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In real applications of Reinforcement Learning (RL), such as robotics, low latency, energy-efficient 
and high-throughput inference is very desired. The use of sparsity and pruning for optimizing Neural 
Network inference, and particularly to improve energy efficiency, latency and throughput, is a standard 
technique. In this work, we conduct a systematic investigation of the application of these optimization 
techniques with popular RL algorithms, specifically Deep Q-Network and Soft Actor Critic, in different 
RL environments, including MuJoCo and Atari, which yields up to a 400-fold reduction in the size of 
neural networks. This work presents a systematic study on the applicability limits of using pruning and 
quantization to optimize neural networks in RL tasks, with a perspective of deployment in hardware to 
reduce power consumption and latency, while increasing throughput.
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In the last decade, neural networks (NNs) have driven significant progress across various fields, notably in 
deep reinforcement learning, highlighted by studies like1–3. This progress has the potential to make changes in 
many areas such as embedded devices, IoT and Robotics. Although modern Deep Learning models have shown 
impressive gains in accuracy, their large sizes pose limits to their practical use in many real-world applications4. 
These applications may impose requirements on energy consumption, inference latency, inference throughput, 
memory footprint, real-time inference, and hardware costs.

Numerous studies have attempted to make neural networks more efficient. These approaches can generally 
be classified into at least the following several groups4:

•	 pruning5,
•	 temporal sparsity6,7,
•	 distillation8,
•	 quantization5,
•	 neural architecture search of efficient NN architectures9,
•	 hardware and NN co-design10.

In addition, some works try to mix some of these methods11–16. The combination of methods could lead to 
substantial improvements in neural network efficiency. For example, the combination of 8-bit integer quantization 
and 10% sparsity may result in a 40x times decrease in memory footprint and a decrease in computational 
complexity achieved by using fewer arithmetical operations and using integer arithmetic. Furthermore, beyond 
efficiency gains, the introduction of sparsity may contribute to improved accuracy in neural networks. For 
example, it was shown in7,17,18 that sparse neural networks derived by pruning usually achieve better results than 
their dense counterparts with an equivalent number of parameters. Moreover, even sparse neural networks that 
contain 10% of the weights of the original network could sometimes achieve higher accuracy than dense neural 
networks19.

Several of the previously mentioned NN optimization methods find inspiration in neuroscience. In the brain, 
the presence of dense layers is not evident. Instead, the brain employs a mechanism similar to rewiring and 
pruning to eliminate unnecessary synapses20. As a result, neural networks in the brain are sparse and have 
irregular topology. Several works in neuroscience state that the brain represents and processes information in 
discrete/quantized form21,22. It could be justified that information stored in continuous form would inevitably 
be corrupted by the noise present in any physical system23. It is impossible to measure a physical variable with 
infinite precision. Moreover, from the point of view of the Bayesian framework, quantization leads to stability in 
the representation of information and robustness to additive noise24.

It is well known that obtaining data from Dynamic Random Access Memory (DRAM) is much more 
expensive in terms of energy and time compared to arithmetic operations and obtaining data from fast, but 
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expensive Static Random Access Memory (SRAM)25. This problem is commonly known as the von Neumann 
problem26,27. The huge sizes of contemporary neural networks exacerbate this problem, making it difficult to 
achieve high Frames Per Second (FPS), low latency, and energy-efficient performance on modern hardware. The 
reduction of neural network sizes leads to the diminishing of data exchange between memory and processor and 
potentially results in higher performance and less energy consumption. Furthermore, a significant reduction in 
the size of the neural network can enable its placement in faster SRAM, contributing to a notable improvement 
in memory access latency and throughput (see Fig. 1). It should be noted that reducing memory accesses is much 
more significant for speeding up neural networks than just reducing arithmetic operations10.

However, there are only a few papers18,28 that apply these approaches to RL. To the best of our knowledge, 
there are no papers that attempt to mix them. While pruning and quantization are well-studied in classical 
Deep Learning, their application to RL introduces unique challenges and nuances. RL systems involve dynamic 
interactions with environments, non-stationary data distributions, and complex training pipelines that integrate 
exploration and policy updates - factors absent in traditional NN optimization techniques. These domain-specific 
characteristics complicate the transfer of classical neural network optimization techniques to RL, because, for 
example, pruning impacts exploration and quantization errors alter reward signal propagation. At the same 
time, many potential RL applications impose strong latency, FPS and energy limits. For example, in2 DeepMind 
applied RL for tokamak control, and it was necessary to achieve a remarkable 10kHz FPS to meet the operational 
requirements. Similarly, in3, the authors applied RL for drone racing. Drone control requires 100 HZ FPS for 
the RL network. Moreover, since the network inference was on board, strong restrictions are placed on energy 
consumption. These examples highlight the critical need for advancing optimization techniques in RL to meet 
the demanding performance criteria of various applications.

In this work, we apply a combination of quantization and pruning techniques to RL tasks. Pruning and 
subsequent quantization is a common approach to achieve greater network compression. While pruning alone 
can improve compression, its effectiveness is limited as excessive pruning degrades network performance. 
Quantization enables further compression after reaching the pruning limit, complementing the benefits 

Fig. 1.  Illustration of the fitting of dense NN to DRAM memory and sparse and quantized NN to SRAM 
memory.
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of pruning. The primary goals were to showcase the possibility of dramatically improving the efficiency of 
actor networks trained using various RL algorithms and to investigate the applicability of NN optimization 
techniques and their combination in the RL context. The ultimate aim is to expand the applicability of these 
networks to a diverse range of embedded applications, particularly those with strong requirements for FPS, 
energy consumption, and hardware costs. Our findings indicate that it is feasible to apply quantization and 
pruning to Neural Networks trained by RL without loss in accuracy. Furthermore, sometimes we even observed 
improvements in accuracy after applying these optimization techniques. This suggests a promising avenue 
for optimizing RL-based actor networks for resource-constrained embedded applications without sacrificing 
performance.

The paper is organized as follows. In Section  “Background”, we provide a concise overview of RL and 
two methods of neural network compression that we use in this work, namely, pruning and quantization. 
Section  “Methods” provides details of the RL algorithms and environments, along with a comprehensive 
description of the training procedure. In Section “Experiments”, we describe the technical details of applying 
pruning and quantization to the networks under study. Section “Results” presents results of applying compression 
methods. In Sections “Discussion” and “Conclusion”, we discuss and summarize our findings.

Background
This section introduces the RL notation used in the experiment and provides an overview of pruning and 
quantization methods, the combination of which is investigated in the subsequent experiment.

RL
In RL29, an agent interacts with an environment by sequentially selecting actions a in response to the current 
environment state s. After making a choice, it transitions to a new state s′ and receives a reward r. The agent’s 
goal is to maximize the sum of discounted rewards.

This is formalized as a Markov decision process defined as a tuple (S,  A,  P,  R), where S is the set 
of states, and A is the set of actions. P is the function that describes the transition between states; 
P (s′|s, a) = P r(st+1 = s′|st = s, at = a), , i.e., is the probability of entering state s′ at the next step when 
selecting action a in state s. R = R(s, a, s′) is the reward function that determines the reward an agent will 
receive when transitioning from state s to state s′ by selecting an action a.

The policy πθ  defines the probability that an agent selects an action a in state s. θ denotes policy parameters.

Pruning
Pruning is the process of removing unnecessary connections30,31. There are many different approaches for 
finding sparse neural networks and several criterion for classifying algorithms. They could be classified into the 
following categories:

•	 We fully train a dense model, prune it and finetune32. In this approach, we prune a trained dense network and 
then finetune remaining weights during additional training steps.

•	 Gradually prune dense model during training33. Here we start with a dense network and then, according to a 
specific schedule, which determines the number of weights cut off at each pruning step, we gradually prune 
the network.

•	 Sparse training with a sparse pattern selected a priori. In this approach we attempt to prune a dense network 
at step 034,35 and keep the topology fixed throughout training. It is worth to note, that training a sparse ran-
domly pruned NN is difficult and leads to much worse results than training a NN with a carefully chosen 
sparse topology19.

•	 Sparse training with a rewiring during training. We start with a sparse NN and maintain sparsity level 
throughout training, but with the possibility to rewire weights36–38, i.e. to add and to remove connections.

On the other side, they could be classified by the pruning criterion. This criterion is used for selecting pruning 
weights. These criteria are grouped into Hessian-based criteria30,31,39, magnitude-based32 and Bayesian-based 
criteria40–42. The most widely used in practical applications is the magnitude-based approach. In this approach, 
the smallest by the module weights are pruned.

In addition, it is important to distinguish between structured and unstructured pruning. During structural 
pruning, we remove parameters united in groups (e.g. entire channels, rows, blocks) in order to exploit classical 
AI hardware efficiently. However, it is important to note that at higher levels of sparsity, structured pruning 
methods have been observed to lead to a decrease in model accuracy. On the other hand, unstructured pruning 
does not consider the resulting pattern. This means that parameters are pruned independently, without 
considering their position or relationship within the model. Networks pruned with unstructured sparsity usually 
retain more accuracy compared to structurally pruned counterparts with a similar level of sparsity.

Another important issue is how to distribute pruning weights among layers. There are several approaches:

•	 Global. In this approach, we consider all weights together and select weights for pruning among all weights 
of the model.

•	 Local uniform. Here, in each layer, we prune the same fraction of weights.
•	 Local Erdős-Rényi37,38. Here we make a non-uniform distribution of weights across layers according to the 

formulae:
	 sl = ϵ ∗ nl+nl+1

nl∗nl+1  - for MLP, where sl is the fraction of the unpruned weights in the layer l, nl is the dimen-
sion of the layer l, ϵ is a coefficient for controlling the sparsity level,

Scientific Reports |         (2025) 15:9718 3| https://doi.org/10.1038/s41598-025-93955-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	 sl = ϵ ∗ nl+nl+1+wl+hl

nl∗nl+1∗wl∗hl  - for CNNs, where sl is the fraction of the unpruned weights, nl is the number of 
channels in the layer l, wl is the width of the convolution kernel, hl is the height of the convolution kernel, ϵ 
is a coefficient to control the sparsity level.

	 Generally, it is made to reduce pruning in the input and output layers, in which usually there is less number 
of weights due to small input / output dimensions and these layers are more sensible to pruning32.

The performance of different pruning techniques for the RL domain was investigated in18. All training 
approaches started from sparse NN were usually worse in performance in comparison to the gradual pruning 
scheme proposed in33.

It was also shown in18 that the performance in almost all MuJoCo environments doesn’t degrade even on 
sparsity levels of 90-95 percents. Another important consequence from18 is that in RL domain sparse NNs could 
sometimes achieve better performance then their dense counterparts.

Quantization
Generally, quantization is the process of mapping a range of input values to a smaller set of discrete output 
values. Quantization of neural networks reduces the precision of neural network weights and/or activations. This 
reduces memory footprint and consequently data transfer from memory to processor. Moreover, this enables the 
use of low-precision/integer arithmetic that supported by modern computational devices for neural networks 
including GPUs, TPUs43, NorthPole44, and many others. Neural network quantization is a mature field. There 
are many types of quantization approaches. A comprehensive overview of quantization was presented in4. Here, 
we briefly discuss some important types of quantization.

Generally, there are two main types of quantization4:

•	 Quantization aware training (QAT). During training, QAT introduces a non-differentiable quantization op-
erator that quantizes model parameters after each update. However, the weight update and the backward 
pass are performed in floating point precision. It is crucial to conduct the backward pass using floating point 
precision as allowing gradient accumulation in quantized precision may lead to zero-gradients or gradients 
with significant errors, particularly when utilizing low-precision. The reasons for the possibility of using a 
non-differentiable quantized operator are explained in45. QAT works effectively in practice except for ultra 
low-precision quantization techniques like binary quantization4.

•	 Post-training quantization (PTQ). An alternative to the QAT is to quantize an already trained model without 
any fine-tuning. PTQ has a distinct advantage over QAT because it can be used in environments with limited 
or unlabeled data. Nonetheless, this potentially comes with a cost of decreased accuracy compared to QAT, 
especially for low-precision quantization techniques.

Also, it is necessary to choose a quantization precision. Some methods provide even 1–2 bit precision46,47, 
however, this usually leads to a strong decrease in accuracy. At the same time, many works show the possibility 
of using 8-bit precision almost without any decrease in quality.

Moreover, quantization techniques are subdivided by approaches for choosing clipping ranges for weights4:

•	 Quantization could be symmetric or asymmetric, depending on the symmetry of the clipping interval.
•	 Uniform and non-uniform. In uniform quantization, the input range is divided into equal-sized intervals or 

steps. In non-uniform the step size is adjusted based on the characteristics of the input signal. Smaller steps 
are used in regions with more signal activity, and larger steps are used in regions with less activity. Non-uni-
form quantization may achieve higher accuracy, however it is more complex to implement in hardware.

•	 Quantization granularity. In convolutional layers, different filters could have different ranges of values. This 
requires to choose the granularity of how the clipping ranges will be calculated. Generally, there are the next 
approaches: layerwise (tensorwise), channelwise and groupwise. In layerwise, we calculate one clipping range 
for all weights in a layer. In channelwise, the quantization is applied independently to each channel within a 
layer. Channelwise quantization allows for more fine-grained control over the quantization process, consider-
ing the characteristics of individual channels. In groupwise quantization, which lay somewhere between the 
previous two approaches, channels are grouped together, and quantization is applied to each group.

In28 authors analysed both QAT and PTQ 8-bit symmetric quantization for RL tasks. They achieve comparable 
results with a fully precision training procedure. Moreover, they show that sometimes quantization yields better 
scores, possibly due to the implicit noise injection during the quantization.

Methods
This section provides a comprehensive description of the methodology. Specifically, it outlines the optimized RL 
algorithms, environments and training procedure.

RL algorithms
For testing optimization algorithm, we chose Soft Actor Critic (SAC)48 and Deep Q-Network (DQN)1 algorithms 
due to their popularity and high performance. SAC belongs to the family of actor-critic off-policy algorithms, 
and DQN belongs to the family of value-based off-policy algorithms.
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RL environments
We experimented within two RL environments: Mujoco suite49 and Atari games50. These environments were 
chosen because they offer diverse and well-studied benchmarks that enable a comprehensive evaluation of RL 
algorithms.

MuJoCo (Multi-Joint dynamics with Contact) environments belong to the class of continuous control 
environments. Generally, in MuJoCo environments it is necessary to control the behavior (e.g. walking) of 
biomimetic mechanisms formed within multiple joint rigid bodies. The observations of these environments are 
vectors of real numbers with dimensions from 8 to 376, that include information about the state of the agent and 
the world (e.g., positions, velocities, joint angles). The actions (inputs) for these environments are also vectors 
of real values with dimensions from 1 to 17. They define how the agent can interact with the environment (for 
example, applying forces or torques to joints).

Atari environments provide a suite of classic Atari video games as testbeds for reinforcement learning 
algorithms. Unlike environments that provide low-dimensional state representations, Atari games offer high-
dimensional observation spaces directly from the game’s pixel output. Actions in Atari games are typically 
discrete, corresponding to the joystick movements and button presses available on the original Atari 2600 
console.

Training procedure
Since we want to improve the inference, we pruned for SAC only an actor-network. In DQN there is no 
separation of actor and critic. We start training at the environment step t0, then according to18 the pruning 
begins at the environment step ts and continues until the environment step tf . We gradually prune a Neural 
Network every ∆t step according to the schedule presented in33 during n steps. This pruning scheme involves 
gradual transformation of a dense network into a sparse one with sparsity st according to formula (1) via weight 
magnitudes. When another pruning step is completed, we are leaving the pruned weights equal to zero for the 
remainder of the training. The training of the pruned NN continues until the environment step tp. The plot of 
the proposed sparsity schedule is presented in Fig. 2.

	
st = sf ∗

(
1 −

(
1 − t − ts

n∆t

)3
)

for t ∈ {ts, ts + ∆t, ..., ts + n∆t}� (1)

For quantizing the pruned NN, after step tp we start to apply symmetric, uniform 8-bit QAT to the remaining 
weights until step tq . For fully connected layers, we used layerwise quantization. For convolution layers, we used 
channelwise quantization.

Fig. 2.  The plot of sparsity function for gradual pruning. The x-axis denotes the pruning step number. The 
y-axis denotes the neural network sparsity degree.
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Experiments
We experiment within the following RL environments from the MuJoCo suite: HalfCheetah-v4, Hopper-v4, 
Walker2d-v4, Ant-v4, Humanoid-v4, Swimmer-v4; and Atari games: Pong-v4, Boxing-v4, Tutankham-v4, and 
CrazyClimber-v4. We repeat each experiment for MuJoCo environments with 10 different seeds. For Atari 
games, we repeat each experiment with 5 different seeds.

For MuJoCo environments we use the SAC algorithm with a multilayer perceptron (MLP) with two hidden 
layers with 256 neurons in each of them. The sizes of the input and output layers depend on the environment.

For Atari environments, we used the DQN algorithm with two different types of neural networks: classical 
three-layer CNN1 and ResNet51 based networks with three residual blocks52. All parameters are provided in the 
Supplementary material, see Tables 1–3.

For both algorithms, we used their implementations from the StableBaselines353 library for our experiments.
For each environment, we train sparse policies with different levels of pruning: 50 (× 2), 70 (× 3.3), 80 

(× 5), 90 (× 10), 95 (× 20) and 98 (× 50) percent. For MuJoCo environments, we add an additional sparsity 
level equal to 99 (× 100) percent. For each sparsity level, we train NN with and without quantization. We start 
pruning after completing 20 percent (ts = 0.2 ∗ total_steps) of steps and finish it after completing 80 percent 
(tf = 0.8 ∗ total_steps) of steps. For SAC we use 600 iterations of pruning, and for both DQN we use 300 
iterations of pruning. We quantize a neural network after completing the training procedure during an additional 
20 percent (tq = 1.2 ∗ total_steps) of steps (see Fig. 3).

In addition to the classical RL metric of reward, we also measure the degree of neural network compression 
achieved by applying pruning and quantization techniques. As mentioned in Section 1, a high degree of network 
compression is a critical factor for hardware deployment.

In the experimental phase, we employed the Nvidia DGX system. A single experiment, conducted for one 
environmental setting, required an average of five days of continuous computation for evaluating all possible 
levels of sparsity, both with and without quantization. In total, the computational duration for all experiments 
amounted to approximately 40 days.

Results
Figures 4, 5, 6 present the performance of pruned and/or quantized neural networks in various environments.

We see in Fig. 4 that for the most number of MuJoCo environments (except HalfCheetah) we could prune 
and quantize up to 98 percent without loss of quality, leading to a 200x decrease in the size of neural networks: 
4x by quantization, 50x by pruning. Even for HalfCheetah we could prune 80 % of the weights and quantize 
them, which leads to a 20x decrease in the size of the neural network. For some environments e.g. Hopper 
and Swimmer we could prune 99 percent of weights and quantize them without the loss in quality which leads 
to a 400x decrease in the size of the neural network. Furthermore, quantization + pruning usually slightly 
outperforms pruning, which leads to better results even in comparison to the dense model. These finding are 
provided in details in the Supplementary material, Tables 4–9.

In comparison to the results presented in18 we achieved high levels of sparsity (up to 99 percent) without the 
loss in quality for the SAC algorithm. This can be explained by our strategy of pruning only the actor model, as 
opposed to pruning both the actor and the critic in18. The authors of18 conducted experiments to determine the 
optimal parameter ratio between the actor and critic for a given parameter budget. They came to the conclusion 
that the actor parameters are less significant than the critic parameters, which is consistent with our results. We 
chose to prune only the actor because only its sparsity is important for efficient inference.

For classical CNN-based DQN for Atari environments, we see in Fig. 5 that for all environments, we could 
prune and quantize up to 80 percent without the loss of quality, which leads to a 20x decrease in the size of 

Fig. 3.  General scheme of training. A randomly initialized neural network is trained for 20% of the total 
steps in a classical manner. Further, during the 20-80% of training, gradual pruning with n steps is applied. 
Then pruning is turned off and from 80 to 100% of steps the network is trained again in the classical way. If 
quantization is required, an additional 20% of training steps (from 100% to 120%) are performed with 8-bit 
quantization.
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optimized neural networks. For Pong and Tutankham we could prune and quantize up to 95 percent of sparsity 
which leads to a total 100x decrease in the size of neural networks. The characteristics of the neural networks are 
given in the Supplementary material, Tables 10–13.

For ResNet-based DQN for Atari environments, we see in Fig. 6 the possibility to prune and quantize up to 
95 percent, without the significant loss in quality, that leads to a 80x decrease in the size of neural networks. For 
Pong and Tutankham we could prune and quantize up to 98 percent of sparsity which leads to a 200x decrease in 
the size of neural networks. It is worth noting that ResNet-based networks are much more suitable for pruning 
and quantizing which coincide with the findings in18. The details about parameters of the neural networks are 
provided in the Supplementary material, Tables 14–17.

Fig. 4.  Results for SAC algorithm applied to MuJoCo suite environments. The x-axes of the figures denote the 
neural network sparsity degree; the y-axes denote the performance – the reward received by an agent. The blue 
line shows the performance of the pruned network, and the red line shows the performance of the pruned and 
quantized network. The dotted purple line shows the performance of the quantized-only network, the green 
dashed line shows the performance of the default network.
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Discussion
Generally, there is great interest in neuromorphic intelligence  27,54, which takes advantage of different aspects of 
biological neural systems. These include novel architectures and learning algorithms 55–60. On the one hand, these 
modern neuromorphic networks are used in neuroscience research, allowing us to explain or replicate emergent 
cognitive phenomena. On the other hand, they contribute to developing more efficient computing frameworks 
which would enable one to reduce the computational resources required for training and implementing neural 
networks. In some sense, quantization and pruning could be considered as neuromorphic approaches. In the 
brain, there are no fully connected layers20 and a strong regular structure compared to modern NN. Also, it 
seems impossible to store values with the precision provided by the 32-bit floating points in highly noisy cell 
environment4,21,22.

Minimizing the size of NNs mitigates the von Neumann problem of modern hardware by reducing the 
exchange between memory and processor. Moreover, it is often possible to locate the obtained smallified NNs in 
on-chip memory. That could lead to very high inference speeds, low energy consumption, and low latencies. It 
was shown that this desire could be achieved even on classical CPUs by the Neural Magic company for classical 
DL domains. Moreover, the recent IBM chip NorthPole44 based totally on near-memory computing and storing 
weights and activations in the on-chip memory, could be enhanced by optimization algorithms proposed here.

Conclusion
In this study, we explored the use of quantization and pruning techniques in RL tasks to enhance the efficiency 
of neural networks trained with various RL algorithms. We demonstrated the large redundancy (up to 400x) in 
the neural network size used for popular RL tasks. By providing the possibility of significantly reducing neural 
networks trained by RL algorithms, we expand their potential applications in practical domains like Edge AI, 
real-time control, robotics, and many others. Our findings reveal that applying quantization and pruning to RL-
trained networks is not only feasible without accuracy loss but can also sometimes improve accuracy, offering a 

Fig. 5.  Results for DQN algorithm based on the CNN applied to Atari environments. The x-axes of the figures 
denote the neural network sparsity degree; the y-axes denote the performance – the reward received by an 
agent. The blue line shows the performance of the pruned network and the red line shows the performance 
of the pruned and quantized network. The dotted purple line shows the performance of the quantized-only 
network, green dashed line shows the performance of the default dense and fully precision network.
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promising strategy for optimizing RL-based actor networks for resource-constrained environments. However, 
it is worth noting that the maximum profit could be achieved in a smart co-design of algorithms and hardware.

Data availability
The materials used in the current study including code and learning curves are available at ​h​t​t​p​s​:​/​/​g​i​t​h​u​b​.​c​o​m​/​
r​u​d​i​m​i​v​/​N​N​C​o​m​p​r​e​s​s​i​o​n​4​R​L​​​​​.​​
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