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Heavy metal concentrations
and pollution indicators in the
Ennore ecosystem, east coast of
Tamilnadu, India using atomic
absorption spectrometry study
with statistical approach
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The study of the heavy metals in the Ennore ecosystem plays a vital role in determining

the extent of pollution in the area. Heavy metals such as Mg, Al, Si, K, Ca, Ti, Fe, V, Cr,

Mn, Co Ni, Cu, Zn, As, Cd, Ba, La, and Pb were determined in twenty-six samples. The

heavy metal concentration in the sediments was found to decrease in the sequence of
Si>Al>Fe>Ca>Ti>K>Mg>Mn>Ba>V>Cr>Zn>La>Ni>Pb>Co>As>Cd>Cu in the study area, its
varies as follows: 540-49,434, 3597-56,502, 22.37-691, 11.5-198.29, 69.10-1227.61, 1.40-19.95
and 11.48-38.63 for Ti, Fe, V, Cr, Mn, Co and Ni respectively. The average heavy metal concentrations
were below the world’s crustal average. The level of sediment pollution attributed to heavy metals
was evaluated using several pollution indicators such as the enrichment factor (EF), contamination
factor (CF), geoaccumulation index (Igeo), and pollution load index (PLI). The analysis, that revealed
the average values of the enrichment factor indicates anthropogenic sources of Pb, Cr, As, Cd, Ni, V,
Mn, and Zn. The average contamination factor (Cf) of metal Cd is slightly higher in some study areas
(C2, B6, C10, B2, and 57). The results of the geoaccumulation index (I . ) and pollution load index (PLI)
indicate that the most of study area is not contaminated by heavy metals. The results of multivariate
data analysis techniques, including Pearson correlation analysis, principal components, and clusters
analysis, indicate that heavy metals in the sediments are of natural origin. This shows a general
absence of serious pollution in the study area.

Keywords Ennore Creek, Sediments, Heavy metals, Atomic absorption spectrometry (AAS), Pollution
indices, Statistical analysis

The rapid pace of urbanization and industrialization has exacerbated environmental pollution, emerging as a
significant global concern recently’. This issue is particularly pronounced in estuarine and coastal regions, where
sediments are critical as major contaminants sink. Estuarine and coastal sediments serve as reservoirs for various
pollutants, including heavy metals, due to their unique hydrodynamic and sedimentary processes. Suspended
particulate matter in the water column accumulates heavy metals through adsorption and deposition. As these
particles settle, they release trapped contaminants into the sediment matrix, leading to their accumulation over
time?.

The discharge of heavy metals into aquatic ecosystems results in their buildup in marine sediments, posing an
ecological risk to filter-feeding organisms and eventually affecting humans®~’. Although certain heavy metals like
manganese, iron, copper, nickel, lead, and zinc are essential in trace amounts for their nutritional value, excessive
exposure to these metals can be toxic and may lead to serious health conditions such as cancer, diabetes, asthma,
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respiratory distress, cardiovascular diseases, and neurodegenerative disorders®®. Children, being particularly
vulnerable to heavy metal(loid)s, are exposed through additional pathways such as breastfeeding, placental
transfer, hand-to-mouth activities during early childhood, and slower toxin elimination rates'®, Moreover,
chronic arsenic ingestion can result in lung conditions such as chronic bronchitis, chronic obstructive pulmonary
disease, and bronchiectasis, as well as liver issues like non-cirrhotic portal fibrosis®®.

Measuring the concentration of heavy metals in soils, plants, waters, and sediments provides valuable
information about the extent of environmental pollution and helps in implementing strategies to mitigate its
adverse effects on both ecosystems and human health. Monitoring sediment contamination can also provide
valuable information for managing and mitigating pollution in marine environments. Sediment-bound heavy
metals tend to adsorb and accumulate on fine-grained particles that eventually move into the depositional
areas'!.

Sediment pollution by heavy metals is regarded as a critical problem in marine environments because of
their toxicity, persistence, and bioaccumulation'?!3. Many studies have shown that heavy metals in sediments
can significantly negatively impact the health of marine ecosystems'®. Knowledge of the distribution and
concentration of heavy metals in sediments will help in detect their sources in aquatic systems'®. Therefore,
heavy metal distributions in sediments offer a more realistic approach to evaluating their actual environmental
impact. The concentration of trace elements in coastal sediment can be useful for baseline studies and in the
assessment of sediment quality in future research. Atomic absorption spectrometry (AAS) is an analytical
technique used to determine the elemental composition of sediment samples. The AAS technique is a versatile
tool commonly used in environmental research?.

The study area, Ennore Port is situated on the Coromandel Coast of the Bay of Bengal, approximately 20 km
north of Chennai city. Its strategic location makes it an important hub for regional trade and commerce. It handles
a wide range of cargo, including coal, iron ore, petroleum products, containers, automobiles, and general cargo.
Ennore Port has specialized terminals for handling different types of cargo, such as the coal terminal, liquid
terminal, and container terminal. The area is dominated by intensive industrial activities with long-term effluent
discharge into the river. This coast is a crucial environmental, economic, commercial, agricultural, and recreational
location. This study was conducted to investigate whether the rapid economic development along the east coast of
Tamilnadu had accelerated heavy metal pollution and to assess the potential ecological risk of sediment pollution
by heavy metals. Specifically, the objectives of this study were: (1) to determine the levels of heavy metals (Mg, Si,
Al K, Ca, Ti, Fe, V, Cr, Mn, Co, Ni, Cu, As, Zn, Cd, Ba, La, and Pb) in the sediments (2) to quantify the extent
of metal pollution using EE, I, , CF and PLI and (3) to identify possible sources of heavy metals by multivariate
statistical methods. These indices offer a thorough evaluation of metal pollution levels, associated ecological risks,
and potential impacts on aquatic ecosystems, supporting the prioritization of management strategies and guiding
regulatory decision-making!®.

Materials and methods

Study area

Ennore is home to the Ennore Port, officially known as Kamarajar Port Limited. This port serves as a major
gateway for trade and commerce in the region, handling various types of cargo, including containers, coal,
petroleum products, and general cargo. Ennore Port, with its strong maritime activity, is located on the east
coast of the Indian peninsula in the Bay of Bengal, 2.5 km north of Ennore Creek!”. The port plays a crucial
role in facilitating maritime trade and industrial activities in the Chennai metropolitan area and surrounding
regions. Ennore and its surrounding areas host several industrial facilities, including power plants, refineries,
chemical industries, and manufacturing units'®. These industries contribute to the local economy but also pose
environmental challenges, such as pollution and ecological impacts on coastal ecosystems. Like many coastal
areas undergoing rapid industrialization and urbanization, Ennore faces environmental challenges such as
pollution of air, water, and soil, habitat degradation, and loss of biodiversity. Efforts are underway to address these
concerns through pollution control measures, environmental regulations, and conservation initiatives. Despite
industrialization, Ennore retains ecological significance due to its coastal habitats, including mangrove forests,
estuaries, and tidal flats. These ecosystems provide critical habitats for various species of flora and fauna and play
important roles in shoreline stabilization, water quality maintenance, and coastal resilience. Overall, Ennore is
a dynamic area with a mix of industrial, commercial, and residential activities, alongside environmental and
socioeconomic challenges that require careful management and sustainable development practices to ensure the
well-being of both people and the environment. Table 1 gives the Geological information about the study area
and Fig. 1 shows the Location map of the study area.

Sample collection and preparation

Figure 1 depicts the sample collection sites (13° 13’ 18.50” N, 80° 20’ 10.10” E to 13° 15" 13.33"” N, 80° 20" 17.43"
E), while Table 1 provides geographical information for the locations. Sampling was conducted in compliance
with standardized protocols to ensure representative and accurate data collection. A stratified random sampling
approach was used to select sites across different zones of the study area, considering factors such as proximity
to potential contamination sources (e.g., industrial sites, agricultural runoff, and urban areas). Sediment samples
were collected at multiple depths to capture a representative profile of metal concentrations at different sediment
layers. During the pre-monsoon season, 26 sediment samples were collected from the three different regions
of Ennore such as sea (S), beach (B), and creek (C) regions on the east coast of Tamilnadu using a Peterson
grab sampler. The sediment samples were collected from a distance of 10m parallel to the shoreline and 4m
depth in the sea region (9 samples) and also the beach (8 samples) and creek regions (9 samples) of Ennore to
examine the divergence of heavy metals from land to the marine environment. The selection of sites was based
on a combination of environmental factors, including historical data on industrial activity, proximity to rivers
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S. no. | Type of sample region | Sample ID | Latitude of location ID | Longitude of location ID
1 S1 13° 14’ 46.02" 80°20" 31.56"
2 S2 13° 14’ 44.83" 80° 20" 48.04"
3 S3 13° 14’ 44.09" 80°21' 6.35"
4 S4 13° 14’ 1.40" 80°20" 20.71"
5 Sea S5 13°14' 1.32" 80°20" 39.85"
6 S6 13°14' 1.20" 80° 20" 56.76"
7 S7 13°13’ 18.50” 80°20" 10.10"
8 S8 13°13'19.04" 80° 20" 29.96"
9 S9 13°13'19.54" 80°20" 46.77"
10 Bl 13°1513.33" 80°20" 17.43"
11 B2 13° 14’ 49.77" 80°20' 8.12"
12 B4 13°14' 0.75" 80° 19’ 46.26"
13 B5 13°15' 12.59” 80°20" 21.18"
Beach

14 B6 13° 14’ 49.51" 80°20" 10.55”
15 B7 13°14' 0.79" 80° 19" 48.15"
16 B8 13°15' 12.01” 80°20" 25.27"
17 B9 13° 14’ 49.51” 80°20" 13.40”
18 C1 13°13’ 58.55" 80° 19" 38.62"
19 C2 13° 13’ 50.50” 80°19' 22.59”
20 C4 13°13' 26.04" 80° 18’ 53.16"
21 C5 13°13'9.64" 80° 18" 42.67"
22 Creak C9 13°13' 2.15" 80° 18’ 52.99”
23 C10 13° 13’ 59.38" 80° 18’ 55.29”
24 Cl11 13°14' 17.55" 80° 18’ 56.60”
25 C12 13° 14’ 35.42" 80° 18’ 55.95”
26 C13 13° 14’ 54.22" 80°18' 51.95"

Table 1. Latitude and longitude of the study area of Ennore, east coast of Tamilnadu, India.

or discharge points, and ecological sensitivity. Sites with a history of pollution or high human activity were
prioritized to better assess anthropogenic impacts. In contrast, control sites with minimal human influence
were also included to understand background levels of contamination. Additionally, seasonal variations
and tidal influences were taken into account. The sediment samples were transferred to polythene bags and
properly labeled with the corresponding sampling site. Subsequently, these samples were transported to the
laboratory and air-dried before manually picking out larger stone shards or shells. For the atomic absorption
spectrometry study, the wet digestion method was used to digest the sediment samples. The samples were air-
dried, ground, sieved through a 230p mesh sieve, and were accurately weighed to 2.5g into a digestion tube.
For sample digestion, 10ml HNO, and 1ml H,0, were added to the digestion tube. The digestion tubes were
then placed in the digestive furnace and heated at 180°C for 3h. All the digests were cooled and filtered through
Whatman (No.42) filter paper and then diluted to 50ml with double-distilled water 43. Each sample was digested
in replicates of five, transferred to an acid-washed stoppered glass bottle, labeled, and kept for metal analysis.

Atomic absorption spectrometry analysis

In the present work, concentrations of heavy metals were determined using a Flame atomic absorption
spectrometer (AAS, Analyst iCE3000, Thermo Scientific, USA). Qualitative and quantitative measurements of
heavy metals were based on the absorption of optical radiation by atoms in the gaseous state 27. The standard
solutions for all the heavy metals under study were prepared in three to five different concentrations to obtain a
calibration curve by diluting a stock standard solution of a concentration of 1000ppm. Hollow cathode lamps for
Pb, As, Hg, Cu, Zn, Cr, Ni, and Mn were used as radiation sources and the fuel was air acetylene. All the samples
and standards were analyzed multiple times and the average value was taken as the result.

Results and discussion

Heavy metal concentration in surface sediments

The heavy metal concentration in surface sediments of a coastal area like Ennore can be influenced by
various factors, including industrial activities, shipping, urbanization, and natural processes. Heavy metals
are often introduced into sediments through industrial discharge, atmospheric deposition, urban runoff, and
erosion of contaminated soils. Monitoring heavy metal concentrations in surface sediments is important for
assessing environmental quality and potential risks to aquatic ecosystems and human health. Although these
elements are essential for life, excessive amounts of these crucial metals can negatively affect the reproduction
and metabolism of living organisms'®. The concentration of elements in sediments from the study area is
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Fig. 1. Geographic overview of the study area. (The map was generated by QGIS geographic information
system. Open source geospatial foundation project. Available at: http://qgis.org).

presented in Table 2. The concentration (mg kg™!) varies as follows: 298-5987, 11,478-37,432, 115,987-224,978,
2985-9850, 3792-23,176, 540-49,434, 3597-56,502, 22.37-691, 11.5-198.29, 69.10-1227.61, 1.40-19.95,
11.48-38.63, BDL to 3.60, 11.04-87.99, 1.8-9.9, 1.1-11.2, 142.3-426.8, BDL to 214.7 and BDL to 30.7 for
Mg, Al Si, K, Ca, Ti, Fe, V, Cr, Mn, Co, Ni, Cu, Zn, As, Cd, Ba, La and Pb respectively. Among the heavy
metals detected, Aluminum (Al), Iron (Fe), Calcium (Ca), Magnesium (Mg), and Silicon (Si) are the most
abundant metals in the sediment, the mean concentrations of heavy metals were found in the following order:
Si>Al>Fe>Ca>Ti>K>Mg>Mn>Ba>V>Cr>Zn>La>Ni>Pb>Co>As>Cd>Cuin the study area.

The locations of S2, S9, B4, B7, B9, C4, and C9 are characterized by higher concentrations of V, Cr, Co, Ni,
and Zn when compared with other locations of the present study. This may be due to the high anthropogenic
activities like harbor activities, industrial operations, urban waste discharges, and dredging, etc., The present
findings are in agreement with the results from similar locations elsewhere?’. The studied elements, Ti, Fe, V, Cr,
Mn, As, and Pb have high concentrations in the S1, S2, S9, B2, B7, B8, B9, C4, C5, C9, and C11 locations. This may
be due to the activities of Ennore Port which handles various types of cargo, including coal, petroleum products,
and general cargo. Port activities such as dredging, shipping, and cargo handling can disturb sediment layers
and resuspend contaminants, contributing to the accumulation of heavy metals in sediments. Rare activities like
ballast water discharge, oil spills, and accidental releases of hazardous materials from vessels, can introduce heavy
metals into coastal waters and sediments. The Comparison of some heavy metal concentrations in sediments
from this study with different regions are shown in Table 3 and variations in heavy metal concentration along
the study area are shown in Fig. 2.

Quantification of heavy metal pollution in the sediments

Several methods are commonly used to assess heavy metal pollution in sediments, each providing valuable
information about metal accumulation, distribution, and pollution status. Some of the key pollution indicators
for quantitatively ranking different sampling sites include the enrichment factor (EF), geo-accumulation index
(Igeo), contamination factor (CF), and pollution load index (PLI)?!-23, These pollution indicators are valuable
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S.no. | Area Cr Mn Ni Cu Zn Cd Pb References
1 Mediterranean Sea Coast, Northern, Cyprus | 15-93 287-715 11-37 11-49 26-72 - 11-22 2
2 NE Mediterranean, Cyprus 9.0-46 141-1241 6.6-114 1.6-74 5.0-78 - 1.6-9.2 4
3 Terissos Gulf, Greece - 3835-25,982 | — 31-206 936-4078 - 567-1698 44
4 Izmir Bay, Turkey 9-65 76-542 5-33 9-38 17-85 - 1-16 s
5 Nador Lagoon, Morocco 22.4-172.2 | - 20.2-95.2 10.2-398.4 | 55.1-1250.0 | - 15.6-326.2 46
6 Guadal, Spain - 282-711 14-40 28-83 69-190 - 30-54 47
7 Gardon River, Southern France - - - - 43-1197 - 18-4476 8
8 Gulf of Tunis, Tunisia 15.55 - 14-51 1.5-19 27-450 - 16-107 49
9 Northern, Cyprus 55-144 112-990 44-245 9-127 29-128 - 1.1-24 0
10 Ennore Creek, Tamil Nadu, India 383 - 35 102 - 0.51 32 51
11 Cauvery Delta Region, Tamil Nadu, India 45.4-153.1 | - 2.0-7.7 10.3-39.9 - - 1.14-5.4 52
12 Mahanadi Estuary, East Central India - - - - - 1.45 23.89 53
13 Arasalar Estuary, Tamil Nadu, India 0.44 - 0.8 - - 39 0.19 54
14 Manakudy Estuary, Tamil Nadu, India 256.9-482.1 | - 20.14-28.91 | 37.35-45.87 | - 2.69-3.17 152.25-176.88 | *°
15 Romanian Sector, Black Sea 30.26 - 26.25 26.68 - 1.2 11.59 56
16 Daya Bay, China - - - 30.6 - 0.28 52.7 57
17 Eastern Black Sea 5.6-56.9 - 16.1-21.4 4.43-122 - 3.8-5.9 41.7-355.1 58
18 Quanzhou Bay, Southeast China 37.1 - 10.3 19.8 - 0.24 422 59
19 Southwestern Coastal Rivers, Korea 29.1-128 - 11.3-44.3 3.2-68.6 - 0.1-0.82 11.9-79.2 60
20 Korean coast - - - 0.18-104 - 0-1.37 0.04-85.4 o1
21 Scheldt Estuary, Europe 41.6-1614 | - 10.8-45.5 18.6-118.4 | - 1.51-10.24 | - 02
22 Kerala Coast - - 25-80 7.0-38.0 - 0-1.9 4.0-30.0 03
23 Yangtze River Estuary, China 344 - - 19.7 - 0.13 25.8 o4
24 Yangtze River Estuary, China 69..5-103 - 18.8-38.9 14.3-32.1 - 0.037-0.212 | 13.7-23 5
25 Ennore Port, Tamilnadu, India (Present study) | 83.24 400.58 25.14 1.68 41.19 3.55 10.68 (Present study)

Table 3. Comparison of some heavy metal concentrations in sediments from this study with different regions.
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Fig. 2. Heavy metal concentration levels of sediments in the study area.

tools for assessing heavy metal pollution in sediments and prioritizing remediation efforts based on the relative
contamination levels at different sampling sites. By applying these methods, researchers and environmental
professionals can quantitatively rank sampling sites and inform decision-making processes aimed at mitigating
the impacts of metal pollution on aquatic ecosystems and human health. Criteria of pollution indicators in
sediment based on the EE, CE and I, values are given in Table 4.
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EF | Pollution status CF Pollution status T Pollution status Reference
>1 | With anthropogenic sources 26 Very high >5 | Extreme
<1 | Without anthropogenic sources | 3<CF<6 | Considerable 4-5 | Strong to extremely strong

1<CF<3 | Moderate 3-4 | Strong

<1 Low 2-3 | Moderate to strong o6

1-2 | Moderate

0-1 | Non-polluted to moderate

<0 | Non-polluted

Table 4. Criteria of pollution indicators in sediment based on the EF, CF, and Igeo values.

Enrichment factor (EF)

The enrichment factor (EF) is a numerical indicator used to assess the degree of enrichment or depletion of
a particular element or substance in a sample compared to a reference or background value. It is commonly
applied in environmental studies, geochemistry, and mineral exploration to evaluate the extent of anthropogenic
or natural enrichment of elements in soils, sediments, rocks, ores, and other materials. The EF for each element
was calculated using the following formula (Eq. 1)*%%.

C C
o= (o)) () !
Cal sample/ Ca1/ ucc M

where Cy and C,| denote the concentrations of elements X and Al and EF is their ratio in the samples of interest
to average shale obtained from Turekian and Wedepohl®.

The Interpretation of the enrichment factor is as follows EF>1 Indicates enrichment of the element or
substance in the sample compared to the background/reference material, suggesting potential anthropogenic
influence or natural enrichment processes, EF=1 Indicates no enrichment or depletion, implying that the
concentration of the element in the sample is similar to the background/reference value and EF <1 Indicates
depletion of the element or substance in the sample compared to the background/reference material, suggesting
natural depletion processes or human activities reducing the concentration of the element. Generally, an EF
value of < 1.5 suggests that such levels of metal enrichment might have originated entirely from crustal materials
or natural weathering processes. An EF value of > 1.5 suggests that a significant portion of metal is delivered from
non-crustal materials or non-natural weathering processes, so anthropogenic sources may become an important
contributor?>?’-2°. The enrichment factor (EF) levels of sediments in the study area are given in Table 5.

The average value of EF levels observed for heavy metals as follows: 0.53, 2.74, 1.00, 3.43, 7.07, 1.65, 6.66,
3.81, 1.87, 2.03, 2.11, 0.14, 1.78, 1.56, 46.94, 1.84, 1.08 and 1.93 for Mg, Si, K, Ca, Ti, Fe, V, Cr, Mn, Co, Ni,
Cu, Zn, As, Cd, Ba, La and Pb respectively. The minimum EFs obtained for some elements (e.g., Mg, K, Cu,
La, and Pb) are less than unity implying that these elements are depleted in some phases relative to crustal
abundance in the study area. The EF values for Mg, K, Cu, and La were less than 1.5, which indicates dominant
metal enrichments from natural sources in the study area. EF values greater than 1.5 that were obtained for
Si, Ca, Ti, Fe, V, Cr, Mn, Co, Ni, Zn, As, Cd, Ba, and Pb suggest that these levels of enrichment might have
originated from sources that are of non-crustal origin, including anthropogenic sources. The results observed
are similar to those reported by Cheng and Hu*’. The heavy metal enrichment observed in sediments in Ennore,
east coast of Tamilnadu, ranges from “minimal to moderate” The order of EF values for all the elements is
Cu<Mg<K<La<As<Fe<Zn<Ba<Mn<Pb<Co<Ni<Si<Ca<Cr<V<Ti<Cd. Variations in heavy metal
enrichment factors along the study area are shown in Fig. 3.

Geo-accumulation index (I,,)

The geoaccumulation index (Igeo), introduced by Miiller in 1979 and further elaborated in 1979, is a widely
used method to assess the degree of metal enrichment in aquatic sediments. This index provides a quantitative
measure of the contamination level of heavy metals in sediments relative to background levels. The formula for
calculating the geoaccumulation index is as follows in Eq. (2).

Tieo = Log, ( 2)

m)

where C,is the concentration of metal “n” in the sediments, B, is the background concentration value for metal
“n” and factor 1.5 is used to account for possible variations in the background data due to lithological variations.
The I parameter was successfully calculated using the global average shale data®%*>,

According to the scale established by Muller®! and Mohit Aggarwal et al.>*, sediment can be classified as non-
polluted (Igeo <0), non-polluted to moderately polluted (0 < Lo < 1), moderately polluted (1 < Lpeo < 2), moderately
to strongly polluted (2<1, <3), strongly polluted (3 <Igeo<4) and strong to extremely polluted (4<1, <5)
and extremely polluted (I, >5). The I, values for each element at each sampling site were calculated’ using
background values. The geo-accumulation index (I ) values for heavy metals at all the locations are given in

Table 6.

geo
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S.No. | SampleID | Mg |Si |K Ca |Ti Fe |V Cr Mn |Co |[Ni |Cu |Zn |As |Cd Ba |La |Pb

1 S1 0.73 | 2.74 | 0.67 | 5.62 | 898 | 2.49 |11.56 | 4.95 |3.24 |2.83 |2.63 |0.13 |2.74 | 1.81 | 52.41 | 1.10 | 1.14 | 3.11
2 S2 0.95 | 1.55 | 0.55 | 3.81 | 11.96 | 2.51 | 10.38 | 4.84 | 2.89 |2.71 | 1.93 | 0.21 |2.15 | 1.72 | 16.81 | 0.67 | 1.42 | 3.25
3 S3 023 |27 |047 |265 | 215 |1.12 | 469 | 3.06 | 1.18 | 1.42 | 1.10 | 0.11 | 1.31 | 1.21 | 34.10 | 1.61 | 0.71 | 1.53
4 S4 0.74 | 345 | 143 | 6.27 | 6.34 |2.14 | 6.50 | 6.24 | 2.19 | 1.54 | 4.01 | 0.00 | 2.38 | 1.90 | 75.14 | 2.58 | 0.67 |2.35
5 S5 0.19 | 2.3 |1.04 | 3.2 0.56 | 0.62 | 1.52 | 1.68 | 0.64 | 1.82 | 1.89 | 0.18 | 0.87 | 0.94 | 22.44 | 1.76 | 0.07 | 1.58
6 S6 048 |2.86 | 1.44 | 259 | 0.78 | 0.56 | 1.02 | 1.29 | 0.61 |0.31 [1.52 |0.18 | 1.59 | 1.61 | 22.29 |2.59 | 0.00 | 0.81
7 S7 054 |27 | 111|222 | 154|080 | 195 | 3.19 |0.79 | 1.52 | 1.84 | 0.17 | 1.15 | 1.44 | 48.08 | 2.05 | 0.16 | 1.43
8 S8 0.66 | 1.44 | 0.45 | 3.19 | 243 | 1.11 | 323 | 3.42 | 044 | 1.26 | 1.65 | 0.00 | 1.23 | 0.92 | 48.20 | 1.34 | 0.55 | 0.81
9 S9 1.06 | 1.78 | 0.79 | 2.22 | 6.69 | 1.85 | 7.65| 591 [0.43 |1.45 (220 |0.19 |1.70 | 1.71 | 30.85 | 1.29 | 0.31 | 1.34
10 Bl 0.28 | 3.02 | 1.37 | 2.89 | 2.22 | 0.95 | 4.16 | 2.23 | 1.03 | 1.99 | 1.78 | 0.10 | 1.38 | 1.63 | 64.10 |2.22 | 0.00 | 0.74
11 B2 0.43 | 571 | 1.83 |3.84 | 4.00 | 1.36 | 4.26 | 2.56 | 1.54 | 2.07 | 1.96 | 0.38 | 1.69 | 1.96 | 72.02 | 3.80 |2.13 | 0.67
12 B4 0.59 | 3.22 | 0.78 | 2.3 |49.37 | 5.43 | 35.89 | 10.30 | 6.38 | 5.18 | 2.50 | 0.10 | 4.23 | 3.16 | 41.27 | 1.36 | 9.70 | 6.38
13 B5 029 |32 |1.13 |1.05| 145|033 | 1.11 | 1.41 |0.36 | 1.27 | 1.68 | 0.00 | 0.51 | 1.51 | 41.56 |2.88 | 0.00 | 0.38
14 B6 0.66 | 2.21 | 1.13 | .75 | 0.99 | 0.64 | 1.22 | 1.30 | 0.59 | 0.66 | 0.93 | 0.00 | 0.82 | 1.07 | 138.18 | 2.14 | 0.00 | 0.25
15 B7 0.79 | 2.51 | 1.15 | 6.69 | 17.51 | 2.79 | 13.44 | 8.73 | 540 | 6.26 | 4.58 | 0.25 | 3.96 | 1.46 | 78.96 | 1.96 | 2.88 | 4.86
16 B8 03 |4.14 | 0.86 | 6.46 | 12.84 | 3.57 | 12.36 | 6.53 | 4.48 | 4.88 [3.77 | 0.19 | 3.29 | 2.39 | 16.90 | 1.29 | 1.60 | 5.03
17 B9 0.48 | 3.33 | 0.67 | 5.07 | 16.53 | 3.45 | 15.34 | 6.71 | 4.17 | 4.02 | 2.54 | 0.30 | 3.00 | 2.68 | 15.46 | 1.25 |2.02 | 2.87
18 C1 013 |51 |18 |1.94 | 0.79 |051 | 1.70 | 0.87 | 0.53 | 0.81 | 1.90 | 0.00 | 0.85 | 2.32 | 49.75 | 4.22 | 0.00 | 0.00
19 C2 036 |3.23 | 1.37 | 2.17 | 122 | 054 | 128 | 1.17 |0.59 | 0.76 | 1.34 | 0.20 | 0.89 | 1.22 | 130.20 | 2.00 | 0.00 | 0.51
20 C4 1.14 | 1.69 | 0.56 | 3.77 | 9.35 218 | 7.30 | 6.07 |2.43 |1.87 | 1.80 | 0.06 | 1.84 | 0.90 | 35.51 | 0.98 | 1.27 | 2.47
21 C5 0.64 | 1.59 | 0.58 |4.32 | 854 |2.34 | 7.84 | 412|275 |2.03 |223 |0.13 |2.22 | 040 | 1541 |0.73 |0.93 | 2.16
22 C9 0.78 | 1.29 | 0.42 | 3.2 9.73 12.00 | 828 | 4.13 233 |1.78 | 146 |0.17 | 1.53 | 1.05 | 18.10 | 0.61 | 1.28 | 2.42
23 C10 0.23 | 2.16 {093 |3 2.75 | 1.07 | 2.80 | 242 |1.09 | 1.59 | 192 | 0.16 | 1.25 | 1.16 | 59.09 | 1.59 | 0.85 | 1.57
24 C11 05 |214 |1 338 | 373 |1.26 | 5.19 | 2.71 | 1.38 | 1.48 | 2.09 | 0.30 | 1.37 | 1.21 | 49.21 | 1.70 | 0.36 | 1.24
25 C12 02 |242|1.13 |26 0.76 | 0.65 | 1.32 | 1.83 | 0.63 |0.45 | 1.86 | 0.00 | 0.85 | 1.52 | 25.24 | 1.82 | 0.00 | 1.14
26 C13 0.46 | 2.67 | 1.32 | 292 | 0.67 |0.55 | 1.19 | 1.28 |0.54 | 0.75 | 1.74 | 0.13 | 1.58 | 1.79 | 19.27 | 2.43 | 0.10 | 1.25
Average 053 | 2.74 | 1.00 | 3.43 | 7.07 | 1.65 | 6.66 | 3.81 | 1.87 |2.03 |2.11 | 0.14 | 1.78 | 1.56 | 46.94 | 1.84 | 1.08 | 1.93

Table 5. The enrichment factor levels of sediments in the study area.
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Fig. 3. Enrichment factor (EF) levels of sediments in the study area.
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S.no. | Sample ID | Mg K Ca Ti Fe \% Cr Mn Co Ni Zn Cu As Cd |Ba La Pb

1 S1 -3 -3.13 | -0.52 063 | -1.2 |0.44 -025|-078 | -1.14 | -1.57 | -=1.07 | =5.32 | —1.53 | 3.32 | -2.25 | -2.2 | -0.75
2 S2 -2.21 | -3.01 | -0.68 144 | -0.79 | 0.68 0.11 | -0.55 | -0.8 | -1.62 | -1.03 | —4.23 | —-1.21 | 2.08 | -2.58 | —1.49 | -0.29
3 S3 -474 | -3.74 | -1.72 | -1.55 | —2.47 | -0.98 | -1.07 | =2.36 | =2.25 | =295 | =2.26 | -5.71 | =222 |0 -1.82 | -3.01 | -19
4 S4 -39 |-294|-128|-0.8 |-234|-132|-084|-227 |-294|-189 |-22 |0 =239 |0 -194 |0 0

5 S5 -48 |-236 |-1.21|-3.24|-3.09 |-237 |-1.69 | -3 -1.65 | -193 | -2.6 |-4.78 |-2.36 |0 -145 |0 -1.61
6 S6 -361 |-2.02 |-1.65|-29 |-336|-3.08 |-22 |-32 |-434|-237|-187|-485|-171 208 |-1.03 |0 -2.71
7 S7 -354 |-25 |-198 |-2.04|-296 |-225|-1.01 |-294 |-215|-22 |-245|-509 |-198 |0 -1.48 | -5.13 | —-1.99
8 S8 -2.75|-33 |-095|-0.87 |-199 |-1.01 |-04 |-327 |-193 |-1.86 |-1.84 |0 =212 |0 -1.58 | -2.86 | -2.31
9 S9 -232 |-275|-173 034 | -1.5 | -0.02 0.13 | =356 | =197 | -1.7 |-1.63 | —4.67 | -148 |0 -1.89 | -394 | -1.84
10 Bl -4.65 |-239 |-178 | -1.69 | -2.89 | -1.34 |-1.71 | -2.74 | —=1.95 | -243 | -237 | -6.01 |-198 |0 -154 |0 -3.13
11 B2 -4.74 | -2.66 | =2.06 | —1.53 | =3.07 | -2 -22 | =285 |-258 | =299 |-2.76 | -4.77 | =241 |0 -146 |0 -3.96
12 B4 -3.53 | -3.15 | -2.06 2.84 | -0.33 | 1.83 0.55 | -0.05 | -0.51 | =19 |-0.7 |-595|-098 |2.73 | -2.19 | 0.64 0.03
13 B5 -4.51 | -2.54 | -3.13 | -2.18 | -4.28 | -3.12 | -2.25 | -4.14 | -2.48 | -241 [-3.69 |0 -197 |28 |-105]|0 -3.98
14 B6 -32 |-244 |-2.28 | -2.63 |-3.23 |-2.89 | -2.26 |-332 | -3.31 |-3.15|-2.89 |0 -2.37 |4.64 | -138 |0 —4.45
15 B7 -3.51 | -297 | -0.9 0.96 | -1.67 | 0.03 -0.07 | -0.68 | -0.62 | -1.4 |-1.17 | -5.05 | —2.47 | 3.28 | —2.05 | —1.49 | -0.74
16 B8 -4.66 | —3.16 | —-0.72 0.75 | —1.08 | 0.14 -025|-071 | -0.75 | =145 | =1.21 | =5.15 | =153 | 1.29 | —=2.42 | -2.11 | —0.46
17 B9 -3.69 | -32 |-0.75 143 | -0.82 | 0.76 01 |-05 |-072 |-171 | -1.03 | —-4.23 | -1.05 | 1.47 | =2.15 | —=1.46 | —0.96
18 C1 -624 | -249 | -2.85|-3.68 | -43 |-3.12 |-356 |-421 |-3.75 |-2.84 |-3.57 |0 -197 | 244 |-111 |0 0

19 C2 -4.27 | =236 | -2.16 | —2.52 | -3.68 | -3 -2.6 |-351|-331|-282|-297 | -5 —2.37 | 436 | -1.66 |0 —-3.64
20 C4 -191 | -2.96 | -0.66 112 | -0.97 | 0.2 047 | -0.77 | -1.31 | -1.69 | —=1.22 | =593 | -2.11 | 3.19 | -1.99 | —1.62 | —0.66
21 C5 -293 |-3.1 | -0.66 0.8 | -1.06 |0.12 -028 | -0.78 | -1.38 | =1.57 | -1.14 | =5.09 | -3.47 | 1.79 | =2.61 | -2.25 | —1.04
22 c9 -2.18 | -3.07 | -0.62 1.46 | -0.81 | 0.67 02 |-055|-1.09 |-171 |-12 |-423 |-16 |25 |-239|-132|-041
23 C10 -4.68 | -2.69 | =147 | -1.13 | -247 | -1.65 | -1.33 | =24 | -2.02 | -2.07 | =2.26 | =5.07 | -2.22 | 3.44 | -1.77 | -2.67 | —=1.79
24 C11 -3.82 |-281 | -1.52 | -091 | -245 |-099 | -14 |-228 |-2.34 |-2.18 | -2.35 | -442 | -239 |2.96 | -1.89 | -4.13 | -2.35
25 C12 -481 |-232 |-1.6 |-291|-3.09 |-2.66 |-1.66 |-3.11 | -3.77 | -2.04 |-2.73 |0 -175 123 |-149 |0 -2.17
26 C13 -3.64 | -2.14 | -147 | -3.12 | -3.38 | -2.85 | -2.2 | -3.38 | -3.07 | -2.17 | -1.87 | =535 | -1.55 | 1.87 | —=1.11 | =5.76 | —2.07
Average -376 | -2.78 | -1.48 | -0.84 | -2.28 | -1.15 | -1.06 | -2.23 | -2.08 | -=2.10 | -2.00 | —3.88 | -1.97 | 1.87 | -1.78 | =1.57 | -1.74
Minimum -624 |-374 | -3.13 | -3.68 | 4.3 |-3.12 | -3.56 | -4.21 | -4.34 | -3.15 | -3.69 | -6.01 | -3.47 |0 —2.61 | =576 | —4.45
Maximum -191 | -2.02 | -0.52 2.84 | -0.33 | 1.83 0.55 | -0.05 | -0.51 |-14 |-0.7 |0 -0.98 | 4.64 | -1.03 | 0.64 0.03

Table 6. Geo-accumulation index (Igeo) of the sediment in the study area.

The I values of coastal sediments in the study area vary from —6.24 to —1.91 (- 3.76) for Mg, —3.74 to —2.02
(-2.78) for K, —3.13 to —0.52 (- 1.48) for Ca, —3.68 to 2.84 (—0.84) for Ti, —4.3 to —0.33 (- 2.28) for Fe, —3.12 to
1.83 (- 1.15) for V, —3.56 to 0.55 (- 1.06) for Cr, —4.21 to —0.05 (—2.23) for Mn, —4.34 to —0.51 (-2.08) for Co,
—3.15t0 — 1.4 (- 2.10) for Ni, — 3.69 to — 0.7 (- 2.00) for Zn, —6.01 to 0 (— 3.88) for Cu, —3.47 to — 0.98 (— 1.97) for As,
0to0 4.64 (1.87) for Cd, —1.03 to —2.61 (— 1.78) for Ba, —5.76 to 0.64 (— 1.57) for La and —4.45 to 0.03 (- 1.74) for Pb
respectively (Table 6). The average I, values are given in parentheses. The average pollution degree of these metals
decreased in the following order: Ti>Cr>V>Ca>La>Pb>Ba>Cd>As>Zn>Co>Ni>Mn>Fe>K>Mg>Cu.
The average I, values (<1) observed in the present study indicate no pollution of the investigated metals in the
sampling locations of the study area. The variation of Leo values with the locations is shown in Fig. 4.

Contamination factor (CF)

The contamination factor (CF) is another widely used index in environmental geochemistry to assess the degree
of heavy metal contamination in sediments. It provides a quantitative measure of the contamination level relative
to background or reference values. The CF is calculated using the following Eq. (3).

CF = Cheavymetal (3)
Cbackground
¢ backgroun o refers to the concentration of metal of interest in the sediments when there was no anthropogenic
input. CF<1 indicates low contamination by a metal, 1 < CF<3 indicates moderate contamination, 3<CF<6
implies considerable contamination, and CF > 6 denotes high contamination®*3>.

The contaminant factor (CF) in sediments from the studyarea is presented in Table 8. The results of CF values are
0.13-0.43 (average 0.25) for Al, 0.02-0.4 (average 0.14) for Mg, 0.11-0.37 (average 0.23) for K, 0.24-1.45 (average
0.83) for Ca, 0.12-10.75 (average 1.74) for Ti, 0.08-1.2 (average 0.41) for Fe, 0.17-5.32 (average 1.12) for V, 0.13-
2.2 (average 0.93) for Cr, 0.08-1.44 (average 0.47) for Mn, 0.08-1.44 (average 0.45) for Co, 0.23-0.77 (average 0.50)
for Ni, 0.12-0.43 (average 0.50) for Zn, 0-0.08 (average 0.04) for Cu, 0.14-0.76 (average 0.41) for As, 3.36-37.4
(average 11.85) for Cd, 0.25-0.74 (average 0.46) for Ba, 0-2.33 (average 0.28) for Laand 0-1.53 (average 0.53) for Pb
respectively with the order of Cd>Ti>V>Cr>Ca>Pb>Ni>Mn>Ba>Co>Zn>Fe>As>La>Al>K>Mg>Cu
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Geo-accumulation index (Igeo)

Location ID

Fig. 4. Geo-accumulation index (Igeo) of the sediment in the study area.

The average CF value for element Cd indicates extreme contamination, while Ti and V indicate moderate
contamination. The other elements Al, Mg, K, Ca, Cr, Mn, Co, Ni, Zn, Cu, As, Ba, La, and Pb indicate low
contamination. High contamination levels were observed in the locations for Cd $4 - 11.33; S7 - 12.67; B1- 14.86;
B2 - 10.33; B4 - 9.93; B5 - 10.47; B6 - 37.4; B7 - 14.59; C2 - 30.87; C4 - 13.67; C10 - 16.33 and C11 - 11.67 for
Cd. The accumulation of heavy metals in sediment samples can arise from various sources, both natural and
anthropogenic. Common sources contributing to heavy metal accumulation in sediments include municipal
wastewater discharge, mining activities, agricultural activities, and drainage rivers and creeks®*3¢. The variation
of CF values with the locations is shown in Fig. 5.

Pollution load index (PLI)

The pollution load index (PLI) is a comprehensive index used to evaluate the overall pollution status of heavy
metals in sediment samples. It integrates multiple heavy metal concentrations to provide a single numerical
value that represents the pollution load in sediments. The PLI is calculated using the following Eq. (4):

PLI = (CF; x CF3 x CF3 x --- x CF,)"/" (4)

where CF_ is the value of the CF for metal n. The PLI values were interpreted as follows: polluted (PLI>1),
unpolluted (PLI< 1), and moderated (PLI=1)*. The PLI value of zero indicates “no pollution” The PLI results
range from 0.25 to 1.03 with an average mean value of 0.49, thus indicating that the study area is practically not
polluted. Table 7 gives the contamination factor (CF) and pollution load index (PLI) values for the study area.
Figure 6 shows the variation in the contamination factor (CF) values of heavy metals and the pollution load
index (PLI) with locations.

Multivariate statistical analysis

Pearson correlation analysis

Correlation is a statistical tool that helps to measure and analyze the degree of relationship between two variables.
The degree of relationship between the variables under consideration is measured through correlation analysis*.
The correlation measure is called the correlation coefficient, which ranges from correlation (-1<r>+1). A sign
indicates the direction of change. Correlation analysis gives us an idea about the degree and direction of the
relationship between the two variables under this study.

The correlation coefficients determined based on the results of element analyses of beach sediments are
presented in Table 8. The correlation coefficient was calculated using Pearson correlation. The following elements
were found to have strong positive correlations (at the 0.01 level) with the other elements mentioned: Mg with
Al Ca, Fe, Cr, Ni and Zn; Ca with Fe, Cr, Mn, Co and Ni; Fe with V, Cr, Mn, Co, Ni, Zn and As; On the other
hand, high negative correlations (at the 0.01 level) were found between Ca, Ti, Fe, V, Cr, Mn, Co, Ni, Zn and Ba.
Ca constitutes a different origin group from Si. Metals showing a high positive correlation were interpreted to
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Fig. 5. Contamination factor (Cf) of the study area.
S.no. | SampleID | Al |Mg |K Ca |Ti Fe |V Cr ([Mn |[Co |[Ni |Zn |Cu |As |Cd |Ba |La |Pb |PLI
1 S1 0.26 |0.19 | 0.17 | 145 | 2.32 [0.65 |2.04 | 1.26 | 0.87 | 0.68 | 0.69 | 0.71 | 0.04 [ 0.52 |15 | 0.31 | 0.33 | 0.89 | 0.67
2 S2 0.34 [ 0.32 | 0.19 | 1.29 | 4.07 |0.87 [2.41 | 1.62 | 1.02 | 0.86 | 0.66 | 0.74 | 0.08 | 0.65 | 6.33 | 0.25 [ 0.53 | 1.22 | 0.86
3 ] 0.24 | 0.06 | 0.11 | 0.63 | 0.51 |0.27 [0.76 | 0.72 | 0.29 | 0.32 | 0.26 | 0.31 [0.03 | 0.32 | 9 0.43 | 0.19 |04 |0.36
4 S4 0.14 |0.1 |02 |085| 086 (03 |06 |0.84|031[02 [0.55 033 |- 029 | 1133 | 0.39 | 0.1 |0.35 |0.44
5 S5 0.28 [ 0.05 | 029 |09 | 0.16 |0.18 [0.29 | 0.47 | 0.19 | 0.48 | 0.54 | 0.25 | 0.05 | 0.29 | 7 0.55 | 0.02 | 0.49 | 0.38
6 S6 0.26 | 0.12 | 0.37 | 0.66 | 0.2 |0.15 [0.18 | 0.33 | 0.16 | 0.07 | 0.39 | 0.41 |0.05 | 0.46 | 6.33 | 0.74 |- 0.23 | 0.38
7 S7 0.24 [ 0.13 | 026 | 0.53 | 0.37 |0.19 [0.32 | 0.75 | 0.19 | 0.34 | 0.44 | 0.27 | 0.04 | 0.38 | 12.67 | 0.54 | 0.04 | 0.38 | 0.34
8 S8 0.34 |0.22 | 0.15 | 1.07 | 0.82 [0.38 |0.74 | 1.14 | 0.16 | 0.39 |0.56 | 0.42 | - 035 |18 |05 |021]03 [045
9 S9 028 [ 0.3 |022|0.63| 1.89 |053 |1.48 | 1.65 | 0.13 | 0.38 | 0.63 | 0.48 | 0.06 | 0.54 | 9.67 |04 |0.1 |0.42 |05
10 Bl 021 [ 0.06 | 029 | 0.6 | 047 |02 [0.59 |0.46 |0.22 | 0.39 | 0.38 |0.29 |0.02 | 0.38 | 14.86 | 0.51 |- 0.17 | 0.38
11 B2 0.13 | 0.06 | 0.24 [ 0.5 | 0.52 |0.18 | 0.38 | 0.33 | 0.21 | 0.25 | 0.26 [0.22 | 0.05 | 0.28 | 10.33 [ 0.55 | 0.31 | 0.1 |0.32
12 B4 022 [0.13 | 0.17 |05 [10.75 |12 [5.32 |22 |1.44 |1.05|0.55 |0.93 |0.02 | 0.76 | 9.93 |0.33 |2.33 | 1.53 | 1.03
13 B5 0.23 [ 0.07 | 0.26 | 0.24 | 0.33 |0.08 [0.17 | 0.32 | 0.08 | 0.27 | 0.38 | 0.12 |- 0.38 | 10.47 | 0.73 | - 01 |031
14 B6 0.25 | 0.16 | 0.28 | 0.43 | 0.24 [0.16 |02 |0.31 |0.15 [0.15 [0.23 |02 |- 029 |37.4 |0.58 |- 0.07 | 0.29
15 B7 0.17 [ 0.13 | 0.19 | 1.11 | 2.93 |0.47 | 1.53 | 1.43 | 0.94 | 0.97 | 0.77 | 0.67 | 0.05 | 0.27 | 14.59 | 0.36 | 0.53 | 0.9 | 0.62
16 B8 02 [0.06|0.17 | 1.26 | 2.52 |0.71 [ 1.65 | 1.26 | 0.91 | 0.89 | 0.75 | 0.65 | 0.04 | 0.52 | 3.67 |0.28 | 0.35 | 1.09 | 0.63
17 B9 0.25 | 0.12 | 0.16 | 1.23 | 4.03 [0.85 |2.55 | 1.61 | 1.06 | 0.91 |0.62 | 0.74 | 0.08 [ 0.73 | 4.17 | 0.34 | 0.55 | 0.77 | 0.74
18 C1 0.15 [ 0.02 | 0.27 | 029 | 0.12 |0.08 [0.17 | 0.13 | 0.08 | 0.11 | 0.28 | 0.13 |- 0.38 | 8.17 |0.69 |- - 0.25
19 2 0.22 | 0.08 | 0.29 | 0.46 | 0.26 |0.12 [0.19 | 0.25 | 0.13 | 0.15 | 0.29 | 0.19 |0.05 | 0.29 | 30.87 | 0.47 |- 0.12 | 0.28
20 C4 035 |04 |0.19 (131 | 3.25|0.77 | 1.73 | 2.08 | 0.88 | 0.61 | 0.63 [0.65 | 0.02 | 0.35 | 13.67 | 0.38 | 0.49 | 0.95 | 0.73
21 Cs 0.31 {02 |0.18 | 1.31 | 2.61 |0.72 [1.63 | 1.24 | 0.87 | 0.58 | 0.69 | 0.68 [0.04 | 0.14 | 52 | 0.25 [ 0.32 | 0.73 | 0.59
22 C9 043 [ 0.33 | 0.18 | 1.35 | 4.12 |0.86 [2.38 | 1.72 | 1.02 | 0.7 |0.62 | 0.65 [ 0.08 | 0.49 | 8.47 |0.29 (0.6 |1.13 |0.77
23 C10 0.25 | 0.06 | 0.23 | 0.75 | 0.69 [0.27 | 0.48 | 0.59 | 0.28 | 0.37 | 0.48 | 0.31 | 0.04 | 0.32 | 16.33 | 0.44 | 0.24 | 0.44 | 0.39
24 Cl1 022 [ 0.11 | 021 |072 | 0.8 |027 [0.76 | 0.57 | 0.31 | 0.3 |0.45 |0.29 [0.07 | 0.29 | 11.67 | 0.4 [0.09 |03 |0.37
25 C12 0.27 [ 0.05 |03 |0.69 | 02 |0.18 [0.24 | 0.48 | 0.17 | 0.11 | 0.5 |0.23 |- 045 | 7.4 | 053 |- 0.33 | 0.34
26 C13 0.26 | 0.12 | 034 | 0.75 | 0.17 | 0.14 [0.21 | 0.33 | 0.14 | 0.18 | 0.45 | 0.41 | 0.04 | 0.51 |55 | 0.69 |0.03 |0.36 | 0.3
Average 025 | 0.14 | 0.23 [ 0.83 | 1.74 [0.41 |1.12 | 0.93 | 0.47 | 0.45 | 0.50 | 0.43 | 0.04 [ 0.41 | 11.85 | 0.46 | 0.28 | 0.53 | 0.49
Minimum 0.13 [ 0.02 | 0.11 | 024 | 0.12 |0.08 [0.17 | 0.13 | 0.08 | 0.07 [0.23 |0.12 |0 | 0.14 |3.67 |025|0 |0 |025
Maximum 043 |04 |037 |145|1075 |12 [532 |22 |1.44 |1.05|0.77 |0.93 |0.08 | 0.76 | 37.4 |0.74 |2.33 | 1.53 | 1.03
Table 7. Contamination factor (CF) and pollution load index (PLI) of the study area.
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Fig. 6. Pollution load index (PLI) of the study area.

Variables | Mg Al Si K Ca Ti Fe A% Cr Mn Co Ni Cu Zn As Cd |Ba
Mg 1

Al 0.756 1

Si -0.437 | -0.271 |1

K -0.330 | -0.166 | 0.239 1

Ca 0.570 |0.530 | -0.223 | -0.533 |1

Ti 0.388 0.212 0.017 -0.519 | 0.339 1

Fe 0.587 0.418 —-0.060 | —0.669 | 0.655 0.907 1

\4 0.422 0.253 0.016 —-0.598 | 0.432 0984 0946 |1

Cr 0.710 | 0.459 -0.217 | -0.682 | 0.647 | 0.832 |0.938 |0.867 1

Mn 0.432 0.272 —-0.003 | -0.623 | 0.670 0.881 0.940 0.904 | 0.845 1

Co 0.361 0.227 -0.021 | -0.647 | 0.648 | 0.808 |0.873 |0.843 |0.831 0920 |1

Ni 0.502 0.372 -0.279 | -0.480 | 0.828 | 0.504 |0.707 |0.561 0.759 10.694 |0.757 |1

Cu 0.297 0.298 -0.016 | —0.135 | 0.429 0.249 0.392 0.307 0.326 0.389 0.428 0.342 1

Zn 0.558 0.374 -0.069 | -0.574 | 0.731 0.842 0944 |0.887 |0.896 |0.930 |0.878 |0.784 |0.423 1

As 0.216 0.196 0.432 -0.139 | 0.166 0.631 |0.588 |0.660 |0.505 |0.504 |0.501 0.303 0.282 0.567 1

Cd 0.018 -0.079 | -0.252 | 0.146 -0.302 | -0.217 | -0.299 | -0.251 | —0.250 | —0.285 | —=0.290 | —0.416 | —0.323 | -0.335 | -0.361 | 1

Ba —-0.463 | —0.290 | 0.334 0.780 | -0.729 | -0.615 | -0.810 | —=0.691 | —0.772 | —0.783 | —0.755 | =0.702 | —0.445 | -0.751 | —0.206 | 0.136 | 1

Table 8. Pearson correlation coeflicients among heavy metals of sediments from study area. Significant values
are in [bold]. **Correlation is significant at the 0.01 level (2-tailed). *Correlation is significant at the 0.05 level

(2-tailed).

be of similar origin®®*°. These metals were found to be associated with Si. However, the elements with negative
correlations were thought to have different origins. Figure 7 shows the Pearson correlation coefficients among
heavy metals present in the study area.

Principal component analysis
Principal component analysis (PCA) is widely used to transform many variables into a small number of
significant variables. This method calculates the maximum common variance using all variables, which are then
put into a common factor. According to its purpose, factor analysis is divided into two methods: exploratory
and confirmatory**. Exploratory factor analysis is preferred when a theory is suggested by finding a factor using
the relationship between variables; conversely, confirmatory factor analysis is selected when the relationship
between variables will be used to test a previously known theory.
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Fig. 7. Pearson correlation coefficients among heavy metals of sediments.

Variables Comp t1 | Comp t 2
Mg 0.703 —0.046
Al 0.489 0

Si -0.576 0.818
K —-0.652 -0.167
Ca 0.629 0.161
Ti 0.755 0.557
Fe 0.848 0.523
\4 0.779 0.572
Cr 0.88 0.353
Mn 0.774 0.542
Co 0.726 0.487
Ni 0.711 0.155
Cu 0.316 0.198
Zn 0.808 0.483
As 0.263 0.715
Cd -0.102 -0.377
Ba -0.815 —-0.164
La 0.646 0.537
Pb 0.798 0.492
Percentage of variance explained | 46% 20%

Table 9. Varimax rotated principal components of heavy metals in sediments from the study area. Extraction
method: Principal component analysis. Rotation method: Varimax with Kaiser normalization. Rotation
converged in 3 iterations.

In PCA, variables are loaded with varimax rotation and analyzed using SPSS version 16.0 as given in Table 9.
According to the PCA, two components were obtained for 19 elements. The first factor, with a value of 46%, has
the highest explanatory power. The other four factors obtained explain 66% of the total variance. According to
the rotated Component Matrix, the elements of Mg, Ti, Fe, V, Cr, Mn, Co, Ni, Zn, and Pb constituted component
1, representing a similar origin’. Similarly, Si, As, and La constitute component 2, indicating that these metals
are derived from different sources. These results are in good agreement with correlation analysis. Figure 8 shows
the principal components of heavy metal of sediment.
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Fig. 9. Clustering of heavy metals of sediments.

Cluster analysis

Cluster analysis aims to identify a standard to classify variables based on inter-group differences and intra-
group similarity. The data underwent normalization for cluster analysis. The present study employed the average
linkage method and the Euclidean distance®!. Figure 9 demonstrates the hierarchical dendrogram of the results.
Figure 9 suggests two clusters: one containing Mg, As, Co, Ni, La, V, Ba, Mn, K, Ti, Al, Fe, Cu, Cd, Zn, and Pb,
and the other consisting of Si; the former represents anthropogenic sources, while the latter stands for natural
sources in the study area.
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The statistical analyses conducted in this study included Pearson correlation, principal component analysis
(PCA), and cluster analysis. For Pearson correlation, assumptions of linearity and homoscedasticity were
considered, and the correlation coefficients were used to identify relationships between elements. PCA was
applied to reduce dimensionality and identify significant components, with the assumptions of data normality
and linear relationships between variables. For cluster analysis, data were normalized to ensure comparability,
Validation included cross-checking results across methods, confirming consistency in grouping and component
patterns.

Conclusion

The assessment likely involved collecting sediment samples from different places in the Ennore port area,
analyzing the concentrations of heavy metals using atomic absorption spectroscopy (AAS), and comparing
the results to established guidelines or background levels to evaluate the degree of pollution and potential risk
associated with the heavy metal concentrations. The mean concentration of heavy metals was ranked in the
following sequence of Si>Al>Fe>Ca>Ti>K>Mg>Mn>Ba>V>Cr>Zn>La>Ni>Pb>Co>As>Cd>Cu.
The ranking indicates the relative abundance of these heavy metals in the sediments, with Si having the highest
mean concentration and Cu the lowest among the metals analyzed. The concentration levels (mg kg™') of various
elements exhibit the following ranges: 298-5987, 11,478-37,432, 115,987-224,978, 2985-9850, 3792-23,176,
540-49,434, 3597-56,502, 22.37-691, 11.5-198.29, 69.10-1227.61, 1.40-19.95, 11.48-38.63, BDL to 3.60, 11.04—
87.99,1.8-9.9, 1.1-11.2, 142.3-426.8, BDL to 214.7 and BDL to 30.7 for Mg, Al, Si, K, Ca, Ti, Fe, V, Cr, Mn, Co,
Ni, Cu, Zn, As, Cd, Ba, La and Pb.

The enrichment factor analysis suggests a significant anthropogenic influence on the environment for Cr,
Ca, T4, V, and Cd, indicating that human activities have contributed to elevated levels of these metals beyond
what would be expected from natural sources alone. Potential sources include industrial discharges, mining
activities, use of chromium-containing products, and improper waste management practices. Values of the
contamination factor (CF) indicate that the sediments were not contaminated with certain elements, suggesting
that the concentrations of those elements are within acceptable or background levels and do not pose a risk to
the environment or human health. The Igeo values for Co, Cr, Cu, Zn, Pb, and As fall within the range of 0-1,
indicating that these metals are practically uncontaminated or only slightly contaminated in the sediments.
Similar results were also obtained using the pollution load index (PLI).

The contamination was characterized using multivariate statistical analysis, including Pearson correlation
analysis, principal component analysis, and cluster analysis. These analyses show that common sources and
mutual dependence among certain metals (Al, Mg, Ca, Fe, Mn, Co, and Ni) suggest they may originate from
similar pollution sources, undergo similar transport and transformation processes, or exhibit similar affinity
for environmental matrices. Conversely, metals such as K (potassium), Cd (cadmium), and Ba (barium)
were identified as coming from different sources and not exhibiting mutual dependence, indicating distinct
contamination sources or behavior.

Heavy metal accumulation in beach sediments can have significant ecological consequences, including
toxicity to aquatic organisms, bioaccumulation in food chains, and disruption of ecosystem functions. Elevated
levels of metals such as Fe, Zn, and Ni can harm benthic organisms, reducing biodiversity and altering habitat
structure. Moreover, bioaccumulation of toxic elements like Pb and As in higher trophic levels poses risks to both
wildlife and human health. Future research should focus on long-term monitoring of heavy metal contamination,
identifying potential sources, and assessing their bioavailability. Additionally, studies on the combined effects of
multiple metals and the development of remediation strategies, such as phytoremediation or sediment washing,
could provide practical solutions to mitigate environmental risks.
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