The river bed boundary is determined using topographic maps, GIS, and HEC-RAS 2D. Floodplain maps offer 
valuable information about the flood’s characteristics and its impact on the floodplain, allowing for timely 
warnings to be issued during periods of flood risk.

Simulations
The two-dimensional unsteady HEC-RAS model was established by integrating the Digital Elevation Model 
(DEM) of the research area into the RAS Mapper to generate the topographicalrepresentation. For the 30-meter 
resolution DEM, 31,428 cells were produced for cell sizes dx and dy equal to 30 m and Manning’s roughness 
coefficient (n) as 0.033. Each mesh should have only one computation point.

The model has been updated with a new geometry file for the terrain layer geometry data. The model 
development also requires 2D surface roughness, Boundary Conditions (BCs), and unsteady flow data as other 
parameters. The input for surface roughness includes the Manning’s roughness coefficient. To generate the mesh 
and map inundation, a 2D flow area is specified for the terrain by outlining a polygon around the study area 
involving all the relevant reaches. The flow area parameters were used to generate a computational mesh in 
the 2D flow area. Figure 5 displays the two-dimensional flow area that was generated using a 30-meter DEM. 
During flood simulation, the hydraulic model is calibrated by varying Manning’s coefficient for flood zones 
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and channels. Upon completing mesh generation, boundary conditions are applied to the 2D flow area for 
performing unsteady flow analysis. Three boundary conditions, one downstream and two upstream, have been 
applied close to the 2D flow region as displayed in Fig. 5. All necessary details are provided by flow data that is 
considered for the unsteady analysis of the flow. For the boundary condition, a time series of discharge in the 
form of a hydrograph (an input hydrograph) has been considered in the simulation.

Based on discharge data from the Yalkhari Hydrometric Station, the best fitting distribution was determined 
according to three criteria: Anderson-Darling, Kolmogorov-Smirnov, and Kai-Squire for return periods of 2, 
25, 100, 500, and 1000 estimates. After completing the data inputs, The HEC-RAS model was employed for 
the purpose of conducting an extensive analysis of the flow. The model generated a comprehensive report of 
the analysis, which included information on the flow depth, discharge values at each cross section, and other 
simulation details. The examination of the region inundated under various return-period flood events is based 
on the peak flows derived from frequency analysis executed through the utilization of Easyfit and HEC-HMS 
v 4.10 software. The maximum instantaneous discharges at the Nesa river for different periods were obtained 
using the Gamma distribution, as presented in Table 4.

To run the 2D HEC-RAS model, programs including the unsteady flow simulation, geometry preprocessor, 
floodplain mapping, postprocessor, and simulation period should be determined for the evaluation of unsteady 
flow. Computational settings include the hydrograph output interval, computation interval, and mesh generation 
for a 30  m resolution DEM terrain layer and a 2D area flow with mesh provided for the simulations. The 
calculation interval is an important parameter in unsteady flow calculations. It should be selected in a way that 
ensures accuracy and stability according to the Courant condition, and produces satisfactory results40. In order 
to specify the optimal computation interval and maintain stability and accuracy, the computation interval was 
set to 5 min. While this study utilized ground-based hydrological data, future work could incorporate remote 
sensing datasets (e.g., satellite-derived rainfall from GPM or topographic data from LiDAR) to enhance spatial 
resolution and real-time flood monitoring. Such integration could refine DEM accuracy and provide dynamic 
inputs for LSTM models. As a result, applying remote sensing datasets could increase the accuracy of LSTM 
prediction results.

Return period 2 25 100 500 1000

Gamma 169.4 826.29 1191.3 1616.3 1799.7

Table 4.  Gamma distribution results of maximum discharge values (M3 /s).

 

Fig. 5.  2D area plan and boundary conditions of the Nesa River using HEC-RAS v 6.5 Beta software.
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Results
Utilization of LSTM model for forecasting analysis
the empirical evidence indicates that the proposed Long Short-Term Memory (LSTM) model not only exhibits 
significant superiority in the analysis of consistent streamflow data during the arid season but also demonstrates 
commendable proficiency in discerning data characteristics within the highly variable streamflow data 
encountered in the wet season. The advanced deep learning LSTM model results demonstrated that, in most 
cases, it could accurately forecast extreme events. In the present study, the Nesa River dataset has been used to 
develop and apply the LSTM model for daily streamflow forecasting. The daily streamflow over the past 40 years 
is the chosen input parameter, and the daily streamflow prediction output parameter is extracted for the next 
20 years.

The analysis was conducted across nine models, focusing on the average value, standard deviation, and 
skewness of the data. The standard deviation serves as a measure of dispersion or variability within the dataset. 
The results suggest that nearly all the models exhibit similar levels of dispersion. Furthermore, the positive 
skewness value indicates that the data is inclined towards larger values as presented in Table 5.

According to Table 6, MD-2 and MD-8 were selected for analytical and graphical comparison because the 
statistical indicators in MD-2 demonstrated better results than those of the other models. Additionally, MD-2 
demonstrated better results than the first seven models, so it was compared with the best LSTM model which 
is MD-8.

Considering all the models have been previously utilized and MD-8 outperformed the others, a forecast is 
made for the next 20 years, which corresponds to about 8000 time steps (with a lag of four, consisting of 2000 
time steps each). It is presented as model MD-9. According to the LSTM results, MD-8, regarding the training 
dataset, the R2 = 0.98, RMSE = 4.57, NSE = 0.98, KGE = 0.94, MBE = 0.17 and MAE = 2.56, respectively. For the 
testing dataset, R2 = 0.92, RMSE = 6.40, NSE = 0.89, KGE = 0.87, MBE = 0.09 and MAE = 3.81 respectively. Table 6 
shows the performance of the training and testing sets for forecasting daily streamflow using the LSTM method.

According to Table 6, the output results of the model show that the R² values remain relatively constant from 
the first model (MD-1) to the seventh model (MD-7). Among these models, MD-2 has the lowest mean absolute 
error (MAE) and is therefore the basis for comparison with model MD-8, which has the best performance.

Additional to the statistical parameters stated in Eqs.  (8–13), the correctness of the investigated models 
(MD-2 and MD-8) and other models were validated using the scatter plot, violin plot and box plot and Taylor 
diagrams.

The techniques’ scatter plots demonstrate that for training and testing data MD-2 and MD-8, Figs. 6 and 7, 
followed by LSTM, can forecast streamflow more accurately than alternative models due to the values generated 
being closer to the optimal line. In the remaining models, scatter plots were drawn according to Fig. 8.

Criteria Model

Training Testing

MAE RMSE NSE KGE MBE R2 RMSE NSE KGE MBE MAE R2

MD-1 3.51 16.46 0.62 0.79 0.03 0.72 12.25 0.67 0.84 0.01 2.80 0.71

MD-2 3.25 16.30 0.66 0.81 -0.49 0.73 11.89 0.71 0.84 -0.51 2.59 0.74

MD-3 3.64 16.33 0.69 0.81 1.7 0.73 11.90 0.65 0.81 1.85 3.11 0.73

MD-4 4.01 16.38 0.56 0.74 1.31 0.72 11.59 0.64 0.70 0.97 3.85 0.73

MD-5 4.00 16.34 0.55 0.73 0.17 0.73 13.98 0.65 0.74 0.97 3.49 0.63

MD-6 5.46 16.22 0.63 0.79 0.27 0.72 11.7 0.78 0.89 0.07 5.29 0.72

MD-7 3.55 17.74 0.61 0.66 4.04 0.73 12.29 0.65 0.68 3.88 3.14 0.73

MD-8 2.56 4.57 0.98 0.94 0.17 0.98 6.40 0.89 0.87 0.09 3.81 0.92

MD-9 2.37 4.36 0.98 0.90 1.37 0.98 7.39 0.86 0.88 1.19 7.4 0.86

Table 6.  The performance evaluation for forecasting daily streamflow using LSTM.

 

Model Mean Standard deviation Skewness

MD-1 20.84 31.13 6.84

MD-2 21.33 27.94 4.37

MD-3 19.14 27.87 4.17

MD-4 21.51 26.25 3.98

MD-5 20.67 24.37 4.16

MD-6 20.57 26.73 4.30

MD-7 28.04 27.43 4.40

MD-8 21.57 32.26 6.93

MD-9 20.37 32.16 7.21

Table 5.  Statistical analysis in the introduced models.

 

Scientific Reports |         (2025) 15:8913 10| https://doi.org/10.1038/s41598-025-93465-9

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


The LSTM model was trained and tested on MD-1 to MD-9 time series data. The violin plot and box plot 
distribution of the observed and predicted streamflow during the training and testing periods for all models, 
Fig.  9. Correlation coefficients and standard deviation values between predicted and observed values might 
be shown in this diagram to aid in the detecting of changes between the two values. In Violin and Box plots, 
the MD-8 model captured the extreme values better during the training and testing than the MD-2 and other 
models. In the middle of the chart, there is a box that shows the median, quartiles, and maximum and minimum 
data. The violin chart allows us to observe the distribution of data along the vertical axis to estimate the actual 
density of data and to identify the points where data is most concentrated. The violin shape shows the density 
of data distribution. The MD-2 distribution, in comparison to both prediction and observation, shows that the 
test distributions are slightly wider than the training distribution, indicating more variability in the test, and the 
MD-8 distribution for prediction and observation data is relatively similar.

All models represented the data distribution well. The predicted data in the MD-8 model is more similar to 
the observed data, which indicates that the MD-8 model performs better during training and testing than the 
MD-2 model, Fig. 9. In addition, the efficiency of the model was compared using the Taylor diagram, Fig. 10. 
The Taylor diagram provides a comparative assessment of the model’s performance on different datasets and for 
different configurations. The concluded MD-8 model showed the highest accuracy. The Taylor diagram illustrates 
normalized standard deviation (radial axes), correlation coefficients (angular axes), and root mean square 
error (RMSE) (dashed arcs). A closer proximity to the reference point (observed data) indicates higher model 
accuracy. In the Taylor diagram, the distance from the center represents the ratio of the standard deviation of the 
predicted data compared to that of the observed data. The larger the radial distance, the more the predicted data 
aligns with the observed data, highlighting the differences between the predicted and observed values.

The Taylor diagram with the observed and predicted streamflow during the training and testing periods for 
MD-1 to MD-9 is depicted in Fig. 11.

Fig. 7.  Streamflow forecasting scatter plots through testing with LSTM (a) MD-2, (b) MD-8.

 

Fig. 6.  Streamflow forecasting scatter plots through training with LSTM (a) MD-2, (b) MD-8.
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The Beeswarm plot with the observed and predicted streamflow during the training and testing periods 
for all models is presented in Fig. 12. In Beeswarm plots, the observed and predicted data for both training 
and testing datasets are analyzed. The numerical distribution diagram illustrates the flow distribution of the 
numerical variable. This chart allows for a direct visual comparison of the distributions of the numerical variable 
between the two categories.

Fig. 8.  Streamflow forecasting scatter plots through training with LSTM (a). MD-1, (b). MD-3, (c). MD-4, (d). 
MD-5, (e). MD-6, (f). MD-7, (g). MD-9 and testing with LSTM (a1). MD-1, (b1). MD-3, (c1). MD-4, (d1). 
MD-5, (e1). MD-6, (f1). MD-7, (g1). MD-9.
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While the Beeswarm plot shows the distribution, incorporating summary statistics like the mean or median 
for each group would make the comparison more concrete. In the MD-8 plot, the training data (Train-MD-8) 
distribution is centered lower on the scale and shows a wider spread (more variability). In contrast, the testing 
data (Test-MD-8) distribution is centered higher on the scale with a narrower spread (less variability). There are 
slight differences in the distributions compared to the MD-9 chart, which could be attributed to changes in the 
model architecture, hyperparameters, or the data used.

Figure 8.  (continued)
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The Train-MD-2 data shows a higher concentration of points in the lower flow range, with a greater density 
of blue points towards the bottom of the distribution. While most points are concentrated at the lower end, there 
is still a noticeable spread extending towards higher flow values, indicating a range of flow magnitudes within 
the training set. In contrast, the Test-MD-2 data exhibits a wider spread across the flow range compared to 
Train-MD-2. Red points are observed from very low flow values all the way to much higher values. The density 
of points in Test-MD-2 is less pronounced at the lower flow range compared to Train-MD-2. Although there are 
still points at the lower end, they are more dispersed. Regarding higher flow values, Test-MD-2 clearly shows a 
greater presence of higher flow values than Train-MD-2. In conclusion, the bee swarm diagram reveals notable 
differences in flow distribution between Train-MD-2 and Test-MD-2. The wider spread and presence of higher 
flow values in the test set suggest potential challenges for model generalization and underscore the importance 
of understanding the underlying data characteristics.

The distribution of the training data (MD-9) appears to be centered lower on the scale and shows a wider 
spread or variability. In contrast, the testing data (MD-9) distribution is centered higher on the scale compared 
to the training data (MD-9). It also seems to have a narrower spread, suggesting less variability in the values. This 
observation indicates that the model might be generalizing well to unseen data. Additionally, in the test dataset 
for MD-9, the model shows a lower error, which indicates better performance. The differences in spread could 
suggest that the training dataset (MD-9) is more sensitive to variations in the data.

The time series plots displayed in Fig. 13 indicate that the LSTM model accurately captures the discharge 
observations’ pattern. Figure 14 shows streamflow forecasting for the next 20 years with LSTM.

Finally, the peak discharge predicted by LSTM training was entered into the HEC-RAS software. The flood 
zone and inundation maps were created by modeling the peak discharge. The results indicate that the volume 
entering the reservoir is 76.73 million cubic meters, as illustrated in Fig. 15.

Forecasting analysis utilizing 2D HEC-RAS
The purpose of conducting hydraulic studies is to investigate and identify the flood zone of the Nesa River 
through hydraulic modeling. To achieve this goal, the HEC-RAS software has the capability to simulate one-
dimensional, two-dimensional and mixed flow. Version 6.5 Beta of the HEC-RAS hydraulic model has built-in 
features that can be used to easily perform the flood zone process. DEM resolutions of 30 m were utilized in 
simulations to create the inundation map for the 1998 flood (due to the devastating and historical floods in 
this river, theflood of 1998 was considered as the reference flood) and the floods with different return periods. 
Two boundary conditions were specified upstream, and one boundary condition was specified downstream. 
The boundary conditions were considered upstream of the flow hydrograph and downstream of the stage 
hydrograph. The level of the reservoir bed plus the flood depth were used in these boundary conditions. Maps 
of flood area size, depth, and flow rate are displayed according to the digital elevation model (DEM) with a 
resolution of 30 m. The maps involve floods with a return period of 25 to 500 years. Finally, for the flood event 
in 1998 with a 25-year return period, the volume entering the reservoir is equal to 26.62 and 76.26 million cubic 
meters, respectively. The surface area under the flood is 9.11 and 13.59 square kilometers, as shown in Fig. 16. 
The reservoir area measures 3,902,280 square meters.

The volume entering the reservoir with a return period of 100 and 500 years is equal to 148.73 and 
149.22 million cubic meters, respectively. The surface area under the flood is 19.76 and 20.96 square kilometers, 
respectively. The time of arrival of the flood to the reservoir is about 22 h in the return period of 100 years 
(Fig. 17).

The results of the volume, area, and arrival time of the reservoir during different periods are listed in Table 7. 
Based on the flood area in various return periods and the flood of 1998, it can be concluded that the percentage 

Figure 8.  (continued)
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of flood area with a return period of 100 years will increase significantly (approximately 216.9%) compared 
to the flood of 1998 in this region. Also, the volume of the reservoir in the return period of 100 years will 
reach 148.73 million cubic meters, which according to the average volume of the reservoir (103.44 million cubic 
meters), will reach about 252.17 million cubic meters, which will be about 84.17 million cubic meters in excess 
of the capacity of the reservoir, and it is necessary to think of measures in the overflow of the dam.

Mapping of flood hazard
The first step in flood hazard assessment is to recognize regions that are prone to flooding. From a reliable point 
of view, determine the areas flooding is a hydraulic hydrological modeling that can be applied to determine the 
flood area, depth and velocity of water. Flood hazard indicates the intensity of flood that will cause damage and 
casualties. There are several methods for flood hazard zoning41,42. In this research, the Australian method was 
used, which is a combination of two main flow parameters (depth and velocity) considered as criteria for flood 
hazard assessment. Based on that, six hazard levels are presented according to Table 8; Fig. 1843, .

Fig. 9.  Streamflow forecasting Violin Diagram and Box plots through training and testing with LSTM (a). 
Violin Diagram Train MD-1 to MD-9, (b). Violin Diagram Test MD-1 to MD-9, (c). Box plot TrainMD-1 to 
MD-9, (d). Box plot Test MD-1 to MD-9.
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According to the guidelines, flood hazard maps were generated for the flood of 1998 and for the 100 and 500-
year return periods. Additionally, the predicted flood was determined using LSTM. These maps were created 
by taking into account two parameters: depth and velocity. Flood hazard maps were created in two cases, flow 
hydrograph and fixed profile (peak discharge). In both cases, the Nesa River was classified as one of the most 
hazardous rivers and assigned to group H6, indicating that all types of buildings were considered vulnerable 
to failure. Thus, the possibility of dam failure is a significant concern. Figures 19, 20, 21 and 22 represent flood 
hazard maps produced for the geographical region of the Nesa River.

Finally, by transferring these maps to QGIS v 3.22.5 software, Difference Flood Hazard (DFH) maps have 
been obtained. DFH refers to the difference between the amount of damage caused by a flood and the amount of 
damage that can occur in reality. The DFH for the return period of 100 years, the streamflow predicted by LSTM, 
and the flood of 1998 are shown in Fig. 23.

DFH maps illustrate the difference in flood hazard under various conditions. DFH was added to the DEM 
maps in raster form. Figure 23 (a) shows a smaller difference compared to Fig. 23 (b).

In Fig. 23, the Difference Flood Hazard (DFH) map illustrates that the most affected regions are the river 
banks, the parts of the main channel, and the spiral parts of the river. The DFH in the 100-year return period 
and the streamflow predicted by LSTM in Fig. 23 (b) show that the flood hazard would reach its highest level at 
the junction of two river branches. In other words, it can be said that due to the high-risk potential of floods in 
the return period of 100 and 500 years, and considering that the region is mountainous and downstream is also 
connected to the reservoir, it is necessary to pay special attention to the proper management of water resources 
and flood warning systems.

Figure 9.  (continued)

Fig. 10.  Streamflow forecasting Taylor Diagram through training and testing with LSTM (a) MD-2, (b) MD-8.
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Discussion
As previously discussed, the primary research question of this paper is how to predict the streamflow based 
on the time series dataset using Long Short-Term Memory (LSTM) networks, as well as the assessment of 
flood zones and inundation resulting from HEC-RAS 2D. Nine different models were developed using daily 
streamflow data with Long Short-Term Memory (LSTM) networks, which generated predictions for the next 20 
years. Additional to the statistical parameters, the correctness of the investigated models (MD-2 and MD-8) and 
another models were validated using the scatter plot, violin plot and box plot and Taylor diagrams. Comparisons 
and analyses were conducted between the MD-2 and the best-performing model (MD-8). Finally, MD-9 was 
chosen as the research target. Its model can be extended for practical applications.

A comparison of LSTM between MD-2 and MD-8 with LSTM streamflow forecasts was provided in the 
analysis. The results show that the deep learning models demonstrate good streamflow prediction ability. This 
attribute makes deep learning have great potential in hydrological prediction and analysis. The MD-8 model 
proposed in this paper has fairly high prediction accuracy and also provides a reliable prediction interval.

Based on the literature review, in 2020, Zhu et al. carried out a study, and the findings demonstrated that 
the hybrid LSTM integrated with the Gaussian process would improve forecasting precision and offer a flexible 
prediction interval, which is extremely important for planning and administration in water resources. This 
conclusion is similar to the results of the present study44. In another investigation in 202324, , the LSTM model 
was created and utilized on the Dokan dam dataset for predicting daily reservoir inflow. The chosen input variable 
was the daily reservoir inflow. According to the LSTM results, regarding the training dataset, RMSE = 34.1, R² = 
0.98, and NSE = 0.98, respectively. For the testing dataset, RMSE = 19.1, R² = 0.99, and NSE = 0.98, respectively. 
This illustrates the performance of the testing set for predicting daily reservoir inflow using the developed LSTM 
method. It is to be mentioned that in the present study, the statistical analysis gave more reasonably results. While 
the current study focuses on historical streamflow data, climate change could significantly alter rainfall patterns 
and flood frequencies in the Nesa River basin. For instance, increased precipitation intensity, as projected in arid 
regions like Iran may amplify flood risks. Future iterations of this model could integrate climate projections to 
assess long-term reservoir capacity and floodplain management under changing climatic conditions.

Box plot and violin plot are both powerful tools for data analysis. In Fig. 9, the box plot displays the distribution 
and dispersion of data by showing the median, quartiles, and potential outliers, based on the maximum and 
minimum values. The standard deviation of the models MD-2 and MD-8 related to testing data varies between 
22.16 and 20.87, with a correlation between 0.86 and 0.92, and for training data varies between 27.94 and 32.26, 
with a correlation between 0.85 and 0.98. Theseplots in Fig. 9 (b, h) show that MD-8 is able to predict daily 
flow better than MD-2, with predictions closer to observations and a correlation of 0.92 for the test data and a 
correlation of 0.98 for the training data.

As well as, a Taylor diagram and a violin plot provide a deeper understanding of the data distribution by 
combining a box plot with a density plot, allowing for a visualization of the data’s distribution shape along with 
its summary statistics. The MD-8 model captured the values better during the training than the other models. 
The performance of the MD-9 model was similar to that of the MD-8. The statistical indicators in MD-8 confirm 
that it is suitable for flow prediction.

The qualitative performance evaluation of the models was achieved by visual observations such as Taylor 
diagram, scatter plot, violin plot and box plot, and quantitative evaluations were carried out using different 
statistical and hydrological performance indices, namely, root mean square error (RMSE), coefficient of 
determination (R2), the Nash–Sutcliffe coefficient of efficiency (NSE), the Mean Absolute Error (MAE), Kling-

Fig. 11.  Streamflow forecasting Taylor Diagram through training and testing with LSTM (a). Train MD-1 to 
MD-9, (b). Test MD-1 to MD-9.
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Fig. 13.  (a) The comparison of the training set and (b) the comparison of the testing set of MD-8 for LSTM 
Observed against Predicted daily streamflow.

 

Fig. 12.  Streamflow forecasting Beeswarm plot through training and testing with LSTM. (a) Train MD-1 to 
MD-2, (b) Test MD-1 to MD-9.
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Gupta efficiency (KGE), Mean bias error (MBE) were employed to evaluate the performance and accuracy of the 
model. After obtaining the predicted daily streamflow from the LSTM model, the volume of water inflow into 
the reservoir was 76.3 million cubic meters, and for return periods of 25, 100, and 500 years, calculations were 
made. In the following, the difference flood hazard (DFH) revealed that many parts of the river are serpentine, 
necessitating further study in this locality.

Conclusion
This research was conducted with the aim of flood forecasting and risk assessment, as well as determining the 
vulnerability of the Nesa River to floods. Data accumulated from the Nesa River basin over a period of 40 years 
has been split into two sets for training and testing purposes. The LSTM model was applied to predict streamflow 
for the next 20 years. The peak streamflow extracted from the LSTM model was then inputted into the 2D 
HEC-RAS software to generate flood zone maps and hazard maps. Regarding to evaluate the performance of 
the present model, two statistical criteria including MAE and R2 were calculated for both the training and test 
datasets. The examination of the region inundated during various return-period flood events is informed by 
the peak discharge values derived from frequency analysis performed using Easyfit and HEC-HMS software. 
The maximum instantaneous discharges at Nesa river for different periods were obtained using the Gamma 
distribution. Flood modeling was done using 2D HEC-RAS, and the required hydraulic parameters (depth, 
velocity, etc.) were extracted from this model. Using these parameters and following the existing standard in this 
field, flood zoning and flood hazard maps were prepared. To ensure graphical congruence of the fulfillment of 
different methods, observed and predicted daily streamflow data were applied to create scatter plots and time 
series graphs. The results of generating flood zone maps using both the 2D HEC-RAS and LSTM approaches were 
evaluated. Results indicate that the volume of water inflow into the reservoir 76.3 million cubic meters by the 
LSTM model and for return periods of 25, 100 and 500 years were calculated as 76.26, 148.73 and 149.22 million 
cubic meters, respectively. The results show that the volume of water inflow into the reservoir is 76.3 million 
cubic meters according to the LSTM model. The calculated values for return periods of 25, 100, and 500 years are 
76.26, 148.73, and 149.22 million cubic meters, respectively. The surface area under the flood is 9.11, 19.76, and 
20.96 square kilometers, respectively. The arrival time of the flood to the reservoir is about 22 h for the return 
periods of 100 and 500 years. Examining the flood hazard maps shows that based on the ADRH method, the 
flood is classified as H6, which means it is unsafe for people and vehicles. All types of buildings are regarded as 
susceptible to failure. In the following, the Difference Flood Hazard (DFH) maps illustrate that the most affected 
areas are the banks of this river, the parts of the main channel, and the spiral parts of the river. According to the 
DFH map, the villages around the river are at risk of flooding. However, due to the mountainous terrain of the 

Fig. 14.  Streamflow forecasting for the next 20 years by LSTM.
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area, a significant portion of the flood volume is stored in the reservoir to prevent damage to the downstream 
areas.

Finally, the present study indicated that LSTM methods are capable of predicting daily streamflow in this 
study field. Consequently, the models are deemed appropriate for forecasting streamflow and, as a result, for 
the effective management of flood events. The utilization of deep learning frameworks in conjunction with 
hydrological models ought to be augmented to enhance the efficacy of long-term streamflow predictions. CNN 
(Convolutional Neural Networks) can be implemented on spatiotemporal data, such as satellite imagery of 
flood-prone areas, to identify patterns and predict flood occurrences. BiLSTM (Bidirectional Long Short-Term 
Memory) and GRU (Gated Recurrent Unit) are other deep learning models recommended for integration with 
hydrological assessments to improve predictive performance in flood forecasting. Although LSTM was selected 
for its proven efficacy in sequential data, alternative architectures like GRU or hybrid models (e.g., CNN-LSTM) 
could further validate our results. For example, GRUs offer computational efficiency, while CNNs excel at spatial 

Fig. 16.  Flood zone and Inundation map for (a) the flood event in 1998 and (b) 25-year return period of Nesa 
River using HEC-RAS v 6.5 Beta software.

 

Fig. 15.  Flood zone and Inundation map with Streamflow forecasting for the Nesa River by LSTM using HEC-
RAS v 6.5 Beta software.
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feature extraction from raster data. Future studies may explore these models to assess robustness across diverse 
hydrological regimes.

Together, these technologies create a robust framework that enhances the accuracy of flood predictions, 
ultimately aiding in the mitigation of flood impacts. The use of numerical models, such as SWAT and HEC-
HMS, in combination with various deep learning algorithms, such as BiLSTM and GRU, can provide valuable 
information for researchers, especially given the lack of information and limitations in this area.

It is to be mentioned that the exact effects of climate change can be considered as a suggestion for further 
research.

Return period
Volume reservoir
(MCM) Arrival time (hr)

Flood inundation areas
(km2)

Flood 1998 26.62 66.83 9.11

Predicted Flood 76.3 34.16 13.34

25 76.26 33.33 13.59

100 148.73 22 19.76

500 149.22 22 20.96

Table 7.  Results of 2D HEC-RAS model.

 

Fig. 17.  Flood zone and Inundation map with (a) 100, and (b) 500 years return and (c) arrival time flood to 
reservoir in 100 years return period of Nesa River using HEC-RAS v 6.5 Beta software.
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Fig. 18.  Illustration of general curves for flood hazard vulnerability43.

 

Table 8.  Levels of flood risk43.
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Fig. 20.  Representation of flood hazard maps produced for the geographical region of the Nesa River with a 
return period of 100 years. (a) D*V ) m*m/s) event plan, (b) flood hazard event plan, (c) peak discharge hazard 
event plan using HEC-RAS v 6.5 Beta software.

 

Fig. 19.  Representation of flood hazard maps produced for the geographical region of the Nesa River the flood 
of 1998, (a) D*V ) m*m/s) event plan, (b) flood hazard event plan, (c) peak discharge hazard event plan using 
HEC-RAS v 6.5 Beta software.

 

Scientific Reports |         (2025) 15:8913 23| https://doi.org/10.1038/s41598-025-93465-9

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fig. 22.  Representation of flood hazard maps produced for the geographical region of the Nesa River with 
discharge predicted by LSTM. (a) D*V ) m*m/s) event plan, (b) flood hazard event plan, (c) peak discharge 
hazard event plan using HEC-RAS v 6.5 Beta software.

 

Fig. 21.  Representation of flood hazard maps produced for the geographical region of the Nesa River with a 
return period of 500 years. (a) D*V ) m*m/s) event plan, (b) flood hazard event plan, (c) peak discharge hazard 
event plan using HEC-RAS v 6.5 Beta software.
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Data availability
The paper models and data can be available from the corresponding author upon request.
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Fig. 23.  (a) DFH map for flood with return period of 100 years and the flood event in 1998), (b) DFH map 
for flood with return period of 100 years and inflow predicted in LSTM of the Nesa River using ArcGIS 10.8 
software.
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