www.nature.com/scientificreports

scientific reports

W) Check for updates

OPEN Neural network compression for

reinforcement learning tasks

Dmitry A. Ivanov'?, Denis A. Larionov?*, Oleg V. Maslennikov?* & Vladimir V. Voevodin!

In real applications of Reinforcement Learning (RL), such as robotics, low latency, energy-efficient

and high-throughput inference is very desired. The use of sparsity and pruning for optimizing Neural
Network inference, and particularly to improve energy efficiency, latency and throughput, is a standard
technique. In this work, we conduct a systematic investigation of the application of these optimization
techniques with popular RL algorithms, specifically Deep Q-Network and Soft Actor Critic, in different
RL environments, including MuJoCo and Atari, which yields up to a 400-fold reduction in the size of
neural networks. This work presents a systematic study on the applicability limits of using pruning and
quantization to optimize neural networks in RL tasks, with a perspective of deployment in hardware to
reduce power consumption and latency, while increasing throughput.

Keywords Pruning, Quantization, Reinforcement learning

In the last decade, neural networks (NNs) have driven significant progress across various fields, notably in
deep reinforcement learning, highlighted by studies like!=. This progress has the potential to make changes in
many areas such as embedded devices, IoT and Robotics. Although modern Deep Learning models have shown
impressive gains in accuracy, their large sizes pose limits to their practical use in many real-world applications®.
These applications may impose requirements on energy consumption, inference latency, inference throughput,
memory footprint, real-time inference, and hardware costs.

Numerous studies have attempted to make neural networks more efficient. These approaches can generally
be classified into at least the following several groups*:

o pruning®,

« temporal sparsity®’,

« distillation®,

« quantization®,

« neural architecture search of efficient NN architectures’,

« hardware and NN co-design'’.

In addition, some works try to mix some of these methods'!~'6. The combination of methods could lead to
substantial improvements in neural network efficiency. For example, the combination of 8-bit integer quantization
and 10% sparsity may result in a 40x times decrease in memory footprint and a decrease in computational
complexity achieved by using fewer arithmetical operations and using integer arithmetic. Furthermore, beyond
efficiency gains, the introduction of sparsity may contribute to improved accuracy in neural networks. For
example, it was shown in”!718 that sparse neural networks derived by pruning usually achieve better results than
their dense counterparts with an equivalent number of parameters. Moreover, even sparse neural networks that
contain 10% of the weights of the original network could sometimes achieve higher accuracy than dense neural
networks!.

Several of the previously mentioned NN optimization methods find inspiration in neuroscience. In the brain,
the presence of dense layers is not evident. Instead, the brain employs a mechanism similar to rewiring and
pruning to eliminate unnecessary synapses®’. As a result, neural networks in the brain are sparse and have
irregular topology. Several works in neuroscience state that the brain represents and processes information in
discrete/quantized form?"?2. It could be justified that information stored in continuous form would inevitably
be corrupted by the noise present in any physical system??. It is impossible to measure a physical variable with
infinite precision. Moreover, from the point of view of the Bayesian framework, quantization leads to stability in
the representation of information and robustness to additive noise**.

It is well known that obtaining data from Dynamic Random Access Memory (DRAM) is much more
expensive in terms of energy and time compared to arithmetic operations and obtaining data from fast, but

1Lomonosov Moscow State University, Moscow, Russia. 2Gaponov-Grekhov Institute of Applied Physics of the
Russian Academy of Sciences, Nizhny Novgorod, Russia. 3Chuvash State University, Cheboksary, Russia. *Cifrum,
Moscow, Russia. “email: olmaov@ipfran.ru

Scientific Reports |

(2025) 15:9718 | https://doi.org/10.1038/s41598-025-93955-w nature portfolio

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-93955-w&domain=pdf&date_stamp=2025-3-21

www.nature.com/scientificreports/

expensive Static Random Access Memory (SRAM)?. This problem is commonly known as the von Neumann
problem?*?’. The huge sizes of contemporary neural networks exacerbate this problem, making it difficult to
achieve high Frames Per Second (FPS), low latency, and energy-eflicient performance on modern hardware. The
reduction of neural network sizes leads to the diminishing of data exchange between memory and processor and
potentially results in higher performance and less energy consumption. Furthermore, a significant reduction in
the size of the neural network can enable its placement in faster SRAM, contributing to a notable improvement
in memory access latency and throughput (see Fig. 1). It should be noted that reducing memory accesses is much
more significant for speeding up neural networks than just reducing arithmetic operations!®.

However, there are only a few papers'®?® that apply these approaches to RL. To the best of our knowledge,
there are no papers that attempt to mix them. While pruning and quantization are well-studied in classical
Deep Learning, their application to RL introduces unique challenges and nuances. RL systems involve dynamic
interactions with environments, non-stationary data distributions, and complex training pipelines that integrate
exploration and policy updates - factors absent in traditional NN optimization techniques. These domain-specific
characteristics complicate the transfer of classical neural network optimization techniques to RL, because, for
example, pruning impacts exploration and quantization errors alter reward signal propagation. At the same
time, many potential RL applications impose strong latency, FPS and energy limits. For example, in? DeepMind
applied RL for tokamak control, and it was necessary to achieve a remarkable 10kHz FPS to meet the operational
requirements. Similarly, in®, the authors applied RL for drone racing. Drone control requires 100 HZ FPS for
the RL network. Moreover, since the network inference was on board, strong restrictions are placed on energy
consumption. These examples highlight the critical need for advancing optimization techniques in RL to meet
the demanding performance criteria of various applications.

In this work, we apply a combination of quantization and pruning techniques to RL tasks. Pruning and
subsequent quantization is a common approach to achieve greater network compression. While pruning alone
can improve compression, its effectiveness is limited as excessive pruning degrades network performance.
Quantization enables further compression after reaching the pruning limit, complementing the benefits

Dense network Sparse quantized network
G, D
G O 1D Neural
: 30 0,2 network
3 2L %O structure
O O
P Memory
footprint
1N J
Y
|
;—---i—--. SN —— ALU
: I | von Neumann ; _ # Hardware
: : bottleneck SRAM (Mbs) | 4
AT [
DRAM (Gbs)

Fig. 1. Illustration of the fitting of dense NN to DRAM memory and sparse and quantized NN to SRAM
memory.

Scientific Reports | (2025) 15:9718 | https://doi.org/10.1038/s41598-025-93955-w nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

of pruning. The primary goals were to showcase the possibility of dramatically improving the efficiency of
actor networks trained using various RL algorithms and to investigate the applicability of NN optimization
techniques and their combination in the RL context. The ultimate aim is to expand the applicability of these
networks to a diverse range of embedded applications, particularly those with strong requirements for FPS,
energy consumption, and hardware costs. Our findings indicate that it is feasible to apply quantization and
pruning to Neural Networks trained by RL without loss in accuracy. Furthermore, sometimes we even observed
improvements in accuracy after applying these optimization techniques. This suggests a promising avenue
for optimizing RL-based actor networks for resource-constrained embedded applications without sacrificing
performance.

The paper is organized as follows. In Section “Background”, we provide a concise overview of RL and
two methods of neural network compression that we use in this work, namely, pruning and quantization.
Section “Methods” provides details of the RL algorithms and environments, along with a comprehensive
description of the training procedure. In Section “Experiments”, we describe the technical details of applying
pruning and quantization to the networks under study. Section “Results” presents results of applying compression
methods. In Sections “Discussion” and “Conclusion’, we discuss and summarize our findings.

Background
This section introduces the RL notation used in the experiment and provides an overview of pruning and
quantization methods, the combination of which is investigated in the subsequent experiment.

RL

In RL?, an agent interacts with an environment by sequentially selecting actions a in response to the current
environment state s. After making a choice, it transitions to a new state s’ and receives a reward r. The agent’s
goal is to maximize the sum of discounted rewards.

This is formalized as a Markov decision process defined as a tuple (S, A, P, R), where S is the set
of states, and A is the set of actions. P is the function that describes the transition between states;
P(s'|s,a) = Pr(st+1 = s'|st = s,ar = a),, i.e., is the probability of entering state s at the next step when
selecting action a in state s. R = R(s, a, s) is the reward function that determines the reward an agent will
receive when transitioning from state s to state s’ by selecting an action a.

The policy e defines the probability that an agent selects an action a in state s. § denotes policy parameters.

Pruning

Pruning is the process of removing unnecessary connections’”*!. There are many different approaches for
finding sparse neural networks and several criterion for classifying algorithms. They could be classified into the
following categories:

30,31

« We fully train a dense model, prune it and finetune. In this approach, we prune a trained dense network and
then finetune remaining weights during additional training steps.

o Gradually prune dense model during training®. Here we start with a dense network and then, according to a
specific schedule, which determines the number of weights cut off at each pruning step, we gradually prune
the network.

o Sparse training with a sparse pattern selected a priori. In this approach we attempt to prune a dense network
at step 0°4%° and keep the topology fixed throughout training. It is worth to note, that training a sparse ran-
domly pruned NN is difficult and leads to much worse results than training a NN with a carefully chosen
sparse topology'®.

« Sparse training with a rewiring during training. We start with a sparse NN and maintain sparsity level
throughout training, but with the possibility to rewire weights**-%%, i.e. to add and to remove connections.

On the other side, they could be classified by the pruning criterion. This criterion is used for selecting pruning
weights. These criteria are grouped into Hessian-based criteria®*>!*, magnitude-based®* and Bayesian-based
criteria®-*2. The most widely used in practical applications is the magnitude-based approach. In this approach,
the smallest by the module weights are pruned.

In addition, it is important to distinguish between structured and unstructured pruning. During structural
pruning, we remove parameters united in groups (e.g. entire channels, rows, blocks) in order to exploit classical
AT hardware efficiently. However, it is important to note that at higher levels of sparsity, structured pruning
methods have been observed to lead to a decrease in model accuracy. On the other hand, unstructured pruning
does not consider the resulting pattern. This means that parameters are pruned independently, without
considering their position or relationship within the model. Networks pruned with unstructured sparsity usually
retain more accuracy compared to structurally pruned counterparts with a similar level of sparsity.

Another important issue is how to distribute pruning weights among layers. There are several approaches:

« Global. In this approach, we consider all weights together and select weights for pruning among all weights
of the model.

« Local uniform. Here, in each layer, we prune the same fraction of weights.

« Local Erdés-Rényi*”*%. Here we make a non-uniform distribution of weights across layers according to the
formulae:

1 1+1
st=ex ntn _ for MLP, where s! is the fraction of the unpruned weights in the layer /, n! is the dimen-
n'*xn

sion of the layer [, € is a coefficient for controlling the sparsity level,

Scientific Reports |

(2025) 15:9718 | https://doi.org/10.1038/s41598-025-93955-w nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

st =ex %—M - for CNNs, where s’ is the fraction of the unpruned weights, n! is the number of
channels in the layer /, w' is the width of the convolution kernel, h' is the height of the convolution kernel, €
is a coefficient to control the sparsity level.

Generally, it is made to reduce pruning in the input and output layers, in which usually there is less number

of weights due to small input / output dimensions and these layers are more sensible to pruning™.

The performance of different pruning techniques for the RL domain was investigated in'®. All training
approaches started from sparse NN were usually worse in performance in comparison to the gradual pruning
scheme proposed in3.

It was also shown in'® that the performance in almost all MuJoCo environments doesn’t degrade even on
sparsity levels of 90-95 percents. Another important consequence from' is that in RL domain sparse NNs could
sometimes achieve better performance then their dense counterparts.

Quantization
Generally, quantization is the process of mapping a range of input values to a smaller set of discrete output
values. Quantization of neural networks reduces the precision of neural network weights and/or activations. This
reduces memory footprint and consequently data transfer from memory to processor. Moreover, this enables the
use of low-precision/integer arithmetic that supported by modern computational devices for neural networks
including GPUs, TPUs*, NorthPole**, and many others. Neural network quantization is a mature field. There
are many types of quantization approaches. A comprehensive overview of quantization was presented in*. Here,
we briefly discuss some important types of quantization.

Generally, there are two main types of quantization*:

 Quantization aware training (QAT). During training, QAT introduces a non-differentiable quantization op-
erator that quantizes model parameters after each update. However, the weight update and the backward
pass are performed in floating point precision. It is crucial to conduct the backward pass using floating point
precision as allowing gradient accumulation in quantized precision may lead to zero-gradients or gradients
with significant errors, particularly when utilizing low-precision. The reasons for the possibility of using a
non-differentiable quantized operator are explained in*’. QAT works effectively in practice except for ultra
low-precision quantization techniques like binary quantization®.

« Post-training quantization (PTQ). An alternative to the QAT is to quantize an already trained model without
any fine-tuning. PTQ has a distinct advantage over QAT because it can be used in environments with limited
or unlabeled data. Nonetheless, this potentially comes with a cost of decreased accuracy compared to QAT,
especially for low-precision quantization techniques.

Also, it is necessary to choose a quantization precision. Some methods provide even 1-2 bit precision®’,

however, this usually leads to a strong decrease in accuracy. At the same time, many works show the possibility
of using 8-bit precision almost without any decrease in quality.
Moreover, quantization techniques are subdivided by approaches for choosing clipping ranges for weights*:

« Quantization could be symmetric or asymmetric, depending on the symmetry of the clipping interval.

o Uniform and non-uniform. In uniform quantization, the input range is divided into equal-sized intervals or
steps. In non-uniform the step size is adjusted based on the characteristics of the input signal. Smaller steps
are used in regions with more signal activity, and larger steps are used in regions with less activity. Non-uni-
form quantization may achieve higher accuracy, however it is more complex to implement in hardware.

« Quantization granularity. In convolutional layers, different filters could have different ranges of values. This
requires to choose the granularity of how the clipping ranges will be calculated. Generally, there are the next
approaches: layerwise (tensorwise), channelwise and groupwise. In layerwise, we calculate one clipping range
for all weights in a layer. In channelwise, the quantization is applied independently to each channel within a
layer. Channelwise quantization allows for more fine-grained control over the quantization process, consider-
ing the characteristics of individual channels. In groupwise quantization, which lay somewhere between the
previous two approaches, channels are grouped together, and quantization is applied to each group.

In?® authors analysed both QAT and PTQ 8-bit symmetric quantization for RL tasks. They achieve comparable
results with a fully precision training procedure. Moreover, they show that sometimes quantization yields better
scores, possibly due to the implicit noise injection during the quantization.

Methods
This section provides a comprehensive description of the methodology. Specifically, it outlines the optimized RL
algorithms, environments and training procedure.

RL algorithms

For testing optimization algorithm, we chose Soft Actor Critic (SAC)*® and Deep Q-Network (DQN)! algorithms
due to their popularity and high performance. SAC belongs to the family of actor-critic off-policy algorithms,
and DQN belongs to the family of value-based off-policy algorithms.

Scientific Reports |

(2025) 15:9718 | https://doi.org/10.1038/s41598-025-93955-w nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

RL environments

We experimented within two RL environments: Mujoco suite*” and Atari games®. These environments were
chosen because they offer diverse and well-studied benchmarks that enable a comprehensive evaluation of RL
algorithms.

MuJoCo (Multi-Joint dynamics with Contact) environments belong to the class of continuous control
environments. Generally, in MuJoCo environments it is necessary to control the behavior (e.g. walking) of
biomimetic mechanisms formed within multiple joint rigid bodies. The observations of these environments are
vectors of real numbers with dimensions from 8 to 376, that include information about the state of the agent and
the world (e.g., positions, velocities, joint angles). The actions (inputs) for these environments are also vectors
of real values with dimensions from 1 to 17. They define how the agent can interact with the environment (for
example, applying forces or torques to joints).

Atari environments provide a suite of classic Atari video games as testbeds for reinforcement learning
algorithms. Unlike environments that provide low-dimensional state representations, Atari games offer high-
dimensional observation spaces directly from the game’s pixel output. Actions in Atari games are typically
discrete, corresponding to the joystick movements and button presses available on the original Atari 2600
console.

Training procedure

Since we want to improve the inference, we pruned for SAC only an actor-network. In DQN there is no
separation of actor and critic. We start training at the environment step ¢, then according to'® the pruning
begins at the environment step ¢s and continues until the environment step ¢s. We gradually prune a Neural
Network every At step according to the schedule presented in** during n steps. This pruning scheme involves
gradual transformation of a dense network into a sparse one with sparsity s according to formula (1) via weight
magnitudes. When another pruning step is completed, we are leaving the pruned weights equal to zero for the
remainder of the training. The training of the pruned NN continues until the environment step ¢,. The plot of
the proposed sparsity schedule is presented in Fig. 2.

t—1ts)\3
St = sf * (1 - (1 — nAts)) for t € {ts,ts + At, ..., ts + nAt} (1)
For quantizing the pruned NN, after step ¢, we start to apply symmetric, uniform 8-bit QAT to the remaining
weights until step ¢,. For fully connected layers, we used layerwise quantization. For convolution layers, we used
channelwise quantization.

0.8 -

o
[=3]
1

Sparsity
o
N9

0.2

0.0 +

0 100 200 300 400 500 600
Pruning step

Fig. 2. The plot of sparsity function for gradual pruning. The x-axis denotes the pruning step number. The
y-axis denotes the neural network sparsity degree.

Scientific Reports |

(2025) 15:9718 | https://doi.org/10.1038/541598-025-93955-w nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

—> steps.

Experiments

We experiment within the following RL environments from the MuJoCo suite: HalfCheetah-v4, Hopper-v4,
Walker2d-v4, Ant-v4, Humanoid-v4, Swimmer-v4; and Atari games: Pong-v4, Boxing-v4, Tutankham-v4, and
CrazyClimber-v4. We repeat each experiment for MuJoCo environments with 10 different seeds. For Atari
games, we repeat each experiment with 5 different seeds.

For MuJoCo environments we use the SAC algorithm with a multilayer perceptron (MLP) with two hidden
layers with 256 neurons in each of them. The sizes of the input and output layers depend on the environment.

For Atari environments, we used the DQN algorithm with two different types of neural networks: classical
three-layer CNN! and ResNet>! based networks with three residual blocks™. All parameters are provided in the
Supplementary material, see Tables 1-3.

For both algorithms, we used their implementations from the StableBaselines3>* library for our experiments.

For each environment, we train sparse policies with different levels of pruning: 50 (x 2), 70 (x 3.3), 80
(% 5), 90 (x 10), 95 (x 20) and 98 (x 50) percent. For MuJoCo environments, we add an additional sparsity
level equal to 99 (x 100) percent. For each sparsity level, we train NN with and without quantization. We start
pruning after completing 20 percent (ts = 0.2 * total _steps) of steps and finish it after completing 80 percent
(ty = 0.8 x total _steps) of steps. For SAC we use 600 iterations of pruning, and for both DQN we use 300
iterations of pruning. We quantize a neural network after completing the training procedure during an additional
20 percent (t, = 1.2 x total _steps) of steps (see Fig. 3).

In addition to the classical RL metric of reward, we also measure the degree of neural network compression
achieved by applying pruning and quantization techniques. As mentioned in Section 1, a high degree of network
compression is a critical factor for hardware deployment.

In the experimental phase, we employed the Nvidia DGX system. A single experiment, conducted for one
environmental setting, required an average of five days of continuous computation for evaluating all possible
levels of sparsity, both with and without quantization. In total, the computational duration for all experiments
amounted to approximately 40 days.

Results
Figures 4, 5, 6 present the performance of pruned and/or quantized neural networks in various environments.

We see in Fig. 4 that for the most number of MuJoCo environments (except HalfCheetah) we could prune
and quantize up to 98 percent without loss of quality, leading to a 200x decrease in the size of neural networks:
4x by quantization, 50x by pruning. Even for HalfCheetah we could prune 80 % of the weights and quantize
them, which leads to a 20x decrease in the size of the neural network. For some environments e.g. Hopper
and Swimmer we could prune 99 percent of weights and quantize them without the loss in quality which leads
to a 400x decrease in the size of the neural network. Furthermore, quantization + pruning usually slightly
outperforms pruning, which leads to better results even in comparison to the dense model. These finding are
provided in details in the Supplementary material, Tables 4-9.

In comparison to the results presented in'® we achieved high levels of sparsity (up to 99 percent) without the
loss in quality for the SAC algorithm. This can be explained by our strategy of pruning only the actor model, as
opposed to pruning both the actor and the critic in'8. The authors of'® conducted experiments to determine the
optimal parameter ratio between the actor and critic for a given parameter budget. They came to the conclusion
that the actor parameters are less significant than the critic parameters, which is consistent with our results. We
chose to prune only the actor because only its sparsity is important for efficient inference.

For classical CNN-based DQN for Atari environments, we see in Fig. 5 that for all environments, we could
prune and quantize up to 80 percent without the loss of quality, which leads to a 20x decrease in the size of

Init NN with random weights. Train during 20-80% of o . Train during 100-120% of
Train during 20% of steps. steps. usmg grqdual Train during 80-100% of steps with 8-bit QAT. Test
pruning with different steps. Test pruned NN.

. pruned and quantized NN.
sparsity levels p.

ts tHAL 24t to+(n-1)At tf t

Set s, lowest Set s, lowest
Train during At of Wy weights to zero and Wy Wo4* Train during At of W, weights to zero and W,*
——> prevent them from —_— ——> steps. ——> prevent them from —_—
future changes. future changes.

Fig. 3. General scheme of training. A randomly initialized neural network is trained for 20% of the total
steps in a classical manner. Further, during the 20-80% of training, gradual pruning with n steps is applied.
Then pruning is turned off and from 80 to 100% of steps the network is trained again in the classical way. If
quantization is required, an additional 20% of training steps (from 100% to 120%) are performed with 8-bit
quantization.

Scientific Reports |

(2025) 15:9718 | https://doi.org/10.1038/s41598-025-93955-w nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Reward

Reward

Reward

SAC / Ant-v4 SAC / HalfCheetah-v4
5500 A 12000 A
5000 A 11000 A
4500 117 10000 -+
4000 - 9000
3500 8000 1
3000 - g 7000
2500 - = 6000
2000 11— prun?ng 1 & 3gga | —— pruning
1500 + — pruning+quantization 3000 4 — Pruning+quantization
1000 === default 2000 4 ——- default
800 =i quantization 1000 4 =" quantization
° 0.'5 O.I? O.IS 0.'9 0.|95 0.9I75 O.;E!B 0.I99 ° 0;5 0.'7 0:8 019 0.I95 0.9'75 0.|98 0.|99
Sparsity Sparsity
(a) b)
SAC / Hopper-v4 SAC / Humanoid-v4
5500 =& ——mpw
3200 18 5000 - -
3000 4500 1
2700 A 4000
2400 - - 3500 +
2100 1 © 3000 -
1800] ; 2500 4
1500 1 pruning 2000 4 —— pruning
1388 : —— pruning+quantization 1500 4 — pruning+quantization
600 4 ~—~~ default 1000 4 === default
300 4 quantization 500 1= quantization
0 T T T T T T T T 0 T T T ¥ T T T T
0.5 0.7 0.8 0.9 0.95 0.975 0.98 0.99 0.5 0.7 0.8 0.9 0.95 0.975 0.98 0.99
Sparsity Sparsity
(@])
SAC / Swimmer-v4 SAC / Walker2d-v4
100 A -
9 —_— prun!ng o 5000 -, i i DA G W
—— pruning+quantization e e e —
80 1 === default BT \
70 T+ - 40007 ==
quantization 3500
60 o7 °
|o i e s e i = 3000 1
=1 § 2500 -
40 7 2000 + —— pruning
30 1 1500 + — pruning+quantization
201 1000 1 === default
10 4 500 Fierees quantization
0 T T T T T T T T 0 T T T T T T T T
0.5 0.7 0.8 0.9 0.95 0.975 0.98 0.99 0.5 0.7 0.8 09 095 0975 0.98 0.99
Sparsity Sparsity
(e ®

Fig. 4. Results for SAC algorithm applied to MuJoCo suite environments. The x-axes of the figures denote the
neural network sparsity degree; the y-axes denote the performance - the reward received by an agent. The blue
line shows the performance of the pruned network, and the red line shows the performance of the pruned and
quantized network. The dotted purple line shows the performance of the quantized-only network, the green
dashed line shows the performance of the default network.

optimized neural networks. For Pong and Tutankham we could prune and quantize up to 95 percent of sparsity
which leads to a total 100x decrease in the size of neural networks. The characteristics of the neural networks are
given in the Supplementary material, Tables 10-13.

For ResNet-based DQN for Atari environments, we see in Fig. 6 the possibility to prune and quantize up to
95 percent, without the significant loss in quality, that leads to a 80x decrease in the size of neural networks. For
Pong and Tutankham we could prune and quantize up to 98 percent of sparsity which leads to a 200x decrease in
the size of neural networks. It is worth noting that ResNet-based networks are much more suitable for pruning
and quantizing which coincide with the findings in'®. The details about parameters of the neural networks are
provided in the Supplementary material, Tables 14-17.

Scientific Reports |

(2025) 15:9718 | https://doi.org/10.1038/541598-025-93955-w nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

CNN / Pong-v4 CNN / Boxing-v4
22
20 1 S—
18 A
16
14 A
h= b=
@ 12 1 ©
g g
8 4+ —— pruning 36 4 —— pruning
6 1 — pruning+quantization 27 4 — pruning+quantization
44 === default 18 + ——- default
2 s quantization 9 A-tans quantization
0 T T T T T T 0 T T T T T L
0.5 0.7 0.8 0.9 0.95 0.98 0.5 0.7 0.8 0.9 0.95 0.98
Sparsity Sparsity
(a) (b)
CNN / Tutankham-v4
CNN / CrazyClimber-v4
260
2401 140000 -
220 7 120000
200 A . 8 110000 -
180 A 100000 A
B 160 - 90000
T 140 4 T 80000
§ 120 - £ 70000 -
100 4 =—— prunin & 60000 - -
30 - b . L 50000 | — Pruning
604 pruning+quantization 40000 1 —— pruning+quantization
a0 | ~-- default 30000 1 - efaut
50 4 quantization 10000 4 quantization
0 T T T T T T 0 T T T T T T
0.5 0.7 0.8 0.9 0.95 0.98 0.5 0.7 0.8 0.9 0.95 0.98
Sparsity Sparsity

© d

Fig. 5. Results for DQN algorithm based on the CNN applied to Atari environments. The x-axes of the figures
denote the neural network sparsity degree; the y-axes denote the performance - the reward received by an
agent. The blue line shows the performance of the pruned network and the red line shows the performance

of the pruned and quantized network. The dotted purple line shows the performance of the quantized-only
network, green dashed line shows the performance of the default dense and fully precision network.

Discussion

Generally, there is great interest in neuromorphic intelligence 27->%, which takes advantage of different aspects of
biological neural systems. These include novel architectures and learning algorithms >>-%°. On the one hand, these
modern neuromorphic networks are used in neuroscience research, allowing us to explain or replicate emergent
cognitive phenomena. On the other hand, they contribute to developing more efficient computing frameworks
which would enable one to reduce the computational resources required for training and implementing neural
networks. In some sense, quantization and pruning could be considered as neuromorphic approaches. In the
brain, there are no fully connected layers®® and a strong regular structure compared to modern NN. Also, it
seems impossible to store values with the precision provided by the 32-bit floating points in highly noisy cell
environment*?122,

Minimizing the size of NNs mitigates the von Neumann problem of modern hardware by reducing the
exchange between memory and processor. Moreover, it is often possible to locate the obtained smallified NNs in
on-chip memory. That could lead to very high inference speeds, low energy consumption, and low latencies. It
was shown that this desire could be achieved even on classical CPUs by the Neural Magic company for classical
DL domains. Moreover, the recent IBM chip NorthPole*! based totally on near-memory computing and storing
weights and activations in the on-chip memory, could be enhanced by optimization algorithms proposed here.

Conclusion

In this study, we explored the use of quantization and pruning techniques in RL tasks to enhance the efficiency
of neural networks trained with various RL algorithms. We demonstrated the large redundancy (up to 400x) in
the neural network size used for popular RL tasks. By providing the possibility of significantly reducing neural
networks trained by RL algorithms, we expand their potential applications in practical domains like Edge AI,
real-time control, robotics, and many others. Our findings reveal that applying quantization and pruning to RL-
trained networks is not only feasible without accuracy loss but can also sometimes improve accuracy, offering a

Scientific Reports | (2025) 15:9718 | https://doi.org/10.1038/s41598-025-93955-w nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

ResNet / Pong-v4 ResNet / Boxing-v4
22 = 99 E=smoooooes
20 o0 4 — Pruning % =
18 g1 4 — pruning+quantization
16 72 4 ——- default
14 63 Lt quantization
B B
s 127 T 54
é.%_ 10 - § 45
8 + —— pruning 36
6 1 — pruning+quantization 27
4+ —=- default 18 A
2 phepses quantization 9
O T T T T T T 0 T T T T T T
0.5 0.7 0.8 0.9 0.95 0.98 0.5 0.7 0.8 0.9 0.95 0.98
Sparsity Sparsity
(2) (b)
ResNet / Tutankham-v4
260 ResNet / CrazyClimber-v4
240 A 160000 A
) : 150000 + g e et
338 sl 140000 | AR
+r Gl Gl Gl T al 130000 4 2 .
180 T 120000 | \
160 110000 -
B 100000 -
@ 140 B "90000 -
810 : soond.
128: —_— prun!ng P L 28888: pruning
5l | i pruning+quantization 20000 1 — pruning+quantization
a0 H3== df-‘fau!t _ 30000 1 ==~ default
50 4 quantization 218888 NI EES quantization
0 T T T T T T T T T T T T
05 0.7 0.8 0.9 0.95 0.98 0.5 0.7 0.8 0.9 0.95 0.98
Sparsity Sparsity
(©) d

Fig. 6. Results for DQN algorithm based on the ResNet applied to Atari environments. The x-axes of the
figures denote the neural network sparsity degree; the y-axes denote the performance—the reward received by
an agent. The blue line shows the performance of the pruned network, and the red line shows the performance
of the pruned and quantized network. The dotted purple line shows the performance of the quantized only
network, green dashed line shows the performance of the default dense and fully precision network.

promising strategy for optimizing RL-based actor networks for resource-constrained environments. However,
it is worth noting that the maximum profit could be achieved in a smart co-design of algorithms and hardware.

Data availability

The materials used in the current study including code and learning curves are available at https://github.com/
rudimiv/NNCompression4RL.

Received: 16 May 2024; Accepted: 11 March 2025
Published online: 21 March 2025

References
1. Mnih, V. et al. Human-level control through deep reinforcement learning. Nature 518, 529-533 (2015).
2. Degrave, J. et al. Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602, 414-419 (2022).
3. Kaufmann, E. et al. Champion-level drone racing using deep reinforcement learning. Nature 620, 982-987 (2023).
4. Gholami, A. et al. A survey of quantization methods for efficient neural network inference. http://arxiv.org/abs/2103.13630 (2021).
5. Liang, T., Glossner, J., Wang, L., Shi, S. & Zhang, X. Pruning and quantization for deep neural network acceleration: A survey.
Neurocomputing 461, 370-403 (2021).
. Yousefzadeh, A. et al. Asynchronous spiking neurons, the natural key to exploit temporal sparsity. IEEE J. Emerg. Sel. Top. Circuits
Syst. 9, 668-678 (2019).
7. Ivanov, D. A,, Larionov, D. A., Kiselev, M. V. & Dylov, D. V. Deep reinforcement learning with significant multiplications inference.
Sci. Rep. 13, 20865 (2023).
8. Hinton, G., Vinyals, O. & Dean,]. Distilling the knowledge in a neural network. http://arxiv.org/abs/1503.02531 (2015).
9. Ren, P. etal. A comprehensive survey of neural architecture search: Challenges and solutions. ACM Comput. Surv. (CSUR) 54, 1-34
(2021).

10. Han, S. et al. Eie: Efficient inference engine on compressed deep neural network. ACM SIGARCH Comput. Arch. News 44, 243-254
(2016).

(=2}

Scientific Reports | (2025) 15:9718 | https://doi.org/10.1038/s41598-025-93955-w nature portfolio

https://github.com/rudimiv/NNCompression4RL
https://github.com/rudimiv/NNCompression4RL
http://arxiv.org/abs/2103.13630
http://arxiv.org/abs/1503.02531
http://www.nature.com/scientificreports

www.nature.com/scientificreports/

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

24.

25.

26.

27.

34.

35.

36.

37.

38.

39.

40.

41.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.
55.

Han, S., Mao, H. & Dally, W. J. Deep compression: Compressing deep neural networks with pruning, trained quantization and
huffman coding. http://arxiv.org/abs/1510.00149 (2015).

Chen, Y.-H., Emer, J. & Sze, V. Eyeriss: A spatial architecture for energy-efficient dataflow for convolutional neural networks. ACM
SIGARCH Comput. Arch. News 44, 367-379 (2016).

Kwon, H., Samajdar, A. & Krishna, T. Maeri: Enabling flexible dataflow mapping over dnn accelerators via reconfigurable
interconnects. ACM SIGPLAN Not. 53, 461-475 (2018).

Mirmahaleh, S. Y. H. & Rahmani, A. M. Dnn pruning and mapping on noc-based communication infrastructure. Microelectron. J.
94, 104655 (2019).

Parashar, A. et al. Scnn: An accelerator for compressed-sparse convolutional neural networks. ACM SIGARCH Comput. Arch.
News 45, 27-40 (2017).

Mirmahaleh, S. Y. H., Reshadi, M., Bagherzadeh, N. & Khademzadeh, A. Data scheduling and placement in deep learning
accelerator. Clust. Comput. 24, 3651-3669 (2021).

Blalock, D., Ortiz, J. J. G., Frankle, J. & Guttag,]. What is the state of neural network pruning? http://arxiv.org/abs/2003.03033
(2020).

Graesser, L., Evci, U,, Elsen, E. & Castro, P. S. The state of sparse training in deep reinforcement learning. In International Conference
on Machine Learning, 7766-7792 (PMLR, 2022).

Frankle, J. & Carbin, M. The lottery ticket hypothesis: Finding sparse, trainable neural networks. http://arxiv.org/abs/1803.03635
(2018).

Hudspeth, A.], Jessell, T. M., Kandel, E. R., Schwartz, J. H. & Siegelbaum, S. A. Principles of neural science (Health Professions
Division, McGraw-Hill, 2013).

Tee, J. & Taylor, D. P. Is information in the brain represented in continuous or discrete form?. IEEE Trans. Mol. Biol. Multi-Scale
Commun. 6, 199-209 (2020).

VanRullen, R. & Koch, C. Is perception discrete or continuous?. Trends Cogn. Sci. 7, 207-213 (2003).

. Faisal, A. A,, Selen, L. P. & Wolpert, D. M. Noise in the nervous system. Nat. Rev. Neurosci. 9, 292-303 (2008).

Sun, J. Z., Wang, G. I, Goyal, V. K. & Varshney, L. R. A framework for bayesian optimality of psychophysical laws. J. Math. Psychol.
56, 495-501 (2012).

Horowitz, M. 1.1 computing’s energy problem (and what we can do about it). In 2014 IEEE International Solid-State Circuits
Conference Digest of Technical Papers (ISSCC), 10-14 (IEEE, 2014).

Backus, J. Can programming be liberated from the von neumann style? A functional style and its algebra of programs. Commun.
ACM 21, 613-641 (1978).

Ivanov, D., Chezhegov, A., Kiselev, M., Grunin, A. & Larionov, D. Neuromorphic artificial intelligence systems. Front. Neurosci. 16
(2022).

. Krishnan, S. et al. Quarl: Quantization for fast and environmentally sustainable reinforcement learning. http://arxiv.org/abs/1910.

01055 (2019).

. Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction (MIT press, 2018).

. LeCun, Y, Denker, J. S. & Solla, S. A. Optimal brain damage. Adv. Neural Inf. Process. Syst., 598-605 (1990).

. Hassibi, B. & Stork, D. G. Second Order Derivatives for Network Pruning: Optimal Brain Surgeon (Morgan Kaufmann, 1993).

. Han, S, Pool,], Tran,]. & Dally, W. Learning both weights and connections for efficient neural network. Adv. Neural Inf. Process.

Syst. 28 (2015).

. Zhu, M. & Gupta, S. To prune, or not to prune: exploring the efficacy of pruning for model compression. http://arxiv.org/abs/171

0.01878 (2017).

Lee, N., Ajanthan, T. & Torr, P. H. Snip: Single-shot network pruning based on connection sensitivity. http://arxiv.org/abs/1810.02
340 (2018).

Wang, C., Zhang, G. & Grosse, R. Picking winning tickets before training by preserving gradient flow. http://arxiv.org/abs/2002.0
7376 (2020).

Bellec, G., Kappel, D., Maass, W. & Legenstein, R. Deep rewiring: Training very sparse deep networks. http://arxiv.org/abs/1711.0
5136 (2017).

Mocanu, D. C. et al. Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science.
Nat. Commun. 9, 2383 (2018).

Evci, U, Gale, T., Menick, J., Castro, P. S. & Elsen, E. Rigging the lottery: Making all tickets winners. In International Conference on
Machine Learning, 2943-2952 (PMLR, 2020).

Theis, L., Korshunova, I, Tejani, A. & Huszar, E. Faster gaze prediction with dense networks and fisher pruning. http://arxiv.org/a
bs/1801.05787 (2018).

Molchanov, D., Ashukha, A. & Vetrov, D. Variational dropout sparsifies deep neural networks. In International Conference on
Machine Learning, 2498-2507 (PMLR, 2017).

Dai, B., Zhu, C., Guo, B. & Wipf, D. Compressing neural networks using the variational information bottleneck. In International
Conference on Machine Learning, 1135-1144 (PMLR, 2018).

. Louizos, C., Ullrich, K. & Welling, M. Bayesian compression for deep learning. Adv. Neural Inf. Process. Syst. 30 (2017).
. Jouppi, N. P. et al. A domain-specific supercomputer for training deep neural networks. Commun. ACM 63, 67-78 (2020).
. Modha, D. S. et al. Ibm northpole neural inference machine. In 2023 IEEE Hot Chips 35 Symposium (HCS), 1-58 (IEEE Computer

Society, 2023).

Yin, P. et al. Understanding straight-through estimator in training activation quantized neural nets. http://arxiv.org/abs/1903.05662
(2019).

Courbariaux, M., Bengio, Y. & David, J.-P. Binaryconnect: Training deep neural networks with binary weights during propagations.
Adv. Neural Inf. Process. Syst. 28 (2015).

Hubara, L., Courbariaux, M., Soudry, D., El-Yaniv, R. & Bengio, Y. Binarized neural networks. Adv. Neural Inf. Process. Syst. 29
(2016).

Haarnoja, T., Zhou, A., Abbeel, P. & Levine, S. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a
stochastic actor. In International Conference on Machine Learning, 1861-1870 (PMLR, 2018).

Todorov, E., Erez, T. & Tassa, Y. Mujoco: A physics engine for model-based control. In 2012 IEEE/RS] International Conference on
Intelligent Robots and Systems, 5026-5033 (IEEE, 2012).

Bellemare, M., Veness, J. & Bowling, M. Investigating contingency awareness using atari 2600 games. In Proceedings of the AAAI
Conference on Artificial Intelligence 26, 864-871 (2012).

He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 770-778 (2016).

Espeholt, L. et al. Impala: Scalable distributed deep-rl with importance weighted actor-learner architectures. In International
conference on machine learning, 1407-1416 (PMLR, 2018).

Raffin, A. et al. Stable-baselines3: Reliable reinforcement learning implementations. . Mach. Learn. Res. 22, 1-8 (2021).

Chen, B. & Yang, S. Neuromorphic Intelligence: Learning, Architectures and Large-Scale Systems (Springer, 2024).

Yang, S. & Chen, B. Effective surrogate gradient learning with high-order information bottleneck for spike-based machine
intelligence. IEEE Trans. Neural Netw. Learn. Syst. (2023).

Scientific Reports |

(2025) 15:9718

| https://doi.org/10.1038/s41598-025-93955-w nature portfolio

http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/2003.03033
http://arxiv.org/abs/1803.03635
http://arxiv.org/abs/1910.01055
http://arxiv.org/abs/1910.01055
http://arxiv.org/abs/1710.01878
http://arxiv.org/abs/1710.01878
http://arxiv.org/abs/1810.02340
http://arxiv.org/abs/1810.02340
http://arxiv.org/abs/2002.07376
http://arxiv.org/abs/2002.07376
http://arxiv.org/abs/1711.05136
http://arxiv.org/abs/1711.05136
http://arxiv.org/abs/1801.05787
http://arxiv.org/abs/1801.05787
http://arxiv.org/abs/1903.05662
http://www.nature.com/scientificreports

www.nature.com/scientificreports/

56. Yang, S., Wang, H. & Chen, B. Sibols: robust and energy-efficient learning for spike-based machine intelligence in information
bottleneck framework. IEEE Trans. Cogn. Dev. Syst. (2023).

57. Yang, S. & Chen, B. Snib: improving spike-based machine learning using nonlinear information bottleneck. IEEE Trans. Syst. Man
Cybern. Syst. (2023).

58. Yang, S. et al. Spike-driven multi-scale learning with hybrid mechanisms of spiking dendrites. Neurocomputing 542, 126240 (2023).

59. Pugavko, M. M., Maslennikov, O. V. & Nekorkin, V. I. Multitask computation through dynamics in recurrent spiking neural
networks. Sci. Rep. 13, 3997 (2023).

60. Maslennikov, O. V., Pugavko, M. M., Shchapin, D. S. & Nekorkin, V. I. Nonlinear dynamics and machine learning of recurrent
spiking neural networks. Phys. Uspekhi 65, 1020-1038 (2022).

61. Voevodin, V. V. et al. Supercomputer lomonosov-2: Large scale, deep monitoring and fine analytics for the user community.
Supercomput. Front. Innov. 6, 4-11 (2019).

Acknowledgements

The research is carried out using the equipment of the shared research facilities of HPC computing resources at
Lomonosov Moscow State University®' and Cifrum IT infrastructure. The work was supported by the Russian
Science Foundation, project 23-72-10088, https://rscf.ru/project/23-72-10088/.

Author contributions

DI, DL, OM, and VV contributed to the conception and design of the study. DI and DL contributed equally.
OM and VV were co-senior authors. All authors contributed to the manuscript revision, read and approved the
submitted version.

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/1
0.1038/541598-025-93955-w.

Correspondence and requests for materials should be addressed to O.V.M.
Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have
permission under this licence to share adapted material derived from this article or parts of it. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommo
ns.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2025

Scientific Reports |

(2025) 15:9718 | https://doi.org/10.1038/s41598-025-93955-w nature portfolio

https://doi.org/10.1038/s41598-025-93955-w
https://doi.org/10.1038/s41598-025-93955-w
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿Neural network compression for reinforcement learning tasks
	﻿﻿Background
	﻿RL
	﻿Pruning
	﻿Quantization

	﻿﻿Methods
	﻿RL algorithms
	﻿RL environments
	﻿Training procedure

	﻿﻿Experiments
	﻿﻿Results
	﻿﻿Discussion
	﻿﻿Conclusion
	﻿References

