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Data imbalance is a critical factor affecting the predictive accuracy in collision risk assessment. 
This study proposes an advanced active generative oversampling method based on Query by 
Committee (QBC) and Auxiliary Classifier Generative Adversarial Network (ACGAN), integrated 
with the Wasserstein Generative Adversarial Network (WGAN) framework. Our method selectively 
enriches minority class samples through QBC and diversity metrics to enhance the diversity of sample 
generation, thereby improving the performance of fault classification algorithms. By equating the 
labels of selected samples to those of real samples, we increase the accuracy of the discriminator, 
forcing the generator to produce more diverse outputs, which is expected to improve classification 
results. We also propose a method for dynamically adjusting the training epochs of the generator and 
discriminator based on loss differences to achieve balance in model training. Empirical analysis on four 
publicly available imbalanced datasets shows that our method outperforms existing methods in terms 
of precision, recall, F-measure, and G-mean. Specifically, our method’s results are above 0.92 on all 
evaluation indicators, with an average improvement of 23–28.3% compared to the worst-performing 
ENN method. This indicates that our method has a significant advantage in handling data imbalance, 
being able to more accurately identify collision samples and reduce the misclassification rate of non-
collision samples.

Keywords  Generating adversarial networks, Real-time collision risk prediction, Unbalanced data, Deep 
learning

Within the ambit of contemporary societal operations, collision risk prediction is an integral aspect of diverse 
sectors, encompassing traffic safety and industrial activity. The imperative of accurately forecasting potential 
collision risks is paramount, as it directly pertains to the preservation of human life and the safeguarding of 
material assets1–3. The efficacy of these predictions is crucial for informed decision-making and the promptness 
of emergency measures. Furthermore, adept prediction models significantly contribute to diminishing incident 
frequencies, optimizing operational productivity, and prudent allocation of resources, thereby exerting a 
beneficial influence on both quotidian activities and industrial practices.

The construction of robust collision risk prediction models necessitates addressing the challenge of data 
imbalance—a prevalent issue wherein the frequency of non-collision instances eclipses that of collision events, 
thus skewing the dataset4,5. This imbalance poses substantial obstacles for standard machine learning and 
deep learning paradigms. The term fault imbalance refers to the situation where the distribution of samples 
across different classes is skewed, leading to an overrepresentation of certain classes (majority classes) and an 
underrepresentation of others (minority classes). This imbalance can significantly affect the performance of 
machine learning models, as they tend to be biased towards the majority class, resulting in poor predictive 
accuracy for the minority class. Thus, the presence of data imbalance significantly affects the predictive accuracy 
and generalizability of models, similar to findings in some clinical studies6.

To address this challenge, the focus has turned to Generative Adversarial Networks (GANs), a novel type 
of network composed of a generator and a discriminator that synthesize realistic-looking data and distinguish 
between genuine and artificial samples through an inherent adversarial mechanism7,8. GANs show potential in 
improving model predictive accuracy for the minority class in the field of collision risk prediction by enhancing 
the representation of the minority class.

Despite the promise of GANs in handling imbalanced datasets, they suffer from instability during training 
and a lack of diversity in the generated samples. To overcome these issues, a new active generative oversampling 
method is proposed in this study, based on Query by Committee (QBC) and Auxiliary Classifier Generative 
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Adversarial Network (ACGAN), integrated with the Wasserstein Generative Adversarial Network (WGAN) 
framework. The purpose of this method is to enhance the diversity of sample generation and improve the 
performance of fault classification algorithms by selectively enriching the minority class samples through QBC 
and diversity metrics. In the context of imbalanced datasets, minority class samples refer to the instances of 
the class that is underrepresented compared to other classes. For example, in collision risk prediction, collision 
events are typically rare and thus form the minority class, while non-collision events are more frequent and 
form the majority class. Addressing the imbalance between these classes is critical for improving the predictive 
accuracy of models. Additionally, by equating the labels of selected samples to those of real samples, the accuracy 
of the discriminator is increased, forcing the generator to produce more diverse outputs, which is anticipated to 
improve classification results.

The aim of this study is to provide a more robust and accurate collision risk prediction model to tackle 
data imbalance issues in the real world. The primary reason for employing our proposed active generative 
oversampling methodology, based on QBC and the Wasserstein Auxiliary Classifier Generative Adversarial 
Network (W_ACGAN), is its specific design to effectively address the challenges posed by data imbalance 
in collision risk prediction. Unlike many traditional machine learning methods, our approach focuses on 
enhancing the diversity and quality of generated samples, which is critical in applications where collision events 
are rare. This tailored strategy allows us to improve the representation of minority classes, leading to more 
accurate predictions. Furthermore, while other novel machine learning techniques may show promise in various 
contexts, they often do not adequately tackle the unique issues presented by imbalanced datasets in collision risk 
scenarios. Our methodology not only integrates active learning principles but also leverages the stability of the 
Wasserstein distance, making it particularly suitable for the challenges identified in our research.

Main contributions of the proposed methodology:

	(1)	� Enhanced diversity in sample generation: Our proposed active generative oversampling methodology, 
which combines QBC and the W_ACGAN, is specifically designed to produce more diverse and high-qual-
ity samples. This is crucial for improving the representation of minority classes in collision risk prediction.

	(2)	� Improved stability and performance: By employing the Wasserstein distance, our framework enhanc-
es training stability and the quality of generated samples, mitigating common issues faced by traditional 
GANs.

	(3)	� Tailored approach for collision risk prediction: Our methodology addresses the unique challenges associ-
ated with imbalanced datasets in the context of collision risk prediction, offering a novel solution that has 
demonstrated superiority over existing methods in empirical evaluations.

State of the Art
The prediction of collision risk can be viewed as a classification problem, where the pre-collision state is used 
as the positive sample for the classification problem and the normal condition as the negative sample. In reality, 
collisions are rare and conflicts are relatively infrequent, so there are far more normal conditions available than 
pre-collision situations, which creates an imbalance of positive and negative samples. The sample class imbalance 
problem is an inevitable problem in existing collision prediction models, and how to deal with this problem is 
also regarded as one of the most critical steps in the modeling process. This study mainly focuses on the data 
level and develops the discussion from three aspects: under-sampling, over-sampling, and mixed sampling. The 
structures of their unbalanced classification models are shown in Figs. 1, 2 and 3.

Current status of undersampling algorithms
In this chapter, undersampling algorithms are divided into nearest neighbor-based undersampling algorithms, 
clustering-based undersampling algorithms, SVM-based undersampling algorithms, and integration-based 
undersampling algorithms based on the basic ideas.

(1) Nearest neighbor under-sampling algorithm.

Fig. 1.  Unbalance classification model based on undersampling.
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Near-neighbor-based undersampling algorithms are more common. This type of undersampling method 
mainly relies on the nearest neighbors of each sample for undersampling, and the main feature is that the 
nearest neighbors of each sample need to be found first. For example, Li and Dai et al.9 proposed Condensed 
Nearest Neighbour (CNN), which uses 1-nearest neighbor to remove majority class samples whose 1-nearest 
neighbor is a minority class sample. Swana et al.10 proposed an adaptive Tomeklink undersampling method 
to undersampling majority class samples to alleviate class overlap and imbalance. To alleviate the class overlap 
and imbalance problems. Balla et al.11 proposed the OSS (one-sided selection) algorithm based on TomekLink 
pairs, drawing on the idea of CNN. The ENN (Edited Nearest Neighbours)12 algorithm analyzes the k-nearest 
neighbors of each sample in the majority class samples. If there are more samples in the minority class than in 
the majority class, then the majority class is deleted. NCL (Neighborhood Cleaning Rule)13 extends the ENN 
algorithm to delete only the majority class samples and analyzes the k-nearest neighbors of each sample in the 
minority class. CNNTL (Condensed Nearest Neighbor + TomekLink)14 addresses the problem of high time spent 
on calculating TomekLink pairs in the OSS algorithm by first finding a consistent subset of the dataset, and then 
using 1NN and TomekLink pairs for the under-sampling operation, which greatly reduces the time complexity.

(2) Clustering-based undersampling algorithm.
Clustering-based undersampling algorithms refer to the undersampling operation based on clustering. For 

example, Onan et al.15 combine clustering and undersampling techniques to balance the dataset by undersampling 
most of the class samples on the basis of clustering. Similar approaches are CPM (Class Purity Maximization)16, 
SBC (Undersampling Based on Clustering)17, etc.

(3) SVM-based undersampling algorithm.
SVM is a classification model based on classification decision boundary, where the learned classification 

hyperplane is only related to the support vectors located near the classification hyperplane. Therefore, it is 
feasible for decision boundary-based classifiers to undersample the dataset by using SVM as a pre-processor for 

Fig. 3.  Imbalance classification model based on hybrid sampling.

 

Fig. 2.  Imbalance classification model based on oversampling.
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the unbalanced dataset. There have been researchers who have conducted studies in this area, mainly focusing 
on misclassified samples and boundary samples. For example, Kobat et al.18 used a pre-trained SVM to pre-
process the unbalanced data by dividing the misclassified samples in the majority class into minority classes. 
The results show that the prediction correctness of the minority class samples is improved without affecting the 
overall accuracy. Wang et al.19 first use the random forest to screen the dataset with features, and after feature 
screening builds an SVM to pre-process the dataset, and similarly divide the misclassified samples from the 
majority class into the minority class.

(4) Integration-based undersampling algorithm.
With the popularity of the integration idea, in recent years, some people also integrate the idea of integration 

into the undersampling algorithm and propose an integration-based undersampling algorithm. For example, 
Gao et al.20 undersampling algorithm only select a subset of the original dataset of the problem, and proposed 
two integration methods BalanceCascade and EasyEnsemble, which dramatically improves the performance of 
unbalanced data classification.

State of the art of oversampling algorithm research
The oversampling algorithms are categorized into three groups: SMOTE and its variants, generative adversarial 
networks, and oversampling algorithms based on other methods.

(1) SMOTE and its variants.
SMOTE (Synthetic Minority Over-sampling Technique) is one of the classical oversampling algorithms21. 

After the SMOTE algorithm was proposed, researchers proposed many classical algorithms on the basis of 
SMOTE, such as the borderline-based SMOTE variant Borderline SMOTE22 and Safe Level SMOTE based on 
safety level23, etc. Halim et al.24 proposed another improved algorithm based on SMOTE, namely ADASYN. The 
main principle of this algorithm is to decide the number of samples to be generated based on the distribution of 
the data in the original dataset.

(2) Generative Adversarial Network.
GAN is a new data generation method proposed by Goodfellow et al.25. The overall distribution of the dataset 

is first acquired and then the data is generated based on the overall distribution. With the application of GANs 
in image and text domains, some scholars have also started to use GANs to deal with imbalanced classification 
problems. For example, Ahsan et al.26 proposed an outlier detectable generative adversarial network (OD-GAN) 
oversampling algorithm for the unbalanced data and majority class sample outlier problem. While generating 
the minority class samples, the majority class sample outliers are removed based on the majority class sample 
output values in the generator. Tang et al.27 proposed a new Generative Adversarial Network (GAN) to generate 
new samples to expand the banknote dataset, and used this dataset to train a banknote amount recognition 
framework.

(3) Oversampling algorithms based on other methods.
In addition to SMOTE and its variants, scholars have studied some new oversampling algorithms by drawing 

on some other methods. For example, the SPIDER228 algorithm first divides the samples whether they are 
easily misclassified or not, and then performs the oversampling operation on the divided dataset. Zhang et al.29 
proposed the radial-based oversampling (RBO) algorithm. This algorithm finds the region where the minority 
class synthetic target should be generated based on the estimation of the imbalance distribution using radial 
basis functions. Huang et al.30 combined feature selection methods with oversampling techniques to improve the 
prediction accuracy of minority class samples.

Current research status of hybrid sampling algorithms
In addition to the under/over-sampling used classical methods, research workers have proposed some new 
hybrid sampling ideas. For example, Karthikeyan et al.31 proposed the SMOTE RSB algorithm that combines 
SMOTE and a rough set for the unbalanced data classification problem. Devi et al.32 proposed a hybrid sampling 
algorithm that uses SMOTE for oversampling and particle swarm optimization algorithm for undersampling, 
which is very effective in the field of malicious website identification. In addition, Merdas et al.33 proposed an 
EMS (Elastic Net - MLP - SMOTE) model. The model utilizes two machine learning algorithms and uses the 
SMOTE to predict the occurrence of stroke. Deng et al.34 put forward a SMOTE-FRS method for predicting 
and trading the movement of futures. This method solves the problem of sample imbalance. It is an effective 
tool to analyze complex nonlinear information with high noise and uncertainty in financial time series. Pratap 
et al.15 proposed a method that combines K-means clustering with Tomek links to identify and retain the most 
informative samples from the majority class. This approach helps to reduce the impact of class imbalance by 
focusing on the most representative instances.

Current works in imbalanced data classification offer a variety of techniques, including undersampling, 
oversampling, and hybrid sampling methods, which provide flexibility depending on the specific characteristics 
of the dataset at hand. However, due to the generation of synthetic samples, these models are prone to overfitting. 
And when the class distribution is complex or clustering algorithms cannot capture it well, these methods may 
not achieve optimal performance. The proposed method leverages the generative capabilities of the W_ACGAN 
framework, which is more sophisticated than traditional SMOTE in generating synthetic samples. It can produce 
a richer and more diverse set of samples that better represent the minority class. By integrating QBC and diversity 
metrics, the proposed method selectively enriches the minority class samples, enhancing the diversity of sample 
generation and improving the performance of fault classification algorithms more effectively than methods that 
rely solely on clustering or instance selection.
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Methodology
Generative adversarial network with auxiliary classifier
ACGAN originates from the Conditional Generative Adversarial Network (CGAN), which controls the class of 
generated samples by adding sample labeling information to the input of the generator. ACGAN is an extension 
of CGAN, in addition to adding label information in the input, ACGAN also uses a classifier to assist the 
discriminator. Therefore, ACGAN can not only determine whether a sample comes from the real distribution 
or the generated distribution, but also determine the category of the generated sample. In other words, a 
classification function is added to the discriminator of ACGAN, and its structure is shown in Fig. 4. In addition, 
it is proved that ACGAN can produce higher quality samples by adding more structures and/or specialized loss 
functions to the potential space of GAN.

Compared with the samples generated by the original GAN, each generated sample ix
fake  of ACGAN has a 

corresponding category label, which can be expressed as ix
fake = Aacgan ( labelx, kx). Where, labelx denotes 

the label corresponding to the ith sample; kx denotes the x-th noise input. Due to the classification function of 
ACGAN, its loss function also consists of two parts, the discriminant loss Ld and the classification loss Lc. Ld 
is the same as the discriminator loss function of GAN, as shown in Eq. (1).

	 Ld = E [logU (predicted label = real | Ireal )] + E [logU (predicted label = generated | Ifake)]� (1)

Where: U (predicted label = real | Ireal ) denotes the probability that the input is a real sample and the 
predicted label given by the discriminator is also a real sample. U (predicted label = generated | Ifake) 
denotes the probability that the input is a generated sample and the predicted label given by the discriminator is 
also a generated sample. The classification loss Lc is specific to ACGAN and is calculated as shown in Eq. (2).

	 Lc = E [logU ( categorical label = real label | Ireal )] + E [log U ( categorical label = real label | Ifake )]� (2)

Where: U ( categorical label = real label | Ireal ), U ( categorical label = real label | Ifake ) represent 
the probability that “the inputs are real samples and generated samples, and the categorical labels given by the 
discriminator are consistent with the real category labels”.

In ACGAN, the discriminator maximizes Lc+ Ld through model training. That is, it should be able to judge 
whether the sample belongs to the real sample or the generated sample, and it should be able to judge the 
category of the generated sample and the real sample. The generator maximizes Lc- Ld through model training. 
That is, in addition to generating samples that can “fool” the discriminator, the generator must also make the 
category of each generated sample close to its corresponding original category samples, so that the discriminator 
in the true and false discriminatory error, but in the identification of the sample category classification is correct.

Active generative oversampling method based on QBC and W_ACGAN
W_ACGAN model construction
To address the training instability issues of the original Auxiliary Classifier Generative Adversarial Network 
(ACGAN), this study introduces the Wasserstein distance from the Wasserstein Generative Adversarial Network 
(WGAN) into the ACGAN framework, resulting in the W_ACGAN model. The Wasserstein distance is used 
to replace the Jensen-Shannon (JS) divergence, which helps mitigate the problem of gradient vanishing and 
improves the stability of the model during training.

In the original ACGAN, the discriminator is tasked with classifying real samples as positive examples and 
generated samples as negative examples. The loss function for the discriminator is expressed as follows:

	 −Ei∼ Ur [logD(i )] − Ei∼ Ua [log(1 − D (i) )]� (3)

Where: Ur  denotes the distribution of real samples, Ua denotes the distribution of generated samples, 
and D (i) denotes the expression of the discriminator. When the parameters of the generator are fixed and the 
discriminator is trained, the contribution of any sample i (real sample or generated sample) to the loss function 
of the discriminator can be expressed as Eq. (4).

Fig. 4.  Structure of ACGAN.
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	 −Ur (i) logD (i) − Ua (i) log[1 − D(i )]� (4)

In order to obtain the optimal discriminator expression, the derivative of D (i) in Eq. (4) is made to be 0, which 
leads to Eq. (5).

	
−Ur (i)

D (i) + Ua (i)
1 − D (i) = 0� (5)

Where: Ur (i) denotes the probability that the sample i comes from the true distribution; Ua (i) denotes the 
probability that the sample i comes from the generated distribution. The expression of the optimal discriminator 
D (i) can be obtained by simplifying Eq. (5), as shown in Eq. (6).

	

∼
D (i) = Ur (i)

Ur (i) + Ua (i) � (6)

That is, when Ur (i) = 0 and Ua (i) ̸= 0, the probability that the optimal discriminator gives the sample i from 
the true distribution is 0. When Ur (i) = Ua (i), the probability that the sample i is from the true distribution 
and the generator distribution are equal. That is, the probability that the optimal discriminator gives the sample 
x from the true distribution is 0.5. Considering an extreme case, i.e., when the discriminator is trained to be 
optimal, the generator’s loss function is as follows. The loss function of the generator is

	

Ei∼ Ur

[
log

∼
D (i)

]
+ Ei∼ Ua

[
log

(
1 −

∼
D (i)

)]
=Ei∼ Ur log

Ur (i)
1
2 × (Ur (i) + Ua (i))

+ Ei∼ Ua log
Ua (i)

1
2 × (Ur (i) + Ua (i))

− 2loa2

=2 × JS (Ur ∥ Ua) − 2log2
� (7)

Where JS (Ur ∥ Ua) is the JS dispersion between the true distribution Ur  and the generated distribution Ua

, which can be calculated according to Eq. (8).

	
JS (Ur ∥ Ua) = 1

2Ei∼ Ur log
Ur (i)

1
2 × (Ur (i) + Ua (i))

+ 1
2Ei∼ Ua log

Ua (i)
1
2 × (Ur (i) + Ua (i)) � (8)

From this derivation, it is clear that when the discriminator is optimal, the generator’s loss function is transformed 
into minimizing the JS divergence between the real and generated sample distributions. However, when there 
is no significant overlap between the real distribution Ur ​ and the generated distribution Ua​, the JS divergence 
remains constant at log2, leading to a gradient of zero for the generator’s loss function. This means the generator 
cannot be optimized, which is a major reason why GANs are difficult to train.

To address this issue, the Wasserstein distance is introduced to replace the JS divergence. The Wasserstein 
distance, also known as the Earth Mover’s Distance (EMD), measures the minimum amount of “work” required 
to transform one distribution into another. Unlike the JS divergence, which can become meaningless when the 
distributions do not overlap, the Wasserstein distance provides a meaningful measure of the distance between 
distributions even in such cases. This property makes the Wasserstein distance particularly suitable for GAN 
training, as it ensures that the generator receives useful gradient information regardless of the overlap between 
the real and generated distributions.

The Wasserstein distance M (Ur, Ua) can be calculated according to Eq. (9).

	
M (Ur, Ua) = inf

δ ∈ Π (Ur,Ua)
E(i,j)∼ δ ∥ i − j ∥ � (9)

From Eq. (9), it can be seen that for the JS degree, the advantage of Wasserstein distance lies in the fact that 
regardless of whether there is an overlap between the true distribution Ur  and the generated distribution Ua

. The Wasserstein distance can always reflect the distance between the two distributions. This indicates that the 
Wasserstein distance is relatively continuous and smooth, and can produce the gradient that the JS dispersion 
cannot provide. The introduction of Wasserstein distance can make the training of GAN more stable, and the 
loss function of the GAN generator becomes −Ei∼ Ua [D( i )], and the loss function of the discriminator 
becomes Ei∼ Ua [D( i )] − Ei∼ Ur [D( i )].

Compared to conventional ACGANs, which rely on the Jensen-Shannon (JS) divergence and often suffer 
from unstable training due to vanishing gradients and mode collapse, our W_ACGAN model leverages 
the Wasserstein distance to address these issues. The JS divergence struggles when the real and generated 
distributions do not overlap significantly, leading to unstable training and slow convergence. In contrast, the 
Wasserstein distance provides a smoother and more meaningful measure of the distance between distributions, 
even in cases of non-overlapping support. This ensures that the generator receives useful gradient information 
throughout the training process, resulting in more stable training and faster convergence. Additionally, the 
improved stability and convergence speed enable the generator to produce higher-quality and more diverse 
samples, which is particularly important for accurately representing minority classes in imbalanced datasets. By 
mitigating common GAN training issues, W_ACGAN achieves better performance in generating realistic and 
diverse samples, ultimately enhancing the overall classification performance.
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W_ACGAN training guidance based on QBC and diversity
To enhance the diversity and quality of generated minority class samples, we integrate the QBC algorithm and 
a diversity metric into the training process of the W_ACGAN. The QBC algorithm selects samples with high 
entropy values from the generated pool, indicating high uncertainty and potential diversity. These samples are 
further evaluated using a diversity metric based on Euclidean distances to ensure they are not only informative 
but also uniformly distributed. The selected samples are then assigned labels corresponding to real samples 
and incorporated into the training of the discriminator, guiding the generator to produce more diverse and 
realistic outputs. This process is complemented by an adaptive training mechanism that dynamically adjusts the 
number of updates for the generator and discriminator based on their loss values, ensuring a balanced training 
process. This integration of QBC and diversity metrics significantly improves the performance of the collision 
risk prediction model by enhancing the representation of minority class samples.

Aiming at the problem of insufficient sample diversity in the original GAN, this paper introduces the QBC 
algorithm and Diversity evaluation index in the training process of W_ACGAN to guide W_ACGAN to generate 
diversified samples that are favorable to improve the collision classification effect. The QBC algorithm aims to 
select the sample with the most inconsistent classification results from the generated samples, that is, the sample 
that is more prone to recognition errors. Learning these samples is not only necessary, but also beneficial to 
the performance of the classifier. By embedding QBC into the training process of W_ACGAN, the diversity of 
generated samples is improved by selecting the samples that are more inconsistent with other samples from the 
samples selected by QBC. The specific process is as follows: firstly, the QBC algorithm is used to select M samples 
with high entropy value from the generated samples, and then Ŵ (Ŵ < W ) samples are selected from them 
with the help of the diversity evaluation index. Secondly, the labels of these W samples are set as real sample 
labels, i.e., they are added to the original real sample set as real samples. Finally, the obtained real sample set is 
used to train the discriminator with the remaining generated samples.

When using the QBC algorithm to select samples, we first select Z training sets N1, N2 ,…,NZ from the 
training set that contains all samples in the form of bagging; and use the Z training sets to train Z independent 
classification models C1 ,C2 ,…,CZ, in order to form a set of committees C = {C1, C2, · · · , CZ}. Second, 
the samples A (k1) , A (k2) , · · · , A (ky) , · · · , A (kr)generated by the generator for r noise samples 
k1, k2 · · · , ky, · · · , kr  are fed into each of the Z classification models. Each sample will get Z predicted labels 
given by K classification models. Finally, the entropy values B [A (k1)] , · · · , B [A (ky)] , · · · , B [A (kr)] are 
computed for each of the r samples according to Eq. (10) and using the Z predicted labels.

	
B [A (ky)] =

∑
P
ζ =1 Uζ

y log
[
Uζ

y

]
logP

� (10)

Where: Uζ
y = u

(
ĵy = ζ | A (ky)

)
 denotes the probability that the y-th generated sample is predicted to be 

a minority class collision of class ζ  by the Z classification models. That is, 
(
ĵy = ζ | A (ky)) = Zζ

Z , Zζ  
denotes the number of labels belonging to the ζ -th class among the Z predicted labels of A (ky), and P is 
the number of collision categories of the minority class. When the predicted labels of the committee for the 
sample A (ky) are the same, from Eq. (10), its entropy value B [A (ky)] = 0. That is, for each classifier of the 
committee, the sample A (ky) belongs to the samples that can be easily and correctly categorized. Therefore, 
the inclusion of this sample contributes relatively little to improve the performance of the classifier. On the 
contrary, the larger the entropy value of a sample, the easier it is to be misclassified or the less recognizable 
it is, which means that the sample provides more information. Therefore, in this study, W samples with 
higher entropy values, i.e., 

{
A1, A2, · · · , Az, · · · , AW

}
, are selected from r generated samples with 

Az ∈ {A (k1) , A (k2) , · · · , A (ky) , · · · , A (kr)}, in order to improve the performance of the classifier. 
Where Az  is the z-th sample selected.

In order to ensure that the generated samples can be uniformly distributed and avoid the influence of a 
single bootstrap on the diversity of the generated samples, this paper designs a diversity evaluation index, 
and performs a secondary screening on the W samples 

{
A1, A2, · · · , Az, · · · , AW

}
. The specific steps are 

as follows: firstly, a sample Az  is selected from 
{

A1, A2, · · · , Az, · · · , AW
}

, and calculate the Euclidean 
distance Edz,1, Edz,2, · · · , Edz,z−1Edz,z+1, · · · , Edz,W between Az  and other W-1 samples in sequence 
according to Eq. (11).

	 Edz,p =
√

|Az − Ap|2� (11)

Where Edz,p denotes the Euclidean distance between Az  and the p-th sample Ap. Secondly, all the obtained 
Euclidean distances, that is, Edz,1, Edz,2 · · · , Edz,z−1, Edz,z+1, · · · , Edz,W  are summed to obtain the 
Diversity value Dz  for sample Az .

	
Dz =

∑
z−1
s=1 Edz,s +

∑
W
s=z+1 Edz,s � (12)

Similarly, Diversity values D1, D2, · · · , Dz−1, Dz+1, · · · , DW  are calculated for the remaining W-1 samples 
in turn. Finally, Ŵ  samples Â1, Â2, · · · , Âz′

, · · · , ÂW  with larger Diversity values are selected from {
A1, A2, · · · , Az, · · · , AW

}
 as the final selection. Where,
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. At the same time, the labels of these selected samples are set as true labels, i.e., True. The labels of the 
remaining unselected samples remain False. And the selected samples are treated as true samples to participate 
in the training of the discriminator in order to guide the generated samples to approximate in the direction of 
the selected samples.

In order to avoid that the difference between the selected samples and the original samples is too large, which 
leads to the samples generated by the generator to be in the direction of deviating from the real samples, this 
paper introduces an attenuation factor term σ (0 < σ < 1) into the loss of the selected samples to adjust the 
contribution of the selected samples in the discriminant loss function. The value of this attenuation factor will 
increase with the number of iterations. This is because at the beginning of training, the generated samples are 
different from the original samples, and the training should be guided by the real samples. As the number of 
iterations increases, the generated samples gradually approach the original samples. In this study, we hope that 
the generated samples are close to the direction of the selected samples. Therefore, the loss function of the final 
discriminator should contain two parts: ① the original loss, which contains two items: the loss of the real sample 
and the loss of the unselected sample. ② the loss of the selected samples with the added attenuation factor. As 
shown in Eq. (13).

	
dloss = 1

L

∑
L
l=1 D (il) − 1

V

∑
V
y=1 D (A (ky)) + σ

Ŵ

∑
Ŵ
z′ =1 D

(
Âz′

)
� (13)

Where: il denotes the lth real sample; L is the total number of real minority class samples; V is the total number 
of unselected generated samples.

Adaptive model parameter update based on loss value
In order to make the training of W_ACGAN more stable, this research controls the training from the discriminator 
and generator. When optimizing the generator, it is assumed that the discriminator’s discriminative ability is 
better than the current generator’s generative ability, so that the discriminator guides the generator to learn 
in a better direction. Specifically, the parameters of the discriminator are first updated one or more times, and 
then the parameters of the generator are updated. Different from the fixed mode of WGAN, that is, “update the 
discriminator 5 times, and then update the generator 1 time”, this paper proposes an adaptive training method. 
By calculating the ratio between the loss value of the last iteration and the loss value of the current iteration, we 
get the number of parameter updates of the discriminator and generator in the next iteration. Let the loss value 
of the last iteration discriminator be dpre

Loss , the loss value of the current iteration discriminator be dcurr
Loss , the 

loss value of the last iteration generator be apre
Loss ,and the loss value of the current iteration generator be acurr

Loss . 
The steps of the adaptive training method proposed in this paper are as follows.

Step 1: Train the discriminator and the generator each once, and assign the loss values of the discriminator 
and the generator in the first iteration to dpre

Loss  and apre
Loss , respectively. Then, train the discriminator and the 

generator each once, and assign the loss values of the discriminator and the generator in the second iteration to 
dcurr
Loss  and acurr

Loss , respectively.
Step 2: Calculate the number of parameter updates dns for the discriminator in the next round of iterations 

using Eq. (14). To avoid an infinite number of updates due to the possibility that the loss value dpre
Loss  in the 

previous round of iterations may be 0, a very small floating-point number is added to the denominator.

	

dw
ns,

dcurr
Loss

d
pre
Loss +ε

≤ dw
ns;

dns =
{

ceil dcurr
Loss

dpre
Loss + ε

, dw
ns <

dcurr
Loss

d
pre
Loss +ε

< dW
ns;

dW
ns,

dcurr
Loss

d
pre
Loss +ε

≥ dW
ns.

� (14)

Where dw
ns and dW

ns are the pre-set minimum and maximum number of updates of the discriminator parameters 
in each iteration for avoiding too many or too few updates. It can be seen that the training of the discriminator 
is a negative feedback process. That means the larger the loss of dcurr

Loss  in this round of discriminator, the larger 
dns will be. As the loss of the discriminator decreases in the next iteration, the discriminator’s discriminative 
ability will be enhanced accordingly.

Step 3: Calculate the number of parameter updates ans of the generator in the next iteration by Eq. (15), 
similar to Eq. (14), with a floating point number ε added to the denominator.

	

aw
ns,

g
pre
Loss

gcurr
Loss +ε

≤ aw
ns;

ans =
{

ceil
gpre
Loss

gcurr
Loss + ε

, aw
ns <

g
pre
Loss

gcurr
Loss +ε

< aW
ns;

aW
ns,

g
pre
Loss

gcurr
Loss +ε

≥ aW
ns.

� (15)

Where aw
ns and aW

ns are the predefined minimum and maximum number of generator parameter updates per 
iteration, respectively. Contrary to the discriminator, the larger the generation loss acurr

Loss  is in this round, the 
smaller ans is, i.e., the generation loss of the generator will be larger. Therefore, the generator’s generating 
ability will not become stronger. The joint effect of Eq.  (14) and Eq.  (15) can ensure that the discriminator’s 
discriminative ability is always better than the generator’s generative ability, thus guiding the generator to 
generate higher quality samples.
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Step 4: Assign the values of dcurr
Loss  and acurr

Loss  to dpre
Loss and apre

Loss , respectively. Then, train the discriminator 
and the generator in accordance with the discriminator and generator parameter update counts, dns, ans, 
computed above, respectively.

Step 5: Calculate the loss values of the discriminator and generator, and assign them to dcurr
Loss  and acurr

Loss , 
respectively.

Step 6: Repeat steps 3 to 5 until the number of iterations reaches a pre-set value Δ.
After training the active generative oversampling network model of this paper according to the above steps; 

input a set of noise samples to the generator with the same distribution of noise samples used for training; 
and inject the output of its corresponding generator into the original dataset by considering the output of its 
corresponding generator as a complementary sample of a few classes of samples to achieve the purpose of 
balancing the dataset.

The loss threshold sensitivity was determined by monitoring the loss values of both the discriminator and 
generator during the training process. Specifically, we observed the ratio between the loss values of consecutive 
iterations, as described in Eqs. (14) and (15). This ratio was used to dynamically adjust the number of updates for 
the discriminator and generator in each iteration. The key idea is to ensure that the discriminator’s discriminative 
ability remains stronger than the generator’s generative ability, thereby guiding the generator to produce higher-
quality samples. The loss threshold was established through an empirical process, where we conducted multiple 
training runs on each dataset to identify the optimal range for the loss ratio. The minimum and maximum 
number of updates for the discriminator and generator, denoted as dw

ns, dW
ns, aw

nsand aW
ns, were predefined 

based on these empirical observations. These values were chosen to prevent too few or too many updates, which 
could lead to underfitting or overfitting, respectively. To further refine the loss threshold, we introduced a small 
floating-point number ε in the denominator of Eqs. (14) and (15) to avoid division by zero and to ensure smooth 
gradient updates. This adjustment allowed us to maintain stable training across all datasets, regardless of their 
inherent imbalance or complexity.

Real-time collision prediction process based on the proposed method
Due to the poor quality as well as diversity of standard GAN generated samples, this paper proposes an active 
generative oversampling method for QBC and ACGAN. The distance between true and false sample distributions 
is measured by the smoother Wasserstein distance instead of the original JS scatter; and the ACGAN model, 
namely W_ACGAN, is constructed to improve the stability of its training. Secondly, QBC is used to select the 
most representative samples with good diversity from the samples generated by ACGAN, in order to guide 
ACGAN to generate more diverse minority samples. Meanwhile, an adaptive model training method based on 
loss value is proposed to improve the quality of generated samples by adjusting the training period of generator 
and discriminator to enhance the confrontation effect between generator and discriminator. Finally, a real-time 
collision classifier is constructed for risk prediction. The specific process is shown in Fig. 5.

Computational considerations and scalability
In our study, the computational requirements for implementing the proposed active generative oversampling 
method based on Query by Committee (QBC) and Wasserstein Auxiliary Classifier Generative Adversarial 
Network (W_ACGAN) are primarily driven by the training of the GAN framework and the iterative selection 
process involving QBC and diversity metrics. Specifically, the computational needs can be summarized as 
follows:

Training the W_ACGAN framework: The training process involves alternating updates between the generator 
and discriminator networks. Given the complexity of the Wasserstein distance calculation and the additional 
classification loss in ACGAN, the training requires a moderate amount of computational resources. For the 
experiments conducted in this study, we used a standard workstation equipped with an NVIDIA GPU, which 
allowed us to train the model within a reasonable timeframe (approximately [X] hours per dataset, depending 
on the dataset size).

QBC and diversity metric calculations: The QBC algorithm involves training multiple classification models 
and computing entropy values for sample selection. Additionally, the diversity metric calculation requires 
pairwise distance computations among selected samples. These steps, while computationally intensive, are 
manageable with modern hardware and can be optimized through parallel processing techniques.

Adaptive training mechanism: The adaptive parameter update mechanism based on loss values adds an 
additional layer of computational overhead, but it significantly improves the stability and quality of the generated 
samples. This adaptive approach ensures that the training process remains efficient and effective, even for large 
datasets.

Regarding scalability, especially for huge datasets, our method is designed with several considerations to 
address potential limitations: (1) Batch processing and Mini-Batch training: To handle large datasets efficiently, 
we employ mini-batch training for the GAN framework. This approach allows us to process data in manageable 
chunks, reducing memory requirements and enabling the use of larger datasets without overwhelming 
computational resources. (2) Parallelization and distributed computing: The training of multiple classification 
models in the QBC algorithm and the computation of diversity metrics can be parallelized across multiple 
processors or distributed computing environments. This parallelization significantly reduces the overall 
computation time and enhances the scalability of our approach. (3) Incremental learning and sample selection: 
By selectively enriching the minority class samples through QBC and diversity metrics, our method focuses on 
generating only the most informative samples. This incremental approach minimizes the computational burden 
associated with generating and processing large volumes of synthetic data. (4) Optimized network architecture: 
The generator and discriminator networks used in our W_ACGAN framework are designed to be lightweight 
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yet effective. This balance ensures that the model remains computationally efficient while maintaining high 
performance.

While the proposed method is computationally intensive, its performance benefits in handling imbalanced 
datasets justify the additional resources required. By employing batch processing, parallelization, and an 
optimized network architecture, the scalability of the method can be significantly enhanced, making it more 
practical for large-scale applications.

The integration of the QBC and dynamic epoch adjustment mechanisms introduces additional computational 
overhead primarily due to the increased complexity of the model training process. Specifically, QBC requires 
the maintenance and evaluation of multiple models, which adds to the training time as each model undergoes 
several iterations. Additionally, the dynamic adjustment of epochs involves recalculating the optimal number 
of epochs during training, which can increase the computational burden as it adapts to the training dynamics.

While these mechanisms may lead to a rise in both training time and memory consumption compared to a 
baseline method without them, their implementation is aimed at improving model performance and adapting 
the training process more effectively to the specific dataset. The trade-off between computational cost and 
performance gain is a critical consideration when deploying this method in real-world applications, where the 
efficiency of the model must be balanced with available computational resources.

In our study, we did not conduct explicit benchmarks for training time and memory usage; however, the 
methods employed are designed to optimize training by refining the model’s learning process, which can justify 
the additional resource usage in cases where accuracy and performance improvements are prioritized.

Result analysis and discussion
As mentioned above, the main goal of this study is to use the proposed method to improve the performance of 
real-time collision prediction models trained on unbalanced datasets. A comprehensive comparison is made 
between the method of this paper and other classical sampling methods. The following are the datasets used for 
the study, the relevant settings for the experiments and some metrics used to evaluate the performance of the 
model.

Data set selection
In the present investigation, four disparate and publicly accessible datasets pertaining to vehicular incidents were 
meticulously selected to scrutinize the influence of data imbalance on the prognostication of traffic collision 
risks within transportation systems.

	(1)	� The National Automotive Sampling System General Estimates System (NASS GES) Crash Database: This 
extensive dataset, curated by the National Highway Traffic Safety Administration (NHTSA), encompasses 
a comprehensive array of traffic collision instances. It serves as a quintessential data source for predictive 
analytics and subsequent analyses within the field of traffic safety.

Fig. 5.  Real-time collision prediction flow based on the proposed method.
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	(2)	� The Kaggle State Farm Distracted Driver Detection (KSFDDD): While the primary intent of this dataset is 
the identification of distracted driving practices, it also encompasses a collection of traffic accident imagery. 
Notably, it exhibits pronounced imbalances across categories, rendering it an optimal subject for examining 
the challenges posed by data imbalance in traffic collision prediction models.

	(3)	� The Swiss Road Traffic Accident Database: This dataset chronicles vehicular accidents within Switzerland 
and is characterized by granular details such as temporal and locational data, vehicular types, and other 
pertinent descriptors. Despite its comparatively modest volume, the dataset is valued for its provision of 
authentic, real-world data for empirical study.

	(4)	� The UK Road Safety Dataset: Encompassing an extensive compendium of traffic collision information from 
the United Kingdom, this dataset includes variables indicative of accident severity, geographical coordi-
nates, and vehicular classifications, among others.

Experimental setup
Based on the above four datasets, support vector machine (SVM), random forest (RF), multi-layer perceptron 
(MLP), convolutional neural networks (CNN), One Dimensional Convolutional Neural Net-work (CNN-1D), 
which are five kinds of classifiers. In the experiment, 70% of the dataset was randomly selected as the training 
set, and the remaining 30% as the test set. In order to minimize the bias of the randomly selected data on 
the test results, this paper conducted 100 trials on each classifier, and finally the average of the 100 trials was 
counted as the result of the test. The generators used in the test are Linear(z,256)-ReLU( )-Linear(256,256)-
ReLU( )-Linear(256,Dim)-Sigmoid( ). The discriminator is Linear(Dim,256)-LeakyReLU(0.2)-Linear(256,256)-
LeakyReLU(0.2)-Linear(256,1)-Sigmoid( ). The random vector dimension is 32, batch size is 32, learning rate is 
0.0003, and the number of iterations is 1000. The internal parameters involved in the GAN network framework 
used in the experiments are consistent with the default ones.

Evaluation metrics
After fully understanding and comparing the advantages and disadvantages of various evaluation metrics, this 
paper chooses Precision, Recall, F-measure and G-mean as the evaluation metrics for this experiment.

Result analysis
Comparison of this paper’s method and six typical sampling methods, SMOTE, ADASYN, ENN, SPIDER2, 
CPM and GAN, with five classifiers on four unbalanced datasets. A comprehensive comparative analysis is 
carried out on the four evaluation indexes, and the experimental results are shown in Figs. 6, 7, 8 and 9. Where 
the horizontal coordinate indicates the data set, and the vertical coordinate indicates the value of the assessment 
indexes.

The present method gives better results than other sampling methods on all datasets on all 4 assessment 
indicators. The results of this method are above 0.92 on all 4 assessment indicators. In particular, it improves 
over the worst performing ENN by 23%, 24.5%, 28.3% and 16% on the average of the 5 datasets, respectively. 
It also improves over the next best performing GAN by 7.2%, 9%, 12% and 8.7%, respectively. This indicates 
that the proposed method outperforms other classical sampling methods in terms of better performance, better 
identification of collision samples and lower misclassification rate for non-collision samples. The reason for the 
best performance of this method is that it can fully consider the spatial distribution of the samples, and make the 
generated samples richer and more diversified through the repeated alternating optimization of the generative 
network and the discriminative network. SMOTE and ADASYN use k-nearest neighbors to create new samples, 
which are only distributed in some smaller regions. GAN takes into account the diversity of samples, so it 
performs the best among these comparative sampling methods. But its performance on each classifier is still 
slightly inferior to the present method. The main reason is that the W-ACGAN network of this method uses 

Fig. 6.  Comparison of Precision means of different methods on 5 classifiers.
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Fig. 9.  Comparison of G-mean means of different methods on 5 classifiers.

 

Fig. 8.  Comparison of F-measure means of different methods on 5 classifiers.

 

Fig. 7.  Comparison of Recall means of different methods on 5 classifiers.
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Wasserstein distance instead of the original JS dispersion to improve the training stability of the model and the 
quality of the generated samples. Meanwhile, the diversity evaluation index Diversity ensures the diversity of the 
selected samples.

In addition, in order to statistically evaluate the proposed method and compare it with the other six sampling 
methods, Win/Tie/Loss is used for evaluation. In all methods, the Wilcoxon signed rank test (p < 0.05) was 
performed for Precision, Recall, F-measure and G-mean. If the performance of this method was better than the 
other compared methods after statistical testing, the method was labeled as “Win”; otherwise, it was labeled as 
“Loss”. If there is no statistically significant difference between this method and the comparative methods, the 
case is labeled as “Tie”. Then, the number of times Win, Tie, and Loss were calculated for this method. By using 
Win/Tie/Loss evaluation, the advantages and disadvantages between this method and the comparison method 
can be clearly visualized. The comparison results are shown in Table 1.

To provide a more detailed understanding of how the proposed method balances sensitivity and specificity 
in collision and non-collision classifications, this paper conducts a comprehensive confusion matrix analysis. 
Confusion matrices are essential tools for evaluating the performance of classification models, as they clearly 
illustrate the number of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) for 
each class. This analysis is critical for assessing the effectiveness of the proposed method in handling imbalanced 
datasets.

For each dataset, we present the confusion matrices for our proposed method and compare them with those 
of the best-performing baseline methods (GAN, SMOTE, and ENN). The results are shown in Table 2, which 
summarize the TP, TN, FP, and FN values for each method using the Support Vector Machine (SVM) classifier. 
We also calculate the sensitivity (recall) and specificity (precision) metrics from the confusion matrices to 
further quantify the performance improvements achieved by our method.

The proposed method consistently achieves a higher number of TP and TN across all datasets, while 
minimizing the number of FP and FN. This shows that our approach effectively balances sensitivity (recall rate) 
and specificity (precision) in collision and non-collision classification. The sensitivity of our method ranges from 
0.89 to 0.92 and maintains a high specificity value (0.98 on all datasets). Compared with the benchmark methods 
(GAN, SMOTE and ENN), the proposed method has higher sensitivity and specificity, indicating its superior 
performance in processing unbalanced data sets. In particular, in the NASS GES crash database, the proposed 

Dataset Method TP (Collision) TN (Non-Collision) FP (Non-Collision) FN (Collision) Sensitivity (Recall) Specificity (Precision)

NASS GES Crash

Proposed 920 8500 150 80 0.92 0.98

GAN 850 8400 250 150 0.85 0.97

SMOTE 800 8300 350 200 0.8 0.96

ENN 750 8200 400 250 0.75 0.95

KSFDDD

Proposed 880 8200 200 100 0.9 0.98

GAN 800 8100 300 180 0.82 0.96

SMOTE 750 8000 400 250 0.75 0.95

ENN 700 7900 500 300 0.7 0.94

Swiss Road Traffic Accident

Proposed 780 7600 150 70 0.92 0.98

GAN 700 7500 250 150 0.82 0.97

SMOTE 650 7400 350 200 0.76 0.95

ENN 600 7300 400 250 0.71 0.94

UK Road Safety

Proposed 850 8300 200 100 0.89 0.98

GAN 780 8200 300 180 0.81 0.96

SMOTE 730 8100 400 250 0.75 0.95

ENN 680 8000 500 300 0.69 0.94

Table 2.  Confusion matrix analysis for all datasets (SVM classifier).

 

Method SVM RF MLP CNN CNN-1D

SMOTE 3 W/1T/0L 3 W/1T/0L 2 W/1T/1L 2 W/2T/0L 2 W/2T/0L

ADASYN 2 W/2T/0L 2 W/2T/0L 2 W/1T/1L 2 W/1T/1L 3 W/1T/0L

ENN 1 W/3T/0L 0 W/3T/1L 2 W/1T/1L 2 W/2T/0L 2 W/2T/0L

GAN 2 W/2T/0L 2 W/2T/0L 2 W/2T/0L 3 W/1T/0L 2 W/1T/1L

SPIDER2 1 W/3T/0L 1 W/3T/0L 1 W/2T/1L 2 W/2T/0L 1 W/3T/0L

CPM 1 W/3T/0L 1 W/3T/0L 1 W/3T/0L 1 W/3T/0L 1 W/3T/0L

Proposed 4 W/0T/0L 4 W/0T/0L 4 W/0T/0L 4 W/0T/0L 4 W/0T/0L

Table 1.  Statistical test results of G-mean between the proposed method and other six sampling methods. 
Note: “W” stands for Win, “T” for Tie, and “L” for Loss.
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method is 22.7%, 8.2% and 15% higher than ENN, GAN and SMOTE, respectively. In the KSFDDD database, 
the proposed method improved by 28.6%, 9.8%, and 20% compared to ENN, GAN, and SMOTE, respectively. In 
the Swiss Road Traffic Accident, the proposed method is 29.6%, 12.2% and 21.1% higher than ENN, GAN and 
SMOTE, respectively. In the UK Road Safety, the proposed method achieved a 29% improvement over ENN, a 
9.9% improvement over GAN, and a 18.7% improvement over SMOTE.

To further illustrate the improvements achieved by the proposed method, this study presents examples of 
the most improved collision and non-collision samples in the dataset. Specifically, in the NASS GES collision 
database, the proposed method correctly identified 920 collision samples (TP), while ENN had 750, SMOTE 
had 800, and GAN had 850. Similarly, for non-collision samples, the proposed method achieved 8500 TN, while 
ENN achieved 8200 TN, SMOTE achieved 8300 TN, and GAN achieved 8400 TN. The experimental results 
show that this method can enhance collision and non-collision classification in imbalanced datasets.

Conclusion
This study introduces an advanced active generative oversampling strategy that integrates Query by Committee 
(QBC) and Auxiliary Classifier Generative Adversarial Network (ACGAN) within the Wasserstein GAN 
(WGAN) framework to address data imbalance in collision risk prediction. Our method significantly enhances 
the diversity and quality of generated minority class samples, leading to improved classification performance. 
Key findings include: (1) Enhanced sample diversity: By combining QBC and W_ACGAN, our method generates 
more diverse and high-quality minority class samples, crucial for improving model performance in imbalanced 
datasets. (2) Improved stability and performance: The use of Wasserstein distance mitigates common GAN 
training issues, such as instability and lack of sample diversity, resulting in higher quality synthetic samples. (3) 
Superior classification results: Empirical evaluations on four publicly available datasets demonstrate that our 
method outperforms existing techniques in terms of precision, recall, F-measure, and G-mean, with an average 
improvement of 23–28.3% compared to the worst-performing method.

This research has achieved promising results with the proposed generative oversampling method, there are 
limitations that warrant attention for future work. The generalizability of the proposed method across different 
datasets and its computational complexity, particularly with large datasets, are areas that require further 
investigation. In addition, we will have access to more advanced computational resources in future studies to 
thoroughly analyze and visualize the generated samples.

To further enhance the applicability and impact of the proposed method, we outline several potential 
directions for future research: (1) Integration with Reinforcement Learning (RL): The proposed method could 
be integrated with RL to dynamically adjust the oversampling process and optimize training parameters, leading 
to more adaptive and efficient models. This would allow the model to adaptively focus on the most challenging or 
underrepresented samples, further enhancing the diversity and quality of the generated data. (2) Application to 
fraud detection: The proposed method could be applied to fraud detection. The real-time nature of the proposed 
method makes it particularly suitable for fraud detection systems, where timely identification of fraudulent 
activities is crucial. The adaptive training mechanism could be further refined to handle streaming data, allowing 
the model to continuously learn and adapt to new types of fraud as they emerge. (3) Application to medical 
diagnostics: Medical diagnostics often involve imbalanced datasets, where certain diseases or conditions are 
rare compared to others. The proposed method could be applied to generate synthetic samples for rare diseases, 
improving the performance of diagnostic models. For example, in cancer detection, the model could generate 
synthetic samples for rare types of cancer, enabling more accurate and early diagnosis.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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