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Wildfires play a pivotal role in environmental processes and the sustainable development of 
ecosystems. Timely responses can significantly reduce the damages and consequences caused by 
their spread. Several critical issues in wildfire behavior analysis include fire occurrence forecasting, 
early detection, and spread prediction. In this study, we focus on wildfire occurrence forecasting, 
which is a valuable tool for facilitating earlier intervention. Conventional approaches primarily rely 
on the computation of fire indices based on weather conditions. However, solutions that utilize 
more comprehensive environmental data, remote sensing information, and artificial intelligence 
(AI) algorithms may offer substantial advantages for rapid decision-making and extensive territory 
monitoring. The wide variety of spatial environmental parameters and the great diversity of 
geographical regions that influence wildfire occurrence complicate this task. Consequently, there is 
no unified approach for predicting wildfire occurrences using remote sensing data and AI techniques. 
The goal of this study is to explore the potential of predicting wildfire occurrences using various 
available environmental parameters - meteorological, geo-spatial, and anthropogenic - and machine 
learning (ML) algorithms. We developed a unified pipeline for data acquisition and subsequent 
ML-based algorithm development. The comprehensive analysis includes the following algorithms: 
Random Forest, XGBoost, Autoencoder, ConvLSTM, Attention Multilayer Perceptron, and RegNetX. 
In addition, we explore several metrics to assess the quality of developed models in case of highly 
imbalanced spatio-temporal data. To conduct the study, we collected a unique dataset covering several 
large regions in central Russia, incorporating more than 17,000 verified wildfire events over a period 
of 10 years. The findings underscore the necessity of developing individual ML models tailored to each 
region, taking into account the specific environmental features correlated with the probability of 
fire occurrence. The quality of the achieved models, as measured by F1-score, varies from 0.7 to 0.87 
depending on the region, demonstrating the potential of integrating such algorithms into emergency 
response systems.
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In recent years, artificial intelligence (AI) algorithms have become a valuable tool in environmental studies, such 
as ecological condition assessments and forecasting natural hazards or analyzing damage1,2. The task of wildfire 
prevention is one of the important areas for the application of advanced algorithms, as it aims to minimize risks, 
save lives, and preserve natural resources. This task can be broadly categorized into two main groups: wildfire 
detection and prediction3. Detection involves identifying the location and characteristics of fires using data from 
various sources, such as satellites4,5, drones6,7, and other observational tools8,9. Prediction tasks, on the other 
hand, focus on estimating the likelihood of fire occurrence based on indirect indicators, or on forecasting the 
future spread10–13 and potential destructiveness of a fire14,15 after it has been detected.

In this work, we focus specifically on the challenge of predicting wildfire occurrence over multiple consecutive 
days. By providing predictions several days in advance, our goal is to enhance early warning systems and support 
proactive fire management strategies.

Traditionally, fire danger prediction has relied on standardized Fire Danger Rating Systems (FDRS)16, 
implemented at state or national levels. Examples include the Canadian (CFFDRS)17 and Australian (AFDRS)18 
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Forest Fire Danger Rating Systems, as well as the European Forest Fire Information System (EFFIS)19. These 
systems typically employ indices like the Fire Weather Index (FWI)20, Nesterov index21 and others for fire 
risk assessments. Specified indices, calculated from meteorological variables such as temperature, humidity, 
wind speed, and precipitation, have long served as key tools for evaluating wildfire risk by correlating weather 
conditions with fire likelihood.

While effective, these traditional methods are limited by their focus on a narrow set of meteorological inputs, 
often overlooking critical factors like vegetation conditions and human activities. As our understanding of 
wildfire dynamics has evolved, there is growing recognition of the need for more advanced prediction tools that 
incorporate a broader range of data.

This is where machine learning (ML) becomes highly relevant. ML is a field of study of artificial intelligence 
(AI) that focuses on creating systems that learn and evolve based on the data they receive. In the case of the 
task of daily fire prediction, the data includes both spatial characteristics of the study areas (such as relief and 
proximity to the sea) and temporal characteristics (such as average daily temperature and wind speed). Many 
existing works use fire data collected over many years to train an ML model22. Most often, the data is in the form 
of tabular data containing the date of the burning, the geographic location of the fire, the cause of the burning, 
and sometimes the resulting damage.

Supervised ML-models based on decision trees, the so-called tree-based models23 showed high efficiency 
in the task of fire prediction. Works24–26 use Random Forest (RF) algorithm to assess fire hazard in California. 
The authors use historical data to predict the overall probability of wildfires to produce a map of fire-prone 
regions. While these studies do not specifically address the problem of daily fire prediction, their fire probability 
maps can still be instrumental in daily monitoring of target regions. In article27, the authors also solved the fire 
mapping problem using methods based on decision trees: XGBoost (XG) and RF, respectively, using data from 
around the world for training. In this work, the XGBoost method showed superiority over RF.

In study28, the authors consider the fire prediction problem as a one-class or two-class classification 
problem. In a one-class scenario, the model is trained on positive examples (fire events) to define a decision 
boundary that distinguishes inliers (fires) from outliers (non-fire events) based on a probability threshold. The 
key challenge in this approach is selecting an accurate threshold. In contrast, two-class classification involves 
training the model on both fire and non-fire events, allowing it to directly differentiate between the two classes. 
Their findings suggest that one-class models29, such as One-class SVM (OCSVM), Isolation Forest (IF), and 
DeepSVDD, outperform two-class models (RF, Logistic Regression (LR), SVM) in the task of predicting fires 
in California regions. Another approach to supervised learning is demonstrated in works30,31. Both works use 
genetic algorithms to select the most appropriate function for aggregating input features to obtain an estimate of 
the probability of fire occurrence.

Recently, deep learning (DL) has emerged as a powerful subset of ML, particularly effective in handling the 
high dimensionality and complexity of wildfire prediction tasks. Deep learning is a subset of machine learning 
that uses artificial neural networks (NN) with multiple layers to learn representations of the input data32. A 
big breakthrough for DL methods was the backpropagation method33 for training, which, together with the 
increasing availability of computing power, made DL methods extremely popular.

Multilayer perceptron (MLP) is one of the modern feedforward NN, consisting of fully connected neurons 
with a nonlinear kind of activation function. MLPs have found wide application in the task of fire forecasting, 
outperforming traditional machine learning methods in prediction quality34,35.

As a result of the study36, the advantage of convolutional neural network (CNN) models over both the 
MLP approach and traditional ML methods was shown. The authors developed a convolutional network called 
AllConvNet to build daily maps of how likely wildfires will occur over the next seven days. Historical data from 
the Australia region was used to train and test the NN model.

Another alternative to classical ML algorithms and DL algorithms in environmental studies is Convolutional 
Long Short-Term Memory (ConvLSTM)37, developed in 2015. It is a special CNN for processing time series 
of images. The architecture of this convolutional neural network is based on the Long Short-Term Memory 
mechanism and was originally proposed for weather forecasting. The authors of38 used ConvLSTM for daily fire 
forecasting and showed that this architecture makes better predictions than a baseline CNN model for the task 
under consideration.

The most existing models are designed to predict fire danger across broad regions, focusing on identifying 
areas with elevated risk rather than specific fire occurrences. Such predictions, often based on fire danger indices, 
lack the precision required to pinpoint localized areas at risk. For effective application use, daily fire forecasting 
systems must predict a more or less accurate location of the fire source in the near future, which is fundamentally 
different from most fire probability mapping tasks.

Among the works known to us, only a few research teams solve the problem of prediction on a Cartesian grid, 
convenient for use in automatic fire monitoring systems. Predicting on a fixed grid allows for consistent spatial 
resolution, better integration with geospatial data, and more efficient resource allocation for fire management. 
In39, authors handle the problem of next day fire prediction using dataset comprises a geographic grid of 
high granularity (each cell being 500m wide) covering the whole Greek territory. The study demonstrates the 
superiority of the MLP approach over some classical approaches (RF, XG, LR), but also highlights that for the 
grid prediction task, CNN40 approaches are likely to be effective.

Besides the various AI algorithms that can be implemented for wildfire forecasting, optimal data source 
selection is a key component for advanced GIS development capable of real-time performance. Often, the data 
for different environmental parameters vary in their spatio-temporal properties. Therefore, the general pipeline 
for effective solution creation should involve data selection, processing, and fusion. Relevant environmental 
features that can affect wildfire occurrence should be discussed in detail.
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In this study, we explore the task of wildfire prediction over a 5-day period using openly available 
environmental data. Although there are existing works on wildfire prediction, they typically focus on a single type 
of AI algorithm, such as classical ML algorithms, deep learning (DL) algorithms, or anomaly detection models. 
Moreover, these studies usually involve a small territory with relatively uniform environmental conditions, 
which does not allow for a comprehensive assessment of the capabilities of the chosen algorithms. To address 
this challenge, we evaluate the most relevant AI algorithms that can be adapted to the problem at hand and 
propose a pipeline for data collection and fusion for AI algorithm training. Our study includes experiments with 
Random Forest, XGBoost, Autoencoder, ConvLSTM, Attention Multilayer Perceptron, and RegNetX models. 
These algorithms represent our problem statement by leveraging either tabular or image data. In addition to data 
fusion and model development, we investigate the topic of fair and representative model quality assessment in 
the context of highly imbalanced spatio-temporal data on wildfire occurrences under natural conditions. For 
a comprehensive study involving varying environmental conditions, we collected a dataset comprising more 
than 17,000 wildfires across four large regions of Russia over a span of 10 years. Overall, the goal of this study 
is to shed more light on the challenging task of natural hazard forecasting in the absence of a currently unified 
pipeline and to emphasize the wide range of geo-spatial parameters that should be considered and analyzed in 
depth. The main contributions are the following:

•	 We proposed a methodology of environmental data collection and processing for wildfire occurrence predic-
tion based on openly-available and regularly updated data sources;

•	 We developed and adapted several scenarios of various ML algorithms application for wildfire prediction;
•	 We proposed and compared various metrics and sampling techniques for comprehensive analysis of the de-

veloped algorithms;
•	 We conducted detailed feature analysis for deeper understanding of model behavior in various environmental 

conditions.

The general workflow of this paper is structured to systematically address the challenge of wildfire occurrence 
prediction through a series of well-defined steps, each corresponding to a specific chapter. In the Methodology 
and data chapter, we describe the collection and preprocessing of a comprehensive dataset, including 
meteorological, geo-spatial, and anthropogenic features, as well as the clustering of fire events and balanced 
sampling to handle class imbalance. The Algorithms chapter focuses on the development and adaptation of 
various machine learning models, including classical methods such as Random Forest and XGBoost, deep 
learning approaches such as ConvLSTM and RegNetX, and anomaly detection techniques like Autoencoder, 
tailored for region-specific fire prediction. In the Results chapter, we evaluate the performance of these models 
using a range of metrics, including F1-score and custom balanced metrics, and provide visualizations of predicted 
fire probabilities to assess spatial accuracy. Finally, the Discussion chapter analyzes the importance of different 
features across regions, explores the distribution of meteorological data relative to fire events, and discusses the 
implications of our findings for future wildfire prediction systems.

Methodology and data
Problem statement
The goal of daily fire forecasting is to use previously observed data sequences to predict a fire occurrence in a 
local region. Suppose we are observing a dynamic system in a spatial domain represented by a set of points {x} 
where the observation is carried out. Each point contains measurements in its surroundings that change or do 
not change over time (temporal or non-temporal parameters), these could be some weather measurements, 
landscape shape parameters, human population density statistics, vegetation indexes, and many other factors. 
An observation in region x on day t can be represented by a feature tensor ϕt(x). If we periodically record 
observations, we obtain a sequence of tensors {ϕt−J+1, ϕt−J+2, . . . , ϕt}. Thus, the spatio-temporal fires 
forecasting problem is to predict the most likely k-length sequence in the future given the previous J observations:

	
f̃t+1(x), . . . , f̃t+k(x) = arg max

ft+1(x),...,ft+K (x)
p (ft+1(x), . . . , ft+K(x) | ϕt−J+1(x), ϕt−J+2(x), . . . , ϕt(x))� (1)

where k is the number of future days for which you need to make a prediction about fire, J is the number of 
previous days used to generate the prediction, and

	 ft(x) =
{ 0, if there is no fire in (x) at day t

1, otherwise is a function of prediction for future days whether a fire will or will not occur;

Often the function ft(x) is replaced by the function of predicting the probability of a fire occurring in a particular 
area. The daily fire forecasting problem naturally becomes a spatiotemporal sequence forecasting problem. One 
of the boundary cases of fire prediction is a prediction only for the next day, then k = 1. Another boundary case 
is a prediction based not on a sequence of days, but only on one day (J = 1) or data aggregated over several 
previous days.

In our study, instead of focusing on predicting daily fire occurrences for each of the following k days, we 
aim to forecast the probability of a fire occurring within any of the next K days. We consider a length of 5 days 
(K = 5) because it is a suitable forecasting horizon from a practical standpoint and allows the model to handle 
the uncertainty of fire occurrence events. By predicting the probability over this 5-day period, it is possible to 
localize areas prone to wildfire occurrence due to environmental conditions. Firefighters can then take measures 
to prevent or minimize such risks. This approach simplifies the temporal forecasting problem into a single 
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probabilistic prediction, capturing the likelihood of fire occurrence over a given future time window, rather than 
specific daily outcomes.

Formally, our goal is to find the binary function that most likely describes the occurrence of a fire at location 
x within the time interval [t + 1, t + K], given the sequence of past observations:

	

f̃[t+1:t+K](x) = arg max∪t+K

τ=t+1
{fτ (x)}

p

(
t+K∪

τ=t+1

{fτ (x)} | ϕt−J+1(x), ϕt−J+2(x), . . . , ϕt(x)

)
� (2)

Here, the function f̃t+1:t+K(x) represents the most probable binary outcome (whether a fire will or will not 
occur) in the region x within the next K days, based on the observed data sequence up to time t. In the case of 
predicting probabilities, (2) turns into (3):

	
p̃[t+1:t+N ](x) = max

F (x,K)
p (F (x, K) | ϕt−J+1(x), ϕt−J+2(x), . . . , ϕt(x))� (3)

where F (x, K) replaces the union of functions in the previous expression and describes the probability of at 
least one fire occurring in the next N days.

Obviously, (2) is completely the same as statement (1) in the case where K = 1, but when K >=2, statement 
(2) has a different meaning. It is worth noting that from the set of values of ft(x) we can obtain F(x, K), but the 
opposite is impossible in general. However, this probabilistic approach still allows for a flexible and aggregated 
assessment of fire risk, which is particularly useful for operational decision-making and resource allocation in 
fire management.

Study area
The research area covers 4 administrative regions (oblast) of the Russian Federation: Amur, Irkutsk, Rostov, and 
Sverdlovsk, as shown in Fig. 1.

Amur Oblast is located on the banks of the Amur and Zeya rivers in the Russian Far East. It has two 
different climates and is dominated by monsoon-influenced subarctic climate41. The region has a population of 
approximately 750 00042 and covers a total area of 361 900 km243. Average temperatures in January range from 
− 23.5to− 21.8◦C, while July temperatures are from +21.2 ◦C to +18 ◦C. The average annual precipitation is 
around 674 millimeters41.

Irkutsk Oblast, located in southeastern Siberia in the basins of the Angara, Lena, and Nizhnyaya Tunguska 
Rivers, characterized by subarctic climate. The population is about 2 330 00042, and its total area is 774 800 km243. 
The average temperatures in January vary from − 20.6to− 19.6◦C, and in July from +18.1 ◦C to +20 ◦C. The 
Average annual precipitation is approximately 452 millimeters44.

Fig. 1.  Study area comprises 4 regions from left to right: Rostov Oblast, Sverdlovsk Oblast, Irkutsk Oblast, 
Amur Oblast. The figure is created by the authors using QGIS v.3.22 software (https://qgis.org/en/site/), Yandex 
Satellite composite derived from QGIS plugin QuickMapServices (http://qms.nextgis.com) is chosen for 
visualization.
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Rostov oblast is situated in the Pontic-Caspian steppe, directly north over the North Caucasus and west of the 
Yergeni hills. It has a population of 4,150,00042 and an area of 101 000 km243. Region has a hot humid continental 
climate. Average January temperatures range from − 3.5to− 1.9◦C, and in July temperatures vary from +24.2 
◦C to +24.9 ◦C. The average annual precipitation is about 460 millimeters45.

Sverdlovsk Oblast, located in the eastern slopes of the Middle and North Urals and the Western Siberian 
Plain, has a population of 4 230 00042 and total area of about 194 300 km243. This region is dominated by a 
moderately continental climate. The average January temperatures vary from − 14.7to− 14.3◦C, and July 
temperatures range from +17.9 ◦C to +19.2 ◦C. The average annual precipitation is about 601 millimeters46.

The Fig. 2 displays the distribution of ignition points across described regions. The number of ignition points 
varies significantly. Irkutsk has the highest number of ignition points, with 55,189, followed by Amur with 
40,770. Rostov and Sverdlovsk have considerably fewer ignition points, with 4991 and 3010, respectively. The 
data confirm that large regions of Eastern Siberia are highly susceptible to forest fires.

Reference data
Fire points are thermal anomalies identified by the results of satellite imagery after thematic processing. The 
thermal cause may be the burning of garbage, a man-made process, or forest wildfire. In total, 105 thousand fire 
points manually verified as a category of forest wildfires were considered in 4 selected regions for 2012–2022. 
They are uniquely described by coordinates and date. In order to work with fire events, it is necessary to define 
for each fire point which fire it belongs to. For this purpose, clustering on spatial and temporal axes is used. The 
clustering process is described in detail in ‘Data preprocessing’ section of this article.

Remote sensing and geospatial data
In this study, we collected dataset involving 14 environmental variables such as topography, population, remotely 
sensed, and climatic data from March 1st to October 31st for 2012–2022 years.

A topography-related variables, such as elevation, aspect and slope, have effect on local climate and vegetation 
types, amount and intensity of solar radiation received by a given location, human accessibility47,48. Elevation 
data was retrieved from the Copernicus GLO-90 Digital Elevation Model49 with 90 m spatial resolution. Aspect 
and slope variables were derived through processing techniques applied to the elevation data, with a detailed 
explanation available in ’Data preprocessing’ section of this article.

Higher population densities significantly impact fire occurrence48,50,51, as they are often associated with 
increased human activity in residential, infrastructural, and recreational zones. Common activities such as 
campfires, outdoor burning, discarded cigarettes, and equipment use, can act as ignition sources for wildfires. 
We obtained population density data from the WorldPop dataset52 with a spatial resolution of 30 arc-seconds 
(approximately 1 km at the equator).

The remote sensing variables selected for fire occurrence prediction were collected using the Application 
for Extracting and Exploring Analysis Ready Samples53 and included the following products in 500 m spatial 
resolution: 

	1.	 Land cover from MCD12Q1 v06154 dataset. Different land cover types provide varying amounts and types of 
fuel for wildfires. For example, dense forests typically have abundant vegetation that can serve as fuel for fires, 
while grasslands may have shorter, more easily ignitable vegetation. Land cover classifications also provide 
insights into human land use and development patterns, which can influence fire occurrence. Urban and 
developed areas may have reduced vegetation cover and fuel availability compared to natural or rural areas. 
However, human activities in urban and peri-urban areas, such as construction, vehicle use, and outdoor 
recreation, can still pose fire risks.

Fig. 2.  Distribution of ignition points by regions of study area.
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	2.	 Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) from MOD13A1 
v06155 dataset. NDVI and EVI are both widely used remote sensing indices that provide valuable informa-
tion about vegetation health and density. Higher NDVI and EVI values typically indicate denser vegetation, 
which can serve as fuel for wildfires56.

	3.	 Evapotranspiration (ET) and Potential ET (PET) from MOD16A2GF v06157 dataset. ET measures the 
amount of water transpired by plants and evaporated from the soil surface. Low ET values indicate drier con-
ditions, potentially leading to increased vegetation stress and higher fire risk. PET represents the maximum 
amount of water that could be evaporated from the soil and transpired by vegetation under prevailing envi-
ronmental conditions. PET influences vegetation moisture stress, with higher PET values indicating greater 
water demand and potential vegetation desiccation.

	4.	 Fraction of Photosynthetically Active Radiation (FPAR) and Leaf Area Index (LAI) from MOD15A2H 
v06158 dataset. FPAR quantifies the fraction of incoming solar radiation absorbed by vegetation canopy59. 
High FPAR values indicate active vegetation growth and biomass accumulation, which can contribute to 
increased fuel loads and fire risk56. LAI measures the total area of leaves per unit ground surface area60. High 
LAI values suggest dense vegetation cover and greater fuel continuity.

Meteorological conditions, such as temperature, wind speed, and precipitation, are widely recognized as key 
determinants of forest fire occurrence47. 6 climate-related variables – air and dewpoint temperature at 2 m above 
the surface, 10m u-component and v-component of wind and total precipitation – were retrieved from ERA5-
Land dataset at The Climate Data Store61. The spatial resolution of the obtained variables was 0.1 degree with a 
3 hour temporal resolution starting from 00:00 UTC.

Table 1 provides a summary of the initial data characteristics, prior to undergoing any preprocessing 
procedures.

In addition to the aforementioned attributes, we incorporated two additional variables: the day number of 
the year and the geographical coordinates (latitude and longitude) of the forecast area. Including the day number 
helps capture seasonal variations, as the likelihood of fire occurrence is often closely tied to specific times of 
the year due to factors like vegetation cycles, temperature changes, and periods of drought. The geographical 
coordinates allow the model to account for the spatial heterogeneity of fire risks. By explicitly introducing these 
features, we aim to better capture the dependencies between fire probability, seasonal timing, and location, thus 
enhancing the model’s ability to generalize across different regions and time periods.

The selected set of features represents a widely accepted combination for wildfire prediction22,27,36,38. 
Topographic variables are inherently independent of other features, as they describe static terrain characteristics. 
Population density is a key indicator of human activity, separate from other physical environmental variables. 
Meteorological variables are the main source of information for capturing dynamic environmental conditions 
that are critical for predicting wildfire occurrence. While land cover may correlate with vegetation indices, the 
latter provide essential information about current vegetation state, which directly influences fuel availability. 
FPAR and LAI have a known relationship with NDVI and EVI, but they offer complementary insights into 
photosynthetic activity and vegetation structure. Potential correlations between ET, PET, and total precipitation 
reflect their shared dependence on moisture availability. Notably, ET and PET, derived from satellite data, 
complement meteorological variables by providing insights into soil moisture and drought stress, key indicators 
of fire-prone conditions. Selected set of features provide sufficient coverage of the essential static and dynamic 
drivers of wildfire occurrence. Although further optimization may be explored, the current feature set avoids 
significant redundancy that could impact model performance while maintaining interpretability and predictive 
reliability.

Variable
Spatial 
resolution Temporal resolution

Scale 
factor

Valid 
range

Fill 
value Units

Elevation 90 m Single composite representing data collected between 1 January 2011 
and 1 July 2015 1 NA NA m

Population density 30 arc-seconds Yearly from 2000 to 2020 1 NA -99999 people/km2

Land cover 500 m Yearly from 1 January 2001 to 31 December 2022 1 [1, 17] 255 Classes

EVI, NDVI 500 m Composite from the 16 day period (best pixel value) from 18 February 
2000 to present 0.0001 [− 2000, 

10000] − 3000 Dimensionless

FPAR, LAI 500 m Composite from the 8 day period (best pixel value) from 18 February 
2000 to present

0.01 for 
FPAR, 0.1 
for LAI

[0, 100] [249, 
255] Dimensionless

ET, PET 500 m Composite from the 8 day period (sum) from 1 January 2000 to present 0.1 [− 32767, 
32700]

[32761, 
32767] kg/m2/8d

2m dewpoint and air 
temperature 0.1 degree Hourly from 1950 to present 1 NA NA K

10m u- and v-component 
of wind 0.1 degree Hourly from 1950 to present 1 NA NA m/s

Total precipitation 0.1 degree Hourly from 1950 to present 1 NA NA m

Table 1.  Characteristics of openly available data.
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Data preprocessing
For all collected data, series of preprocessing steps were implemented to ensure consistency in spatial extent 
and resolution. Initially, the data were cropped to the region boundaries delineated in the section ’Study area’, 
ensuring that only relevant geographic areas were retained for analysis. Subsequently, we standardized the spatial 
resolution of the datasets to 0.0059435 degree per pixel (approximately 650 meters). To achieve both of these 
preprocessing steps, we utilized the gdal.Warp function of Python osgeo library62 with the bilinear resampling 
algorithm.

Furthermore, for remote sensing data, an additional preprocessing step involved scaling the data by a 
specified factor and assigning a fill value to all values falling outside a valid range. Scale factors, valid ranges, and 
fill values are specified in the Table 1.

In the case of elevation data, specific processing methods were applied to derive additional topographic 
variables. We utilized the osgeo.gdal.DEMProcessing function to compute both aspect and slope from the 
elevation. The ’aspect’ mode with the ’zeroForFlat’ attribute set to True was utilized to calculate aspect. Similarly, 
the ’slope’ mode with ’slopeFormat’ parameter set to ’degree’, ’scale’ parameter set to 111120 (used for calculations 
in meters), and ’computeEdges’ set to True, was employed to compute slope values.

Weather data preprocessing included, in addition to the steps described above (cropping, converting to a 
single resolution), also aggregation of meteorological attributes values for the day and calculation of the Nesterov 
index. The aggregation methods differed depending on the meteorological attribute: precipitation - summation, 
temperature - mean and maximum, for the other attributes the mean value was calculated. The following formula 
was used to calculate the Nesterov index:

	
NIi = NIi−1 ∗ KP

i + ti ∗ (ti − tD
i ), KP

i =
{ 1, if precipitation was less than 3mm

0, otherwise

where NIi is Nesterov index value for i-th day, KP
i  is coefficient of precipitation corrections on i-th day, ti is 

max temperature on i-th day and tD
i  is mean dew point temperature on i-th day.

Figure 3 presents preprocessed population density, elevation, slope, aspect, and land cover data for the year 
2020 within a sample area of the Irkutsk Region. Figure 4 represents preprocessed remote sensing data, and 
Fig. 5 depicts weather data for the same sample on 11 July 2020.

We chose minimax normalization as one of the stages of data preprocessing. For the entire available data 
volume, 0.001 and 0.999 quantiles were calculated for each feature for subsequent minimax normalization.

The total number of collected features for each fire is 56. The list of all features are the following: 

	1.	 Topography features: elevation, aspect and slope;
	2.	 Weather features: 6 daily measurements (e.g., temperature, total precipitation) collected for each of the 7 days 

leading up to the fire;
	3.	 MODIS features: Land cover, EVI/NDVI, FPAR/LAI, ET/PET;
	4.	 Population density feature;
	5.	 Additional features: day number of the year and coordinates (latitude, longitude).

Fire points preprocessing
Initially, we only had data on verified fire points, where each fire point is characterised by coordinates and date. 
However, several fire points can belong to the same fire event. Clustering along the spatial and temporal axes is 
required to partition fire points into independent fire events. A static 0.2-degree grid is used to cluster the fire 
points in space, which is defined for each study region. In the next step, we assign fire points to the same fire in 
case they lie in the same cell and the time difference does not exceed 6 days. In this way, we break down all fire 
points into independent fire events. The clustered ignition points for the sequence of days are shown in Fig. 6.

After clustering, the number of fires and ignition points for each region is as follows: Amur - 7042 fires from 
40,770 points, Irkutsk - 7733 fires from 55,189 points, Rostov - 2664 fires from 4,991 points, and Sverdlovsk - 
1139 fires from 3010 points. In some regions, such as Amur, a single fire corresponds to an average of 5.8 ignition 
points, while in others, like Rostov, the ratio is much lower, with approximately 1.9 ignition points per fire. This 
discrepancy may be related to the duration of fires, as longer-lasting fires tend to generate more ignition points. 
The total number of fires is approximately 17 thousands.

Sampling
We call one sample a data set (weather data, population data, vegetation indices, etc.) for one 0.2 × 0.2 degree 
cell (similar to the grid used in Fire points preprocessing) for a given day. Fire samples are examples in which 
there was a fire in the selected cell on the corresponding day. Accordingly, non-fire samples are examples where 
there was no fire in the selected cell on the corresponding day. To form a set of fire samples, we used clustered fire 
points data (see the Fire points preprocessing section). To form a set of non-fire samples, we used the following 
algorithm for each cell of the selected area: 

	1.	 Formation of all potential samples. For each cell, we form samples for each day of the given time interval. At 
this stage, the number of potential samples is equal to Ncells ∗ Ndays, where Ncells is the number of grid 
cells in the selected area, Ndays is the number of days in the specified time interval.

	2.	 Removing samples with possible fires. We remove samples with potential fires from the generated set. To do 
this, we use data on fire points: for each fire point, we find a cell, and for this cell, we remove the sample for 
the date the fire was observed, as well as samples for the week ahead and the week before (see Fig. 7).

Scientific Reports |        (2025) 15:10712 7| https://doi.org/10.1038/s41598-025-94002-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	3.	 Random sampling. From the obtained set of samples, we randomly select the required number of samples. To 
address potential seasonal overfitting and maintain a balanced representation of samples with and without 
fire, we increased the likelihood of selecting samples from months with a large number of fires. Additionally, 
to mitigate spatial overfitting, we imposed a limit on the number of samples taken from the same location. 
We also used data augmentation techniques, such as rotation and elastic transformations63, to further en-
hance the diversity of our sample set.

Data mining
The largest of the regions considered is Irkutsk Region. For this region, unloading and preprocessing all the 
features in 10 years is an extremely computationally expensive task, and also requires huge storage volumes. It 
was decided to unload the subdomain of this region, which contains at least 70% of fires in 2012-2021. Thus, 
we can speed up preprocessing several times and reduce the memory required for storage, sacrificing a small 
number of fires. Figure 8 demonstrates the subdomain found that contains at least 70% of the fires for Irkutsk 
Region.

Datasets
We collected datasets on wildfires from 2012 to 2022 for each studied region. Alongside wildfire samples, the 
datasets include numerous cases of non-fire samples (see the Sampling section). We aimed to preserve the 
natural class imbalance inherent to the task, while avoiding excessive imbalance. Wildfire data from the same 
year was restricted to a single subset (training, validation, or test) to prevent target leakage. Table 2 provides a 
detailed breakdown of dataset distribution across regions and subsets. To enhance model training, we employed 
augmentation techniques, allowing us to expand the number of examples in the training set. As a result, the final 
distribution of samples in the training set may differ from the original dataset.

Algorithms
For the prediction problem, we applied and compared three types of ML approaches: classical ML algorithms for 
tabular data processing, DL algorithms for image data processing, and anomaly detection methods. The selection 
of models was guided by the specificity of the data and the requirements of the task. Classical ML algorithms 

Fig. 3.  Preprocessed population density, elevation, slope, aspect, and land cover data for the year 2020 within 
a sample area of the Irkutsk Region. The map in the upper left corner was generated with the QGIS v.3.22 
software (https://qgis.org/en/site/) and RGB satellite composite from Google Maps layers available in QGIS.
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were included for their proven effectiveness in handling heterogeneous features64,65. DL models were selected 
to evaluate their ability to capture both spatial and temporal dependencies. As a robust baseline, we chose 
RegNetX66, an efficient convolutional neural network known for its strong performance in tasks that involve 
image recognition. Futhermore, we tested ConvLSTM, a state-of-the-art model for predicting spatio-temporal 
features, especially in the context of natural phenomena forecasting37,67–69. Alongside these established models, 
we introduce and validate AMLP (Attention MLP), which enhances the ability of standard MLPs to process 
complex data structures, drawing inspiration from transformer-based architectures70, which has demonstrated 
exceptional performance in various time-series forecasting tasks. Anomaly detection algorithms, including MLP 
Autoencoder, were also explored to identify fire occurrences by modeling deviations from normal patterns. 
These diverse approaches allowed us to assess the strengths and limitations of various techniques for wildfire 
prediction. 

	1.	 Classical ML algorithms

	Random forest (RF)64 is one of the most popular algorithms used to predict fires. RF is an ensemble ML tech-
nique used for both classification and regression analysis. It applies both the technique of bagging which is 
a method of generating a new dataset from an existing dataset and a decision tree concept. We used an RF 
implementation from an open source python library scikit-learn71. To find the best estimator, we also varied 
the IF nestimators parameter from 50 to 500.

	XGBoost (XG), Gradient Boosting Decision Trees (GBDT),65 is a decision tree ensemble learning algorithm 
similar to RF, for classification and regression. The process of additively generating weak models is formalized 
as a gradient descent algorithm over an objective function. We trained XG similarly to RF. We used an open 
source XG implementation72;

	2.	 DL algorithms

	RegNetX. The RegNetX design is straightforward, it consists of a simple stem - initial convolutional layers 
(stride-2, 3 × 3 conv. with w0 = 32 output channels), followed by the network body that performs the bulk 

Fig. 4.  Preprocessed remote sensing data within the sample area of the Irkutsk Region for 11 July 2020.
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of the computation, and a final network head. The network’s body is organized into stages, where each stage 
might operate at a different resolution and feature depth. Every stage is composed of building blocks that fol-
low a standardized design, the blocks contain common layers: (grouped) convolution, batch normalization, 
ReLU activation and skip connections (see Fig. 9). We used original implementation of RegNetX_002 
backbone without pretraining66. The last stage of the network has been trimmed to make the architecture 
lighter, thus it was possible to reduce the number of trainable parameters by approximately 80%. Additionally 
we adopted head layers as shown in Table 3;

	Attention MLP (AMLP). The main building block of the model – ’attention_mlp’ block, is shown in Fig. 10. The 
design of this block is close to the ’Gated MLP’ block described in the article70 was adapted for current task. 
The architecture of this model consists of two parts - encoder and predictor (Fig. 10). Encoder consists of 
’attention_mlp’ blocks sequence, and decoder part has sequence of blocks containing a Linear, Activation, and 
a Dropout layers.

ConvLSTM. We conducted additional experiments with recurrent neural network due to the fact that the mete-
orological attributes used are naturally represented as a spatial-temporal series. And the dynamics of changes 

Fig. 5.  Preprocessed weather data within the sample area of the Irkutsk Region for 11 July 2020.
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Region

Train Validation Test

Fire No fire Fire No fire Fire No fire

Amur 5500 35,445 961 3710 581 3993

Irkutsk 6776 44,830 254 4996 703 5054

Rostov 2325 12,346 215 1462 124 1436

Sverdlovsk 1036 9787 71 1097 32 1141

Table 2.  Datasets composition details across study regions.

 

Fig. 8.  Subdomain containing at least 70% of the fires for Irkutsk Region. The grey colour represents the full 
area of the region, the red colour shows the fires that fell into the subdomain. The figure is created by the 
authors using Matplotlib library version 3.5.3 (https://matplotlib.org/) on Python 3.10 version, OpenTopoMap 
composite derived from OpenStreetMap (https://opentopomap.org/about) is chosen for visualization.

 

Fig. 7.  Method for sampling non-fire samples. Red areas indicate time intervals that are not used to generate 
examples without fires.

 

Fig. 6.  Example of fire point clustering in the central part of the Republic of Sakha. The sequence of four 
days with the corresponding fire points (red dots) is shown. The color of the cell corresponds to a unique fire 
identified through clustering. The figure is created by the authors using Matplotlib library version 3.5.3 ​(​​​h​t​t​p​s​:​/​/​
m​a​t​p​l​o​t​l​i​b​.​o​r​g​/​​​​​) on Python 3.10 version, OpenTopoMap composite derived from OpenStreetMap ​(​​​h​t​t​p​s​:​/​/​o​p​e​n​
t​o​p​o​m​a​p​.​o​r​g​/​a​b​o​u​t​​​​​) is chosen for visualization.
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in meteorological attributes provides important information for fire forecasting. The basic block of this model 
is ConvLSTM cell, its detailed description is given in the article37. We used original implementation of Con-
vLSTM backbone and adapted it to our task (Fig. 11). Adaptation of the architecture is necessary primarily to 
fit the method to the task at hand and consists of:

Fig. 10.  Attention MLP network. Left side is general network structure, rights side is attention MLP block 
structure.

 

Layer Output shape Parameters

RegNetX_002 (trimmed) (BS, 152, 2, 2) 260,752

Conv2D(1, 1) (BS, 76, 2, 2) 11,628

Conv2D(2, 2) (BS, 76, 1, 1) 92,492

Conv2D(1, 1) (BS, 152, 1, 1) 11,704

ReLU + BatchNorm (BS, 152, 1, 1) 304

Linear (BS, 1) 153

Table 3.  Details of RegNetX architecture. RegNetX Encoder + Head Layers, BS - minibatch size.

 

Fig. 9.  General network structure for RegNetX models.
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•	 Changing the dimensionality of the input tensor (necessary due to the fact that we use complex structured 
features for training);

•	 Adding a lightweight convolutional network in addition to ConvLSTM to bring the dimensionality of the 
output tensor to the desired format.

	3.	 Anomaly detection algorithms

	MLP Autoencoder (AE). We implemented a Multi-Layer Perceptron (MLP) Autoencoder for 5 days wildfire oc-
currence prediction. The AE consists of an encoder, which compresses input features into a latent space, and 
a decoder, which reconstructs the input. The reconstruction error serves as an anomaly score, where higher 
errors indicate deviations potentially corresponding to fire events. The detailed AE architecture is presented 
in Table 4.

Metrics
The following metrics are usually used to evaluate the quality of the classification models: 

	1.	 Precision = T P
T P +F P

	2.	 Recall = T P
T P +F N

	3.	 F1-Score = 2 × Precision×Recall
Precision+Recall

	4.	 Specificity = T N
T N+F P

Considering the presence of a natural class imbalance in the task, to obtain a more objective evaluation, we 
calculate the F1-score not only for the positive class but also for the negative class, and then look at the average 
of the two F1-scores. Also, an important indicator of the model’s predictive capabilities is the visual analysis of 
the map with the forecast for an entire region over a specific period of time.

To assess the quality of models, we also proposed a custom metric called F 1balanced desinged specifically for 
assessment of wildfire prediction. This metric is based on calculations of the F1 measure on random balanced 
subsamples of the test dataset. For the area of interest for each day, a set of samples is formed, consisting of all 
examples with fires and the same number of randomly selected examples without fires. In this way, a balanced 
set of samples is formed for the entire time period F 1′

balanced. F 1′
balanced is calculated N times with different 

random seed and then averaged:

Layer Output shape Parameters

Linear(106, 32) + BN + ReLU (BS, 32) 3426

Linear(32, 32) + BN + ReLU (BS, 32) 1058

Linear(32, 32) + BN + ReLU (BS, 32) 1058

Linear(32, 16) + BN + ReLU (BS, 16) 530

Linear(16, 4) (BS, 4) 68

Linear(4, 16) + BN + ReLU (BS, 16) 82

Linear(16, 32) + BN + ReLU (BS, 32) 546

Linear(32, 32) + BN + ReLU (BS, 32) 1058

Linear(32, 32) + BN + ReLU (BS, 32) 1058

Linear(32, 106) (BS, 106) 3498

Table 4.  An autoencoder architecture implemented for anomaly detection. BN is a trainable batch 
normalization module, BS - minibatch size.

 

Fig. 11.  ConvLSTM network. Left side is general network structure, rights side is ConvLSTM encoder.
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Additionally, we use the F1 metric in the same way as in36:
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The Fβ  metric are designed to evaluate the performance of a model while allowing for different weightings of 
true positives (TP), false negatives (FN), true negatives (TN), and false positives (FP), based on the value of β. 
As β increases, the emphasis shifts toward the contribution of TP and FN, making the metric more focused on 
the model’s ability to accurately predict positive class.

In fire occurrence prediction task, where class imbalance is common, the Fβ  metric helps to account for this 
imbalance by placing more emphasis on correctly predicting fire events, ensuring the model’s effectiveness in 
identifying rare but critical occurrences.

Test data sampling approach
A balanced test sample is used to evaluate the model where the number of examples with fire is equal to the 
number of examples without fire. Here we describe an algorithm for obtaining a balanced test sample for a single 
prediction date: 

	1.	 In the first step, a table of target fires is generated. Each fire is characterised uniquely by its spatial location 
(id of the grid cell), and its time interval (the date of the start and end of burning) (see section “Fire points 
preprocessing”). To obtain target fires, for each forecast cell, all fires whose burning interval has an overlap 
with the 5 day forecast horizon are selected.

	2.	 Next step is selection of representative cells. A cell is considered representative if it is located in areas poten-
tially prone to fires. For selecting these cells, information on fires from 2012 to 2022 is used: a region with a 
radius of 100 km is constructed around each fire, and the resulting area is the union of all these regions. The 
grid containing the representative cells is then saved.

	3.	 The last step involves balancing the samples. All cells corresponding to fires are taken (let the number of cells 
with fires be k), then k representative cells without fires are selected using the grid obtained in the previous 
step.

In the case of forecasts for multiple dates, the second stage of data preparation is conducted for each forecast date 
and the resulting datasets are combined. In this way, we obtain a balanced dataset for testing the effectiveness of 
the model that does not contain overtly ’non-burning’ examples.

Implementation details
Dataset module architecture
For the convenience of training various models, a universal dataset module has been implemented, which allows 
the use of preprocessed data. The dataset module is a program that allows us to load data in a special format from 
the storage based on specified geographic boundaries, date, and some other parameters. Our implementation 
uses the output of 3 tensors: (1) static features (including data on topography of the area, population for the 
current year, land cover type and vegetative indices for the last 2 weeks); (2) Dynamic features (daily weather 
data); and (3) optional additional features (day of year, absolute coordinates of the center of the uploaded patch). 
For the training mode, it is also feasible to include a label on the output tensors that indicates whether there 
will be a fire in the area under consideration in the next N days. This label distinguishes between the presence 
of a fire (binary class ’1’) and the absence of a fire (binary class ’0’). The main settings of the dataset module are 
described below:

•	 sample_raster_size is the parameter that specifies the spatial dimensions of the output tensors in pixels;
•	 day_seq_length is the parameter that specifies length of the series (in days) of historical weather data;
•	 fire_interval is the parameter defining the range of days to search for fires in the area under consideration;
•	 LC_mode is the field for selecting the Land Cover Type loading mode. There are two modes are available: 

(1) One-Hot Encoding - loading Land Cover Type features as a binary tensor of size 17 × H × W, where 
17 is the number of Land Cover classes, and H × W are the spatial dimensions of the tensor, specified by 
sample_raster_size, and (2) Label Encoding - loading as a tensor of size H × W, where each pixel value 
is given by the Land Cover Class;

•	 sample_with_date is the flag that adds the day of the year as an additional feature (additional output 
tensor);

•	 sample_with_coords is the flag that adds the absolute coordinates of patch center as an additional feature 
(additional output tensor);

•	 augments specifies the set of data augmentations applied to the loaded data. The approach we implemented 
uses 90-180-270 degree rotations and mirror reflections.

The dataset module was used to train ML models, both to generate minibatches for optimizing neural networks 
using the gradient descent method, and to generate a matrix of samples for training ML methods based on 
decision trees.
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Training details
It is worth noting that all models are trained on the same dataset, but the input format of CNN models differs 
from the input format of models based on decision trees. CNN models require as input a tensor, one of the slices 
of which is a raster image of some feature, on the other hand classical ML-based models require a set of features 
stretched into one vector as input. To take this factor into account, when training some models, median and 
maximum values of a particular feature were used instead of the full raster (for Land Cover Type, the mode of 
values was used). For each sample, the values obtained in this way were collected into one vector and used for 
training. This feature representation method was used to train RF and XGBoost classifiers, as well as to train an 
anomaly search model based on Auto Encoder.

Random forest (RF). As mentioned above, we used the RF implementation from the open-source scikit-learn 
package. To obtain optimal hyperparameters of the method, we used the Optuna framework73. Using Optuna, 
the following near-optimal parameters were obtained: the number of decision trees (n_estimators) equal 
to 223, maximum depth of each decision tree (max_depth) equal to 11, the minimum number of samples 
required to split an internal node (min_samples_leaf ) equal to 1, and the minimum number of samples 
required to be at a leaf node (min_samples_split) equal to 3.

XGBoost (XG). In the process of training this method based on decision trees, we used the open source 
implementation of gradient boosting XGBoost and also the Optuna framework for selecting hyperparameters. 
As a result of searching for the best hyperparameters using Optuna, we obtained the following values: the 
number of decision trees (n_estimators) equal to 100, maximum depth of a tree (max_depth) equal to 6 
and learning rate equal to 0.1.

Auto encoder (AE). To train the anomaly search model, AE was implemented, operating in the mode of 
encoding and decoding the feature vector. The implemented AE consists of sequential fully connected layers 
with ReLU nonlinearity. The AE depth and the number of parameters in each layer were selected as a result 
of a grid search. The final AE architecture is presented in Table 4. The following strategy is presented for AE 
training. Samples without fire were selected as non-anomaly examples, and samples with fire were selected 
as anomalous examples. At the first stage of training, AE was trained to compress input features into latent 
space and then reconstruct them. This part of training was carried out using minibatch gradient descent with 
AdamW optimizer and MSE loss function. The second part of setting up the model was to find the optimal error 
threshold for feature reconstruction to search for anomalies. For this stage, feature reconstruction errors (MSE) 
were calculated for the entire validation dataset, both for examples with fires and for examples without fires. 
The best threshold was selected based on the F1-score criterion for separating anomalous and non-anomalous 
models.

CNN models. A similar training pipeline was used to train the adapted ConvLSTM, AMLP, and trimmed 
RegNetX. To train neural network models, we used the resources of the ZHORES supercomputer74, including 
the NVIDIA A100 GPU. To train each of the models, the AdamW optimizer was used with a learning rate equal 
to 10−4, a weight decay equal to 10−5, β1 equal to 0.9, and β2 equal to 0.999. During training, we used the 
binary cross-entropy loss function (BCE). Each neural network was trained until a configuration was found that 
reached the local minimum of the loss function on the validation set. Most often, about 20 training epochs were 
sufficient for this.

In Table 5, we analyze the key characteristics related to the computational complexity of previously described 
convolutional neural networks – ConvLSTM, AMLP and RegNetX. Key metrics, such as the total number of 
parameters, FLOPs, and the training time for 20 epochs on the NVIDIA A100 GPU averaged across regions, 
illustrate their computational demands and efficiency. It is noteworthy that despite the substantial differences 
in FLOPs among the models, the variations in training time remain surprisingly narrow. This pattern suggests 
that much of the training time is spent on batch preparation, underscoring the crucial role of data management 
strategies in enhancing computational efficiency alongside architectural considerations.

The comparison table is limited to deep neural networks due to their significant computational complexity 
and resource intensity compared to other models used in the experiments.

Results
We conducted a comparative analysis of various ML and DL models for predicting the probability of fire 
occurrence within a 5-day window. To thoroughly evaluate the models, we performed two types of calculations: 
(1) an evaluation of forecasts across the entire region over a period of 1 to 2 months (depending on the region’s 
size), and (2) an evaluation on a balanced sample over the same time frame. The first approach allows us to assess 
model performance under conditions of significant class imbalance, which is typical of the problem and aligns 
with real-world application scenarios. In the second approach, the sample is balanced (as detailed in section Test 
data sampling approach), providing a more equitable assessment of the model’s error contribution across each 
class.

Model Parameters FLOPs (B) Training time (h)

AMLP 283,777 0,005 11,91

ConvLSTM 366,929 7,674 21,83

RegNetX 377,033 0,108 17,55

Table 5.  Computational characteristics of CNN models.
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The results of the regional forecasts are summarized in the following tables for Amur, Irkutsk, Rostov, and 
Sverdlovsk Oblasts (Table 6). In addition to the well-known metrics such as TP, FN, TN, FP, these tables also 
include Fβ  metrics (β = 1, 5, 20, 100).

It is evident that no single approach consistently yields the best results across all regions. While different 
models may excel in certain areas, there is no universally superior model when considering the overall 
performance metrics. Specifically, DL methods tend to perform better at predicting non-fire events, resulting in 
fewer false positives and higher true negative rates, as reflected in metrics such as F1, TN, and FP. On the other 
hand, ML methods generally show superior performance in accurately predicting fire occurrences, as indicated 
by higher values in metrics like F20,100, TP, and FN. These patterns suggest that while DL models may be more 
cautious, reducing false alarms, ML models are more effective in identifying actual fire events, albeit with a 
different trade-off in false positives and negatives.

Based on the results of the region-wide forecast evaluations, it can be concluded that each region requires a 
tailored approach when selecting a fire probability forecasting model. The optimal model may vary depending 
on the unique characteristics of the region and the specific requirements for managing Type I errors (false 
positives) and Type II errors (false negatives).

To gain a deeper understanding of the reasons behind these varied results, we conducted a series of experiments 
focused on investigating the underlying factors. These analyses are detailed in the section ‘Discussion’, where we 
explore how the distinct importance of features and the variability in weather data distributions across regions 
may influence model performance.

Table 7 summarizes the results of model evaluation on balanced samples, where the number of fire occurrences 
is equal to the number of non-fire instances.

The evaluation results on these balanced samples are more uniform, with a clear advantage for classical ML 
approaches, particularly RF and XGBoost. The superior performance of these models can likely be attributed to 
their robustness to noise and inaccuracies in weather data, as well as their effective aggregation of data across 
varying resolutions. In addition, as noted above, classical models exhibit stronger predictive performance for fire 
events, a strength that is highlighted in balanced datasets where equal representation of fire and non-fire cases 
allows these models to fully exploit their predictive capabilities.

Model F1 F5 F20 F100 TP FN TN FP

Amur Oblast

AMLP 0.4453 0.8176 0.9714 0.9861 1432 37 28076 18195

ConvLSTM 0.4541 0.8167 0.9621 0.9758 1403 66 28960 17311

RF 0.4419 0.8174 0.9742 0.9893 1441 28 27743 18528

XGBoost 0.4429 0.8168 0.9722 0.9872 1435 34 27854 18417

Auto encoder 0.3445 0.6995 0.8576 0.8743 1126 343 20447 25824

RegNetX 0.4952 0.8319 0.9500 0.9604 1359 110 32606 13665

Irkutsk Oblast

AMLP 0.3855 0.7252 0.9023 0.9220 1202 208 30858 27402

ConvLSTM 0.4173 0.7215 0.8659 0.8810 1089 321 35122 23138

RF 0.4172 0.7253 0.8725 0.8880 1108 302 35017 23243

XGBoost 0.4581 0.7168 0.8206 0.8305 949 461 40834 17426

Auto encoder 0.3411 0.6724 0.8449 0.8651 1051 359 26395 31865

RegNetX 0.4114 0.7297 0.8856 0.9022 1147 263 34139 24121

Rostov Oblast

AMLP 0.3342 0.6077 0.8102 0.8437 213 92 11625 13141

ConvLSTM 0.4065 0.6377 0.7982 0.8202 198 107 15632 9134

RF 0.4216 0.6625 0.8314 0.8537 218 87 16374 8392

XGBoost 0.4174 0.6731 0.8600 0.8853 237 68 16004 8762

Auto encoder 0.3951 0.5916 0.7119 0.7285 143 162 15319 9447

RegNetX 0.4434 0.6589 0.7945 0.8109 192 113 17835 6931

Sverdlovsk Oblast

AMLP 0.5005 0.6759 0.7944 0.8079 192 118 49154 5976

ConvLSTM 0.4729 0.6812 0.8883 0.9190 261 49 44909 10221

RF 0.4669 0.6998 0.9557 0.9965 309 1 43581 11549

XGBoost 0.4955 0.7455 0.9691 0.9987 310 0 46990 8140

Auto encoder 0.4706 0.5527 0.6024 0.6085 69 241 47535 7595

RegNetX 0.4648 0.6671 0.8765 0.9092 255 55 43920 11210

Table 6.  Numerical comparison of the quality of the studied approaches across all regions.
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Visualization of forecasts
To further analyze the predictive performance of our models, we present visual comparisons of wildfire forecasts 
for two regions: Amur Oblast (Fig. 12) and Sverdlovsk Oblast (Fig. 13). Each figure illustrates the probability 
of fire occurrence predicted by different models for a specific day within the 5-day forecasting window. The 
forecasts are shown as heatmaps, where color intensity represents the predicted probability of wildfire occurrence, 
and black crosses indicate actual fire events observed on the forecasted dates. For each region, the subplots 
correspond to different models, allowing a direct visual comparison of their predictions. The title of the subplot 
representing the best-performing model is explicitly marked to help clarify. This visualization helps highlight 
spatial patterns in predictions, as well as differences in model sensitivity to wildfire-prone areas.

In the Amur Oblast, all models except Auto Encoder demonstrate high recall, meaning they successfully 
identified most wildfire occurrences. Among them, the RegNetX model stands out due to its superior precision, 
as it produces the fewest false alarms compared to other models. This aligns with the numerical results presented 
in Table 6, where it achieves the best true negative (TN) and false positive (FP) scores for this region. In the 
Sverdlovsk region, Random Forest, ConvLSTM, and Attention MLP produce numerous false fire predictions, 
while RegNetX and Gradient Boosting have comparable false positive rates. However, RegNetX misses some 
isolated wildfires near the 60th latitude, whereas Gradient Boosting accurately predicts all fire occurrences with 
minimal false positives. This is consistent with Table 6, confirming Gradient Boosting as the most reliable model 
for this region. For a complete view, visualizations of the top performing models for each region are presented 
in the Supplementary Information.

The dataset and code example is available through the link ​h​t​t​p​s​:​/​/​g​i​t​h​u​b​.​c​o​m​/​L​a​n​a​L​a​n​a​/​W​i​l​d​f​i​r​e​-​F​o​r​e​c​a​s​t​
i​n​g​​​​​.​​

Discussion
Significance of features by region
In this experiment, we focused on analyzing the importance of features for the XGBoost model, as it consistently 
delivers strong results and offers easy interpretability. The primary goal was to assess how models trained on 
data from different regions differ in terms of the features they consider important. Specifically, we aimed to 
understand which meteorological and environmental factors are most significant for predicting fires in various 
climatic zones.

XGBoost evaluates feature importance using three main approaches: Gain, Cover, and Weight, each providing 
a different perspective on the contribution of features to the model’s decision-making process.

•	 Gain measures the average reduction in the loss function achieved by using a feature for splits across all trees. 
A higher Gain indicates that the feature contributes more to minimizing prediction errors.

•	 Cover represents the number of training samples affected by a given feature across all decision trees. It indi-
cates how widely a feature is utilized for making splits, regardless of the quality of splits.

•	 Weight counts the number of times a feature is used to split the data across all trees. However, it does not 
account for the split’s effectiveness. A high Weight suggests that the feature is commonly relied upon by the 
model.

Among these methods, Gain-based importance is the most useful for assessing the true impact of each feature, 
as it directly measures how much each feature improves the model’s decision-making. This metric is robust to 
feature cardinality and avoids the biases inherent in Weight and Cover. Therefore, in this study, we primarily rely 
on Gain to analyze the relative importance of features across different regions. The feature importance plots for 
each region are presented in Fig. 14.

Regions of Eastern Siberia - namely, Amur and Irkutsk, are characterized by extensive forest coverage and 
complex terrain. In both regions, Nesterov index is a key indicator, capturing the cumulative impact of heat 
and drought on wildfire risk. In Amur, the significance of Elevation is linked to its mountainous terrain, which 
shapes microclimate and fuel availability. In Irkutsk, the importance of PET and Total precipitation highlights 
the role of soil moisture in reducing wildfire risk in plateau forests. NDVI feature, which evaluates vegetation 
density and health, is relevant in both regions. As we demonstrated the importance of vegetation, particularly 
the properties of forest cover, additional and more detailed characteristics may provide valuable information for 

Amur Irkutsk Rostov Sverdlovsk

Model F1(1) F1(0) F1avg F1(1) F1(0) F1avg F1(1) F1(0) F1avg F1(1) F1(0) F1avg

AMLP 0.8224 0.7479 0.7852 0.7676 0.6657 0.7166 0.579 0.4706 0.5248 0.7135 0.7732 0.7434

ConvLSTM 0.8182 0.7507 0.7845 0.7417 0.6960 0.7188 0.655 0.6288 0.6419 0.8113 0.7909 0.8011

RF 0.8228 0.7412 0.7820 0.7505 0.6894 0.7199 0.7051 0.671 0.6881 0.8573 0.8017 0.8295

XGBoost 0.8253 0.7479 0.7866 0.7106 0.7136 0.7121 0.7269 0.6693 0.6981 0.8876 0.855 0.8713

Auto Encoder 0.6999 0.584 0.6420 0.6933 0.5586 0.6259 0.4329 0.5636 0.4983 0.3318 0.6636 0.4977

RegNetX 0.8451 0.8063 0.8257 0.7513 0.6875 0.7194 0.6303 0.6522 0.6413 0.8046 0.7909 0.7978

Table 7.  Comparison of the quality of the studied approaches on a balanced sample. F1(1) - F 1balanced 
calculated for class of fire, F1(0) - F 1balanced calculated for inverted target class (no fire), F1avg - average of 
F1(1) and F1(0).
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future studies. Rostov Oblast, characterized by its arid climate, flat terrain and high population density, highlights 
the importance of ET as an indicator of drought. Human influence is captured through Population feature, while 
Land Cover defines the diversity of fuel sources, including agricultural land and pastures. In contrast, Elevation, 
NDVI, and Nesterov index are less significant due to the flat landscape and limited forest coverage. Sverdlovsk 
Oblast, with its temperate continental climate and extensive forest coverage, shares similarities with eastern 
regions in the importance of Nesterov index. Land Cover is essential for evaluating wildfire risk across diverse 
landscapes. Meanwhile, features like Total precipitation, ET and Elevation are less relevant, reflecting the region’s 
stable precipitation patterns and limited slope effects in predominantly forested areas.

The analysis demonstrated that feature importance is closely related to the environmental factors of each 
region, suggesting that different climatological zones require specific approaches to fire prediction.

Building on the insights gained from the feature importance analysis with XGBoost, we observed that different 
regions prioritize distinct meteorological and environmental factors in fire prediction. This variability prompted 
us to further investigate whether the differences in these influential features are reflected in the underlying 

Fig. 12.  Comparison of models in the Amur Oblast. Each subplot corresponds to a 5-day forecast by a 
specific model, the red color scale corresponds to the predicted fire probability, black crosses are real fires. The 
best performing model is indicated by a bold title. The figures were created by the authors using Matplotlib 
library version 3.5.3 (https://matplotlib.org/) on Python 3.10 version, OpenTopoMap composite derived from 
OpenStreetMap (https://opentopomap.org/about) is chosen for visualization.
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distributions of meteorological data across regions and time periods relative to fire events. To explore this, we 
conducted a detailed comparison of the distributions of weather features, analyzing how these distributions 
vary as a function of temporal distance from the day of a fire. This approach allows us to assess whether specific 
patterns in meteorological data can consistently predict fire occurrence across different regions.

Distribution of meteorological data
A week’s supply of historical data is used to predict the probability of a fire occurring the following days. 
Considering the frequency of change in the data used, it can be argued that that meteorological characteristics 
will be the primary source of information regarding the likelihood of a fire on the subsequent days for any given 
forecast cell.

Fig. 13.  Comparison of models in the Sverdlovsk Oblast. Each subplot corresponds to a 5-day forecast by a 
specific model, the red color scale corresponds to the predicted fire probability, black crosses are real fires. The 
best performing model is indicated by a bold title. The figures were created by the authors using Matplotlib 
library version 3.5.3 (https://matplotlib.org/) on Python 3.10 version, OpenTopoMap composite derived from 
OpenStreetMap (https://opentopomap.org/about) is chosen for visualization.
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The primary goal of this experiment is to determine whether there is a significant difference in the distributions 
of weather features as a function of temporal distance from the day of the fire. The results of this experiment aim 
to reveal the predictive potential of meteorological data in forecasting fire occurrences.

For this experiment, data for 2018, 2019 was employed. There are six meteorological features: u and v 
components of wind, air temperature, dew point temperature, total amount of precipitation and Nesterov index. 
For each fire event, meteorological attribute values are collected over a seven-day period, with varying offsets 
from the fire day: k = 0, 1, 3, 5.

Fig. 14.  XGBoost feature importance for different regions.
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Example  We know that the fire started on 13 May, then an offset of k days corresponds to data taken from 
13 − 7 − k May to 13 − 1 − k May.

This approach allows the collection of examples in four groups corresponding to the four specified offsets: fire 
(k = 0), no_fire_1 (k = 1), no_fire_3 (k = 3), no_fire_5 (k = 5). The distributions of meteorological 
features from these groups are then compared using both visual and statistical analysis methods. It is hypothesized 
that as k increases, the difference between the distributions of meteorological data for the 0 and k day gaps will 
also increase, indicating a stronger predictive signal closer to the day of the fire.

To account for potential variations due to different climate zones, the data were stratified by regions. Number 
of fire samples for regions: 1541 fires for Amur Region, 803 fires for Irkutsk Region, 337 for Rostov Region, 
382 for Orenburg Region. For visual analysis, comparison graphs of distributions and cumulative distribution 
functions (CDFs) were plotted, as shown in Fig. 15. Here we present figures from one region - the Amur Region 
- while the key findings from this analysis are discussed in the text. Similar patterns were observed in other 
regions, with variations in specific features (See Supplementary Figs. 1, 2, 3).

Statistical tests were also conducted to assess the hypothesis that the samples of meteorological attributes 
from different groups follow the same distribution (i.e. that the meteorological attributes of the two groups are 
equally distributed). The nonparametric Kolmogorov-Smirnov test was selected as the statistical method for 
this purpose. This criterion not only allows the hypothesis of distributional equivalence to be tested, but also 
provides insight into the relationships between distributions.

Note  Kolmogorov-Smirnov criterion. The Smirnov uniformity criterion is used to test the hypothesis that two 
independent samples belong to the same distribution law, that is, that two empirical distributions correspond to 
the same law. Null hypothesis H0: the two studied samples follow the same distribution. In addition to the null 
hypothesis of equality of distributions (F (x) = G(x)), we are interested in knowing the relationship between 
the distributions, which may indicate the separating potential of the attribute, therefore, in addition to the main 
hypothesis, less (F (x) ≥ G(x)) and greater (F (x) ≤ G(x)) hypothesis were tested.

The results of pairwise comparisons of the distributions of meteorological attributes for different groups (fire, no 
fire) are presented in the Table 8. Bold text indicates the attributes for which the relation (more, less) between 
the distributions is obtained.

Based on the analysis, the following conclusions can be drawn regarding meteorological attributes. The 
Kolmogorov-Smirnov test revealed significant differences in the distributions across all pairs of weather feature 
groups, suggesting a potential ability to distinguish between these groups. However, this result alone does not 
imply the ability to accurately classify examples belonging to different groups. Additionally, the comparison 
graphs of distributions and CDFs show that for at least half of the meteorological features, the distributions 
appear visually similar. The significant results from the Kolmogorov-Smirnov test might be influenced by factors 
such as sample size or sensitivity to minor differences, rather than reflecting genuine discriminative power.

In the case when we know the ratio between the distributions of groups (statistically greater or less) we can, 
with a certain probability, classify a new example based on this feature. Therefore, features that demonstrate 
statistically significant relationships between group distributions are more informative for predicting the day 
of fire occurrence. In all regions, at least one feature establishing a relationship between the distributions of 
most pairs of groups was obtained. Notably, the Nesterov fire hazard index most frequently exhibited these 
relationships, highlighting its importance in fire prediction. This result is logical, given the theoretical 
foundation of using the fire hazard index for forecasting fires. The next most significant feature is the amount 
of precipitation, which aligns well with intuitive expectations regarding fire risk. The findings related to the 
Nesterov index are particularly consistent with visual observations from the comparison of distributions and 
CDFs, further reinforcing its significance in the analysis.

Statistical tests, along with visual analysis, provided evidence that certain features can differentiate between 
all pairs of groups. However, neither approach showed an increase in separability as the temporal offset from the 
fire day increased. Consequently, the ability to accurately classify the exact day of a fire based solely on weather 
data remains uncertain and cannot be guaranteed.

Despite the conclusions drawn above, it is a well-known fact that neural network methods trained on large, 
high-quality datasets achieve high classification accuracy. In our future research, our aim is to continue our 
analysis by utilizing feature importance methods such as SHAP75 and LIME76. We believe that understanding 
the significance of input features in the task at hand can provide valuable insights into the direction of further 
development.

Conclusion
In this study, we address the critical task of predicting wildfire occurrences using remote sensing data. The 
primary challenges in developing AI-based solutions for this task stem from the heterogeneity of existing 
environmental measurements that can influence fire occurrence, as well as the lack of a unified pipeline for data 
acquisition and processing. To tackle these challenges, we investigated several freely available data sources for 
meteorological, vegetation, and anthropogenic measurements, and proposed a methodology for developing ML 
solutions.

The dataset we compiled includes over 17,000 verified wildfire events across four large regions of the 
northern hemisphere with different topographic and climatic conditions over a span of ten years. Using this 
dataset, we explored the correlation between various spatial environmental features and the probability of fire 
occurrence under natural conditions. Experiments showed that both the shape of the distributions of the weather 
variables considered and the dynamics of their changes can differ significantly. Our findings indicate that model 
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performance is significantly influenced by feature distribution and environmental conditions, suggesting that it 
is preferable to select an individual model for each region.

Additionally, we addressed the crucial issue of evaluating ML models in the context of forecasting rare events 
such as wildfires. We discussed several metrics to provide a deeper understanding of model performance and to 
represent results in terms of the spatial and temporal distribution of fire events throughout the year. Overall, the 
proposed methodology encompasses and analyzes key aspects of wildfire emergency system development and 
validation. It demonstrates significant potential for future expansion to other regions with varying environmental 
conditions.

Fig. 15.  Distributions of meteorological features of different groups for Amur Region. The yellow graph 
represents the absolute difference in CDF of the compared groups. Mean difference – mean value of the yellow 
graph.
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Data Availability
The datasets used and analysed during the current study available from the corresponding author on reasonable 
request.
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