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Floods are among the natural disasters that pose significant threats to both urban and rural
infrastructure, as well as the lives and properties of individuals. Streamflow prediction is essential for
obtaining hydrological information and is critical for a variety of water resource projects. While precise
daily streamflow predictions are indispensable, forecasting streamflow according to the limited data
can help reduce computational time and enhance the efficacy of flood early warning systems. The
purpose of this research is streamflow forecasting with the Long Short-Term Memory (LSTM) approach
for the next 20 years. The peak streamflow extracted from the LSTM model was entered into HEC-

RAS software and obtained flood zone maps and hazard maps. Furthermore, the effectiveness of the
proposed method was assessed through statistical analysis, including the coefficient of determination
(R?), Mean absolute error (MAE), Root mean square error (RMSE), Nash-Sutcliffe efficiency (NSE),
Kling-Gupta efficiency (KGE) and Mean bias error (MBE). In addition to the numerical comparison, the
models were evaluated. Their performances were evaluated based on graphical plotting, including
scatter plot, violin plot, box plot and Taylor diagram. In the chosen model (MD-8), the values RMSE
(m3/s), R?, MAE, NSE, KGE and MBE are 4.57, 0.98, 2.56, 0.98, 0.94 and 0.17 during the training period,
respectively, and 6.40, 0.92, 3.81, 0.89, 0.87 and 0.09 during the testing period, respectively. The
simulation was tailored to the daily streamflow series of the Nesa river in Iran, which spans over 40
years. It is evaluated the results of generating flood zone maps using both the 2D HEC-RAS and LSTM
models. The water inflow volume into the reservoir was found to be 76.3 million cubic meters, based on
the peak streamflow predicted by the LSTM approach. The present model results demonstrate that the
volume of water inflow into the reservoir for return periods of 25, 100 and 500 years were calculated as
76.26, 148.73 and 149.22 million cubic meters, respectively. Additionally, the Difference Flood Hazard
(DFH) maps are obtained, illustrating the difference in flood hazard under various conditions.
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Enhancing flood forecasting with the integration of process-based and Deep Learning Models is a critical focus
in studying natural disasters. Floods pose various destructive consequences that put everything associated with
humans at risk!. Many deaths and significant harm to livelihoods, property, infrastructure, and utility services
result from this danger?. The occurrence of floods is typically attributed to natural events, resulting from severe
weather conditions that lead to the overflowing of main rivers and their smaller branches, inundating adjacent
areas’.

The flood phenomenon is also considered one of these natural disasters, which has increased in number and
extent over the years due to human intervention. In general, the phenomenon of flood occurs when the soil,
and plants cannot absorb rain or runoff from melting snow and the rivers do not have the capacity to pass these
waters. The overflow of these waters from the main bed of the river and the occupation of the plains around it
can damage residential houses, offices and facilities, ultimately putting human lives at risk. Although arid and
semi-arid regions make up the majority of Iran, it has always been exposed to flood risks. Due to flood modeling
and forecasting, it is necessary to identify the factors causing and intensifying it, investigate the damages, and
prevent and reduce the damages®. Flood modeling involves a technical approach that can offer accurate details
about the flood profile, encompassing factors that influence flooding, such as rainfall, surface waterflow, and
characteristics of the watershed”.
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The Hydrologic Engineering Center’s River Analysis System (HEC-RAS) software is considered as one of
the most widely used tools for investigating flood simulations because of its significantly improved capacity to
simulate canals and natural rivers®’.

Flood modelling necessitates a two-dimensional modeling; in this aspect, HEC-RAS represents
groundbreaking research in the subcontinent and throughout the world. The water surface elevation determines
the accuracy of the flood map. Although GIS and HEC-RAS 1D models may be inadequate to portray actual
circumstances, automated floodplain mapping and analysis using HEC-RAS (2D) will provide more efficient,
effective, and consistent results®.

In a research by Sarchani et al. in 2020, they combined flood study with one-dimensional and two-dimensional
HEC-RAS on a river in Greece named Crete to calculate the flood risk map in the catchment area. To ensure the
accuracy of parameters such as the Manning coefficient of the river, they used a simultaneous analysis method.
The results of the simulation can be helpful in creating flood risk maps®. While this study focuses on natural
flood dynamics, dam failure scenarios (e.g., structural breaches or overtopping) could exacerbate inundation
risks downstream. For instance, in 2022, Hosseinzadeh-Tabrizi et al. utilized a 2D HEC-RAS model to simulate
the flood downstream of the Sattar Khan Dam, located in the northwest of Iran. The importance of this issue is
the location of Ahar city downstream of the dam. Their research investigated the population and infrastructure
of this area based on two dam failure scenarios. The results indicated that certain population centers downstream
of the dam area are at flooding risk in case of dam break. The study calculated the arrival time of the flood and
the maximum velocity in the affected regions. The aim of their research was to aid in the development of a
comprehensive crisis management plan'’. In 2022, Mohammadi et al. assessed the performance of numerical
simulations in replicating river flood zones within the Azarshahr Qushqura River area. They also contrasted the
1D and 2D hydraulic models of HEC-RAS. The flood flow hydraulic characteristics, such as the velocity and
depth of the flow at various cross sections, were assessed. Findings indicated that the two-dimensional model
HEC-RAS displayed the least error in the water surface level (flow depth) in comparison with other hydraulic
parameters of flood flow, as opposed to the one-dimensional model'.

In a study by Vashist and Singh in 2023, a 2D hydrodynamic model was utilized for charting flood inundation
for the Krishna River. Flood maps were generated using Digital Elevation Models (DEMs) with different
resolutions. The impact of alterations in upstream boundary data on the extent of the flooded area was also
investigated in their study. The simulated outcomes obtained from the 12.5-m resolution DEM demonstrated
reasonable agreement with the validation data and closely matched the documented inundated regions?.

The Keser watershed was the focus of a 2023 research study, which involved numerical modeling of flood
hydrographs. This was conducted to aid in disaster risk reduction and the efficient management of water
resources, particularly for the development of an Emergency Action Plan (EAP) for the Tugu Dam. This study
focused on calculating peak discharge. Based on the calculations, the flood discharge calculated utilizing the
HEC-HMS model was 451.1 m¥/s. The values of peak discharge calculated using the Gamma, Nakayasu and
Snyder methods were 410.4, 424.2 and 439.4 m3/s, respectivelylz.

In 2023, Shaikh et al. evaluated the flood event of 2006 in the low-lying areas of Surat city, India, using the
HEC-RAS model for 2D hydrodynamic modeling within a GIS framework. In this study, a 30-meter resolution
digital elevation model of Surat city was obtained from SRTM data. The discharge hydrograph from the Ukai
Dam during the flood event, along with normal depth, was considered as the upstream and downstream
boundary conditions for the simulation. The simulated flood results, when compared to the observed flood
mapping of 2006, showed correlation coeflicient values of R2=0.96, NSE =0.90, and RMSE =0.66 m*>.

In 2024, El-Bagoury and Gad assessed the risks of flash floods, calculating the volume of flood discharge in
two drainage basins in southeastern Egypt that had experienced several devastating floods. Their study revealed
that the effects of floods caused by torrential rains were more severe in areas near the mouth of the Nile River.
To mitigate these risks, they recommended the construction of five dams, each with a height of ten meters, to
create a water storage lake!?.

In the last decade, information-based frameworks such as Machine Learning (ML) and Deep Learning (DL)
approaches have attracted attention in the fields of hydrological studies and water management'®. Numerous
factors aided the development of DL in hydrology, which include: (a) availability of substantial amounts of
information, (b) quick development in the concurrent processing systems with multi-core capabilities, GPU
technology, (c) specific software frameworks including TensorFlow and keras that allow developing tiered deep
learning structures without investigating complicated mathematical aspects, (d) effective optimization results
attaining nearly optimal outcomes, and (e) enhanced regularization techniques to counteract overfitting*®.

The development of the LSTM model involved utilizing deep learning techniques, and it has been
operationalized as a conventional machine learning method to forecast daily inflow. After that, it became very
popular as one of the successful deep learners in the field of artificial neural networks. The term “deep learning”
was first introduced to Descartes Machine Learning and Artificial Neural Networks by Eisenberg and her
colleagues'”. It should be noted that various discussions have been carried out regarding the use of machine
learning (ML) models across different areas of hydrology and flow estimation'®. Neural network approaches,
such as LSTM, due to their consecutive structure, can exploit complex properties more efficiently than traditional
machine learning models, assuming that adequate information is supplied'®. Moreover, Liu et al.? announced
that the Long Short-Term Memory model, which features built-in storage, is capable of learning and retaining
long-term connections in the input-output relationship across various climate conditions. Cheng et al.?! used
ML algorithms to forecast long-term flow on both a daily and monthly basis. Neural network models, recurrent
neural networks, and a robust technique for understanding time dynamics for an extended duration or capturing
nonlinear correlations are used to predict flow in terms of daily and monthly rates associated with a prolonged
duration. Findings of this study showed that the LSTM managed to advance daily flow predicting and would be
useful in supporting a framework for decision processes for hydrological management.
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A recent study was conducted in the region of southwestern India called Kerala, which has an annual mean
rainfall of approximately 3,000 mm, using deep neural networks. In this research, flood forecasting has been
investigated using in-depth training. Forecasting was analyzed using meteorological data focusing on LSTM and
RNN-GRU approaches and evaluated by RMSE and MAE criteria?’.

The long short-term memory (LSTM) network has been widely utilized due to its recurrent architecture
and distinctive gating system. This approach has demonstrated significant potential in hydrological forecasting,
including flood alerts and river level predictions?*. Latif and Ahmed utilized deep learning and machine learning
algorithms to predict the daily inflow of the Dukan Dam on the Zab River in the Kurdistan Region of Iraq. They
compared the performance of the deep learning algorithm with that of the enhanced Boosted Regression Tree
(BRT). The results indicated that the root mean square error (RMSE) for the Long Short-Term Memory (LSTM)
model demonstrated significantly superior accuracy. The LSTM model exhibited high reliability and accuracy,
making it a valuable tool for predictions?®. Li et al.?® proposed anew hybrid method that merges traditional
physical models with historical data to train LSTM networks. Using the NAM hydrological model and the HD
hydraulic model, on the Jinhua basin in China to evaluate the effectiveness of LSTM models trained on different
datasets. Results show that LSTM models trained on mixed datasets, particularly those with a simulated-to-
measured data ratio of less than 2:1, perform better, achieving lower RMSE and MAE values. This hybrid model
represents a significant advancement in flood forecasting, offering a viable solution to issues of computational
efficiency and data scarcity. Dtissibe et al.!® has experienced on the Far-North region of Cameroon, flood
prediction techniques in the area are mainly based on physical models and often produce inadequate outcomes.
This study investigates the use of artificial intelligence, particularly machine learning and deep learning
algorithms, to enhance flood forecasting. The research compares different models, such as one-dimensional
convolutional neural networks, Long Short-Term Memory (LSTM), and Multi-Layer Perceptron, utilizing
temperature and rainfall time series data as inputs. Performance is assessed using metrics like Nash-Sutcliffe
Efficiency and Root Mean Squared Error. The results show that the LSTM model excels in both short-term and
long-term flood forecasting, exhibiting strong performance and generalization capabilities.

Although the utilization of deep learning and LSTM model concepts has grown in popularity, an extensive
discussion of deep learning concepts, methodologies, deployments, challenges, research deficiencies, and future
possibilities and its combination with numerical models in hydrology is still lacking, which is the main reason
for this review.

Consequently, this study’s contribution is centered on employing the LSTM model to determine the daily
peak streamflow and generate flood hazard maps through 2D HEC-RAS. Subsequently, the hazard maps depict
potential flooding cases with return periods of 25, 100, and 500 years. By examining the flood hazard maps and
the reservoir volume, it is tried to evaluate the capability of the reservoir to contain the flood volume.

Materials and methods

Introduction of study area

Streamflow prediction of the Nesa river which is located in the country of Iran between longitudes 55°17 to
61°11’E and latitudes 27°52° to 34°7°N with an area of 760 square kilometers is considered a pertinent case study
to fulfill the aims of this investigation (Fig. 1). Additionally, the average altitude of the basin is about 2424.7 m.
The length of the main river under study is about 22.4 km and the tributary is 12.4 km.

The average annual rainfall in the area is 400 mm, and in most places it is less than 100 mm, with the highest
amount is in the winter season. The maximum monthly rainfall is in January, February and March and the
minimum is in July and August. The economic development of the Bam region greatly depends on the Nesa Dam
and the flow downstream, which also has significant environmental and hydrological implications.

For the purpose of simulating streamflow forecasting, a range of daily discharge data spanning from 1978 to
2019 was gathered for this research. The total number of daily discharge data points is 14,976. Out of this total,
11,980 are selected as training data and 2996 are designated as test data.

The Yalkhari hydrometric station is located 8 km from the Nesa Dam. Figure 2 shows the daily discharge
during these years at this specific station. The years 1979 and 2002 lacked data and were therefore excluded from
the calculations. The hydrological characteristics of the research area are presented in Table 1.

Methodology

In hydrology, the process of streamflow prediction is extremely important?®?’. In this study, an investigation
is conducted to assess how different forecasting models perform. The LSTM network is frequently utilized for
handling time-series data due to its impressive memory capacity, giving it inherent benefits for processing such
data?. Nowadays, significant progress has been achieved in methodologies and practical applications through
the advancements of deep learning. According to the results obtained, it is obvious that the implementation
of the created LSTM model demonstrates significant and improved accuracy, making it a dependable and
trustworthy tool for forecasting streamflow and other hydrological factors. As mentioned earlier in the literature
review, numerous research studies confirm the significance and reliability of LSTM, either on its own or when
integrated with other algorithms in hybrid models?*. LSTM has proven to be an effective tool for sequence
modeling in various tasks, as it has the ability to retain past information for prediction purposes. In their study,
Fu et al.” introduced the outcomes of an improved LSTM model and demonstrated its clear benefits in handling
continuous streamflow data during the arid periods in the Kelantan River, located in Malaysia. Rainfall and
inflow were the input parameters of their study.

The implementation of the model can be effective, depending on prior studies. the authors compared?* BRT
and DL prediction models using daily discharge data from Dokan Dam, on the Lesser Zab River. Training and
testing subsets were created from thedataset. The data was divided into two parts: 80% for training and 20%
for testing. The authors'® utilized a dataset comprising historical temperature and rainfall time series from the
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Fig. 1. Representation of the study area geographical location using ArcGIS 10.8 software.

Far-North region of Cameroon. Temperature and rainfall values were recorded weekly or monthly from 1980
to 2020. The dataset was divided as follows: 80% was used for model training and 20% for model testing. In the
present study, the ratio of 80:20 was considered for the dataset.

With repeated tests, the ratio of 80:20 was found to yield the best results for the dataset. Other ratios, such as
70:30, decreased the accuracy and negatively impacted the model’s performance.

In this part, there is a description of the Long Short-Term Memory Network (LSTM) used for forecasting
streamflow and modeling 2D HEC-RAS, a widely used hydraulic model for flood zone mapping and inundation.
The purpose of this research is to utilize a deep learning model for long-term forecasting and to integrate it with
the HEC-RAS numerical model. This approach aims to assess potential measures for mitigating high-risk floods
while considering the presence of a reservoir. By using deep learning and a large dataset, the LSTM (Long Short-
Term Memory) model was identified as suitable for sequential data analysis, particularly in tasks such as time
series prediction, due to its superior performance in these contexts.

Deep learning, as a subset of machine learning, is particularly effective for solving complex problems.
Previous studies and analyses of time series data indicate that the LSTM model is the most effective solution for
the specific needs of this research. It is important to note that deep neural networks, including LSTM, require
substantial amounts of data and powerful hardware to process this data effectively in order to achieve optimal
performance. Consequently, the LSTM model was selected as the primary model after thorough investigation.
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Fig. 2. The Yalkhari station discharge values on a daily basis for 40 years.

Nesa | 224 760 400 2424.7 2.3 170.2 1.7 73.6 11.5

Table 1. Hydrological characteristics of the Nesa river basin.

Model Target variable Input combination
MD-1 Q: Q1
MD-2 Q Q1. Qr2

MD-3 Q: Qt1. Q2. Qi3

MD-4 Q: Qt-1. Qt2. Qr3. Qr4

MD-5 Q Qe1. Qr2. Q3. Qra. Qrs

MD-6 Q: Qt-1. Q2. Qr3. Qea. Qrs. Qr6

MD-7 Q: Qt-1. Q2. Qr3. Q. Q5. Qrs. Q7
MD-8 Q: Qe Qe --- . Qt-2000
MD-9 Q Qt1. Qra. ... . Qt-8000

Where Q: is streamflow, and Q-1 1s lag time for previous inflow.

Table 2. Representation of daily inflow time series data considered for proposed model combinations.

In the present study, the LSTM model was developed using Python and Keras. The model consists of four
levels of neurons (200-100-80-30) and activation functions. The model underwent training for 100 epochs, after
which it made predictions using the testing data. Nine different models (MD) have been proposed to choose the
most accurate input parameter (Table 2).
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Introduction of LSTM model

Long Short-Term Memory (LSTM), suggested by Hochreiter and Schmidhuber®, is a modified version
designed to address the limitations of the Recurrent Neural Network (RNN) and overcome the issues of gradient
explosion or vanishing®'. The LSTM model developed in the present study includes three layers: input, hidden,
and output layers. The LSTM model’s design is shown in Fig. 3*>%. The sequential input x = {x, X,, ..., X}
and the output chain y = {y,, y,..., y} are linked by the forget door, which determines whether the current
data should beforgotten or remembered. At a particular time stage t, the calculation can be performed in the
following manner®*:

ht = H (Whnht—1 + WhxXt + bn ) t>0 (1)

Where b, is the forget door bias, W, and W, _represent the forget weight matrix and the forget-hidden weight
matrix, and H represents the nonlinear activation funthion. Tanh and ReLU are the most common choices for
H activation in recursive networks. The parameter cymemorizes the up-to-date data and the forget door f,
concludes the data updating. They are presented as follows:

fi = 0 (Wxsxe + Wnrshe—1 + bg) (2)

Cy = tanh (WxiXs + Whihe—1 + bi) 3)

where W_.and W, . denote the weight matrix. The weights and biases are also displayed with the W and b symbol.
The bias vectors for the input door and the cell state update are depicted sequentially as b;and b,. Afterward, the
new state of the memory cell, ¢, is updated in the following manner:

ct = (ft*ct—l + iy * Et) (4)

where c,_, represents the previous state of the memory cell, and the * represents element-wise product. The
output door handles the output activations at the end. The hidden layer, which is sent to a subsequent time stage,
is defined as follows:

hy = o¢*tanh (cy) (5)
ot = 0 (WxoXt + Wnoht—1 + bo) (6)

where the output weight matrix is represented as w_, b_ is the output door bias and w, | represents the output-
concealed weight matrix.

Implementation of LSTM model
The procedure for the implementation of the LSTM model consists of the following steps;

i. To begin, the sequence data containing input parameters needs to be loaded, with the time steps aligned
with the day value associated with streamflow. In LSTM, the model learns to remember relevant informa-
tion from past time steps (or previous elements in the sequence) and uses that information to make predic-
tions or generate output at the current time step. Each time step represents a moment in time or a specific
position in the sequence and is typically represented as a column in the input data matrix.

.
a
- pu tanh
tanh Ct l
Q
hea @) = $® — [

Xt

Fig. 3. Representation of the LSTM layer.
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Fig. 4. The Yalkhari station discharge values on a daily basis for 40 years.

Algorithm | Parameters

Hyperparameter | Value

Input size 1
Output size 1
Hidden layers 4
LSTM Hidden nodes 200-100-80-30
Learning rate 0.001
Batch size 2
Epochs 100-80-50
Time steps 1,2,...,2000

Table 3. The presentation of Hyper-parameters used in the LSTM.

ii. Next, it’s time to split the training and testing data into separate partitions. In the present study, the pro-
posed LSTM model has been trained on 80% of the time-series data, and 20% of the time-series data has
been chosen to test the mFig. Fig. 4.

iii. The next step involves normalizing the data in order to achieve a zero mean and unit variance, which will
improve the fitting and prevent the training from diverging.

iv. Finally, the responses and predictors need to be prepared.

Q= f(Qt& Qg Qi ) (7)

After repeated stages, different hyper-parameters are set. The hyper-parameters used in the LSTM model are
presented in Table 3 as follows:

Model performance evaluation
Performance evaluation criteria in hydrological studies can be classified into various categories, each with
corresponding mathematical relationships. To assess the performance and accuracy of the model, a range of
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statistical and hydrological criteria were utilized to derive quantitative results. These include: the Mean Absolute
Error (MAE), coefficient of determination (R?), Root Mean Square Error (RMSE), the Nash Sutcliffe model
Efficiency coefficient (NSE), Kling-Gupta efficiency (KGE) and Mean bias error (MBE), which were employed
to evaluate the performance and accuracy of the model. In an ideal model, the MAE should be minimized and
close to zero, while the R? should be maximized and close to one. This indicates that the model accounts for a
considerable amount of the variance in the data. These criteria are calculated using the following Eqs*>*.

1
MAE = Z i — v (8)
211\1:1(Xi - Y)(Yi - y)

EE - K2 YN (v - 92
RMSE — \/&Zi\ll(xiyif (10)

R’ =

)

2?1:1 (Xi— §>2 v

1 2 _ 2
KGE=1- | (R(xiy;) —1)° + (W - 1) + (3_’ - 1) (12)
2 X

var(x;)

1
MBE = NZ(Xi - i) (13)

In which x, and y, represent the observational and computational values in the chronological step of i, respectively.
N denotes the total number steps, while x and y represent the average computational and observational values,
respectively, in the given order.

Numerical model: 2D HEC-RAS

The peak discharges for the basin, in addition to the land use maps, were utilized as inputs for the 2D HEC-RAS
approach, which allowed the simulation of the variability and distribution of the flow pathway. The model then
generated flood velocity and depth maps to determine the regions that were flooded and determine locations with
hazards'*. The two-dimensional HEC-RAS model has been employed for the analysis of reservoir operations®’,
and to enhance the urban flood risk assessment maps*. The 2D mesh’ flow field is computed using the diffusion
wave approximation approach, which results in a shorter computation time and a reduction in the possibility
of model instability in comparison to the shallow water Eqs'**°. The computational domain is divided into grid
cells, and HEC-RAS produces a comprehensive hydraulic property table for all cells. The model’s water surface
profiles, created with various hydraulic design elements, can assist decision-makers in investing resources to
better prepare for disasters and enhance the life quality. This is achieved by analyzing the severity of flooding and
flood inundation areas to improve the level of preparedness. In this research, the diffusion wave equations were
used in 2D HEC-RAS v 6.5 Beta, ArcGIS v 10.8 was utilized to create flood depth maps.

In the application of the HEC-RAS model, geometric data and flow data are two fundamental components.
Creating geometric data, which determines the river channel, longitudinal profile of the river, left and right
banks of the floodplain, and drawing the cross-section and flow direction, is the first step in simulating the flood
for different return periods using the HEC-RAS model. Topographic maps and DEM are utilized to transfer the
output to the HEC-RAS software. Subsequently, the RAS mapper tool is utilized to obtain the extent of flood
protection and hazard maps. The necessity of flood study in the period of different returns is to measure or
estimate the magnitude of peak flows. By analyzing flood frequency based on instantaneous maximum values
and probability distribution functions, the estimated best instantaneous maximum discharge can be determined.
The river bed boundary is determined using topographic maps, GIS, and HEC-RAS 2D. Floodplain maps offer
valuable information about the flood’s characteristics and its impact on the floodplain, allowing for timely
warnings to be issued during periods of flood risk.

Simulations

The two-dimensional unsteady HEC-RAS model was established by integrating the Digital Elevation Model
(DEM) of the research area into the RAS Mapper to generate the topographicalrepresentation. For the 30-meter
resolution DEM, 31,428 cells were produced for cell sizes dx and dy equal to 30 m and Manning’s roughness
coefficient (n) as 0.033. Each mesh should have only one computation point.

The model has been updated with a new geometry file for the terrain layer geometry data. The model
development also requires 2D surface roughness, Boundary Conditions (BCs), and unsteady flow data as other
parameters. The input for surface roughness includes the Manning’s roughness coefficient. To generate the mesh
and map inundation, a 2D flow area is specified for the terrain by outlining a polygon around the study area
involving all the relevant reaches. The flow area parameters were used to generate a computational mesh in
the 2D flow area. Figure 5 displays the two-dimensional flow area that was generated using a 30-meter DEM.
During flood simulation, the hydraulic model is calibrated by varying Manning’s coefficient for flood zones
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Fig. 5. 2D area plan and boundary conditions of the Nesa River using HEC-RAS v 6.5 Beta software.

Return period | 2 25 100 500 1000
Gamma 169.4 | 826.29 | 1191.3 | 1616.3 | 1799.7

Table 4. Gamma distribution results of maximum discharge values (M? /s).

and channels. Upon completing mesh generation, boundary conditions are applied to the 2D flow area for
performing unsteady flow analysis. Three boundary conditions, one downstream and two upstream, have been
applied close to the 2D flow region as displayed in Fig. 5. All necessary details are provided by flow data that is
considered for the unsteady analysis of the flow. For the boundary condition, a time series of discharge in the
form of a hydrograph (an input hydrograph) has been considered in the simulation.

Based on discharge data from the Yalkhari Hydrometric Station, the best fitting distribution was determined
according to three criteria: Anderson-Darling, Kolmogorov-Smirnov, and Kai-Squire for return periods of 2,
25, 100, 500, and 1000 estimates. After completing the data inputs, The HEC-RAS model was employed for
the purpose of conducting an extensive analysis of the flow. The model generated a comprehensive report of
the analysis, which included information on the flow depth, discharge values at each cross section, and other
simulation details. The examination of the region inundated under various return-period flood events is based
on the peak flows derived from frequency analysis executed through the utilization of Easyfit and HEC-HMS
v 4.10 software. The maximum instantaneous discharges at the Nesa river for different periods were obtained
using the Gamma distribution, as presented in Table 4.

To run the 2D HEC-RAS model, programs including the unsteady flow simulation, geometry preprocessor,
floodplain mapping, postprocessor, and simulation period should be determined for the evaluation of unsteady
flow. Computational settings include the hydrograph output interval, computation interval, and mesh generation
for a 30 m resolution DEM terrain layer and a 2D area flow with mesh provided for the simulations. The
calculation interval is an important parameter in unsteady flow calculations. It should be selected in a way that
ensures accuracy and stability according to the Courant condition, and produces satisfactory results*’. In order
to specify the optimal computation interval and maintain stability and accuracy, the computation interval was
set to 5 min. While this study utilized ground-based hydrological data, future work could incorporate remote
sensing datasets (e.g., satellite-derived rainfall from GPM or topographic data from LiDAR) to enhance spatial
resolution and real-time flood monitoring. Such integration could refine DEM accuracy and provide dynamic
inputs for LSTM models. As a result, applying remote sensing datasets could increase the accuracy of LSTM
prediction results.
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Model | Mean | Standard deviation | Skewness
MD-1 |20.84 |31.13 6.84
MD-2 |21.33 |27.94 4.37
MD-3 | 19.14 | 27.87 4.17
MD-4 |21.51 |26.25 3.98
MD-5 |20.67 |24.37 4.16
MD-6 |20.57 |26.73 4.30
MD-7 |28.04 |27.43 4.40
MD-8 |21.57 |32.26 6.93
MD-9 |20.37 |32.16 7.21

Table 5. Statistical analysis in the introduced models.

Training Testing

Criteria Model | MAE | RMSE | NSE | KGE | MBE | R> | RMSE | NSE | KGE | MBE | MAE | R?

MD-1 351 |1646 |0.62 |0.79 | 0.03 |0.72 | 12.25 |0.67 | 0.84 | 0.01 |2.80 |0.71
MD-2 325 |16.30 |0.66 | 0.81 |-0.49 | 0.73 |11.89 |0.71 | 0.84 |-0.51 | 259 |0.74
MD-3 3.64 |1633 |0.69 |081 | 1.7 |0.73 |11.90 |0.65 | 0.81 | 1.85 | 3.11 |0.73
MD-4 401 |16.38 |0.56 |0.74 | 131 |0.72 |11.59 |0.64 |0.70 | 0.97 |3.85 |0.73
MD-5 4.00 |16.34 |0.55 |0.73 0.17 1 0.73 | 13.98 | 0.65 | 0.74 0.97 | 3.49 |0.63
MD-6 546 |16.22 |0.63 {079 | 0.27 | 0.72 |11.7 0.78 [ 0.89 | 0.07 | 529 |0.72
MD-7 355 |17.74 |0.61 | 0.66 | 4.04 | 0.73 |12.29 |0.65 | 0.68 | 3.88 | 3.14 |0.73
MD-8 2.56 457 1098 094 | 0.17 (098 | 6.40 |0.89 |0.87 | 0.09 |3.81 |0.92
MD-9 2.37 | 436 098 090 | 1.37 |0.98 | 7.39 [0.86 |0.88 | 1.19 | 7.4 0.86

Table 6. The performance evaluation for forecasting daily streamflow using LSTM.

Results

Utilization of LSTM model for forecasting analysis

the empirical evidence indicates that the proposed Long Short-Term Memory (LSTM) model not only exhibits
significant superiority in the analysis of consistent streamflow data during the arid season but also demonstrates
commendable proficiency in discerning data characteristics within the highly variable streamflow data
encountered in the wet season. The advanced deep learning LSTM model results demonstrated that, in most
cases, it could accurately forecast extreme events. In the present study, the Nesa River dataset has been used to
develop and apply the LSTM model for daily streamflow forecasting. The daily streamflow over the past 40 years
is the chosen input parameter, and the daily streamflow prediction output parameter is extracted for the next
20 years.

The analysis was conducted across nine models, focusing on the average value, standard deviation, and
skewness of the data. The standard deviation serves as a measure of dispersion or variability within the dataset.
The results suggest that nearly all the models exhibit similar levels of dispersion. Furthermore, the positive
skewness value indicates that the data is inclined towards larger values as presented in Table 5.

According to Table 6, MD-2 and MD-8 were selected for analytical and graphical comparison because the
statistical indicators in MD-2 demonstrated better results than those of the other models. Additionally, MD-2
demonstrated better results than the first seven models, so it was compared with the best LSTM model which
is MD-8.

Considering all the models have been previously utilized and MD-8 outperformed the others, a forecast is
made for the next 20 years, which corresponds to about 8000 time steps (with a lag of four, consisting of 2000
time steps each). It is presented as model MD-9. According to the LSTM results, MD-8, regarding the training
dataset, the R?=0.98, RMSE=4.57, NSE=0.98, KGE=0.94, MBE=0.17 and MAE=2.56, respectively. For the
testing dataset, R2=0.92, RMSE =6.40, NSE=0.89, KGE=0.87, MBE =0.09 and MAE=3.81 respectively. Table 6
shows the performance of the training and testing sets for forecasting daily streamflow using the LSTM method.

According to Table 6, the output results of the model show that the R? values remain relatively constant from
the first model (MD-1) to the seventh model (MD-7). Among these models, MD-2 has the lowest mean absolute
error (MAE) and is therefore the basis for comparison with model MD-8, which has the best performance.

Additional to the statistical parameters stated in Egs. (8-13), the correctness of the investigated models
(MD-2 and MD-8) and other models were validated using the scatter plot, violin plot and box plot and Taylor
diagrams.

The techniques’ scatter plots demonstrate that for training and testing data MD-2 and MD-8, Figs. 6 and 7,
followed by LSTM, can forecast streamflow more accurately than alternative models due to the values generated
being closer to the optimal line. In the remaining models, scatter plots were drawn according to Fig. 8.
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Fig. 6. Streamflow forecasting scatter plots through training with LSTM (a) MD-2, (b) MD-8.
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Fig. 7. Streamflow forecasting scatter plots through testing with LSTM (a) MD-2, (b) MD-8.

The LSTM model was trained and tested on MD-1 to MD-9 time series data. The violin plot and box plot
distribution of the observed and predicted streamflow during the training and testing periods for all models,
Fig. 9. Correlation coeflicients and standard deviation values between predicted and observed values might
be shown in this diagram to aid in the detecting of changes between the two values. In Violin and Box plots,
the MD-8 model captured the extreme values better during the training and testing than the MD-2 and other
models. In the middle of the chart, there is a box that shows the median, quartiles, and maximum and minimum
data. The violin chart allows us to observe the distribution of data along the vertical axis to estimate the actual
density of data and to identify the points where data is most concentrated. The violin shape shows the density
of data distribution. The MD-2 distribution, in comparison to both prediction and observation, shows that the
test distributions are slightly wider than the training distribution, indicating more variability in the test, and the
MD-8 distribution for prediction and observation data is relatively similar.

All models represented the data distribution well. The predicted data in the MD-8 model is more similar to
the observed data, which indicates that the MD-8 model performs better during training and testing than the
MD-2 model, Fig. 9. In addition, the efficiency of the model was compared using the Taylor diagram, Fig. 10.
The Taylor diagram provides a comparative assessment of the model’s performance on different datasets and for
different configurations. The concluded MD-8 model showed the highest accuracy. The Taylor diagram illustrates
normalized standard deviation (radial axes), correlation coefficients (angular axes), and root mean square
error (RMSE) (dashed arcs). A closer proximity to the reference point (observed data) indicates higher model
accuracy. In the Taylor diagram, the distance from the center represents the ratio of the standard deviation of the
predicted data compared to that of the observed data. The larger the radial distance, the more the predicted data
aligns with the observed data, highlighting the differences between the predicted and observed values.

The Taylor diagram with the observed and predicted streamflow during the training and testing periods for
MD-1 to MD-9 is depicted in Fig. 11.
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Fig. 8. Streamflow forecasting scatter plots through training with LSTM (a). MD-1, (b). MD-3, (c). MD-4, (d).
MD-5, (e). MD-6, (f). MD-7, (g). MD-9 and testing with LSTM (al). MD-1, (b1). MD-3, (c1). MD-4, (d1).
MD-5, (el). MD-6, (f1). MD-7, (g1). MD-9.

The Beeswarm plot with the observed and predicted streamflow during the training and testing periods
for all models is presented in Fig. 12. In Beeswarm plots, the observed and predicted data for both training
and testing datasets are analyzed. The numerical distribution diagram illustrates the flow distribution of the
numerical variable. This chart allows for a direct visual comparison of the distributions of the numerical variable
between the two categories.
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Figure 8. (continued)
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While the Beeswarm plot shows the distribution, incorporating summary statistics like the mean or median
for each group would make the comparison more concrete. In the MD-8 plot, the training data (Train-MD-8)
distribution is centered lower on the scale and shows a wider spread (more variability). In contrast, the testing
data (Test-MD-8) distribution is centered higher on the scale with a narrower spread (less variability). There are
slight differences in the distributions compared to the MD-9 chart, which could be attributed to changes in the

model architecture, hyperparameters, or the data used.
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Figure 8. (continued)

The Train-MD-2 data shows a higher concentration of points in the lower flow range, with a greater density
of blue points towards the bottom of the distribution. While most points are concentrated at the lower end, there
is still a noticeable spread extending towards higher flow values, indicating a range of flow magnitudes within
the training set. In contrast, the Test-MD-2 data exhibits a wider spread across the flow range compared to
Train-MD-2. Red points are observed from very low flow values all the way to much higher values. The density
of points in Test-MD-2 is less pronounced at the lower flow range compared to Train-MD-2. Although there are
still points at the lower end, they are more dispersed. Regarding higher flow values, Test-MD-2 clearly shows a
greater presence of higher flow values than Train-MD-2. In conclusion, the bee swarm diagram reveals notable
differences in flow distribution between Train-MD-2 and Test-MD-2. The wider spread and presence of higher
flow values in the test set suggest potential challenges for model generalization and underscore the importance
of understanding the underlying data characteristics.

The distribution of the training data (MD-9) appears to be centered lower on the scale and shows a wider
spread or variability. In contrast, the testing data (MD-9) distribution is centered higher on the scale compared
to the training data (MD-9). It also seems to have a narrower spread, suggesting less variability in the values. This
observation indicates that the model might be generalizing well to unseen data. Additionally, in the test dataset
for MD-9, the model shows a lower error, which indicates better performance. The differences in spread could
suggest that the training dataset (MD-9) is more sensitive to variations in the data.

The time series plots displayed in Fig. 13 indicate that the LSTM model accurately captures the discharge
observations’ pattern. Figure 14 shows streamflow forecasting for the next 20 years with LSTM.

Finally, the peak discharge predicted by LSTM training was entered into the HEC-RAS software. The flood
zone and inundation maps were created by modeling the peak discharge. The results indicate that the volume
entering the reservoir is 76.73 million cubic meters, as illustrated in Fig. 15.

Forecasting analysis utilizing 2D HEC-RAS

The purpose of conducting hydraulic studies is to investigate and identify the flood zone of the Nesa River
through hydraulic modeling. To achieve this goal, the HEC-RAS software has the capability to simulate one-
dimensional, two-dimensional and mixed flow. Version 6.5 Beta of the HEC-RAS hydraulic model has built-in
features that can be used to easily perform the flood zone process. DEM resolutions of 30 m were utilized in
simulations to create the inundation map for the 1998 flood (due to the devastating and historical floods in
this river, theflood of 1998 was considered as the reference flood) and the floods with different return periods.
Two boundary conditions were specified upstream, and one boundary condition was specified downstream.
The boundary conditions were considered upstream of the flow hydrograph and downstream of the stage
hydrograph. The level of the reservoir bed plus the flood depth were used in these boundary conditions. Maps
of flood area size, depth, and flow rate are displayed according to the digital elevation model (DEM) with a
resolution of 30 m. The maps involve floods with a return period of 25 to 500 years. Finally, for the flood event
in 1998 with a 25-year return period, the volume entering the reservoir is equal to 26.62 and 76.26 million cubic
meters, respectively. The surface area under the flood is 9.11 and 13.59 square kilometers, as shown in Fig. 16.
The reservoir area measures 3,902,280 square meters.

The volume entering the reservoir with a return period of 100 and 500 years is equal to 148.73 and
149.22 million cubic meters, respectively. The surface area under the flood is 19.76 and 20.96 square kilometers,
respectively. The time of arrival of the flood to the reservoir is about 22 h in the return period of 100 years
(Fig. 17).

The results of the volume, area, and arrival time of the reservoir during different periods are listed in Table 7.
Based on the flood area in various return periods and the flood of 1998, it can be concluded that the percentage

Scientific Reports |

(2025) 15:8913 | https://doi.org/10.1038/s41598-025-93465-9 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Q(m3/s)

Q(m3/s)

3

2

2

1

Q(m3/s)

b

250 A

200 A

00

()

Violin Diagram for Train Data

50

00 -

50 <

00 -

N k/ bA 4

Oradicton MD-1 Odservation MD-1 Predision ND-2 Osservation MD-2 Predichion MD-3 Oosarvaton MD-3 Prodiction DL Observation WD redcion MDS Observation MD-S Prediction MD-6 Observation ND-4 Prodiction M0.7 Cbservatior MD-7 Prediction MD8 Observaticn ND-8 Prodiction MD.G Observasion MD.9

(b)

Violin Diagram for Test Data

150 A

100 4

50

200

175

150

125

100 A

EE)

1 2 2 predictionMD.3 3 = . =

()

Box Plot for Train Data

predictionMD1  cbservation MD.1  prediction MD.2 2 predictionMD.3 3 predi 5 prediction MD.T T

Fig. 9. Streamflow forecasting Violin Diagram and Box plots through training and testing with LSTM (a).
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MD-9, (d). Box plot Test MD-1 to MD-9.

of flood area with a return period of 100 years will increase significantly (approximately 216.9%) compared
to the flood of 1998 in this region. Also, the volume of the reservoir in the return period of 100 years will
reach 148.73 million cubic meters, which according to the average volume of the reservoir (103.44 million cubic
meters), will reach about 252.17 million cubic meters, which will be about 84.17 million cubic meters in excess
of the capacity of the reservoir, and it is necessary to think of measures in the overflow of the dam.

Mapping of flood hazard

The first step in flood hazard assessment is to recognize regions that are prone to flooding. From a reliable point
of view, determine the areas flooding is a hydraulic hydrological modeling that can be applied to determine the
flood area, depth and velocity of water. Flood hazard indicates the intensity of flood that will cause damage and
casualties. There are several methods for flood hazard zoning*""*2. In this research, the Australian method was
used, which is a combination of two main flow parameters (depth and velocity) considered as criteria for flood
hazard assessment. Based on that, six hazard levels are presented according to Table 8; Fig. 1843, .
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Fig. 10. Streamflow forecasting Taylor Diagram through training and testing with LSTM (a) MD-2, (b) MD-8.

According to the guidelines, flood hazard maps were generated for the flood of 1998 and for the 100 and 500-
year return periods. Additionally, the predicted flood was determined using LSTM. These maps were created
by taking into account two parameters: depth and velocity. Flood hazard maps were created in two cases, flow
hydrograph and fixed profile (peak discharge). In both cases, the Nesa River was classified as one of the most
hazardous rivers and assigned to group H6, indicating that all types of buildings were considered vulnerable
to failure. Thus, the possibility of dam failure is a significant concern. Figures 19, 20, 21 and 22 represent flood
hazard maps produced for the geographical region of the Nesa River.

Finally, by transferring these maps to QGIS v 3.22.5 software, Difference Flood Hazard (DFH) maps have
been obtained. DFH refers to the difference between the amount of damage caused by a flood and the amount of
damage that can occur in reality. The DFH for the return period of 100 years, the streamflow predicted by LSTM,
and the flood of 1998 are shown in Fig. 23.

DFH maps illustrate the difference in flood hazard under various conditions. DFH was added to the DEM
maps in raster form. Figure 23 (a) shows a smaller difference compared to Fig. 23 (b).

In Fig. 23, the Difference Flood Hazard (DFH) map illustrates that the most affected regions are the river
banks, the parts of the main channel, and the spiral parts of the river. The DFH in the 100-year return period
and the streamflow predicted by LSTM in Fig. 23 (b) show that the flood hazard would reach its highest level at
the junction of two river branches. In other words, it can be said that due to the high-risk potential of floods in
the return period of 100 and 500 years, and considering that the region is mountainous and downstream is also
connected to the reservoir, it is necessary to pay special attention to the proper management of water resources
and flood warning systems.
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Fig. 11. Streamflow forecasting Taylor Diagram through training and testing with LSTM (a). Train MD-1 to
MD-9, (b). Test MD-1 to MD-9.

Discussion

As previously discussed, the primary research question of this paper is how to predict the streamflow based
on the time series dataset using Long Short-Term Memory (LSTM) networks, as well as the assessment of
flood zones and inundation resulting from HEC-RAS 2D. Nine different models were developed using daily
streamflow data with Long Short-Term Memory (LSTM) networks, which generated predictions for the next 20
years. Additional to the statistical parameters, the correctness of the investigated models (MD-2 and MD-8) and
another models were validated using the scatter plot, violin plot and box plot and Taylor diagrams. Comparisons
and analyses were conducted between the MD-2 and the best-performing model (MD-8). Finally, MD-9 was
chosen as the research target. Its model can be extended for practical applications.

A comparison of LSTM between MD-2 and MD-8 with LSTM streamflow forecasts was provided in the
analysis. The results show that the deep learning models demonstrate good streamflow prediction ability. This
attribute makes deep learning have great potential in hydrological prediction and analysis. The MD-8 model
proposed in this paper has fairly high prediction accuracy and also provides a reliable prediction interval.

Based on the literature review, in 2020, Zhu et al. carried out a study, and the findings demonstrated that
the hybrid LSTM integrated with the Gaussian process would improve forecasting precision and offer a flexible
prediction interval, which is extremely important for planning and administration in water resources. This
conclusion is similar to the results of the present study**. In another investigation in 2023%%, , the LSTM model
was created and utilized on the Dokan dam dataset for predicting daily reservoir inflow. The chosen input variable
was the daily reservoir inflow. According to the LSTM results, regarding the training dataset, RMSE=34.1, R* =
0.98, and NSE =0.98, respectively. For the testing dataset, RMSE=19.1, R* = 0.99, and NSE=0.98, respectively.
This illustrates the performance of the testing set for predicting daily reservoir inflow using the developed LSTM
method. It is to be mentioned that in the present study, the statistical analysis gave more reasonably results. While
the current study focuses on historical streamflow data, climate change could significantly alter rainfall patterns
and flood frequencies in the Nesa River basin. For instance, increased precipitation intensity, as projected in arid
regions like Iran may amplify flood risks. Future iterations of this model could integrate climate projections to
assess long-term reservoir capacity and floodplain management under changing climatic conditions.

Box plot and violin plot are both powerful tools for data analysis. In Fig. 9, the box plot displays the distribution
and dispersion of data by showing the median, quartiles, and potential outliers, based on the maximum and
minimum values. The standard deviation of the models MD-2 and MD-8 related to testing data varies between
22.16 and 20.87, with a correlation between 0.86 and 0.92, and for training data varies between 27.94 and 32.26,
with a correlation between 0.85 and 0.98. Theseplots in Fig. 9 (b, h) show that MD-8 is able to predict daily
flow better than MD-2, with predictions closer to observations and a correlation of 0.92 for the test data and a
correlation of 0.98 for the training data.

As well as, a Taylor diagram and a violin plot provide a deeper understanding of the data distribution by
combining a box plot with a density plot, allowing for a visualization of the data’s distribution shape along with
its summary statistics. The MD-8 model captured the values better during the training than the other models.
The performance of the MD-9 model was similar to that of the MD-8. The statistical indicators in MD-8 confirm
that it is suitable for flow prediction.

The qualitative performance evaluation of the models was achieved by visual observations such as Taylor
diagram, scatter plot, violin plot and box plot, and quantitative evaluations were carried out using different
statistical and hydrological performance indices, namely, root mean square error (RMSE), coefficient of
determination (R?), the Nash-Sutcliffe coefficient of efficiency (NSE), the Mean Absolute Error (MAE), Kling-
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Fig. 12. Streamflow forecasting Beeswarm plot through training and testing with LSTM. (a) Train MD-1 to
MD-2, (b) Test MD-1 to MD-9.
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Fig. 13. (a) The comparison of the training set and (b) the comparison of the testing set of MD-8 for LSTM
Observed against Predicted daily streamflow.
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Fig. 14. Streamflow forecasting for the next 20 years by LSTM.

Gupta efficiency (KGE), Mean bias error (MBE) were employed to evaluate the performance and accuracy of the
model. After obtaining the predicted daily streamflow from the LSTM model, the volume of water inflow into
the reservoir was 76.3 million cubic meters, and for return periods of 25, 100, and 500 years, calculations were
made. In the following, the difference flood hazard (DFH) revealed that many parts of the river are serpentine,
necessitating further study in this locality.

Conclusion

This research was conducted with the aim of flood forecasting and risk assessment, as well as determining the
vulnerability of the Nesa River to floods. Data accumulated from the Nesa River basin over a period of 40 years
has been split into two sets for training and testing purposes. The LSTM model was applied to predict streamflow
for the next 20 years. The peak streamflow extracted from the LSTM model was then inputted into the 2D
HEC-RAS software to generate flood zone maps and hazard maps. Regarding to evaluate the performance of
the present model, two statistical criteria including MAE and R? were calculated for both the training and test
datasets. The examination of the region inundated during various return-period flood events is informed by
the peak discharge values derived from frequency analysis performed using Easyfit and HEC-HMS software.
The maximum instantaneous discharges at Nesa river for different periods were obtained using the Gamma
distribution. Flood modeling was done using 2D HEC-RAS, and the required hydraulic parameters (depth,
velocity, etc.) were extracted from this model. Using these parameters and following the existing standard in this
field, flood zoning and flood hazard maps were prepared. To ensure graphical congruence of the fulfillment of
different methods, observed and predicted daily streamflow data were applied to create scatter plots and time
series graphs. The results of generating flood zone maps using both the 2D HEC-RAS and LSTM approaches were
evaluated. Results indicate that the volume of water inflow into the reservoir 76.3 million cubic meters by the
LSTM model and for return periods of 25, 100 and 500 years were calculated as 76.26, 148.73 and 149.22 million
cubic meters, respectively. The results show that the volume of water inflow into the reservoir is 76.3 million
cubic meters according to the LSTM model. The calculated values for return periods of 25, 100, and 500 years are
76.26, 148.73, and 149.22 million cubic meters, respectively. The surface area under the flood is 9.11, 19.76, and
20.96 square kilometers, respectively. The arrival time of the flood to the reservoir is about 22 h for the return
periods of 100 and 500 years. Examining the flood hazard maps shows that based on the ADRH method, the
flood is classified as H6, which means it is unsafe for people and vehicles. All types of buildings are regarded as
susceptible to failure. In the following, the Difference Flood Hazard (DFH) maps illustrate that the most affected
areas are the banks of this river, the parts of the main channel, and the spiral parts of the river. According to the
DFH map, the villages around the river are at risk of flooding. However, due to the mountainous terrain of the
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Fig. 15. Flood zone and Inundation map with Streamflow forecasting for the Nesa River by LSTM using HEC-
RAS v 6.5 Beta software.

Fig. 16. Flood zone and Inundation map for (a) the flood event in 1998 and (b) 25-year return period of Nesa
River using HEC-RAS v 6.5 Beta software.

area, a significant portion of the flood volume is stored in the reservoir to prevent damage to the downstream
areas.

Finally, the present study indicated that LSTM methods are capable of predicting daily streamflow in this
study field. Consequently, the models are deemed appropriate for forecasting streamflow and, as a result, for
the effective management of flood events. The utilization of deep learning frameworks in conjunction with
hydrological models ought to be augmented to enhance the efficacy of long-term streamflow predictions. CNN
(Convolutional Neural Networks) can be implemented on spatiotemporal data, such as satellite imagery of
flood-prone areas, to identify patterns and predict flood occurrences. BILSTM (Bidirectional Long Short-Term
Memory) and GRU (Gated Recurrent Unit) are other deep learning models recommended for integration with
hydrological assessments to improve predictive performance in flood forecasting. Although LSTM was selected
for its proven efficacy in sequential data, alternative architectures like GRU or hybrid models (e.g., CNN-LSTM)
could further validate our results. For example, GRUs offer computational efficiency, while CNNs excel at spatial
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Fig. 17. Flood zone and Inundation map with (a) 100, and (b) 500 years return and (c) arrival time flood to
reservoir in 100 years return period of Nesa River using HEC-RAS v 6.5 Beta software.

Volume reservoir Flood inundation areas
Return period | (MCM) Arrival time (hr) | (km?)
Flood 1998 26.62 66.83 9.11
Predicted Flood | 76.3 34.16 13.34
25 76.26 33.33 13.59
100 148.73 22 19.76
500 149.22 22 20.96

Table 7. Results of 2D HEC-RAS model.

feature extraction from raster data. Future studies may explore these models to assess robustness across diverse
hydrological regimes.

Together, these technologies create a robust framework that enhances the accuracy of flood predictions,
ultimately aiding in the mitigation of flood impacts. The use of numerical models, such as SWAT and HEC-
HMS, in combination with various deep learning algorithms, such as BILSTM and GRU, can provide valuable
information for researchers, especially given the lack of information and limitations in this area.

It is to be mentioned that the exact effects of climate change can be considered as a suggestion for further
research.
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Fig. 19. Representation of flood hazard maps produced for the geographical region of the Nesa River the flood
of 1998, (a) D*V ) m*m/s) event plan, (b) flood hazard event plan, (c) peak discharge hazard event plan using
HEC-RAS v 6.5 Beta software.

Fig. 20. Representation of flood hazard maps produced for the geographical region of the Nesa River with a
return period of 100 years. (a) D*V ) m*m/s) event plan, (b) flood hazard event plan, (c) peak discharge hazard
event plan using HEC-RAS v 6.5 Beta software.
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Fig. 21. Representation of flood hazard maps produced for the geographical region of the Nesa River with a
return period of 500 years. (a) D*V ) m*m/s) event plan, (b) flood hazard event plan, (c) peak discharge hazard
event plan using HEC-RAS v 6.5 Beta software.

Fig. 22. Representation of flood hazard maps produced for the geographical region of the Nesa River with
discharge predicted by LSTM. (a) D*V ) m*m/s) event plan, (b) flood hazard event plan, (c) peak discharge
hazard event plan using HEC-RAS v 6.5 Beta software.
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Fig. 23. (a) DFH map for flood with return period of 100 years and the flood event in 1998), (b) DFH map
for flood with return period of 100 years and inflow predicted in LSTM of the Nesa River using ArcGIS 10.8
software.
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