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Unsupervised fault diagnosis methods for rotating machinery are gaining attention but face challenges 
such as feature extraction from vibration signals, aligning distributions between source and target 
domains, and managing domain shifts. This paper proposes a novel unsupervised transfer learning 
method that integrates the Squeeze-and-Excitation (SE) attention mechanism to enhance useful 
features while suppressing redundant ones. An Integrated Distribution Alignment Framework 
(IDAF) is introduced, which employs the Joint Adaptation Network (JAN) approach to construct a 
local maximum mean discrepancy in conjunction with Correlation Alignment (CORAL) to improve 
distribution alignment between domains. Moreover, to enhance feature learning and obtain more 
distinct features, the authors utilize a novel discriminative feature learning method called I-Softmax 
loss. This method can be optimized in a manner similar to the traditional Softmax loss while providing 
improved classification performance. Finally, deep adversarial training is applied between the source 
and target domains to adaptively optimize the target domain network parameters, reducing domain 
shift and improving fault classification accuracy. Experimental validation using four sets of bearing 
faults and six sets of gear faults demonstrates the superior performance of the proposed method in 
unsupervised fault diagnosis tasks.

Keywords  SE attention mechanism, Domain adaptation, Classification loss, Conditional adversarial network

Rotating machinery, as an indispensable core component in modern industry, directly affects production 
efficiency, safety, and economic benefits through its reliability and operational stability. Especially in the 
automotive manufacturing and energy sectors, the quality and safety standards for bearings and gears are also 
subject to rigorous oversight. These machines operate under long-term, high-load conditions and face severe 
consequences if faults are not detected in time, potentially leading to significant economic losses or even 
personal injuries1,2.

With the advancement of the manufacturing industry, the demand for intelligent maintenance has become 
increasingly prominent, making fault diagnosis technologies a crucial means to enhance equipment reliability 
and safety3. Traditional fault diagnosis methods primarily rely on the experience and rule-making of specialized 
technicians. These methods are time-consuming, labor-intensive, and suffer from subjectivity and limitations. 
However, with the rapid development of big data technologies and deep learning, data-driven fault diagnosis 
methods have shown tremendous potential4–6. Deep learning models are capable of learning and extracting 
complex feature representations from vast amounts of raw data, enabling efficient and accurate fault classification 
and prediction through training7.

In recent years, significant progress has been made in the research of intelligent fault diagnosis technologies8. 
Traditional signal processing-based methods, while providing certain fault detection capabilities, often fail 
to meet the requirements of real-time operation and high accuracy in complex industrial environments. In 
contrast, deep learning-based intelligent fault diagnosis methods can automatically extract effective features 
from raw sensor data, overcoming the limitations of manual feature extraction in traditional methods. For 
example, Convolutional Neural Networks (CNN) have been widely applied in fault diagnosis. When used for 
bearing fault detection, CNNs significantly improve diagnostic accuracy by constructing time-frequency images 
and utilizing CNNs for feature extraction and classification. The Coupled Autoencoder (CAE) model, which 
captures cross-modal information from different sensors, further enhances the robustness of fault diagnosis.

Despite the significant achievements of deep learning-based methods in fault diagnosis, several challenges 
remain in practical applications. Firstly, since rotating machinery operates under varying working conditions, 
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the distribution characteristics of vibration signals and other sensor data differ across these conditions, making 
models trained under a single condition difficult to generalize across multiple operating conditions9. Additionally, 
the high cost of large-scale data collection and labeling limits the feasibility of traditional supervised learning 
methods. Therefore, achieving effective unsupervised or semi-supervised fault diagnosis across different working 
conditions has become a key focus of current research10,11.

To address these challenges, Transfer Learning (TL) has been widely applied in the field of fault diagnosis as 
an effective strategy12. TL alleviates the issue of limited data in the target domain by transferring knowledge from 
the source domain. The concept of TL originated in the field of computer vision and refers to utilizing known 
data from source tasks to improve the learning process in target tasks. The key advantage of TL lies in its ability to 
leverage the abundant data from the source domain to enhance the learning of the target task, even when there is 
a scarcity of target domain data.TL primarily includes three strategies: Inductive Learning, Transductive TL, and 
Unsupervised TL13. Inductive Learning is commonly applied in multi-task learning and self-learning scenarios, 
where shared knowledge between the source and target tasks is used to improve the efficiency of learning in the 
target task. Transductive TL, on the other hand, directly transfers knowledge from the source task to assist in 
learning for the target task, and it typically works best when the relationship between the source and target tasks 
is relatively close.

Domain Adaptation is a key branch of TL, especially when there are distribution discrepancies between 
the source and target tasks. In such cases, domain adaptation techniques are particularly important. Common 
domain adaptation methods include feature-mapping-based transfer learning techniques, such as Maximum 
Mean Discrepancy (MMD)14, which have been widely used to minimize the distribution difference between the 
source and target domains. For instance, Li et al. proposed Transfer Component Analysis (TCA)15, which uses 
MMD for feature mapping, effectively improving the performance and robustness of fault diagnosis models. 
Furthermore, joint distribution-based transfer learning methods, such as Joint Distribution Adaptation (JDA)16 
and Correlation Alignment (CORAL)17, have also been proposed and shown promising results. These methods 
improve diagnostic performance across different operating conditions by reducing the distribution discrepancy 
between the source and target domains.

Adversarial learning techniques have been widely applied across various fields, particularly in transfer learning 
and domain adaptation, achieving significant progress. Generative Adversarial Networks (GAN)18, introduced 
by Goodfellow et al., optimize through a game-theoretic process between a generator and a discriminator, 
enabling the generator to produce synthetic data that is indistinguishable from real data. In domain adaptation 
tasks, the Domain-Adversarial Neural Network (DANN) method19, proposed by Ganin et al., introduces a 
domain discriminator to align the feature distributions between the source and target domains, enabling effective 
knowledge transfer. The Conditional Domain-Adversarial Network (CDAN) further enhances adversarial 
learning by incorporating a conditional domain discriminator, which is based on the cross-covariance between 
source domain features and classifier predictions, allowing for more precise capture of domain differences20.

Moreover, adversarial learning has been extensively researched and has yielded promising results in transfer 
learning. For instance, Cycle GAN introduces cycle consistency loss, significantly improving the accuracy of data 
distribution alignment, particularly in image-to-image translation tasks21. Adversarial Autoencoders, on the 
other hand, employ adversarial training to generate more meaningful low-dimensional representations, thereby 
enhancing the model’s adaptability to cross-domain data. Overall, the successful application of adversarial 
learning techniques in transfer learning and domain adaptation, especially in scenarios with scarce data or 
significant distributional differences, provides effective solutions for fault diagnosis and prediction in intelligent 
devices.

Furthermore, designing effective loss functions22 and network architectures is a key research direction in 
discriminative feature learning23, as advancements in these areas directly impact the performance of models in 
classification and recognition tasks. Traditional approaches use Softmax, while contemporary methods include 
L-Softmax and A-Softmax, which enhance the model’s classification ability by mapping features into angular 
space. However, these methods face challenges during optimization, especially because of the non-linear nature 
of the cosine function, which complicates and destabilizes the optimization process. Cho et al.24 proposed a 
novel network architecture that introduces a Maximum Classifier Discrepancy (MCD) adversarial approach to 
improve the model’s distinguishing abilities. This method aims to optimize feature representation by increasing 
the model’s complexity and learning capability. However, the adversarial mechanism may introduce instability 
in task scores, potentially affecting the model’s practical application performance.

Despite the successful results achieved by the aforementioned methods in various domains and transfer 
tasks, they still overlook several important factors and face the following issues: (1) Traditional convolutional 
neural networks (CNN) have limitations in processing signals due to insufficient contextual convolutional 
perception and learnable parameters, which may lead to interference from irrelevant or noisy factors.(2) 
Existing transfer learning fault diagnosis methods are limited to feature mapping-based or domain-adversarial 
strategies. The former primarily focuses on reducing distribution differences between feature spaces, while the 
latter emphasizes learning and optimizing feature representations through end-to-end deep learning models. 
(3) Current joint distribution methods encounter difficulties in managing domain confusion and have trouble 
effectively minimizing discrepancies in feature distribution across various data domains. (4) Existing diagnostic 
methods have not fully accounted for the importance of learning discriminative features.

To tackle the issues mentioned above, this paper introduces the IADTLN network, which consists of the SE 
attention mechanism, Integrated Distribution Alignment Framework, I-Softmax loss algorithm, and CDAN. 
In IDAF, JAN and CORAL are integrated to form a novel distribution discrepancy metric aimed at alleviating 
domain confusion. Additionally, an entropy-conditioned variant of CDAN (CDAN + E) is incorporated to 
achieve a higher degree of domain confusion. To achieve greater diagnostic accuracy and acquire more distinct 
features, the I-Softmax loss algorithm and SE attention mechanism are also introduced. Experimental results 
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show that the proposed framework successfully addresses the aforementioned problems. Compared with various 
unsupervised fault diagnosis methods, the proposed approach demonstrates better convergence and robustness, 
along with higher diagnostic accuracy. The primary contributions of this paper include the following:

	(1)	� This paper presents a novel network combining integrated distribution alignment framework (IDAF) with 
an entropy-conditioned variant of Conditional Domain-Adversarial Networks for unsupervised transfer 
learning in rotating machinery fault diagnosis. This integration enhances domain adaptation by improving 
knowledge transfer across domains.

	(2)	� To more accurately measure distribution differences, we propose an integrated distribution alignment 
framework that combines JAN and CORAL with varying parameter configurations, taking into account 
both the mean and covariance in the feature space. This approach effectively reduces domain discrepancies 
and enhances the performance of domain adaptation tasks.

	(3)	� This study the I-Softmax loss with flexible margins to improve feature separability, and integrate the 
Squeeze-and-Excitation (SE) attention mechanism to enhance feature representation by emphasizing useful 
features and suppressing redundant ones. These innovations significantly improve diagnostic accuracy.

Preparation
Problem definition
In transfer learning research, the objective is to leverage labeled data from the source domain to forecast the 
categories of unlabeled data within the target domain, with a particular focus on cases where the fault categories 
in both domains are the same. In this framework, the source domain is characterized as a labeled dataset employed 
for model training, whereas the target domain comprises unlabeled data collected under varying operating 
conditions. A crucial focus of the study is to accurately determine the categories of samples in the target domain 
by establishing the probability distributions and feature matrices for both domains, thus facilitating effective 
transfer learning. To expand on this topic, the authors present the following definitions.

(1)Here, xs denotes the source domain, x(i)
s  represents the i sample, xs = ∪ns

i=1x
(i)
s  represents the union of 

all samples, y(i)
s  denotes the label of the i sample, ys = ∪ns

i=1y
(i)
s  represents the union of all different labels, and 

ns indicates the total number of source domain samples.
(2) Furthermore, in the absence of labels for the target domain, it is defined as follows: where xt denotes 

the target domain, x(i)
t  represents the i sample, xt = ∪nt

i=1x
(i)
t  represents the aggregation of all samples, and 

xt = ∪nt
i=1x

(i)
t  denotes the overall count of samples in the target domain. Figure 1 presents a comparison of 

outcomes prior to and following domain adaptation.

Correlation alignment and joint maximum mean discrepancy
Correlation alignment
CORAL seeks to align the second-order covariance statistics between the two domains, even if their means may 
differ. In transfer learning, CORAL seeks to align the covariance matrices between domains as follows:

	
lCORAL (Ds, Dt) = 1

4d2 ∥Cs − Ct∥2
F � (1)

 

	
Ct = 1

nt − 1
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t Xt − 1
nt

(
1T Xt
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1T Xt
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Fig. 1.  Comparison Chart for Domain Adaptation: Before and After.
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where, ∥.∥2
F  represents the squared Frobenius norm of the matrix. In Eq. (1), Ct and Cs denote the covariance 

matrices.
Where, 1 represents a column vector with all elements set to 1.

Joint adaptation networks
Joint Adaptation Networks (JAN) is a deep learning method designed for domain adaptation, aiming to achieve 
knowledge transfer by simultaneously learning feature representations from both the source and target domains. 
This method minimizes the domain disparity between the source and target domains to improve classification 
performance in the target domain. JAN takes advantage of Maximum Mean Discrepancy (MMD) by employing 
Hilbert space representations of the joint distributions to calculate the two joint distributions for the source 
domain and target domain as follows: Ps (Xs, Ys) and Pt (Xt, Yt) . The resulting measure is referred to as Joint 
Maximum Mean Discrepancy (JMMD). Below are some key formulas used in JAN:

where, ϕ represents the mapping function that maps the input data into the feature space, Where  represents 
the activations of the -th layer for the source domain and the target domain, respectively. JAN achieves feature 
alignment between the source and target domains by minimizing the Joint Maximum Mean Discrepancy 
(JMMD). It integrates JMMD as a loss function, along with the classification task’s loss function for joint 
optimization. This method not only decreases the distribution disparity between domains in the feature space 
but also boosts the model’s classification performance in the target domain. This strategy effectively facilitates 
knowledge transfer, allowing the network to maintain source domain features while improving its adaptability 
to target domain features.

1. Maximum Mean Discrepancy (MMD):

	
MMD2 (Ps, Pt) =

∥∥∥∥∥
1

M

M∑
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ϕ (zs
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N
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ϕ
(
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2. Joint Maximum Mean Discrepancy (JMMD):

	
lJMMD (Ps, Pt) =
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Proposed method
CNN framework
Due to the strong feature learning capabilities of CNN25, the authors have chosen CNN as the feature extractor. 
The network architecture is depicted in Table  1, with detailed parameters listed in Table  1. The architecture 
includes four ‘Conv1D’ blocks, a max pooling (MP) layer, a global average pooling (GAP) layer, and three fully 
connected (FC) layers. Every ‘Conv1D’ block is composed of a convolutional layer, a batch normalization (BN) 
layer, and a ReLU activation function. The global average pooling and batch normalization techniques effectively 
accelerate the network’s convergence speed and mitigate overfitting. Furthermore, the authors incorporated 
the SE attention mechanism following the initial convolutional layer to further improve the network’s feature 
extraction ability.

SE attention mechanism
Recently, incorporating channel attention mechanisms into CNN has gained increasing attention, significantly 
enhancing model performance26. Among these, the Squeeze-and-Excitation Networks have become quite 
popular. The SE attention mechanism substantially improves the expressive power and performance of CNN 
through three stages: Squeeze, Excitation, and Re-weighting27.

Type of layer Parameters specific numbers

Conv1D-1 Out channels, Kernel size (16,15)

SE Attention Layer ----------- -----------

Conv1D-2 Out channels, Kernel size (32,3)

Max Pooling Kernel size, Stride (2,2)

Conv1D-3 Out channels, Kernel size (64,3)

Conv1D-4 Out channels, Kernel size (128,3)

Adaptive Max pool Output size (4)

FC1 Out features (512)

FC2 Out features (256)

FC3 Out features (4)

Table 1.  Parameters produced by the convolutional neural network.
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Squeeze phase
In the squeeze phase of the SE attention mechanism, a global average pooling process is performed on the 
spatial dimensions of the feature maps, compressing each channel’s feature map into a single scalar value. Let 
the input feature map have dimensions X ∈ RC×H×W  , where C  denotes the number of channels, H  and W  
indicate the height and width of the feature map, respectively. The squeezed feature for channel c , denoted aszc 
, is calculated as:

The aim of this stage is to gather the global information from each channel and transform it into a scalar that 
reflects the significance of that channel.

	
zc = 1

H × W

H∑
i=1

W∑
j=1

Xc (i, j)� (6)
 

Fig. 3.  This paper illustrates the diagram of the model architecture.

 

Fig. 2.  (a)Using the conventional Softmax method, (b)Using the I-Softmax method.
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Excitation phase
In the excitation phase, a small feedforward neural network is applied to the global feature descriptors obtained 
from the squeeze phase to learn the importance weights for each channel. This network usually comprises two 
dense layers. The initial dense layer transforms the compressed features zc to a reduced dimensionality of c/r 
(where r is the reduction ratio, set to 16 in this study), utilizing ReLU as the activation function. The subsequent 
fully connected layer then converts the output back to the original number of channels c, and the sigmoid 
activation function is applied to obtain the excitation weights ycfor each channel:

	 yc = σ (W2 · δ (W1 · zc))� (7) 

where, W1 and W2 are the weight matrices of the two fully connected layers, δ and σ are the activation functions 
applied in each layer, respectively.

Re-weighting phase
In the reweighting phase, the obtained excitation weights yc are applied to each channel of the original feature 
map X  to dynamically adjust the feature responses of each channel. Specifically, for the input feature map X  , the 
output feature map XSE  after reweighting by the SE attention mechanism is computed as follows:

In this step, the feature map of each channel c is multiplied by its corresponding excitation weight yc , thereby 
enhancing the feature response of important channels and reducing the influence of less significant channels.

	 XSE (c, :, :) = yc · X (c, :, :)� (8) 

I-Softmax loss
In multi-class classification problems, the Softmax function is commonly employed in neural networks because 
of its capacity to produce class probabilities and its simple mathematical formulation. However, in some cases, the 
use of the Softmax function does not fully meet the requirements, especially in tasks where enhancing intra-class 
compactness and inter-class separability is crucial. To improve feature separability and optimize performance for 
transfer tasks, the authors propose introducing a new loss function, namely the I-Softmax loss28, as illustrated 
in Fig. 2. Compared to traditional methods, the I-Softmax approach offers a flexible decision margin, In this 
context, the decision margin indicates the distance between the two decision boundaries. This loss function is 
designed to learn more discriminative feature representations, thereby achieving better performance in complex 
classification problems. It is defined as follows:

Compared to traditional methods, the I-Softmax approach offers a flexible decision margin, 
context, the decision margin indicates the distance between the two decision boundaries. This loss function is 

designed to learn more discriminative feature representations, thereby achieving better performance in complex 
classification problems. It is defined as follows:

	

Ly =





− 1
n

n∑
i=1

log


 eF i(c)/y−x

eF i(c)/y−x+
∑
j ̸=c

eF i(j)


,F i(c)⟩0

− 1
n

n∑
i=1

log


 eyF i(c)−x

eyF i(c)−x+
∑
j ̸=c

eF i(j)


,F i(c)≤0

� (9)

In this context, F i  represents the feature vector produced by the feature extractor. The parameters F i (c) 
and F i (j) represent the cth element corresponding to the label index and other elements, correspondingly. 
n represents the quantity of feature vectors, x ≥ 0 and y ≥ 1 are hyperparameters that control the decision 
boundaries. When x = 0 and y = 1 , the I-Softmax loss is comparable to the conventional Softmax loss.

To further clarify I-Softmax, the authors define the vector produced by the I-Softmax function as K, and the 
corresponding label vector as Z. From this, the gradient calculation formula for the loss can be expressed in the 
following manner:

	
∇Θfe =

{
((Z−K)/y)T ∂F/∂Θfe,F i(c)⟩0
((Z−K)·y)T ∂F/∂Θfe,F i(c)≤0 � (10)

Integrated distribution alignment framework
Due to the significant levels of random noise present in the vibration signals of rotating machinery, the gathered 
data roughly adheres to a Gaussian distribution and primarily consists of two estimated parameters: the mean 
and the variance. To further enhance the discriminative power in this domain, the authors propose combining 
the CORAL method with JAN to create a unified metric, termed the Integrated Distribution Alignment 
Framework (IDAF (A, B)).

	 IDAF (A, B) = CORAL (A, B) + JAN (A, B)� (11) 

Based on the discussion in Sect. 2.2 and Eqs. (1) and (5), we can derive the loss function for the IDAF mechanism 
as follows:

	 lIDAF = lCORAL (Ds, Dt) + βJMMDlJMMD (Ds, Dt)� (12) 
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Additionally, note that βJMMD  is the coefficient used for measuring the distance with the JAN method. Finally, 
the gradient of the IJDA loss with respect to the network parameters can be computed via backpropagation and 
the chain rule, and is given by the following expression:

	
∇Θfe = ∂LIDAF

∂Θfe
= (∇LCORAL)T ∂F

∂Θfe
+ (∇LJAN )T ∂Φ (F )

∂Θfe
� (13)

 

Conditional adversarial domain adaptation
Although the traditional DANN model performs excellently in aligning the distributions of two domains, 
it has certain limitations in capturing complex multimodal structures and safely conditioning the domain 
discriminator. To address these issues, Zhang et al.20 proposed the CDAN model, which is designed for 
domain adaptation and aims to solve the problem of distribution mismatch between the source and target 
domains  P (Xs, Ys) ̸= Q (Xt, Yt). Its main innovation lies in the introduction of a conditional domain 
discriminator, which enhances domain adaptation capability by combining features with the predictions made 
by the classifier. To understand the structure of CDAN, the authors define the following: Initially, let Gf  denote 
the feature extractor characterized by parameters δf  , Gc represent the class predictor defined by parameters δc

, and Gd indicate the domain discriminator specified by parameters δd. Additionally, a multilinear mapping 
operator ⊗ is specified to represent the outer product of several random vectors. Therefore, the formula for the 
conditional adversarial loss function is as follows:

	

lCDAN (δf , θd) = −Exs
i

∈Ds log [Gd (Gf (xs
i ) ⊗ Gc (Gf (xs

i )))]

−Ext
i
∈Dt

log
[
1 − Gd

(
Gf

(
xt

i

)
⊗ Gc

(
Gf

(
xt

i

)))] � (14)
 

The entropy metricK(p) = −
∑

c−1
c=0pc log pc is utilized to assess the uncertainty in the predictions made by the 

classifier, where pc represents the probability of predicting label c. This entropy criterion effectively assesses the 
classifier’s confidence when making predictions across different labels. Additionally, an entropy-aware weighting 
function is introduced as follows:

	 w (K (p)) = 1 + e−K(p)� (15) 

This function associates the reweighting of samples with their corresponding entropy value K (p). Specifically, 
the higher the entropy value K (p), the smaller the weight w (K (p)), and vice versa. This indicates that samples 
with greater prediction uncertainty receive lower weights in the adjusted conditional adversarial loss function, 
thereby reducing their impact on the model training process. Consequently, the complete form of the conditional 
adversarial loss function under these conditions is as follows:

	

lCDAN+E (δf , δd) = −Exs
i

∈Ds w (K (ps
i )) × log [Gd (Gf (xs

i ) ⊗ Gc (Gf (xs
i )))]

−Ext
i
∈Dt

w
(
K

(
pt

i

))
× log
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1 − Gd

(
Gf

(
xt

i

)
⊗ Gc

(
Gf

(
xt

i

)))] � (16)
 

After incorporating the CDAN + E loss, the final loss is formulated as follows:

	 l (δf , δc, δd) = lc (δf , δc) − αCDAN+ElCDAN+E (δf , δd)� (17) 

Training loss of the proposed method
The proposed method integrates three key techniques described in Sect.  3.3, 3.4, and 3.5. In Sect.  3.3, the 
I-Softmax loss algorithm is introduced, which, compared to the original Softmax, offers a more flexible margin, 
achieving higher diagnostic accuracy and learning more separable features. Section 3.4 and 3.5 elaborate on two 
strategies: one utilizing mapping techniques and the other employing adversarial methods. While both strategies 
have demonstrated some effectiveness in transfer learning, they still face certain limitations. The objective of 
this study is to achieve significant advancements in fault diagnosis by integrating the two methods through 
algorithm fusion.

Furthermore, in the mapping technique, the authors propose an innovative strategy that combines the 
CORAL and JAN methods. This approach systematically evaluates distribution differences from both the mean 
and covariance dimensions, significantly reducing the distribution discrepancies between the source and target 
domains. Additionally, this new method assigns different weights to CORAL and JAN, where the weight for 
CORAL is a fixed value, while the weight for JAN is dynamically adjusted according to a specific formula. This 
weight allocation mechanism facilitates effective domain adaptation and ensures an improvement in diagnostic 
accuracy.

In the adversarial method, the authors introduce the CDAN method, which employs an adversarial learning 
framework by incorporating a discriminator to distinguish between source domain and target domain data. This 
process facilitates the fusion of features from both domains, thereby reducing the discrepancies between them. 
Additionally, the method proposes conditional reflection and entropy-conditioned reflection strategies, which 
enhance the model’s classifier performance and transferability, respectively.

The workflow of this experiment is as follows: First, the dataset is divided into source and target domains, 
where the source domain contains labeled data, and the target domain consists of unlabeled data. Then, CNN 
is used for feature extraction, followed by pre-training. During the pre-training phase, only the I-Softmax loss 
function is applied to the classification task. The model focuses on optimizing classification accuracy to ensure 
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the learning of separable features. Once the pre-training reaches a certain level of accuracy, the transfer learning 
process begins.

At the transfer training stage, when >, the model simultaneously performs Integrated Distribution Alignment 
and training with an entropy-conditioned variant of Conditional Domain-Adversarial Networks. Specifically, 
Integrated Distribution Alignment minimizes the distribution discrepancy between the source and target 
domains using the JAN and CORAL methods, while CDAN + E employs an adversarial learning framework to 
facilitate the fusion of features from both domains, thus reducing domain shifts and improving the performance 
on the target domain.

The entire training process utilizes a combined loss function, which includes I-Softmax loss, integrated 
distribution alignment loss, and domain adversarial loss. These loss functions are optimized through 
backpropagation to minimize the discrepancies between the source and target domains and improve the 
classification capability of the target domain. After transfer learning, the model’s performance is evaluated on 
the target domain to assess its diagnostic accuracy in the absence of labeled data. Ultimately, this approach 
effectively enables knowledge transfer between the source and target domains, significantly improving fault 
diagnosis accuracy. The flowchart of this process is shown in Fig. 3, and the overall training loss is defined as 
follows:

	

l = lc (δf , δc) + 1
4d2 ∥Cs − Ct∥2

F + βJMMD

∥∥∥ 1
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The simplified form of the above equation is:

	 l = lc + lIDAF − αCDAN+ElCDAN+E (δf , δd)� (19) 

Experimental validation
This study comprehensively evaluates the superior performance of a model that combines the I-Softmax loss 
algorithm, IDAF, and the domain-adversarial CDAN + E algorithm through experimental validation and 
ablation experiments on gear and bearing datasets, demonstrating the effectiveness of each module.

Dataset introduction
This study utilizes two main datasets: the Case Western Reserve University (CWRU) bearing dataset29 and the 
Northeast Forestry University (NEFU) gearing dataset, which are detailed as follows:

CWRU bearing dataset
The dataset from Case Western Reserve University, known as the CWRU dataset, is a well-established benchmark 
for diagnosing bearing faults. As depicted in Fig. 4, the experimental configuration comprises drive and loading 
motor, fan and drive end, a dynamometer, a torque sensor, and multiple test bearings. During the experiments, 
raw vibration data were captured for different fault conditions, including normal operation (NC), inner race 
faults (IF), ball faults (BF), and outer race faults (OF). The accelerometers recorded data at a sampling frequency 
of 48,000 Hz.

Data for each fault type, along with that from normal bearings, was gathered at four different speeds: 1772 
r/min, 1750 r/min, 1797 r/min, and 1730 r/min. Based on these speeds, four transfer learning conditions were 
defined: 1797 r/min is labeled as G1, 1772 r/min as G2, 1750 r/min as G3, and 1730 r/min as G4. For the 
experimental validation with the CWRU bearing dataset, six transfer scenarios were selected at random. The 
detailed parameters for each scenario are presented in Table 2.

NEFU gear dataset
The gear dataset from Northeast Forestry University includes six fault categories: gear peeling, gear wear, gear 
pitting, missing teeth, normal, and gear crack30. The data was collected at a sampling frequency of 10,000 Hz 
under four different load conditions: 0.5 A, 1.5 A, 2.5 A, and 3.5 A. For this study, data for a load of 3.5 A was 
chosen, with gear speeds set at 900 rpm, 1200 rpm, and 1500 rpm. Experiments were carried out under three 
operational conditions, leading to six transfer scenarios: H1 for 900 rpm, H2 for 1200 rpm, and H3 for 1500 rpm. 

Migration task Training set Test set Fault types Severities

G1→G2 1797r/min 1772r/min

G1→G4 1797r/min 1730r/min NC

G2→G4 1772r/min 1730r/min IF 0.007in

G3→G1 1750r/min 1797r/min BF 0.014in

G3→G2 1750r/min 1772r/min OF 0.021in

G4→G3 1730r/min 1750r/min

Table 2.  The description of the transfer path for rolling bearings.
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Using the NEFU gear dataset, six transfer states were established for experimental validation. Detailed parameters 
for these scenarios can be found in Table 3. Figure 5 illustrates the equipment used for data acquisition in the 
NEFU gear experiment, along with images of the various fault types.

Experimental parameter design
In this study, appropriate parameter settings were chosen for different datasets in the experimental design. For 
the four-class classification task on the CWRU Bearing Dataset and Jiangnan University Bearing Dataset, each 

Fig. 5.  NEFU experimental bench for data collection.

 

Migration task Training set Test set Fault types

H1→H2 900 rpm 1200 rpm
Gear peeling
Gear wear
Gear pitting
Missing teeth
Normal
Gear crack

H1→H3 900 rpm 1500 rpm

H2→H1 1200 rpm 900 rpm

H2→H3 1200 rpm 1500 rpm

H3→H2 1500 rpm 1200 rpm

H3→H1 1500 rpm 900 rpm

Table 3.  The description of the transfer path for gears.

 

Fig. 4.  The testing setup for the CWRU bearing datasets.
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class in both the source and target domains contained 1000 samples, resulting in a total of 4000 samples. For the 
six-class classification task on the NEFU Gear Dataset, the total number of samples was 6000. Considering the 
scarcity of fault samples in real-world applications, a sliding sampling technique was employed to increase the 
number of fault samples, ensuring that consecutive samples overlapped to capture more comprehensive features. 
Each sample consists of 2048 data points, with the raw vibration signals directly used as input to the model to 
minimize additional computational overhead.

During training, a batch size of 64 and 250 epochs were used, with an initial learning rate set to 0.000002, 
which was dynamically adjusted using the Step learning rate schedule with a decay factor of 0.1. Additionally, 
a weight decay of 1e − 5 was applied to prevent overfitting, and the parameters of the I-Softmax loss function 
were set to x = 16 and y = 3 to optimize the model’s classification performance. For the NEFU Gear Dataset, 
the learning rate was adjusted to 0.001 and the weight decay to 1e − 4, with the I-Softmax loss parameters set to 
x = 0 and y = 3. These carefully chosen and tuned parameters ensured effective knowledge transfer between 
the source and target domains and significantly enhanced the fault diagnosis accuracy across different tasks.

In addition, in transfer learning, the parameters of the adversarial network are consistently set to 
αCDAN+E = 1. The JAN parameter β varies according to the following formula with respect to the epochs to 
ensure training stability and prevent imbalance:

	
β = 2

1 + eϕ
− 1� (20)

 

	
ϕ = −10 ∗

(
epoch − 50

200

)
� (21)

 

Experimental design
Ablation study design
The authors created five experimental configurations to assess the effectiveness of each module within the model. 
These experiments showcase the best module selections and emphasize the innovative features of the proposed 
approach, especially in terms of network architecture design and loss function development. Specifically, the 
study conducted validation using the G3→G1 transfer scenario on the CWRU bearing dataset and the H3→H1 
transfer scenario on the NEFU gear dataset. These transfer scenarios were chosen due to their generally low 
accuracy rates across various methods, allowing for a clearer comparison of the strengths and weaknesses 
of different approaches. It should be noted that in the I-Softmax method, the “×” symbol does not indicate a 
complete absence of activation functions but rather signifies the replacement of I-Softmax with the traditional 
Softmax method. Tables 4 and 5 present the detailed experimental results and parameter configurations.

To better illustrate the superiority of the proposed method, the authors compared the accuracy, precision, 
recall, and F1 score results from each group of ablation experiments. The comparison is depicted in Fig. 6, with 
Figure (a) showing the results for the CWRU bearing dataset and Figure (b) presenting the results for the NEFU 
gear dataset. These figures clearly highlight the performance of various methods based on the evaluated metrics, 
further supporting the advantages of the proposed approach.

Comparative experimental design
To further confirm the effectiveness and advantages of the proposed IADTLN network, the authors conducted a 
comparison with ten established transfer learning methods. Note that these methods use traditional, unmodified 

Model Result

SE I-Softmax IDAF CDAN + E Accuracy

× √ √ √ 92.88%

√ × √ √ 94.33%

√ √ × √ 47.10%

√ √ √ × 83.03%

√ √ √ √ 96.12%

Table 5.  Ablation experiments on the NEFU dataset.

 

Model Result

SE I-Softmax IDAF CDAN + E Accuracy

× √ √ √ 88.69%

√ × √ √ 88.10%

√ √ × √ 82.14%

√ √ √ × 90.48%

√ √ √ √ 94.64%

Table 4.  Ablation experiments on the CWRU dataset.
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network architectures. These include Method 1, based on CORAL; Method 2, utilizing MK-MMD; Method 3, 
employing JMMD, all of which are prominent distance metric-based data analysis models; Method 4, based on 
DANN; Method 5, using CDAN; Method 6, incorporating CDAN + E, which represent data analysis models 
based on adversarial mechanisms; Method 7, a combined approach integrating JMMD and CDAN + E31; Method 
8, which uses DDTLN28; Method 9, the Adaptive Batch Normalization and Combined Optimization Method32; 
and Method 10, using VDR33.

To evaluate the diagnostic accuracy and robustness of the IADTLN framework, six cross-machine transfer 
tasks were conducted using both the CWRU bearing dataset and the NEFU gear dataset. To ensure reliability, 
each method was run five times for every transfer task. The average diagnostic accuracies for the eight methods 
are presented in Tables 6 and 7.

Experimental analysis
In the CWRU bearing dataset, as illustrated in Table  6, our proposed approach demonstrates superior 
performance in the most difficult transfer task, G3→G1, achieving an accuracy of 94.64%, which significantly 
surpasses other conventional transfer learning frameworks. Additionally, the accuracy rates for G1→G2, G1→G4, 
G2→G4, G3→G2, and G4→G3 all exceed 95%, indicating strong robustness of our method. Fig 0.7 presents 
the confusion matrix of our method, clearly illustrating the misclassification of each category in the tasks. 
Furthermore, Fig 0.8 presents a visual depiction of the classification outcomes using clustering plots.

To further evaluate the efficacy of the proposed method, the author carried out experiments on the more 
challenging NEFU gear dataset. As demonstrated in Table 7, our method attained the highest accuracy in all 
transfer tasks. Notably, in the H3→H1 task, other transfer methods exhibited significantly lower accuracy. Fig 
0.9 and Fig 0.10 display the confusion matrices and clustering plots, respectively, providing a clear depiction of 
our method’s classification performance across different tasks. Pre-training for the first 50 epochs was used as 
a baseline, even without employing any transfer learning methods, which still achieved some level of accuracy. 
However, as observed in Table 7, methods 1, 2, 5, and 6 experienced negative transfer in tasks H3→H1 and 

Task G1→G2 G1→G4 G2→G4 G3→G1 G3→G2 G4→G3

IADTLN 99.05% 99.21% 95.49% 94.64% 95.12% 96.01%

Method1 93.16% 84.25% 94.74% 78.28% 93.67% 89.74%

Method2 92.47% 94.85% 82.89% 87.13% 87.47% 93.42%

Method3 94.60% 95.14% 83.16% 78.97% 89.55% 90.23%

Method4 93.86% 80.84% 93.42% 89.31% 80.56% 91.05%

Method5 94.60% 93.34% 90.79% 85.86% 91.95% 92.89%

Method6 96.41% 95.14% 77.11% 81.24% 89.31% 91.84%

Method7 97.28% 95.28% 87.30% 89.91% 92.61% 89.33%

Method8 98.99% 97.12% 94.33% 91.67% 93.65% 94.88%

Method9 93.55% 92.11% 89.74% 88.62% 90.43% 88.56%

Method10 95.23% 94.77% 85.66% 87.99% 91.67% 93.77%

Table 6.  Comparative experiments on the CWRU dataset.

 

Fig. 6.  Bar charts of various methods in ablation experiments.
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H3→H2 (where the accuracy with transfer methods was lower than with the baseline pre-training), leading to 
extremely low experimental precision34. Therefore, our method demonstrates higher accuracy when faced with 
complex transfer tasks, fully reflecting its advantages and practicality.

Further experimental study
To further validate the effectiveness of the IADTLN model in cross-speed and cross-fault mode transfer learning, 
as well as to explore its adaptability across different datasets, this study conducts experiments using the Jiangnan 
University (JNU) bearing dataset. The dataset has a sampling frequency of 50,000 Hz and contains bearing fault 
signal data under various operating conditions. Two types of rolling bearings were selected for the experiment: 
N205 and NU205. The N205 bearing covers three fault conditions: normal, outer race defect (OF), and ball fault 
(BF), while the NU205 bearing focuses on inner race defects (IF). All fault data were generated using a wire-
cutting robot and collected under three different rotational speeds: 600 r/min, 800 r/min, and 1000 r/min.

Fig. 7.  Confusion matrices illustrating different transfer tasks in the CWRU dataset.

 

Task H1→H2 H1→H3 H2→H1 H2→H3 H3→H1 H3→H2

IADTLN 99.34% 98.44% 99.73% 99.39% 96.12% 97.46%

Method1 62.79% 91.24% 50.24% 62.81% 65.43% 38.62%

Method2 73.40% 70.16% 61.14% 65.43% 42.03% 54.50%

Method3 92.57% 94.07% 78.95% 92.34% 81.03% 83.07%

Method4 92.75% 69.96% 80.82% 93.42% 74.35% 72.87%

Method5 92.90% 90.98% 78.20% 96.33% 45.91% 75.10%

Method6 93.13% 61.07% 81.25% 79.83% 46.69% 84.60%

Method7 96.40% 61.92% 89.20% 96.69% 87.60% 92.99%

Method8 99.01% 98.22% 96.44% 97.85% 95.66% 96.13%

Method9 95.42% 87.21% 88.44% 85.43% 83.12% 89.56%

Method10 83.22% 90.14% 79.89% 82.13% 83.47% 78.69%

Table 7.  Comparative experiments on the NEFU dataset.
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The primary goal of this study is to investigate the transfer learning capability of the IADTLN model under 
different rotational speed conditions. To achieve this, six transfer learning tasks based on speed were designed, 
where 600 r/min, 800 r/min, and 1000 r/min are labeled as J1, J2, and J3, respectively. The transfer tasks include: 
J1 → J2, J1 → J3, J2 → J1, J2 → J3, J3 → J1, and J3 → J2. These tasks are designed to evaluate the cross-domain 
transfer learning performance of the IADTLN model under different rotational speeds.

Since the IADTLN model has already demonstrated clear advantages over traditional diagnostic methods in 
previous experiments, this study focuses only on comparing it with the latest models in the fault diagnosis field 
to highlight its superiority. The experimental results, as shown in Table 8, demonstrate that the IADTLN model 
consistently outperforms other diagnostic models, with an average diagnostic accuracy exceeding 96%. These 
results further confirm the strong generalization ability of the IADTLN model in cross-device fault diagnosis 
and provide additional evidence that its transfer learning capability across different speeds and fault modes is 
superior to other existing diagnostic models.

Conclusion
This study proposes a novel method that integrates SE attention mechanism, discriminative feature learning, and 
a combination of Integrated Distribution Alignment Framework and Conditional Domain Adversarial Network 
with Entropy losses. The SE attention mechanism is employed to perform channel-wise weighting on the 
extracted features, enhancing useful features while suppressing redundant ones, thus reducing the interference 
from irrelevant or noisy factors. Next, the I-Softmax loss function is applied to enhance the learning of more 
distinctive fault features, thereby increasing diagnostic accuracy. In terms of domain adaptation, the authors 
utilize joint feature mapping and adversarial networks, employing IDAF and CDAN + E losses to achieve domain 
alignment and reduce domain shift. The experimental findings indicate that this method yields substantial 
performance enhancements on both the bearing and gear datasets, confirming its effectiveness and robustness.

Despite the reliance on vibration signal data in this study, which poses certain limitations, future efforts will 
concentrate on combining various types of sensor data, including vibration, sound, and temperature, to achieve 
more comprehensive and accurate fault diagnosis. Future research will explore how to effectively fuse multimodal 
data and leverage their interrelationships to further improve fault detection and diagnostic capabilities.

Fig. 8.  Clustering charts for transfer task within the CWRU dataset.
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Fig. 9.  Confusion matrices of various transfer tasks in the NEFU dataset.
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Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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