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Animals select their habitats from available resources in a way that should maximize fitness, and 
thus habitat preferences are generally predicted to be adaptive. However, there may be a mismatch 
between habitat preferences and fitness due to factors such as limited availability or disturbance of 
nesting habitats. In this study, we examine whether preferred nesting habitat attributes are linked 
to fitness (nest survival and number of fledglings) of the White-throated Treerunner (Pygarrhichas 
albogularis), an obligate excavator and tree cavity nester, across four spatial scales: (1) cavity -for 
fitness influence only-, (2) nest-tree, (3) forest-stand, and (4) landscape. During eight breeding seasons 
(October to February), between 2010 and 2018, we found and monitored 65 Treerunner nests in 
Andean temperate forests, Chile. We obtained four main results. First, we found a multiscale response 
for both habitat preferences and fitness: variables at both nest-tree and landscape scales were the 
most influential for nesting habitat preferences, while variables at both cavity and nest-tree scales 
were the most influential for fitness. Second, the probability that a given habitat is used for nesting 
increased with larger trees, advanced tree decay classes, and forest cover. Third, nest survival was 
positively related with cavity entrance diameter, height, and distance from the forest edge. Fourth, 
the number of fledglings increased with south-oriented cavities and decay class, excepting for old 
dead trees where the breeding outcomes decreased. Combined, our results suggest a general match 
between habitat preferences and fitness, with a mismatch occurring with trees in advanced decay. 
The fact that the match occurs in areas with live unhealthy trees and recently dead trees, and a high 
forest cover, highlight the importance of (a) old-growth forests, as they comprise the best integration 
of multiscale habitat attributes for this species, and (b) maintaining the continuity of forest cover 
together with both live unhealthy and recently dead trees in managed and/or second-growth forests.

Animals select their habitats from available resources in a way that should maximize fitness1. Thus, it is expected 
that habitat attributes associated with habitat selection will also be those most strongly linked to fitness2. Habitat 
preferences (i.e. the final pattern of habitat used with respect to its availability) will generally be adaptive, under 
the pressures of natural selection, if a species obtains maximum fitness3,4. However, there may be a mismatch 
between habitat preferences and fitness due to factors such as temporal changes in habitat features after territory 
establishment5 and rapid disturbance of reproductive habitats6,7.

Habitat attributes influence fitness via the costs (e.g. predation risk) and benefits (e.g. food availability) 
of habitat preferences8. There is evidence that avian habitat preferences are scale-dependent and hierarchical 
phenomena9. Scales at which habitat selection may occur span from microsites (e.g. tree scale) to larger areas 
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selected for nesting and/or foraging within the home range of a species10. Thus, differences between nesting and 
available sites reported for excavators (i.e. species that excavate their nesting cavities in trees or other substrates) 
may occur because there are multiple scales operating in nesting site selection processes, from fine to coarse 
scales11,12. Excavators assess, for example, the tradeoff between a secure nesting substrate for excavation (e.g., 
secure to avoid predators and/or extreme weather) and the distance to a foraging area13. Multiscale studies allow 
identifying important scales concerning individual perception of their habitats, otherwise it is difficult to detect 
when knowledge of the ecology of the study species is limited14.

The White-throated Treerunner (Pygarrhichas albogularis King 1831; Furnariidae), is a poorly known 
passerine endemic to South American temperate and Mediterranean ecosystems, mainly found in central 
and southern regions of Chile and Argentina15–17. This species is considered an “old relict” as it is the only 
living species of the genus Pygarrhichas18,19, and according to the International Union for the Conservation of 
Nature their populations are decreasing20. White-throated Treerunner is one of the four species of tree cavity 
excavators in these ecosystems21. As an excavator, this species relies on habitats with presence of trees suitable 
for excavation22. Although this species has been suggested as a key habitat facilitator for several avian and 
mammalian cavity-nesting species in southern South America16,21, there are only two studies on the ecology of 
Treerunners and these focused on foraging use of tree species23 and its morphological description15. However, 
there are occasional community level studies that included Treerunners as part of an avian assemblage24–32.

In this study we examine the nesting preference of Treerunners and whether their preferred habitat attributes 
are linked to fitness through a two-step modelling approach. First, we assess habitat preferences analyzing 
the link between habitat attributes and preferences of nesting sites at: (1) nest-tree scale, (2) forest-stand 
scale, and (3) landscape scale. Second, we assess whether habitat attributes of sites used to breed are linked to 
fitness (represented as nest survival and number of fledglings) at the same three spatial scales, adding cavity 
characteristics as a fourth smaller spatial scale in the analysis. We hypothesize that (1) habitat attributes that are 
used to breed within a given landscape differ from the most available attributes and that (2) habitat attributes 
at each spatial scale improve fitness, and (3) there is a match between attributes of habitat used and fitness. This 
study provides a better understanding of forest attributes that must be maintained to ensure habitat and breeding 
success for this and other coexisting cavity nesting species in South American temperate forests31.

Results
Between 2010 and 2018, we located and monitored 65 White-throated Treerunner nests (273 to 1,342  m of 
elevation); most of them were in freshly excavated cavities in Nothofagus trees with a broad range of DBH 
(Table 1). Old dead trees with advanced decay (55%) and live unhealthy trees (35%) contained the great majority 
of its nests, with only 8% and 2% for recently dead and live healthy trees, respectively. When we look at the 
specific substrate decay, 80% of the nests were in old dead substrates, and only 14% and 6% in live unhealthy 
and recently dead substrates, respectively. White-throated Treerunners laid an average of 3.2 ± 0.8 eggs (± 
standard deviation; range: 1–5 eggs). Laying, incubation and nestling periods were 4, 13 and 21 days on average, 
respectively. The daily survival rate was 0.9956, with an overall nest survival of 85%. Regarding failed nests 
(n = 10), 6 failed because of predation, 3 were abandoned, and 1 nest failed because eggs were not viable.

Breeding habitat preferences across spatial scales
Variation in the use of breeding habitat was best predicted by a model that included two nest-tree scale variables 
(DBH and tree decay), one forest-stand scale variable (basal area; b = 4.64 ± 3.04, p > 0.05), and one landscape 
scale variable (forest area; Table 2). The probability that a given habitat is used for nesting increased with larger 
trees, advanced tree decay, and forest area. Following the b coefficients, tree decay was the strongest predictor 
of nest presence, followed by forest area and DBH. Treerunners avoided healthy living trees (b = -10.10 ± 2.86, 
p < 0.01), and the probability of nesting in a tree increased positively with each increasing decay class (Fig. 1A): 
unhealthy living trees (b = 3.53 ± 1.26, p < 0.01), recently dead trees (b = 3.76 ± 1.46, p = 0.01), and old dead trees 
(b = 7.35 ± 1.64, p < 0.01). Even when both forest area and DBH were positively associated with preferred breeding 
habitats, GLMMs showed that the extension of forest area (b = 4.09 ± 2.11, p = 0.05, marginally significant; 
Fig. 1B) influenced 82 times more than DBH (b = 0.04 ± 0.02, p = 0.01). This model provided a good fit for the 
data ( χ 2= 83.63, p = 0.99). The control values at the landscape, forest-stand, and tree scales can be found in the 
Supplementary Material 1.

Fitness outputs
For nest survival, there were two spatial scales included in the best models: cavity scale (entrance diameter 
and height) and landscape scale (forest edge, Table 2). Entrance diameter (b = 0.73, CI = −0.11–1.93, p = 0.13) 
and forest edge (b = 1.01, CI = −0.24–3.73, p = 0.28) had a positive effect on nest survival (daily survival rate). 
Nests with bigger entrances and further from the forest edge were more successful. Height was positively and 
marginally associated with nest survival (b = 1.09, CI = 0.24–2.84, p = 0.05; Fig. 2A). This model was a good fit for 
the data ( χ 2 = 151.92, p = 1.00).

Regarding the number of fledglings produced, the final model had parameters at the cavity (aspect) and 
tree (decay class) scales. Aspect had an important effect on number of fledglings produced, with nests facing 
south producing more nestlings (b = −0.39, CI = −0.62–0.14, p = 0.002; Fig. 2B). Tree decay also had an effect, 
with number of nestlings produced positively associated with unhealthy living trees (b = 3.02, CI = 2.48–3.46, 
p = < 0.001) and with recently dead trees (b = 0.43, CI = −0.42–3.46, p = 0.32), while long dead trees were 
negatively associated with the number of fledglings (b = −0.47, CI = −0.96–0.04, p = 0.05) (Fig. 2C). This model 
provided a good fit for the data ( χ 2 = 13.96, p = 0.99).
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Discussion
We found that both habitat preferences for nesting and nest survival measures for the White-throated Treerunner 
operate across multiple spatial scales. Similar to previous studies using multiscale approaches7,13,33, at least one 
variable at each scale influenced nest site preferences and/or fitness (number of fledglings and nest survival) 
for our study species. Variables at both tree and landscape scales were the most important influencing nesting 
habitat preferences, while variables at both cavity and tree scales were the most important in our assessment of 
fitness (nest survival and number of fledglings). The White-throated Treerunner showed preferences for areas 
with a relatively high forest cover and its nest survival increased with the distance from the forest edge. This 
may suggest that old-growth forests, with extensive areas of forest far from the edges, and with relatively less, 
but larger, trees compared to second-growth forests34, contain the best complement of multiscale variables for 
this species.

The White-throated Treerunner tends to excavate new cavities (89%) every nesting season, with the remaining 
11% consisting of reused cavities, all of which were excavated by this species during previous years. Thus, we have 
determined that this species is a primary cavity-nester (i.e. obligate excavator; mainly excavates its own cavities, 
but occasionally uses existing excavated cavities)35. Breeding pairs might use existing cavities depending on nest 
predation risk, for instance, in case their breeding attempt failed in their fresh cavity. This pattern is similar to 
that found in a medium-sized woodpecker in North America, the Red-naped Sapsucker (Sphyrapicus nuchalis), 
which mostly excavate its own cavities, but about 11–12% of breeding pairs reuse existing cavities excavated in 
previous years36. Although the White-throated Treerunner has been compared to nuthatches in North America; 
the Red-Breasted nuthatch (Sitta canadensis) tends to be a facultative excavator (i.e. excavate about 50% of their 
nests, excavation rates vary annually;37,38). Thus, based on our study, Treerunners are more extensively primary 

Variable White-throated Treerunners’ nests

Landscape scale

 Forest edge (m) 482.1 ± 807.7 (0–2851.8)

 Forest area (m2) 25882.1 ± 4403.4 (9880–29499)

Forest-stand scale

 Tree density (tree/ha) 771 ± 366 (25–1550)

 Average DBH (cm) 31.4 ± 7.7 (20.2–59.8)

 Standard deviation DBH (cm) 16.2 ± 11.2 (6.9–86)

 Decay class mode 2 ± 0.6 (1–4)

Tree scale

 Tree species (%)

Nothofagus obliqua: 61.5

Nothofagus dombeyi: 12.3

Nothofagus pumilio: 10.8

Persea lingue: 9.2

Eucryphia cordifolia: 6.1

 Tree DBH (cm) 40.6 ± 20.3 (14.1–123.1)

 Decay class 3.2 ± 1.0 (1–4)

Cavity scale

 Fresh (%) Fresh cavities: 89.2

Non-fresh cavities: 10.8

 Entrance diameter (cm) 3.8 ± 0.6 (2.5–5)

 DCH (cm) 21.5 ± 11.5 (9–60)

 Height above ground (m) 9.6 ± 4.1 (1.1–17.1)

 Aspect (°) 145.4 ± 106.5 (4–348)

 Cavity volume (cm3) 1,349.1 ± 755.2 (147.3–4,417.9)

 Branch order (%)

Main trunk: 64.6

2nd order branch: 30.8

3rd order branch: 4.6

 Substrate decay class 3.7 ± 0.7 (2–4)

Fitness

 Nest survival (%) 85.04 (CI = 57.27– 98.16)

 Number of fledglings (# chicks) 3.0 ± 1.2 (1–5)

Table 1.  Characteristics of nesting habitats (cavities, tree, forest-stand, and landscape scales) and fitness 
(measured as nest survival and the number of fledglings) of White-throated Treerunners (Pygarrhychas 
albogularis; n = 65 nests) in Andean temperate forests, Chile. Decay class 1, 2, 3 and 4 represent live healthy 
trees, live unhealthy trees, recently dead trees, and long dead trees, respectively. Values are presented as 
percentages or mean ± standard deviation (range). CI means confidence intervals.
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cavity excavators resembling more Red-naped Sapsuckers or Downy Woodpeckers (Dryobates pubescens) rather 
than nuthatches that are facultative excavators22.

White-throated Treerunner nesting habitat preferences were associated mainly with variables acting at both 
tree and landscape scales, preferring relatively larger trees in advanced decay classes present in highly forested 
areas. This partially agrees with the results found for functionally similar species in the northern hemisphere, 
such as the Red-naped Sapsucker13. The latter species prefers nesting habitats associated with landscape scale 
attributes, similar to Treerunners; however, only tree scale attributes are linked to their fitness13. This suggests 
a hierarchical process of habitat selection for the White-throated Treerunner33, in which several factors, at 
different spatial scales, influence the decision of choosing a given nest-site7. For example, the main trophic 
resource for Treerunners is forest-dwelling arthropods in adult and larval states39,40, which are probably more 
abundant in multi-stratified forested landscapes with presence of all tree decay classes16. Additionally, this 
species is choosing nest site variables at a finer scale. Like other cavity-nesting species in the study area21, tree 
scale attributes (especially tree decay) are the most influential factors operating in nesting habitat selection for 
Treerunners. This finding is similar to results reported for several primary cavity nesters such as woodpeckers 
in temperate forests of North America22 and in tropical Atlantic forests of South America41, where excavators 
strongly select live unhealthy and standing dead trees as nesting sites7,42.

The White-throated Treerunner showed 85% nest survival. This high survival rate strongly contrasts with the 
overall nest survival of avian communities in tropical forests of Brazil (42%) and Dominican Republic (34%)44, 
but is similar to cavity nesters and excavator species inhabiting other temperate forests such as Red-Breasted 
nuthatches (84%) and Red-naped Sapsuckers (91%)13. We found that nest survival was positively associated 
with the entrance diameter of cavities, a counterintuitive finding, which might be associated with adult ability 
to successfully breed; and thus, stronger adults might be able to protect the nest and excavate larger cavities. 
Furthermore, cavity-nest predator assemblage in our study area is diverse but composed by relatively large 
animals, with the mammals Leopardus guigna, Dromiciops gliroides, and Rattus rattus, and the birds Milvago 
chimango, Caracara plancus, Glaucidium nana, being the main predators46. Thus, even when predation was the 
main cause of nest failure, small differences in entrance diameter may not increase predation risk. On the other 
hand, excavated cavities higher in the tree might reduce the predation risk by terrestrial predators. Nest survival 
increased with the distance from the forest edge, suggesting that the selection of breeding habitats (selecting 
sites with high forest cover) is adaptive, and this decision is being translated into higher nest survival13. Second-
growth forests contain a larger number of trees and more chance to be close to the edge compared to old-growth 
forests, as well as fewer options to nest higher in the canopy. This suggests that second-growth forests may not 
provide ideal breeding habitats for White-throated Treerunners.

The number of fledglings of White-throated Treerunners was associated with cavity and tree scale attributes 
(i.e. aspect and decay). This pattern is similar to the productivity of Red-naped Sapsuckers in the United 
States13, where cavity and tree scales were also the most important attributes associated with the number of 

Model Ka AICc ∆AICb Wi
c LLd

Habitat preference

 DBH + Decay + Basal area + Forest area 9 115.2 0.00 0.34 -47.8

 DBH + Decay + Basal area + Forest area + SD DBH 10 117.3 2.06 0.12 -47.67

Nest survival

 Entrance diameter + forest edge + height 6 95.1 0.00 0.07 -41.44

 Entrance diameter + height 5 95.4 0.26 0.06 -42.61

 Forest edge + height 5 95.9 0.81 0.05 -42.88

 Height 4 96.1 0.98 0.05 -44.00

 DBH + entrance diameter 5 96.4 1.27 0.04 -43.11

 Entrance diameter + forest edge + height + tree density 7 96.7 1.77 0.03 -41.29

 Entrance diameter + DBH + height 6 97.0 1.84 0.029 -42.36

 Forest edge + height + tree density 6 97.0 1.92 0.03 -42.40

 DBH 4 91.1 1.97 0.03 -44.49

 DBH + Forest edge + height + entrance diameter 7 97.3 2.06 0.03 -41.43

Number of fledglings

 Decay class + aspect 7 98.1 0.00 0.32 -40.23

 DBH + decay class + aspect 8 98.2 0.14 0.30 -38.71

 Aspect 6 98.5 0.42 0.26 -43.34

 Decay class + forest area + aspect 8 100.1 2.07 0.11 -39.67

Table 2.  Model rankings for White-throated Treerunners (Pygarrhychas albogularis) habitat preference, 
number of fledglings, and nest survival in relation to the four spatial scales assessed in its nesting sites in 
South Andean temperate forests, Chile. Season and site were random terms in all models. Bold indicates best-
supported models. a Number of parameters estimated. b Difference in AICc values between each model and the 
lowest AICc model (we show the list of models until the first one with ∆AIC > 2). c AICc model weight. d Log 
likelihood.

 

Scientific Reports |        (2025) 15:34667 4| https://doi.org/10.1038/s41598-025-93594-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


fledglings. However, breeding outputs were positively related to southeastern orientation (facing the equator in 
the Northern Hemisphere) of cavity entrance for Red-naped Sapsuckers, while we found that south-orientated 
cavities (away from the equator in the Southern Hemisphere) produced more nestlings for Treerunners. Our 
focal species excavated cavities facing almost all cardinal directions, agreeing with recently published results 
for South American excavators, in which there is no general pattern of cavity orientation47. This finding may 

Fig. 1.  Most influential variables, at different spatial scales, on nesting habitat preferences of White-throated 
Treerunners (Pygarrhichas albogularis) in Andean temperate forests of South America: (A) Number of trees 
within each tree-decay class with presence or absence of nests (tree scale) and (B) forest area (landscape scale).
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represent a slight mismatch between use and fitness of cavity orientation, suggesting that other site-specific 
variables, such us slope orientation, might be influencing the aspect of the Treerunners’ cavities47. Instead, and 
unlike nest survival, the number of fledglings was associated with tree scale, being associated with tree decay. 
We found that unhealthy live trees and recently dead trees strongly increased the number of fledglings (a match 
with their preference), while long dead trees negatively affected the number of fledglings (a mismatch with their 
preference). This might be also responding to adult ability to generate more breeding output; perhaps stronger 
adults select stronger substrates to excavate, leaving softer trees and branches for the weaker pairs. However, it 
is also possible that factors not measured in this study, but probably related to tree decay, are affecting breeding 
productivity.

Cavity-nesters globally have become seriously threatened by deforestation48 and conventional 
silviculture41,49,50, in which old and large cavity-bearing trees are often removed. This might also be the case 
for White-throated Treerunners, and for other cavity-nesting species that nest in large decaying and standing 
dead trees in south temperate forests21. Despite their importance as cavity substrates, large decaying and 
standing dead trees are not protected by current forestry laws in Chile29. Here, temperate forests are threatened 
by fragmentation, degradation, and deforestation51,52, as nearly 70% of their original extent has been lost53. 
Thus, and following the actions proposed by the Chilean Bird Conservation Strategy54, we call for a sustainable 
management to maintain the important forest attributes at different scales (especially both live unhealthy and 
recently dead trees, and forest cover), for Treerunners and the persistence of the cavity-nesting community. 
Our reported relationship between habitat preferences and fitness could be crucial information to conserve 
White-throated Treerunners and multiple coexisting species, as this excavator is known to play an important 
role structuring forest-dependent communities by providing cavities for other small-size vertebrates, including 
birds, marsupials, and bats21,30.

Methods
Study area and focal species
We studied White-throated Treerunners in Andean temperate forests of La Araucanía Region, Chile (39°16′S, 
71°48′W, see21 for a full description of the study area). This area presents a mean daily temperature of 6.0 °C 
and an average annual precipitation > 2,000  mm distributed throughout the year30,55. We surveyed 20 forest 
sites (20–40  ha each), corresponding to nine second-growth forests between 40 and 80 years old subjected 
to selective logging, and 11 old-growth forests over 200 years old with less anthropogenic pressure. Second-
growth forests are dominated by broadleaf species such as Nothofagus obliqua, Nothofagus dombeyi, and Laurelia 
sempervirens, while old-growth forests were mixed conifer-broadleaf forests dominated by broadleaf species 
such as Laureliopsis philippiana and Nothofagus dombeyi associated with the conifer Saxegothaea conspicua 
at lower elevations (500–900  m). At higher elevations (900-1,600  m), old-growth forests include Nothofagus 
pumilio (broadleaf) and Araucaria araucana (conifer). The understory of second- and old-growth forests were 
dominated by bamboo species (Chusquea spp.), Azara spp., Berberis spp., and tree saplings.

In Chile, the White-throated Treerunner is distributed between Santa Inés hill (32° 9′31.51″S; 71°29′32.76″W) 
and the Cape Horn Archipelago (55°58′59.61″ S; 67°16′00.69″ W15,17. Because of their size, morphology, and 
habits, White-throated Treerunners have been compared to “Nuthatches” (Sittidae, genus Sitta) from North 
America, Europe, and Asia56,57. The White-throated Treerunner is strictly arboreal, does not fly long distances, 
and similar to nuthatches moves from tree to tree, climbing them vertically with its legs and tail18,57. It actively 
feeds on larvae, adult insects17,58 and other arthropods40, by removing small pieces of bark along tree trunks and 

Fig. 2.  Most influential variables (significant and marginally significant), at different spatial scales, on fitness 
(daily survival rate and number of fledglings) of White-throated Treerunners (Pygarrhichas albogularis) in 
Andean temperate forests, South America: (A) Height above ground (cavity scale), (B) cavity orientation 
and number of fledglings (cavity scale), and (C) decay class (tree scale). Decay class 2, 3 and 4 represent live 
unhealthy trees, recently dead trees, and long dead trees, respectively.
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branches17,18. At early stages of the reproductive season, naturalist reports indicate that the Treerunner excavates 
its nesting-cavities on highly decayed or burned trees57,58 and standing dead trees of small diameter at breast 
height (15 cm)58.

Nest searching and monitoring
During eight breeding seasons (October to February), between 2010 and 2018, we searched (6 h per day, 6 days 
per week) for occupied cavities of White-throated Treerunner in each of the 20 forests. To find and monitor 
nests, we employed the protocol described in Martin and Geupel (1993), observing adult behavior such as 
repeated visits to the same tree, long periods out of sight after knowing its position on a tree or sudden flight out 
of a tree-cavity60.

Nests in cavities lower than 2  m height were checked directly using a Ridgid camera, while a wireless 
monitoring system61 mounted on a 15 m long telescopic pole21,41,60 was used for cavities above 2 m height. A nest 
was considered active after we confirmed it contained at least one egg or nestling. Then, we obtained geographic 
coordinates for each nest using a handheld GPS with ± 10 m accuracy. A unique code was given to every nest, 
cavity, and tree containing a nest. Each of them, was monitored every 3–4 days until the nest attempt ended 
(either failed or successful) to determine number of hatched eggs and fledglings, signs of depredation, or cavity 
availability for further nesting attempts.

Habitat sampling across spatial scales
Following Sadoti and Vierling (2010), we used a paired used-availability study design to infer habitat preference 
at three spatial scales (tree, forest-stand, and landscape) and their link to fitness at four spatial scales (cavity, tree, 
forest-stand, and landscape; Table 3; Fig. 3). At (1) cavity-scale, we measured entrance diameter (cm), diameter 
at cavity height (DCH, m), cavity height above the ground (m), aspect (°), internal cavity volume (cylinder 
dimension, cm3), branch order (order of tree branches where excavated cavity was located; 1: main trunk; 2 
secondary branch; and 3: tertiary branch), and substrate decay class (degree of decomposition of the specific 
substrate where a given nest was located, associated with the branch order). At (2) nest-tree scale, we recorded 
tree species, diameter at breast height (DBH), and decay class of nest-trees (1: live healthy tree; 2: live unhealthy 
tree; 3: recently dead tree; 4: old dead tree; and 5: naturally fallen tree; for details see21; a detailed protocol can be 
found in Supplementary Material 2). At (3) forest-stand scale, we established vegetation plots of 11.2 m radius 
(0.04 ha), with the nest-tree at the center of the plot and recorded both DBH and decay classes for every tree with 
DBH > 12.5, because it is the minimum diameter that can support a Treerunner nest21. These data allowed us 
to calculate habitat attributes including tree density, mean DBH and standard deviation, decay class mode, and 
stand basal area14. At (4) landscape scale, we used a 3 ha buffer for analysis with nest-trees at the center. We choose 
a 3 ha buffer because other studies reported home ranges of 3 ha for Brown-headed nuthatch (Sitta pusilla)62 and 
Eurasian nuthatch (Sitta europaea)63; species of comparable size and habits to the White-throated Treerunner. 
At this scale, we measured the nearest distance to a forest edge and forest area14 (Table 3). We determined forest 
cover area through remote sensing combining Remap64 and QGIS 3.6 Noosa65. Remap is an online mapping 
platform that allowed us to classify land cover. At an approximate 120.000 ha buffer area containing all 130 plots 
(65 corresponding to White-throated Treerunner nests and 65 to control trees, i.e. random trees without nests of 
the study species), we established a set of training points through photointerpretation. This set of training points 

Spatial scale Variable Description

Cavity

Fresh 1: Cavity excavated during the observation year; 0: Cavity excavated in previous seasons

Entrance diameter Horizontal diameter of the entrance of the excavated cavities (cm)

DCH Diameter at cavity height of nest trees (cm)

Height Height above the ground of the excavated cavities (m)

Aspect Cardinal orientations of the excavated cavities in degrees (0° − 360°)

Cavity volume Internal cavity volume calculated as volume of a cylinder (cm3)

Branch order Order of tree branches where excavated cavity was located. 1: main trunk; 2 secondary branch; 3: tertiary branch

Subdecay class Degree of decomposition of the tree branch where excavated cavity was located

Nest-tree

Tree species Tree species where nests were found

Tree DBH Diameter at breast height of nest trees

Decay class Degree of decomposition of the nest trees. Decay classes assigned were 1 (live healthy tree); 2 (live unhealthy 
tree); 3 (recently dead tree); and 4 (long dead tree; modified from75,76

Forest-stand

Tree density Density of total trees in one hectare

Average DBH Mean DBH of total trees in forest-stand

Standard deviation DBH Standard deviation of DBH in total trees on forest-stand

Decay class mode Mode of degree of decomposition of the total trees in forest-stand

Basal area Basal area of forest-stand (cm2/ha)

Landscape
Forest edge Nearest distance to forest edge from nest tree (m).

Forest area Forest area in circular buffer of 3 ha with nest tree in the center (m2)

Table 3.  Spatial scales (cavity, nest-tree, forest-stand and landscape) assessed to explore habitat preference and 
fitness of White-throated Treerunners (Pygarrhychas albogularis) in Andean temperate forests, Chile.
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feeds an algorithm that based on a set of biophysical, spectral, and climatic predictors classifies the entire area 
in the different classes of land cover types that were defined with the training set points. The image of reference 
corresponded to a 2014–2017 Landsat composite image. The resulting classified image was downloaded and 
corrected with QGIS, determining the forest cover at 3 ha plots for every nest and control. As Eurasian nuthatch 

Fig. 3.  Study species White-throated Treerunners (Pygarrhychas albogularis) (A) and the spatial scales 
assessed for breeding habitat preferences and fitness in Andean temperate forests of South America: cavity 
scale (B), tree scale (C), forest-stand scale (D), and landscape scale (E). Photos were taken by Tomás A. 
Altamirano (A, C, D), Fernando J. Novoa (B), and J.Tomás Ibarra (D).
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shows a maximum distance of 50 m in open spaces66, we established and measured forest edge when there was 
a > 50 m distance between forest patches69.

Statistical analysis
Breeding habitat preferences
We used a stratified case-control sampling design67 to examine habitat attributes, across spatial scales, associated 
with nest-site preferences and fitness. We assume breeding attempts to be independent, regardless of breeding 
pair identity. We had 65 nests of the White-throated Treerunner, at a minimum average distance of 0.4 km, and 
thus randomly selected 65 control sites from a large data base we have collected throughout the years (2008–
2018). For the random selection of control sites, we excluded plots where Treerunner nests were found and we 
selected control vegetation plots and trees from the same forest site and season of its paired Treerunner nest.

To examine habitat preferences, we used generalized linear mixed effect models with a binomial distribution 
family (R package lme4 v1.1-31)68, and with site and season as random effects, to control for any inherent 
capacity of a given forest site or season to support more nests, and White-throated Treerunner nest presence (1) 
or absence (0) as the response. We assessed possible preferences at three spatial scales (nest-tree scale, forest-
stand scale, and landscape scale, Table 3). The modelling algorithm was considered keeping all random effect 
variables as a basis, testing the 11 single models first (including the Null Model), and then manually adding fixed 
effect variables that were significant, one at a time from smaller to larger scales. Twenty-three models were built, 
and the best model was selected through Akaike criterion (i.e. the most parsimonious model given by the lower 
ΔAIC value) and variable significance. Coefficients are shown ± their standard errors.

Fitness
To investigate whether habitat attributes of used reproduction sites are linked to fitness we looked at two 
different aspects: nest survival and number of fledglings. For nest survival we estimated daily nest survival rate 
(DSR) using the logistic exposure method69 with generalized linear mixed effect models (binomial distribution 
family, with the link function code adapted from69; Supplementary Material 3), including site and season as 
random effects. The response variable was either 1 (nest survived between nest visits) or 0 (nest did not survive 
the interval between visits). For the number of fledglings produced, we used linear mixed effect models, with a 
Poisson distribution family, and with number of fledglings as the response variable and included site and season 
as random effects. As for the fixed effects, we used the same three spatial scales used in the habitat preference 
assessment, but also added cavity-scale variables in the analysis (Table 3). This was done only for fitness and not 
habitat selection because, as an excavator, cavity attributes are generated by the excavation process; thus, those 
attributes are not “preferred” or “avoided”. We fitted all possible combinations of variables, excluding interactions. 
For most variables we looked at their linear effect only. However, for aspect, as it is a circular variable and we 
are interested in contrasting north vs. south exposed cavities, we transformed it into “northness” (cos(aspect)), 
which ranges from − 1 (south-oriented cavities) and 1 (north-oriented cavities)70,71. We then ranked the models 
by AICc and selected the model with the lowest value. We assessed parameter importance in the final model by 
determining whether or not their 95% confidence interval (CI) included zero72.

We estimated DSR of the population with the intercept of the null DSR model. To estimate overall survival, 
we raised DSR to an exponent of 38 which represents the average duration of the whole nesting cycle for this 
species in this area (laying = 4 days [assuming 1 egg laid per day], incubation = 13 days, nestling = 21 days). 
Before fitting nest survival models we investigated a potential effect of researcher on DSR derived from frequent 
nest visitations. We created a continuous variable of cumulative nest visitations, and assessed its effect on DSR 
using logistic exposure method, as described above. Before fitting any model, we checked for outliers with Cook’s 
distance (D), and for correlation among covariates to assess multicollinearity (r > 0.75); there were no outliers 
and no correlations in the analysis. We replaced missing values with the mean of the variable and standardized 
all continuous variables to a mean of zero with one unit of standard deviation73. We assessed the goodness of 
fit of the final models with χ 2 tests, rejecting the model if p < 0.05. All analysis were performed in R 4.2.1 74.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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