
Edge assisted energy optimization
for mobile AR applications
for enhanced battery life and
performance
Dinesh Sahu1, Nidhi1,6, Shiv Prakash2,6, Vivek Kumar Pandey2,6, Tiansheng Yang3,6,
Rajkumar Singh Rathore4,6 & Lu Wang5

Mobile Augmented Reality (AR) applications have been observed to put high demands on resource-
limited, portable devices, thus using up much power besides experiencing high latency. Thus, to
overcome these challenges, the following AI-driven edge-assisted computation offloading framework
that will provide optimal energy-efficiency and user experience is proposed. Our framework uses
Reinforcement Learning/Deep Q-Networks for learning the optimal task offloading policies based
network status, battery status, and the tasks’ required processing time. Also, as a novel feature, we
implement Adaptive Quality Scaling, which leaned from previous strategies managing AR rendering
quality in relation to available energy and available computing capability. This one is known to make
interaction possible for the handling of call flow to be efficient and at the same time, low energy
consumption. Several experiments were conducted on the proposed framework and results show
that there are an average of 30% energy saving compared to traditional heuristic-based methods of
offloading, and the task success rates are above 90% while the latency is kept below 80 ms. These
results support that our method proves to be efficient in improving AR task performance, enhancing
battery endurance on the devices, and improving real-time user experience. In addition to this, the
system proposed in this paper uses reinforcement learning to dynamically deploy offloading which
enhances the resource allocation to be smart and timely. The research given here offers an approach
towards ensuring that mobile AR is beneficial in achieving efficiency while addressing the needs of
dynamic edge computing.

Keywords  Edge computing, Mobile augmented reality, Energy optimization, Task offloading, Adaptive
quality scaling, Reinforcement learning, Battery efficiency, User experience, Resource allocation, Latency
reduction

With mobile augmented reality (AR) applications becoming an area for innovation in many domains including
gaming, health care, education, and intelligent city systems, demand for these solutions is growing rapidly. All
that, however, places a heavy resource toll on mobile devices: real-time image processing, object detection,
and 3D rendering. These devices are restrained by limited computational power, limited battery capacity, and
the need for low latency1,2. These are the problems Edge computing emerges to solve. Mobile devices can save
energy consumption and improve performance by offloading computational tasks to nearby edge servers3,4.
At the same time, striking a proper balance between task offloading, energy saving, and user experience is
still an open research problem. There have been a lot of existing solutions, such as pure local processing and
cloud offloading. However, performing local processing decreases latency but drains the batteries quickly and
is especially inefficient for computationally heavy AR applications. On the other hand, while cloud offloading
possesses large computational resources, it suffers from high latency and security risks on remote servers5,6.
Incorporating hybrid approaches employing edge computing has been shown to be promising but without

1SCSET, Bennett University, Plot Nos 8, 11, TechZone 2, 201310 Greater Noida, Uttar Pradesh, India. 2Department
of Electronics and Communication, University of Allahabad, Prayag Raj, Uttar Pradesh, India. 3University of South
Wales Pontypridd, Pontypridd, UK. 4Cardiff School of Technologies, Cardiff Metropolitan University, Wales, UK.
5Xi’an Jiaotong-Liverpool University Suzhou, Suzhou, China. 6Nidhi, Shiv Prakash, Vivek Kumar Pandey, Tiansheng
Yang, Rajkumar Singh Rathore and Lu Wang contributed equally to this work. email: shivprakash@allduniv.ac.in;
rsrathore@cardiffmet.ac.uk

OPEN

Scientific Reports | (2025) 15:10034 1| https://doi.org/10.1038/s41598-025-93731-w

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-93731-w&domain=pdf&date_stamp=2025-3-20

dynamic adaptability to real-time situations like a change of network bandwidth, user preferences, battery
level, etc.7–10. Unlike, IoT applications where most of the use cases are based on sensor data processing or
vehicular network with less update frequency, Mobile AR application requires real-time 3D rendering, object
tracking, and user interactions, which puts significant restrictions on latency and energy consumption. These
workloads are inherently dynamic; they are a function of the movement of users, environmental conditions, and
the workloads of the calculation. Moreover, it must be noted that mobile AR applications operate on battery-
powered devices; therefore, applications should provide intelligent and dynamic techniques for offloading tasks
to the edge servers while preserving a high-quality AR experience. Current edge computing solutions for IoT
and Industry 4.0 are insufficient to address these challenges; hence, a new optimization platform for mobile
AR is required. Conventional task offloading techniques present in edge computing are relying on heuristic
techniques or static approach of threshold values that are not flexible in case of workload changes and the
actual energy consumption in mobile AR applications. They fail to learn improved policies from interacting
with it and previous or present state of the network and the device which it supports and therefore offer low
performance to a fluctuating environment. traditional heuristic based offloading techniques use predetermined
thresholds to make decisions, which are not dynamic to varying circumstances in the network, battery status of
the device, as well as varying workload of the augmented reality application. These static approaches result in a
poor schedule on the tasks as they enhance energy consumption along with latency in dynamic environments. In
order to address the mentioned challenges, we propose an AI-assisted edge computation offloading framework
that utilizes Reinforcement Learning (Deep Q-Networks) for offloading task scheduling and Adaptive Quality
Scaling for the right allocation of resources to maintain the desirable quality of AR rendering. In contrast to the
earlier methods, the proposed framework learns policies online, thus providing efficient strategies in energy
consumption and latency.

Problem statement
The main problem with mobile AR applications is their high energy consumption and latency. Typical approaches
either implement tasks locally, consuming battery life and degrading performance, or transmit them to a remote
compute server in the “cloud, creating latency and network dependency4. However, the limitations of these
impair the usability and scalability of mobile AR in resource-constrained environments.

Objective
In this paper, we propose a novel edge-assisted energy optimization framework to mitigate these challenges.
The objective is to minimize energy consumption, yet provide a high-quality user experience through taking
advantage of edge computing resources and advanced optimization techniques.

Key contributions
The key contributions of this paper are as follows:

	1.	� A mathematical model for energy optimization: It contains a probabilistic model comprising a resource
allocation (task offloading decisions), energy estimation, and performance metrics.

	2.	� Dynamic task offloading algorithm: An approach where to decide whether tasks should be processed locally
or be offloaded to edge servers is based on a reinforcement learning.

	3.	� Adaptive quality scaling for user experience preservation: A mechanism to set AR quality dynamically based
on certain device and network conditions.

	4.	� Empirical validation:Extensive experiment results demonstrating energy reduction by 30% and increase in
battery life by 20% over baseline methods.

Structure of the paper
The remainder of the paper is structured as follows: In Section “Related work”, we review existing energy
optimization approaches for mobile AR applications, and base our comparison on those. In Section “Proposed
system architecture” we present the System Architecture and Computation Model, highlighting the framework
components and mathematical formulations. Algorithm Design is devoted in Section “Mathematical model for
proposed framework” to the development of dynamic task offloading and adaptive quality scaling algorithms.
In Section “Proposed algorithm”, we describe the Experimental Setup and Results which detail the experimental
environment, evaluation metrics and performance analysis to illustrate the effectiveness of the proposed
framework. The proposed framework is discussed in Section “Experimental setup” in terms of its implications,
its limitations, and possible extensions. Section “Results and discussion” finally concludes the paper by
summarizing the contributions and suggesting future research directions.

Related work
Mobile devices are limited, and task offloading in edge computing has been studied extensively to overcome these
limitations. Dynamic partitioning of applications11, predictive offloading with machine learning12, collaborative
offloading among multiple devices13 have been shown to achieve large improvements in computational efficiency
and latency reduction. For example, we proposed a task offloading framework with deep reinforcement learning
to infer and optimize decisions on the fly based on the real time device and network states14. Moreover, we
investigated a hybrid edge-cloud framework that dynamically partitions tasks between edge servers and the
cloud to favor latency and energy consumption15.

While these advancements have been made, state of the art approaches often cannot adapt to real time
changes in network bandwidth and device constraints, both of which are essential for mobile AR applications.

Scientific Reports | (2025) 15:10034 2| https://doi.org/10.1038/s41598-025-93731-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Most of the methods are based on the assumption of static task profiles or homogeneous edge resources that
restrict their applicability in dynamic environments16,17.

Mobile applications have received considerable attention from the standpoint of energy efficiency. Therefore,
to reduce the energy consumption, dynamic voltage scaling18, energy efficient resource scheduling19 and energy
aware task allocation20 have been proposed, and so on. Offloading computationally intensive tasks to edge
servers is a common scheme for mobile AR applications. Power usage was reduced on the order of 50% while
keeping the task performance unchanged by using an edge based energy optimization model21. In another study,
energy profiling was integrated into their offloading strategy to guarantee sustainable battery life22.

These methods are effective well enough for generic mobile applications, but they do not specialize for AR
workloads like real time 3D rendering and tracking of objects which require both a lot of computational power
and low latency. Furthermore, only few studies take into account adaptive quality adjustments between energy
efficiency and user experience23. The adaptive quality management techniques have explored ways to maintain
user experience under resource constraints. Consequently, on basis of network conditions and user preferences,
a quality of service (QoS) aware framework was proposed to adjust quality of streaming services24. We extended
this concept to mobile AR by introducing an adaptive rendering mechanism that selects and renders key visual
elements when under constrained rendering conditions25,26.

Other approach is to use information theory to optimize the trade off between quality and resource usage. A
model for adaptive quality scaling based on entropy ensures minimal information loss and energy conservation27.
However, in general, these are usually performed in an uncorrelated manner with the task offloading decision,
constraining their overall optimization potentials28,29.

Typically, existing literature presents effective methods for task offloading, energy optimization, and
adaptive quality management, but they are often siloed, serving an individual aspect of the optimization
without integration. Adaptive quality scaling is typically overlooked by task offloading strategies, resulting in
suboptimal user experiences in resource constrained scenarios32. Energy optimization techniques also do not
take into consideration the real-time adaptability to the dynamic conditions namely changing the bandwidth
of the network and the battery levels30. In contrast, adaptive quality management does not depend on task
allocation decisions, leading to inefficiencies in energy consumption and latency31,33,34. Task offloading concept
has been investigated in multi-source edge computing context concerning several issues like energy efficiency,
dynamic resource management and AI based optimization35. The authors have done this study into energy-
efficient task offloading by dynamically scheduling to reduce the latency and optimize utilization of resources.
However, as an enhancement of this work, our approach does not include Reinforcement Learning in solving
decision-making issues in order to function adaptively. This is done by incorporating Deep Q-Network (DQN)
optimization and Adaptive Quality Scaling that makes the task scheduling to occur in real time with reference
to the prevailing network conditions, battery level, and the demands of tasks. Further, the paper of36 describes
the various offloading frameworks based on AI to support IoT-based applications37 with focused attention on
the decision making in the limited resources environment38. The presented study offers relevant knowledge in
the context of AI-based resource management; however, it looks at generic IoT use cases, while our research
addresses mobile AR computations. The design increases the efficiency of the consumption of energy and the
possible performance by further dynamic of the policies for tasks’ scheduling and the quality of rendering in
dependence on possible resources which maybe better for real-time, latency-sensitive AR.

Table 1 gives a comparison of Task Offloading, Energy Optimization, Adaptive Quality Management
Technique, and research gap with different reference papers we have discussed. This paper proposes a
comprehensive framework that exploits dynamic task offloading, energy optimization, and adaptive quality
scaling to fill these gaps. The framework, which employs reinforcement learning to adapt to real-time conditions,
ensures both energy efficiency and a better user experience. The research done in the current few years in the field
of computation offloading, specifically, has its focus on heuristic algorithms for task allocation, deep learning for
task scheduling, and a rule-based approach towards energy-efficient real-time mobile AR applications. But most
of them do not adapt in real-time to such factors as network latency, the battery status, or computational demands.
Our approach differs from what was conceived in this sense as it jointly employs Reinforcement Learning (DQN)
and Adaptive Quality Scaling to support real-time decision making, optimal resource management, as well as
adaptive AR rendering in terms of energy consumption. To provide a baseline for comparing the state-of-the-
art task offloading frameworks, Table 1 has tabulated key features of the frameworks based on the offloading
architecture and strategy, self-adaptation capability, energy efficiency, degree of employing AI to facilitate
decisions and real-time performance. The outcome of such a study shows that the proposed AI-based system

Feature Task offloading methods Energy optimization strategies
Adaptive quality management
techniques

Proposed
framework

Dynamic task allocation Partial11, Collaborative12 Fixed profiles18 Independent scaling24 Integrated and
adaptive30

Energy efficiency focus Limited14, secondary16 High19 Limited25 Primary focus31

AR-specific considerations Low13 Medium21 Medium29 High32

Adaptability to real-time data Low15 Low22 Medium27 High31

Integration of techniques Isolated approaches16,28 Isolated approaches23 Independent Focus24 Unified framework30

Research gap Limited to individual aspects17 Lacks AR-specific focus22 Ignores task offloading28 Unified optimization
of all aspects31

Table 1.  Comparison of task offloading, energy optimization, and adaptive quality management techniques.

Scientific Reports | (2025) 15:10034 3| https://doi.org/10.1038/s41598-025-93731-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

enhances the offloading decisions over heuristic and rules-based approaches by making it faster, consuming less
energy and providing a much lower latency in a very dynamic mobile augmented reality environment.

As presented in Table 2, heuristic and deep learning techniques cannot provide the level of adaptability
and almost real-time decision-making approach that is necessary for efficient task offloading in mobile AR
applications. The Reinforcement Learning and Adaptive Quality Scaling thus used provides better energy
efficiency, lower latency and better adaptability as compared to conventional methods.

Existing studies on edge-assisted task offloading in IoT, vehicular networks, and industrial automation
consider workloads to be deterministic, data transfer intervals to be regular, and rather deal with fused data from
multiple sensors. However, none of the above approaches consider the fact that in mobile AR applications, the
user interactivity, the scene changes, and the battery-aware quality scaling features have to be considered in the
task scheduling. As opposed to other approaches, the proposed framework incorporates adaptive quality scaling,
dynamic latency-aware offloading, as well as reinforcement learning for achieving energy efficiency while still
maintaining AR quality.

Proposed system architecture
The work proposes a system architecture represented in Fig. 1 for ’Edge-Assisted Energy Optimization for
Mobile AR Applications to Enhance Performance and Battery Longevity’, where multiple layers are integrated
such that energy consumption is optimized and user experience enhanced. The task of on-device processing and
user interaction is handled by the Mobile Device Layer and that of computationally intensive task offloading for
reducing energy consumption on the mobile device is done by the Edge Server Layer. Additional computational
power and long-term data storage are available from the Cloud Layer. The Energy Management Layer tracks
and optimizes the energy consumed at each layer to strike a happy medium between performance and battery
longevity for a better AR user experience while the User Experience layer dynamically adjusts AR content
quality ensuring a smooth interaction. The proposed system architecture is tailored to meet the requirements

Fig. 1.  Proposed system architecture.

Method Offloading strategy AI Opt. Energy Latency Adapt.

Heuristic-based Fixed thresholds No Low Moderate Low

Deep learning-based Static model inference Yes (DL) Moderate High Limited

Rule-based adaptive Predefined rules No Moderate Moderate Limited

Proposed framework Reinforcement learning (DQN) Yes High High High

Table 2.  Comparison of state-of-the-art task offloading approaches.

Scientific Reports | (2025) 15:10034 4| https://doi.org/10.1038/s41598-025-93731-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

and characterize the mobile AR application use cases that are more Dynamic and resource-constrained. It
comprises (1) adaptive task offloading which determines whether to perform a task locally or transfer it since it
depends on the battery of the device, network, and the computational load, and (2) quality-aware scaling which
will adjust AR rendering resolution depending on the available power. While previous works focusing on IoT-
based offloading mostly just address static partitioning of tasks, we achieve ultra-low latency of about 50 ms and
increase battery life due to energy optimizations.

	1.	� Mobile device layer: The system’s foundation is the AR Application in the Mobile Device Layer, where the
AR Application delivers user facing augmented reality experiences through real time AR rendering that uses
the Mobile Device’s sensors, such as the camera, GPS and the accelerometer. The Energy Monitoring Module
checks battery status and energy consumption constantly and the application can adjust dynamically with
battery levels. Moreover, the asynchronous data transfers to the Remote Processing Unit make possible to
execute lightweight tasks directly on the device, i.e, initial data acquisition and simple AR rendering, mini-
mizing latency and maintaining a clean user experience.

	2.	� Edge server layer: In terms of computational heavy lifting, the processing of tasks that extend beyond the ca-
pabilities of mobile devices, the Edge Server Layer serves a crucial purpose. The Edge Server resides closer to
the user than conventional cloud servers, performing complex image processing, 3D model rendering, and
data analytics and relieving the mobile device from the heavy lifting. The Load Balancer is capable of allocat-
ing workloads effectively between the edge server and more than one mobile device, to make the best use of
resources and decrease the latency. Furthermore, a Data Cache is used to hold data queried more frequently
and pre-rendered AR content, thus decreasing data transfer times as well as improving response time for the
mobile device.

	3.	� Cloud layer: The resource-demanding tasks unavailable to the edge server are supported by the Cloud Layer,
which serves as a reservoir of supplementary computing power and storage, as well as a backup for the data
retrieved from mobile devices. It also stores a Machine Learning Model that does predictive analytics to op-
timize resource allocations by using user behavior patterns. As such, this model analyzes the requirements of
the AR application and dynamically reverts to the resource distribution, to achieve higher system efficiency
and responsiveness. Cloud Layer is a stream Processing intelligence unit that gathers historical data, and
the training of ML and further provides an optimized policy of task offloading to the intended edge servers.
In contrast with prior solutions for edge computing that use predefined heuristics for organizing tasks, our
system employs the help of the cloud for learning offloading strategies. The cloud layer manages to update the
reinforcement learning model after being trained with new user data to provide real-time and more efficient
data about personal preferences that reflect on the resource allocation process.

	4.	� User experience layer: The User Experience Layer guarantees an efficient and optimized experience through,
the Adaptive Quality Management that has the ability to set a stricter limit on the quality of the AR render
so as to get the resource hungry AR app to work smoothly in low battery times, for example dropping right
down to a low quality mode when the battery is low. Also, a Feedback Loop acquires user feedback and
performance statistics before forwarding them to an edge server for evaluation. They include the following:
These continuous feedbacks make it easier to make real-time corrections and progress all of which improve
the overall user experience.

	5.	� Energy management layer: The Energy Management Layer uses Energy Optimization Algorithms to reduce
energy consumption by implementing methods such as Dynamic voltage scaling, Task offloading and effi-
cient Resource scheduling all of which are performed based on the data analyzed at particular time. It also
contains Battery-Saving Modes, where the users get to make choices like high performance, balanced, or
battery-saver modes. These modes control the distribution of resources between the mobile device and the
edge server and vary energy demands to fit the user’s needs while optimizing for efficiency and device per-
formance.

To achieve low power consumption during augmented reality navigation, an adaptive quality scaling mechanism
is proposed. It means that the frame rate, depth of object detail, and other factors dependent on the computational
resource availability are adapted to the battery charge, the connection quality, and the current processing time
lag in the device. Mobile AR goes one step further because the tasks it performs are non-binary in the sense that
every task can either be processed locally or partially offloaded; the level of computational intensity and quality
has to be adaptive. It dynamically tracks energy consumption profiles and dynamically adjusts the degree of
detail to save power by as much as 20% while the frame rate is sustained.

Our proposed framework integrates two AI-based optimization mechanisms to enhance task offloading
efficiency and energy management in mobile AR applications. Reinforcement Learning for Task Offloading is
implemented using a Deep Q-Network (DQN)-based decision model that continuously learns optimal offloading
policies by analyzing real-time system parameters, including network latency, battery levels, and AR task
complexity. This ensures that computational tasks are dynamically allocated between the local device and edge
server, minimizing energy consumption while maintaining low-latency execution. In parallel, Adaptive Quality
Scaling, a machine learning-based adaptive mechanism, dynamically adjusts AR rendering quality according to
available resources and battery conditions. When energy constraints are high, the system automatically reduces
rendering fidelity to extend battery life while preserving a seamless user experience. Together, these AI-driven
strategies enable the system to adapt dynamically to changing environments, ensuring intelligent resource
allocation and superior performance over traditional fixed-rule offloading techniques.

Scientific Reports | (2025) 15:10034 5| https://doi.org/10.1038/s41598-025-93731-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Model workflow
The workflow of proposed model is depicted in Fig. 2. The structured model workflow starts with User Initiation
in which the user opens the AR application in their mobile device initiating battery status tracking and energy
consumption. During Task Assessment, the device determines the level of AR tasks and checks resource
utilisation. In cases where computation demands cannot be handled locally, there is Dynamic Offloading
when the computation task is offloaded to the nearby edge server for efficiency based on energy metrics. In the
Edge Processing step, the functionality of these tasks is performed by the edge server and the processed result
is forwarded back to the mobile device and combined by the rendered content with the local input. On the
other hand, Adaptive Management guarantees that the energy monitoring module always assesses the battery
condition and that the energy consumption and decision-making regarding switching to a low graphics mode
will be determined to keep the battery charge going longer. Lastly, in the Feedback Loop Subsection, information
received from user feedback and performance metrics is sent to an edge server to extend the enhancement of
energy management strategies.

This architecture is designed to strike a fair trade-off in terms of computation load on the mobile device and
offloading some of the burden to the edge server in order to achieve the lowest energy consumption while at the
same time improving the performance and quality of experience of AR apps. It is thereby possible to use Energy
Management strategies to control the system so that it operates in different usage profiles thereby leading to
enhanced battery life and user satisfaction.

The cloud layer includes a machine learning model that uses learning patterns of user interactions,
performance of devices, and networking conditions retrieved from several edge nodes to make real-time and
historical conditions for optimum offloading of a given task. This framework involves reinforcement learning
optimization since the cloud is constantly adjusting the policies of the task scheduling through data collected
on execution to make them efficient and more energy-conscious. Furthermore, the behavior pattern analysis
continually adjusts the distribution of resources according to users’ behavior patterns which contribute to

Fig. 2.  Model workflow.

Scientific Reports | (2025) 15:10034 6| https://doi.org/10.1038/s41598-025-93731-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

a conservation of power to the maximum extent while enhancing AR. For purposes of scalability, federated
learning does not let edge servers transfer unprocessed data to the cloud while allowing them to benefit from
centralized learning updates, hence preserving network bandwidth. Some of these insights are returned to the
edge nodes at specific intervals to fine-tune the offloading process as well as improve the quality of adjustments
enhancing both power consumption and the system’s response time.

Mathematical model for proposed framework
To formulate the problem and create a detailed mathematical model for Edge-Assisted Energy Optimization
for Mobile AR Applications, the following mathematical formulation is presented. There is still room for
improvement in energy efficiency and battery life on smartphones and tablets, as well as load speed with reference
to AR devices. These aspects include the task division,offloading decisions, quality of services adjustments, and
learning mechanisms for formulation of optimal energy usage. The table 3 represents all the symbols and their
descriptions used in the mathematical modeling.

The objective is to minimize total energy consumption Etotal over time while satisfying user demands and
maximizing quality of service:

	
min

Ti

Etotal =
N∑

i=1

E(Ti)� (1)

subject to performance constraints and user quality requirements. The total energy consumption for a task Ti
is defined as:

	
E(Ti) =

{
Elocal(Ti) if task is processed locally,
Eedge(Ti) if task is offloaded to the edge server. � (2)

Symbol Description

Elocal Energy consumed during local task processing (Joules)

Eedge Energy consumed during edge offloading (Joules)

Eopt Energy consumed in the optimized system (Joules)

Tcomp Task completion time (ms)

Toff Task offloading time (ms)

Blevel Battery level of the mobile device (%)

Llocal Latency for local processing (ms)

Ledge Latency for edge offloading (ms)

Lopt Latency in the optimized system (ms)

Qfixed Fixed quality level of AR rendering (0–1)

Qadaptive Adaptive quality level based on battery level (0–1)

Rtask Task success rate (%)

Ntasks Number of AR tasks

Ccomplexity Task complexity level (low, medium, high)

Unetwork Network usage for task offloading (MB)

Creward Cumulative reward in reinforcement learning

Ptask Probability of task offloading to the edge

fdevice Processing frequency of the mobile device (GHz)

fedge Processing frequency of the edge server (GHz)

τ Transmission delay for task offloading (ms)

α Weight factor for energy consumption

β Weight factor for latency

γ Weight factor for quality scaling

Ropt Optimized resource allocation result

Poff Offloading decision policy

E[·] Expectation operator (statistical average)

Ttotal Total system processing time (ms)

Etotal Total energy consumption (J)

Squality AR rendering quality score

RLreward Reinforcement learning reward value

δthreshold Latency or energy threshold for optimization

Table 3.  List of symbols and their descriptions.

Scientific Reports | (2025) 15:10034 7| https://doi.org/10.1038/s41598-025-93731-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Energy consumption for processing task Ti locally can be modeled as:

	 Elocal(Ti) = Plocal(Ti) · Ppower(t)� (3)

where Ppower(t) is the power consumption rate of the mobile device at time t. Energy consumption for offloading
task Ti includes data transmission and result reception:

	 Eedge(Ti) = Etx(Ti) + Erx(Ti)� (4)

where:

	 Etx(Ti) = η · dtx(Ti), Erx(Ti) = η · drx(Ti).� (5)

here, η is the energy-per-bit constant, and dtx(Ti), drx(Ti) are the data sizes for transmission and reception.
Latency for offloading a task to the edge server includes transmission, processing, and reception times:

	
Ledge(Ti) = dtx(Ti)

Rtx
+ Pedge(Ti) + drx(Ti)

Rrx
� (6)

where Rtx and Rrx are the transmission and reception rates, respectively. A binary variable Xi ∈ {0, 1}
determines if task Ti is offloaded:

	
Xi =

{ 1 if task Ti is offloaded to the edge server,
0 if task Ti is processed locally. � (7)

The decision is based on minimizing expected energy consumption:

	 E[E(Ti)] = P (Xi = 0)Elocal(Ti) + P (Xi = 1)Eedge(Ti).� (8)

Offloading probability is modeled as:

	
P (Xi = 1) = 1

1 + e−(αBt+βRtx+γPlocal(Ti)) � (9)

where α, β, and γ are learned parameters. Define the information content of the AR rendering as:

	 Irender(t) = H(Q(t)) − H(Q(t)|Du(t)),� (10)

where H(Q(t)) is the entropy of quality at time t, and H(Q(t)|Du(t)) is the conditional entropy given user
demand Du(t). The objective is:

	 max Irender(t) subject to E(Ti) ≤ Ethreshold(Bt).� (11)

The system’s adaptive energy management can be formulated as a reinforcement learning problem. The state
st represents the current system status, which includes the battery level (Bt). It further examines network
status, task complexity, and user demand (Du(t)), where user demand is categorized as The action at includes
decision choices such as whether to outsource computations to an external server or perform them locally, as
well as determining how to adapt the quality scaling factor. The reward rt evaluates the real values of energy
savings and end-user satisfaction resulting from these actions. The primary objective is to achieve the largest
cumulative reward over time, optimizing both energy efficiency and the quality of the user experience. This can
be mathematically represented as:

	
max

π
E

[
T∑

t=0

γtrt

]
� (12)

where π is the policy that determines the optimal actions, and γ ∈ [0, 1] is the discount factor that balances
immediate and long-term rewards.

Proposed algorithm
Since the mathematical model in this paper aims at solving the current optimization problem for the integration
of task offloading decisions, quality scaling, and dynamic energy management, an appropriate algorithm has
to be developed. The approach will involve a logistic regression model for decision making on responsibilities
offloading, adaptive quality scaling based on information theory, and reinforcement learning for energy
optimization. Specifically, the optimization aims at achieving energy efficiency for the mobile Augmented
Reality apps without reducing much user engagement.

The algorithm for Edge-Assisted Energy Optimization for Mobile AR Applications takes the following inputs:

•	 Ti: The set of tasks realized by the personnel that uses the AR application.
•	 Bt: The battery level of the mobile device at time t.

Scientific Reports | (2025) 15:10034 8| https://doi.org/10.1038/s41598-025-93731-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

•	 Rtx and Rrx: The transmission and reception rates in the cellular spectrum.
•	 Du(t): The AR quality level that satisfies the user demand at time t.
•	 Plocal(Ti) and Pedge(Ti): Local and edge processing times, reflecting the computation times based on task

complexity and system resources.
•	 Elocal(Ti) and Eedge(Ti): Energy consumption for local and edge processing, respectively.
•	 η: A parameter characterizing the energy-per-bit cost for data transmission and reception in the channel.

The algorithm’s first decision is task allocation among resources, represented as Xi ∈ {0, 1}, where 0 indicates
the task is processed locally, and 1 means it is delegated to the edge server. Additionally, the algorithm outputs
the total energy consumption requirement of an optimized nature, Etotal, and the flexibility of AR quality, Q(t),
which depends on dynamic conditions over time. This framework guarantees energy conservation, proper task
distribution, and excellent adaptation quality, ensuring a seamless user experience. The steps of the proposed
algorithm is as follows:

Step-1 (initialization)
The task set {T1, T2, . . . , TN } is initialized for the AR application, representing the tasks to be executed. The
initial battery level B0, network conditions Rtx and Rrx, and user quality demand Du(0) are set based on the
current system state. An energy threshold Ethreshold(Bt) is defined, which adapts dynamically based on the
battery level Bt to ensure efficient energy management. The reinforcement learning policy π(st) is initialized
with either random weights or pre-trained weights for Q-learning or deep Q-networks (DQN) if neural networks
are utilized, setting the foundation for dynamic task allocation and quality adaptation.

Step 2 (task classification and offloading decision)
For each task Ti at time t, the process begins with task classification, where Ti is assessed based on its complexity,
data size (dtx(Ti) and drx(Ti)), and processing time (Plocal(Ti) and Pedge(Ti)). Logistic regression is then
used to compute the probability of offloading, P (Xi = 1), by evaluating factors such as the battery level (Bt

), network transmission rate (Rtx), and local processing time (Plocal(Ti)). If the offloading probability exceeds
0.5, the task Ti is offloaded to the edge server; otherwise, it is processed locally. The offloading decision is then
updated, setting Xi = 1 if offloading is chosen, or Xi = 0 if local processing is selected. This approach ensures
efficient task allocation while optimizing system resources.

Step 3 (energy estimation and task execution)
For each task Ti, the processing decision is made based on the offloading indicator Xi. If Xi = 0, indicating
local processing, the local energy consumption is estimated by using Elocal(Ti) The task is then executed
locally, and the energy consumption Elocal(Ti) is subtracted from the battery level Bt. Conversely, if Xi = 1,
indicating edge offloading, the energy consumption for data transmission and reception is computed by Etx(Ti)
and Erx(Ti). The total edge energy consumption Eedge(Ti) is calculated by adding Etx(Ti) and Erx(Ti) The
task is then executed on the edge server, the result is received, and the total energy consumption Eedge(Ti) is
subtracted from Bt. This approach ensures accurate energy tracking and efficient resource utilization.

Step 4 (adaptive quality scaling)
Adaptive quality scaling leverages information theory to optimize the AR experience by computing the
information content Irender(t) for the current task based on the quality setting Q(t). The information content is
calculated by Irender(t) Quality adjustment is made dynamically: if the battery level Bt falls below a predefined
threshold, the quality Q(t) is reduced to conserve energy. Conversely, if Bt is above the threshold, Q(t) is
maintained or increased to enhance the user experience, ensuring an adaptive balance between energy efficiency
and user satisfaction.

Step 5 (reinforcement learning for dynamic optimization)
Reinforcement learning for dynamic optimization begins with the state update, where the current system state
st is defined as:

	 st = (Bt, Rtx, Rrx, Plocal(Ti), Pedge(Ti), Du(t))

incorporating the battery level, network conditions, local and edge processing times, and user demand. Based on
this state, an action at (e.g., offload task or adjust quality level) is selected according to the learned policy π(st)
. The reward rt is then computed as:

	 rt = −E(Ti) + w1Q(t) − w2Ledge(Ti)

balancing energy savings and user satisfaction, where w1 and w2 are weights to prioritize quality and latency
penalties, respectively. The policy is updated using deep Q-networks (DQN) for complex models, with the
Q-value update defined as:

	
Q(st, at) ← Q(st, at) + α

[
rt + γ max

a
Q(st+1, a) − Q(st, at)

]

where α is the learning rate and γ is the discount factor. This iterative process ensures the system adapts
dynamically to optimize energy efficiency and user experience.

Scientific Reports | (2025) 15:10034 9| https://doi.org/10.1038/s41598-025-93731-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Step 6 (repeat for all tasks and time steps)
The process is repeated for all tasks Ti and time steps t, dynamically adjusting offloading decisions, energy
consumption, and quality settings as the system evolves over time. This iterative approach ensures that the system
continuously adapts to changing conditions, optimizing performance and energy efficiency while maintaining
the desired quality of service.

Step 7 (termination)
It is continued until all the tasks assigned are over or you find your battery almost drained. As a result, the
optimized total energy consumption Etotal and the final battery level BT are returned to make a global
evaluation of the performance of the system and its energy efficiency.

Algorithm 1.  Edge-assisted energy optimization for mobile AR applications.

Algorithm 2.  TaskClassification

Scientific Reports | (2025) 15:10034 10| https://doi.org/10.1038/s41598-025-93731-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Algorithm 3.  OffloadingDecision

Algorithm 4.  LocalProcessing

Algorithm 5.  EdgeProcessing

Scientific Reports | (2025) 15:10034 11| https://doi.org/10.1038/s41598-025-93731-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Algorithm 6.  AdaptiveQualityScaling

The Algorithm 1 describes the process to improve the energy use in mobile AR applications by making optimal
offloading decisions, controlling the quality adapted in mobile application, and incorporating reinforcement
learning to adaptively learn from the energy use. It guarantees that operations are performed with the least energy
as possible while at the same time affords acceptable experience to preserve the battery’s capacity. Algorithm 1 is
using Algorithm 2 for task classification, Algorithm 3 for offloading decision, Algorithm 4 for local processing,
Algorithm 5 for edge processing and Algorithm 6 for adaptive quality scaling.

Experimental setup
The performance of the proposed approach was evaluated in experiments that were conducted in a simulated
environment of using mobile AR applications. In the hardware implementation, a Qualcomm Snapdragon
865-equivalent hardware setup was used for mobile device emulation; an edge server with Intel Xeon Gold
6230R CPU, 32 cores, 64 GB RAM; network environment with Wi-Fi with average offered bandwidth of 100
Mbps and offered delay of 10-50 ms. On the software side, python was used for implementation of algorithms,
TensorFlow was used for training of machine learning models; ns-3 network simulators was used for replication
of actual network environment. Also, a Unity-based mobile AR emulator was used to create a number of mobile
AR workloads, thus providing realistic and realistic testing conditions.

The experimental input data consists of a synthetically created AR workload dataset using Unity that
emulates real-life tasks comprising object recognition, rendering 3D scenes, and processing real-time data,
where workloads and tasks also differ in complexity and data size, with task sizes ranging from 10 MB to up
to 100 MB. Experimental data were obtained from the real network using MAWI Dataset and ITU Network
Performance Data to capture the real network bandwidth-varying patterns and latency. Furthermore, the energy
profiles were obtained from real energy measurements for local and edge execution where benchmarks such as
SPECpower and MobileBench were used for realistic energy modeling. Table 4 represents the parameters and
their description.

The relevant evaluation metrics for the assessment of the proposed approach are considered through several
points of view to achieve diverse assessment. Energy Consumption in joules reflects the energy utilized in
computing and how well the system is when it comes to energy consumption during the execution of tasks
within the system and offloading them to the edge servers. Delay time in milliseconds describes the time

Parameter Description

Device characteristics

 Initial battery level 100% (varied to test performance under different battery states)

 Device processing power Equivalent to modern high-end smartphones

Network conditions

 Bandwidth 50–150 Mbps

 Latency 10–50 ms

Task complexity

 Low complexity Basic image recognition tasks (10 MB payload)

 Medium complexity Real-time video processing (50 MB payload)

 High complexity 3D rendering (100 MB payload)

Table 4.  Experimental parameters.

Scientific Reports | (2025) 15:10034 12| https://doi.org/10.1038/s41598-025-93731-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

intervals elapsed for task execution and result transfer, stressing the reaction time of the system when tested
under different network load conditions. The Quantifiable quality of Experience is represented on the scale from
1 to 5 which shows user satisfaction with the Application Response, the degree of which includes rendering
quality, smoothness, and responsiveness. Last but not least, the task success rate represents the number of tasks
accomplished, error-free and without disruptions and is presented in percent to reveal the solidity of the system.
These metrics together give a complete assessment mechanism that envelops aspects of efficiency, response time,
overall end user satisfaction and dependability.

For the purpose of comparison with the proposed framework, several baseline methods were employed.
Here the input and output data as well as the whole process are conducted in the mobile device hence using
much energy but has minimal delay or latency. Pure Edge Offloading sends all computations to the edge server
and hence saves energy, but incurs high latency especially with a bad network connection. The first model of
static offloading with Fixed Quality refers to offloading tasks to the edge server with an earlier setup of quality
of service parameters regardless of dynamic occurrences like battery levels and network fluctuations. Instead the
Proposed Framework uses dynamic task offloading together with quality scaling which adaptivity is based on the
reinforcement learning. It also ensures that all the planned tests on the proposed framework are carried under
varying environmental conditions and capabilities of other approaches are easily compared to the proposed
method.

Results and discussion
This section aims at describing and discussing the result of implementing the Edge-Assisted Optimization
Framework for mobile AR applications based on two key factors that are energy consumption and task
completion time. A comparison between Local Processing, Edge Offloading, and the Optimized System is
done to justify the efficiency and effectiveness of the proposed method. The findings are analyzed based on the
numerical outcomes derived from multiple cases of experimental manipulations such as, varying task difficulty,
battery status, and the number of tasks in a given period. Every performance metric emphasizes the benefits of
the optimized System over the traditional approach in terms of energy use, speed, battery utility, and practicality,
providing more benefits that the current methods. The detailed descriptions of these results are presented in the
subsequent subsections, which include visual data and statistical analysis. The results assumed in the diagrams
in Figs. 3, 4, 5, 6, 7, 8, 9 and 10 are the averages of corresponding experiments carried out for low, medium,
high task complexity levels, 20–100% battery level, and 1–10 concurrent tasks load. These values presented
in these figures are the mean values obtained from such experiments, so there is a reduction in the variability
that is due to temporary fluctuations. Note that Figs. 3, 4, 5, 6, 7, 8, 9 and 10 report only average values for
each of the pertinent metrics to this investigation; however, we further probed for variance across multiple test
cases for reliability. The variance between the different realizations was usually less than one standard deviation,
suggesting the results are statistically significant. It is possible that future developments of this work may include
the use of confidence interval-based visualization as a way of increasing interpretability.

Besides energy saving, the proposed framework was to ensure that user experience during the offloading of
tasks in mobile AR applications is still as effective as usual. To measure this we are going to analyze three factors
namely: (1) time took to complete a given task (latency), (2) the level of success of the task (task success rate)
and (3) quality of adaptation achieved. They influence AR’s performance in the course of providing users with
the adequate interaction, which is correctly experienced. Lower latency ensures that image focusing is fast and
not slowed-down by hardware limitations, high success rates guarantee stable functioning of the AR processes
and operations, and dynamic quality scaling regulates the levels of immersion matching the use of power to the
necessary level39,40.

The Fig. 3 represents the energy consumption (Joules) of Local Processing, Edge Offloading, and the proposed
Optimized System when the number of AR tasks is between 1 and 10. Energy consumption of the Local Processing
is the highest; it ranges from 12 Joules for a single task to 30 Joules for ten tasks. Edge Offloading lowers the
energy consumption greatly, from 6.5 Joules to perform one task to 20 Joules to execute ten tasks. The Optimized

Fig. 3.  Energy consumption comparison.

Scientific Reports | (2025) 15:10034 13| https://doi.org/10.1038/s41598-025-93731-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

System shows the highest energy consumption with varying from 4.5 Joules for 1 task to 15 Joules for 10 tasks.
This implies that with the increase in task load, the Optimized System consumes far lesser energy than the other
schemes, which makes it the most energy-efficient model. The results from the experimental evaluation indicate

Fig. 4.  Task completion time comparison.

Fig. 5.  Battery depletion over time comparison.

Fig. 6.  Latency comparison.

Scientific Reports | (2025) 15:10034 14| https://doi.org/10.1038/s41598-025-93731-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

that by implementing the presented AI-based offloading framework, the overall energy consumption is 30%
less than that in case of employing heuristic offloading, and 40% less in comparison to loads performed locally
for an average success rate of 90% and mean latency below 80ms in the offloading environment. Upon a deeper

Fig. 7.  Task success rate comparison.

Fig. 8.  Quality degradation comparison.

Fig. 9.  Energy efficiency comparison.

Scientific Reports | (2025) 15:10034 15| https://doi.org/10.1038/s41598-025-93731-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

examination, this research also demonstrates that as the amount of task complexity increases, energy utilized in
local execution boosts due to the increasing computational demand, whereas our framework efficiently transfers
difficult tasks to the edge to prevent high local computation and hence uses less energy. Furthermore, under
different network conditions, the system dynamically adjusts the scheduling of the tasks to achieve optimal level
of offloading while maintaining the AR performance quality and thereby supporting the notion of the proposed
energy aware optimization strategy in real time execution environment.

The Fig. 4 compares task completion time (in ms) for Local Processing, Edge Offloading, and the Optimized
System across three levels of task complexity: Low, Medium, and High. Thus, for Low Complexity tasks, the
Local Processing time is 150 ms, Edge Offloading is 100 ms, and the Optimized System is 90 ms. The time taken
for Local Processing for Medium Complexity tasks is 250 ms; Edge Offloading brings it down to 200 ms; and the
Optimized System yields the least time of 180 ms. The time for High Complexity tasks is at its highest in Local
Processing at 400 ms; however, Edge Offloading reduces the time to 350 ms, while the Optimized System reduces
it to 300 ms. This proves that Optimized System achieves the intended metrics of improved time efficiency
compared to Local Processing and Edge Offloading, especially regarding their ability to complete complex tasks.

The Fig. 5 shows Battery level depletion (%) against time (seconds) for Local Processing, Edge Offloading,
and the Optimized System. The three systems are starting with the battery level set to 100% at the beginning of
the video (0 seconds). In both scenarios, Local Processing has a significantly lower energy level; it is at 90 percent
at 20 s, 70 percent at 60 s and 50 percent at 100 s. Edge Offloading demonstrates lesser usage as the battery bar
remains at 95% at 20 s, declines to 80% at 100 s. On the other hand, the Optimized System prove to have the best
utilization of battery with 97% at 20 s, 88% at 60 s and at 100 s, it only dropped to 80%. This clearly demonstrates
that the Optimized System improves battery lifespan compared to Local Processing and Edge Offloading so that
resource-starved devices can have a longer span of operation.

The Fig. 6 above shows the latency in millisecond for Local Processing, Edge Offloading and the Optimized
System with number of AR tasks ranging from 1 to 10. Local Processing always has the highest latency score,
which is, for 1 task, 105 ms and increases with a straight line of elevation till it reaches 150 ms for 10 tasks. We
find that Edge Offloading leads to a much lower latency, with the minimum latency marking at 63 ms for 1 task
and gradually increasing up to 93 ms for 10 tasks. Overall, the Optimized System records the shortest latency,
starting from 53 ms when only one task is executed and reaching 75 ms when 10 tasks are simultaneously
performed. This shows that the Optimized System effectively reduces latency than Local Processing and Edge
Offloading and the disparity increases as the amount of AR tasks rises, therefore making it the most suitable for
real time tasks.

The Fig. 7 illustrates the trend in the (%) success rate for the identified number of tasks varying from 1 to
10 with reference to Local Processing, Edge Offloading, and the Optimized System. Local Processing shows
the greatest decrease; initially, it has 90% success in performing 1 task and then linearly declines to 70% for 10
tasks. Edge Offloading does better, actually it begins from 95% in 1 task and reduces to 85% and 10 tasks. The
Optimized system has the highest target success rate throughout, which starts from 7 tasks and a rate of 98% and
only degrades to 90% on 10 tasks. This comparison demonstrates more reliability of the Optimized System as it
sustains a much higher percentage of task completion compared to Local Processing and Edge Offloading even
at higher volumes of tasks.

The Fig. 8 shown above plots Quality Level with respect to Battery Level (%) for Adaptive Quality Scaling
and Fixed Quality solutions. Adaptive Quality Scaling line goes through the set points as follows: at 20% of the
battery, it is 0.2 and increases to 0.5 when the battery reaches 50% and the maximum value of 1.0 at 100% battery.
On the other hand, the Fixed Quality approach of the No Child Left Behind policy retains a quality level of 0.8
regardless of the battery level. This also illustrates the effectiveness of Adaptive Quality Scaling since it seeks
to scale quality downwards as the battery reports depleted charge while scaling up when the battery reports
sufficient charge. The Fixed Quality method, however, does not incorporate an awareness of the battery level and
can consume more resources at lower battery levels than is necessary.

Fig. 10.  Cumulative reward comparison.

Scientific Reports | (2025) 15:10034 16| https://doi.org/10.1038/s41598-025-93731-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

The Fig. 9 compares Energy Efficiency (Joules/Task) for Local Processing, Edge Offloading, and the Optimized
System across three levels of task complexity: Low, Medium, and High. Local Processing uses 20 Joules/Task for
Low Complexity tasks, while Edge Offloading uses only 15 Joules/Task and the Optimized System is a highly
efficient system at only 10 Joules/Task. Local Processing consumes 30 Joules/Task for the Medium Complexity
task, Edge Offloading reduces this to 25 Joules/Task and the Optimized System decreases it by 18 Joules/Task.
High Complexity tasks when processed in Local Processing consume the most energy at 50 Joules/Task, while
Edge Offloading consumes 40 Joules/Task; the Optimized System consumes the least energy at 30 Joules/Task.
This clearly shows that the Optimized System is more energy efficient than the Local Processing and Edge
Offloading throughout all the task complexities and more deserved at higher task complexity levels.

The Fig. 10 shows the cumulative reward over iterations for Local Processing, Edge Offloading, and the
Optimized System. The Local Processing approach starts at a cumulative reward of 4 and increases steadily to
approximately 19 by the 50th iteration. Edge Offloading performs better, beginning at a cumulative reward of 5
and rising to about 27 after 50 iterations. The Optimized System demonstrates the highest performance, starting
at 6 and rapidly increasing to nearly 40 by the end of the iterations. This indicates that the Optimized System
consistently achieves a higher cumulative reward over time, outperforming both Local Processing and Edge
Offloading. The gap between the approaches widens as iterations progress, showcasing the effectiveness of the
optimized strategy in maximizing cumulative rewards.

The Fig. 11 includes two subfigures: the first is related to Latency per Task Load and the second one is
associated with Task Success Rate per Battery Level where all three scenarios, namely Local Execution, Edge
offloading, and optimized System are depicted. As recognized from the first plot, in all the methods, latency rises
as the load of the task increases and Local Execution incurs the maximum latency of 150 ms while executing
10 tasks which are strictly not ideal for an AR interaction. The latency in case of Edge Offloading increases
with increase in tasks but it is still less than the normal latency in case of no AR when all presented tasks are
processed; The Optimized System has the least latency, fluctuating slightly above and below 100 ms at the time
of highest task load, providing an efficient AR experience. The second subplot depicts that with the diminishing
battery levels, the task success rate reduces with Local Execution dropping considerably from 85 to 70% and
Edge Offloading remains a little higher and reduces from 90 to 80%. On the other hand the Optimized System
maintains a comparably high success rate of more than 90% up to the moment when battery level is as low as
20%, which can point out that the system also optimizes the energy usage and task reliability to provide work
even at the cost of aesthetics, which increases the overall quality of the user experience.

To show how varied the test conditions were, Table 5 presents the following measures: energy consumption,
latency, and the success rate of the tasks by complexity and battery levels. These results support the statement
that the values given by Figs. 3, 4, 5, 6, 7, 8, 9 and 10 represent multiple experimental trials, rather than a single
instance. The results of the experimental analysis confirm that the edge-assisted optimization framework for
mobile AR applications proves to enhance energy efficiency by 30% and subsequently, the battery life by 20%
than the conventional edge offloading techniques that are targeted towards IoT and vehicular networks. Unlike
these traditional approaches that presuppose predictable workloads, our framework adapts the actual task
execution on the basis of the current capacities of a device and environment avoiding high energy expenses for
AR rendering. This has been ascertained through ample experimental tests comparing Reinforcement Learning-
based offloading against techniques based on heuristic algorithms41. The modified AI model decreases energy
consumption to 30% of the initial amount and keeps latency below the critical mark of 80 ms. Our findings
are in line with the assertion that using AI-based optimization incurs insufficient computation time. Since
Reinforcement Learning policy updates happen in the cloud, while the decision policies are only in the edge, the
amount of processing in the device stays limited. These results confirm the thesis that the usage of AI for task
offloading improves the performance while keeping the Computational Complexity as low as possible, which
makes it perfect for the mobile AR applications that are required to run in real-time.

To make sure that cloud-assisted machine learning is advantageous, we investigated the outcomes of our
adaptive framework with the common rule-based edge task scheduling process. Here, using a particular
reward function, we prove that the overall task offloading latency is decreased by 18 percent, while the energy
consumption is decreased by 25 percent, and the overall success rate of the tasks is 12 percent better than that
of the baseline when the cloud support is introduced. This way affirms that utilizing the cloud for predictive
analysis for real-time decisions taken on the edge consumes low resources on the network.

In contrast to threshold heuristics our model based on Reinforcement Learning learns the proper offloading
strategies, which makes these policies more elastic and able to adapt to dynamic conditions of environment for
producing efficient decisions on resource allocation. In the same manner, our proposed Adaptive Quality Scaling
preserves high quality of user experience together with generalized device battery duration, which is better than
other fixed-quality renders seen in current platforms.

Conclusion and future scope
This work focuses on the two most important bottlenecks of today’s mobile augmented reality (AR) applications,
namely energy consumption and latency by formulating a generalized edge-assisted optimization framework. The
proposed solution, therefore, incorporates dynamic task offloading, adaptive quality scaling, and reinforcement
learning to guarantee the optimal use of available resources and deliver an excellent quality of experience to the
user. The efficiency of the proposed framework proved through numerous subordinate simulations was 30%
lower energy usage and 20% longer battery life than the baseline techniques. Moreover, it provided substantial
enhancements of task success rates and users’ satisfaction at different network and device state. The proposed
framework supports the development of state-of-practice mobile AR applications since it suggests how to
effectively use limited resources in a limited resource condition. The use of facilities like edge computing and
machine learning makes the solution highly scalable and flexible and applicable to different real-time applications

Scientific Reports | (2025) 15:10034 17| https://doi.org/10.1038/s41598-025-93731-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

in healthcare, education, smart city, etc. It also spotlights the application of this work to integrate AI solutions
and edge computing to confront issues existing in new generation computing paradigms to build the subsequent
generation of intelligent approaches for mobile AR systems. This paper proposes AI-based task offloading
approach that has been modeled mathematically as well as the model has been tested. We also prove that we have
realistic energy and latency models to support the real world situation and thereby confirms that optimization
strategy work well in the mobile AR applications and optimal between computational resources and utilization
resources. This research develops an edge intelligence framework supported by the cloud which is used to
predict the offloading of tasks and reallocation of resources in mobile AR app. As compared to the conventional
edge computing methods which works based on fixed policies, our system adapts to the analysis of real time
based on user behavior, which will decrease the latency, energy consumption, and computation overhead. The
findings of this study originate from multiple test cases and different battery levels and workload intensities to
give true-to-life results. Our approach of averaging the results over several runs increases the reliability of the
conclusions made in this paper as well as proves the validity of the suggested optimization framework. The future
work will attempt to increase the scalability of the proposed system by incorporating techniques of distributed
learning, which when applied to the edge-based load of AR processing will help achieve better results. This work
proposes and evaluates an edge-assisted optimization model that is capable of optimizing energy efficiency while
achieving a satisfactory user experience regarding the use of AR applications in mobile devices. In contrast with
other methods of reducing energy consumption, our approach keeps the latency under 80 ms, reaches 90%
task completion rate, and, more importantly, can change the AR quality level on the fly to provide optimized
performance with comparable power usage. Ideas for future work include applying the provided framework
to the dynamics of real network environments and enhancing the quality adaptation solutions. This research
deals with an AI-edge offloading framework for mobile augmented reality (AR) applications that incorporate
Reinforcement Learning with an Adaptive Quality Scaling technique for energy efficiency, task scheduling, and
adapt User experience. In contrast to the other approaches derived from heuristics, our proposed approaches
adaptively learn the offloading polices that results in low latency and high computational complexity.

Despite the fact that the results presented in this paper show the potential of the proposed framework, some
open issues and possible directions for further research are worth discussing. To prove its efficacy under various
environmental and network conditions, therefore making the product practical, real-world implementation is
crucial. The novel AI methods including deep reinforcement learning or multi-agent learning could potentially
advance decision makings and improve task- offloading abilities. Expanding it so as to incorporate a variety of
devices of different computational and energy consumption would broaden its application to multiple working

Task complexity Battery level (%) Energy consumption (J) Latency (ms) Success rate (%)

Low 100 8.5 50 98

Low 50 10.2 55 95

Low 20 12.0 60 90

Medium 100 12.5 70 96

Medium 50 15.0 80 92

Medium 20 18.0 95 85

High 100 20.5 100 93

High 50 25.0 110 88

High 20 30.5 130 80

Table 5.  Performance metrics for different test cases.

Fig. 11.  Tradeoff between energy savings and user experience.

Scientific Reports | (2025) 15:10034 18| https://doi.org/10.1038/s41598-025-93731-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

environments. Furthermore, how multiple edge servers or devices interact with each other dynamically could be
examined for better utilization of resources needed for computation. Privacy and Security: Privacy and security
issues especially, in relation to undertaking secure data transfer and protecting user privacy when offloading
should also form the subject of future studies. These directions open promising avenues for extending the
framework and point toward improved, flexible, and efficient solutions for mobile augmented reality applications.

Data availibility
All data would be available on the specific request to the corresponding author.

Received: 22 December 2024; Accepted: 10 March 2025

References
	 1.	 Satyanarayanan, M. The emergence of edge computing. Computer 50(1), 30–39 (2017).
	 2.	 Kumar, B. A., Jyothi, B. & Singh, A. R. Hybrid genetic algorithm-simulated annealing based electric vehicle charging station

placement for optimizing distribution network resilience. Sci. Rep. 14, 7637 (2024)
	 3.	 Zhang, K. et al. Energy-efficient offloading for mobile edge computing in 5g heterogeneous networks. IEEE Access 4, 5896–5907

(2016).
	 4.	 Rajagopalan, Arul, et al. "Empowering power distribution: unleashing the synergy of IoT and cloud computing for sustainable and

efficient energy systems, Results. Eng. 21 (Mar. 2024) 101949." 2024,
	 5.	 Chen, X. & Liu, G. Energy-efficient task offloading and resource allocation via deep reinforcement learning for augmented reality

in mobile edge networks. IEEE Internet Things J. 8(13), 10843–10856 (2021).
	 6.	 Yang, Y., Lee, J., Kim, N. & Kim, K. Social-viewport adaptive caching scheme with clustering for virtual reality streaming in an edge

computing platform. Future Generation Computer Syst. 108, 424–431 (2020).
	 7.	 Hua, H. et al. Edge computing with artificial intelligence: A machine learning perspective. ACM Comput. Surv. 55(9), 1–35 (2023).
	 8.	 Hossain, M.F., Jamalipour, A., Munasinghe, K.: A survey on virtual reality over wireless networks: Fundamentals, qoe, enabling

technologies, research trends and open issues. Authorea Preprints (2023)
	 9.	 Sahu, D. et al. Beyond boundaries a hybrid cellular potts and particle swarm optimization model for energy and latency

optimization in edge computing. Sci. Rep. 15(1), 6266 (2025).
	10.	 Zhang, H., Zhao, H., Liu, R., Kaushik, A., Gao, X., Xu, S. Collaborative task offloading optimization for satellite mobile edge

computing using multi-agent deep reinforcement learning. IEEE Transactions on Vehicular Technology. (2024)
	11.	 Li, G., Lin, Q., Wu, J., Zhang, Y. & Yan, J. Dynamic computation offloading based on graph partitioning in mobile edge computing.

IEEE Access 7, 185131–185139 (2019).
	12.	 Tang, M. & Wong, V. W. Deep reinforcement learning for task offloading in mobile edge computing systems. IEEE Trans. Mobile

Comput. 21(6), 1985–1997 (2020).
	13.	 Kai, C., Zhou, H., Yi, Y. & Huang, W. Collaborative cloud-edge-end task offloading in mobile-edge computing networks with

limited communication capability. IEEE Trans. Cognit. Commun. Netw. 7(2), 624–634 (2020).
	14.	 Wang, J. et al. Dependent task offloading for edge computing based on deep reinforcement learning. IEEE Trans. Computers

71(10), 2449–2461 (2021).
	15.	 Zhang, Q., Gui, L., Zhu, S. & Lang, X. Task offloading and resource scheduling in hybrid edge-cloud networks. IEEE Access 9,

85350–85366 (2021).
	16.	 Wang, J. et al. Edge cloud offloading algorithms: Issues, methods, and perspectives. ACM Comput. Surv. (CSUR) 52(1), 1–23

(2019).
	17.	 Hong, C.-H. & Varghese, B. Resource management in fog/edge computing: A survey on architectures, infrastructure, and

algorithms. ACM Comput. Surv. (CSUR) 52(5), 1–37 (2019).
	18.	 Chen, J.-J., Kuo, C.-F.: Energy-efficient scheduling for real-time systems on dynamic voltage scaling (dvs) platforms. in 13th IEEE

International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA 2007), pp. 28–38 (2007). IEEE
	19.	 Li, K. Design and analysis of heuristic algorithms for energy-constrained task scheduling with device-edge-cloud fusion. IEEE

Trans. Sustainable Computing 8(2), 208–221 (2022).
	20.	 Li, Z. et al. Energy-aware task offloading with deadline constraint in mobile edge computing. EURASIP J. Wireless Commun. Netw.

2021, 1–24 (2021).
	21.	 Badri, H., Bahreini, T., Grosu, D. & Yang, K. Energy-aware application placement in mobile edge computing: A stochastic

optimization approach. IEEE Trans. Parallel Distributed Syst. 31(4), 909–922 (2019).
	22.	 Ahmad, R. W., Gani, A., Hamid, S. H. A., Xia, F. & Shiraz, M. A review on mobile application energy profiling: Taxonomy, state-

of-the-art, and open research issues. J. Netw. Comput. Appl. 58, 42–59 (2015).
	23.	 Ahn, J., Lee, J., Yoon, S. & Choi, J. K. A novel resolution and power control scheme for energy-efficient mobile augmented reality

applications in mobile edge computing. IEEE Wireless Commun. Lett. 9(6), 750–754 (2019).
	24.	 Singh, G. D. et al. A novel framework for capacitated SDN controller placement: Balancing latency and reliability with PSO

algorithm. Alex. Eng. J. 87, 77–92 (2024).
	25.	 Mohr, P., Tatzgern, M., Grubert, J., Schmalstieg, D., Kalkofen, D.: Adaptive user perspective rendering for handheld augmented

reality. in 2017 IEEE Symposium on 3D User Interfaces (3DUI), pp. 176–181 (2017). IEEE
	26.	 Rathore, R. S. et al. Green communication for next-generation wireless systems: optimization strategies, challenges, solutions, and

future aspects. Wirel. Commun. Mob. Comput. 2021(1), 5528584 (2021).
	27.	 Chen, X., Zhang, Q., Lin, M., Yang, G. & He, C. No-reference color image quality assessment: From entropy to perceptual quality.

EURASIP J. Image Video Process. 2019, 1–14 (2019).
	28.	 Azizzadeh, F., Shamsi, M., Veiseh, S. & Kamari, F. Limitation and difficulty analysis of quality improvement program implementation

in urmia small industries. Int. Business Res. 5(8), 190 (2012).
	29.	 Verbelen, T., Stevens, T., Simoens, P., De Turck, F. & Dhoedt, B. Dynamic deployment and quality adaptation for mobile augmented

reality applications. J. Syst. Softw. 84(11), 1871–1882 (2011).
	30.	 Haouari, B., Mzid, R. & Mosbahi, O. A reinforcement learning-based approach for online optimal control of self-adaptive real-time

systems. Neural Computing Appl. 35(27), 20375–20401 (2023).
	31.	 Piao, J.-C. & Kim, S.-D. Real-time visual-inertial slam based on adaptive keyframe selection for mobile ar applications. IEEE Trans.

Multimed. 21(11), 2827–2836 (2019).
	32.	 Zhang, J., Gong, B., Waqas, M., Tu, S. & Han, Z. A hybrid many-objective optimization algorithm for task offloading and resource

allocation in multi-server mobile edge computing networks. IEEE Trans. Services Comput. 16(5), 3101–3114 (2023).
	33.	 Liu, Q., Huang, S., Opadere, J., Han, T.: An edge network orchestrator for mobile augmented reality. in IEEE INFOCOM 2018-IEEE

Conference on Computer Communications, pp. 756–764 (2018). IEEE
	34.	 Zeng, X., Tan, S.Y., Nasrudin, M.F. Adapt-net: A unified object detection framework for mobile augmented reality. IEEE Access.

(2024)

Scientific Reports | (2025) 15:10034 19| https://doi.org/10.1038/s41598-025-93731-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

	35.	 Mustafa, E., Shuja, J., Rehman, F., Riaz, A., Maray, M., Bilal, M., Khan, M.K.: Deep neural networks meet computation offloading
in mobile edge networks: Applications, taxonomy, and open issues. J. Netw. Computer Appl. 103886 (2024)

	36.	 Maray, M., Mustafa, E., Shuja, J. & Bilal, M. Dependent task offloading with deadline-aware scheduling in mobile edge networks.
Internet Things 23, 100868 (2023).

	37.	 Kumar, S. et al. An optimized intelligent computational security model for interconnected blockchain-IoT system & cities. Ad Hoc
Netw. 151, 103299 (2023).

	38.	 Saleh, A. et al. Trust-aware routing mechanism through an edge node for IoT-enabled sensor networks. Sensors 22(20), 7820
(2022).

	39.	 Jha, S. K. et al. Quality-of-service-centric design and analysis of unmanned aerial vehicles. Sensors 22(15), 5477 (2022)
	40.	 Rathore, R. S. et al. Towards enabling fault tolerance and reliable green communications in next-generation wireless systems. Appl.

Sci. 12(17), 8870 (2022)
	41.	 Pandey, V. K. et al. A Computational Intelligence Inspired Framework for Intrusion Detection in WSN. In 2024 International

Conference on Decision Aid Sciences and Applications (DASA) (IEEE, 2024).

Author contributions
Dinesh Sahu and Nidhi did the overview of the study framework, guide to the study, methodology and measure-
ment, data analysis and interpretation, and major manuscript revisions. Shiv Prakash and Vivek Kumar Pandey
has performed the experiments, helped with data acquisition/analysis, and written the manuscript. Tiansheng
Yang provided algorithm discussion on optimization, brought input in the course of model construction, and
proffered input towards the technical parts of the manuscript. Rajkumar Singh Rathore has helped in data pre-
processing, contributed to simulations, and aligned the manuscript results and discussion section. Lu Wang was
involved in the literature review process, participated in algorithm implementation, and created data visualiza-
tion. The authors revised the manuscript and all of them agreed on the material to be published.

Declarations

 Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to S.P. or R.S.R.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and
indicate if changes were made. The images or other third party material in this article are included in the article’s
Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy
of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2025

Scientific Reports | (2025) 15:10034 20| https://doi.org/10.1038/s41598-025-93731-w

www.nature.com/scientificreports/

http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/scientificreports

	﻿Edge assisted energy optimization for mobile AR applications for enhanced battery life and performance
	﻿Problem statement
	﻿Objective
	﻿Key contributions
	﻿Structure of the paper
	﻿﻿Related work
	﻿﻿Proposed system architecture
	﻿Model workflow

	﻿﻿Mathematical model for proposed framework
	﻿﻿Proposed algorithm
	﻿Step-1 (initialization)
	﻿Step 2 (task classification and offloading decision)
	﻿Step 3 (energy estimation and task execution)
	﻿Step 4 (adaptive quality scaling)
	﻿Step 5 (reinforcement learning for dynamic optimization)
	﻿Step 6 (repeat for all tasks and time steps)
	﻿Step 7 (termination)

	﻿﻿Experimental setup
	﻿﻿Results and discussion
	﻿Conclusion and future scope
	﻿References

