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Pre-trained language models have brought significant performance improvements in many natural 
language understanding tasks. Domain-adaptive language models, which are trained with a specific 
domain corpus, exhibit high performance in their target domains. However, pre-training these 
models with a large amount of domain-specific data requires a substantial computational budget and 
resources, necessitating the development of efficient pre-training methods. In this paper, we propose 
a novel subset selection method called AlignSet, which extracts an informative subset from a given 
domain dataset for efficient pre-training. Our goal is to extract an informative subset that enables 
faster learning of the language model compared to learning from the entire dataset. By experiments 
across multiple domains, we demonstrate that AlignSet generates better subsets than other methods.

With the advent of Transformer 1, pre-trained language models (PLMs) showed remarkable performance across 
a range of natural language understanding (NLU) tasks 2–5. Especially, domain-adaptive LMs obtained through 
continual pre-training (CPT) were found to be effective for target domains 6–8. Despite its effectiveness, the high 
cost of pre-training limits its applicability. For example, pre-training RoBERTa-large takes approximately one 
day using 1,024 V100 GPUs 3. Therefore, it is necessary to develop an efficient way to develop domain-adaptive 
LMs.

There are mainly two approaches for efficiently pre-training domain-adaptive LMs with a limited 
computational budget: a model-centric and a data-centric. The model-centric approach involves designing 
a compact model such as ALBERT  9 and EarlyBERT  10, whereas the data-centric approach focuses on data 
management or selection. As one of the data-centric approaches, subset selection refers to extracting only a 
portion of a large dataset that includes representative or informative instances, thereby creating a subset that is 
much smaller in size than the original dataset. Recently, there have been studies that efficiently train language 
models using subsets while maintaining or improving performance 11–13. However, these studies have limitations, 
such as relying on downstream task datasets or not outperforming random sampling.

The subset selection methods can be categorized into three groups based on the data dependency: down-
stream dependent, down-stream fully-dependent, and down-stream independent group, as depicted in Fig. 1. The 
three groups commonly utilize a large general pre-training corpus Dg  that is used to pre-train general-purposed 
foundation models (e.g., Bidirectional encoder representations from transformers (BERT)  2). The upper two 
groups in the figure exploit the down-stream dataset Dt={XDt , YDt } where XDt  and YDt  indicate the input 
texts and the output labels, respectively. Specifically, the down-stream dependent group takes Dg  and XDt , and 
the down-stream fully-dependent group employs Dg , XDt  and YDt . The dependency to the down-stream dataset 
Dt may cause bias when we do not have a sufficient amount of the down-stream data. On the other hand, the 
down-stream independent group does not suffer from this issue as it takes only Dg  and Dd, where Dd is a dataset 
of a target domain. Note that the Dd is unlabelled corpus in the target domain, whereas the general dataset Dg  
incorporates multiple domains.

In this study, we propose a new subset selection method called AlignSet, belonging to the down-stream 
independent group, to efficiently pre-train a domain-adapted LM within a limited computational budget while 
avoiding the aforementioned limitations. The main idea of AlignSet is to align sentence representations obtained 
from two different PLMs so that we can exploit the aligned representations to score examples. Based on the 
finding that there exist representative subsets for a target domain 13, our goal is to extract an informative subset 
that makes the language model better work on domain-specific tasks. Note that our model is designed to extract 
a subset in such a way that the language model achieves better performance on target domain tasks compared 
to a randomly selected subset. However, it is not designed to outperform a language model trained on the entire 
dataset. Our contributions are as follows.
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•	 AlignSet: We propose a new subset selection method of down-stream independent group. It utilizes the simi-
larity between aligned embeddings obtained from two PLMs.

•	 Experiments on multiple domains: Similar to Gururangan et al. 14, we perform the experiments on several 
domains (e.g., biomedical science, computer science, news, and personality), and show that the proposed 
method outperforms other subset selection methods.

Related works
Pre-training language models
After Transformer  1 sheds light on natural language processing (NLP) field, language models (LMs) using 
Transformer architecture pre-trained on large datasets from the general domain have shown outstanding 
performance across various NLP tasks. 2,4,15,16 BERT 2, one of the most well-known LMs, employs the encoder 
part of the Transformer, effectively capturing latent representations and making it applicable to various NLU 
tasks. Such encoder-based LMs are known as powerful to NLU tasks as it is designed to encode or comprehend 
the context of given texts. Indeed, compared to decoder-based LMs (e.g., Generative Pre-trained Transformer 
(GPT) series 4,15,17,18, Llama series 19–21), the encoder-based LMs mostly achieve the better performance on NLU 
tasks if the LMs are of the same scale (i.e., same model size). Furthermore, recent studies found that adapting 
LMs to a target domain through fine-tuning or continual pre-training (CPT) contributes to performance gain. 
In this paper, we focus on the encoder-based LMs and propose a new subset selection method for efficient CPT.

Efficient pre-training
While the pre-training 22,23 or continual pre-training(CPT) 14 is a promising way to build a general or domain-
adaptive language model, it demands significant computational resources. 24 To mitigate this issue, there have 
been studies on model-centric and data-centric approaches to efficiently pre-train language models with a limited 
computational budget. As a model-centric approach, Chen et al. 10 designed a way of training models based on 
the lottery ticket hypothesis. Lan et al.  9 and Dehghani et al.  25 introduced parameter sharing techniques for 
making the models to have fewer parameters. Such parameter sharing enables better performance in language 
modeling and allows to efficiently construct the language models. In this paper, we chose the ALBERT 9 utilizing 
such efficient parameter sharing technique as our base model for experiments.

As a data-centric approach, there have been subset selection techniques that extract informative examples 
from a large dataset to construct a small but effective or representative subset. The subset allows efficient training 
without losing much performance compared to the total dataset. Yao et al. 11 employed BM2526 by treating the 
textual data of down-stream task as a query. This allows the similarity measurement between the pre-training 
data and the query to facilitate subset selection. Wang et al. 12 introduced a subset selection based on influence 
function 27,28, and showed that their method outperforms other previous domain-specific language models. It 
finds samples that have the most positive impact on the down-stream task using the influence function. These 
studies commonly rely on the dataset of target task Dt; they are of down-stream dependent or down-stream 
fully-dependent groups. Suzuki et al. 13, belonging to down-stream independent group, defined scores based on 
the difference in length-normalized per-word cross-entropy between a domain-adaptive language model Md 
and a general language model Mg . They proved that there exist representative subsets for a given domain, but 
their method did not exhibit much performance improvement over randomly extracted subsets. We believe that 
the biggest reason for their marginal performance gain might be that they strongly rely on the model loss, so it 
became difficult to distinguish between noisy samples and informative samples 29,30.

Method
Suppose we want to construct a domain-adaptive language model for a target domain d. The best way is to 
borrow a general-purposed language model (i.e., a language model pre-trained with general domains), and 
adapt it to the domain d through fine-tuning or continual pre-training (CPT). However, even if we have a pre-
training corpus Dd of the domain d, it is expensive to perform CPT with the entire corpus Dd. Our subset 
selection method extracts a subset D̂d that comprises a certain portion of Dd, where the subset D̂d is much 
smaller than Dd but contains informative samples. In this paper, we arbitrarily set |D̂d| ≈ (0.1 ∼ 0.27) × |Dd| 

Fig. 1.  Three groups of subset selection methods according to the dependency to the down-stream dataset, 
where Dg  represents the pre-training corpus of the general domain, Dd indicates the pre-training corpus of a 
target domain, and XDt  and YDt  represent text and label in down-stream task dataset Dt, respectively.
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based on our limited computation resources. Please refer to the subsection of Experimental settings and datasets 
for more details.

AlignSet
Following Suzuki et al. 13, we assume that we have two pre-trained language models (PLMs): a general-purposed 
language model Mg  and an initial in-domain language model Md of the target domain, as shown in Fig. 2. 
Any model can be chosen as the initial model Md when it is pre-trained with any small amount of the target 
domain; in this paper, as random selection is the simplest way to get a subset, a language model pre-trained with 
a randomly selected subset of the target domain is employed as Md. The goal of this study is to design a subset 
selection method for efficiently pre-training language models, so it might seem problematic that the initial model 
is already a PLM. It is worth noting that the initial model is pre-trained with an arbitrary in-domain subset (e.g., 
random subset), and we use such initial model as a proxy for the target domain to extract an informative subset 
that provides performance gain. Through experiments, we demonstrate that AlignSet is effective and efficient, 
even when considering the time required to build the initial model.

The two PLMs Md and Mg  take the same set of texts as input and yield sentence embeddings Vd ∈ RN×md  
and Vg ∈ RN×mg , where N is the number of sentences in a batch. The embeddings can be any vectors derived 
from the PLMs (e.g., output vectors of [CLS] token, mean vectors of all tokens, etc). The two PLMs have different 
embedding spaces, so Vd and Vg  must be different even for the same text. Inspired by Radford et al.  41 and 
Karpukhin et al. 42, we design align-layer that projects Vd and Vg  into an unified embedding space, where the 
projected embeddings Ud ∈ RN×m and Ug ∈ RN×m. The unified embedding space allows to get the similarity 
between sentence embeddings, where the diagonal values are self-similarities, as depicted in Fig. 2.

The motivation of AlignSet is as follows. First, we assume that if a particular example differs from or is more 
distinguishable than the others, then the example is more informative. To find such informative examples, we 
introduce a contrastive loss that measures the similarity of an example to itself and to other examples. This 
approach enables us to train a unified embedding space that captures the similarity between the two PLMs. 
After training with contrastive loss, a high similarity between positive pairs indicates that they are clearly 
distinguishable from other examples. In other words, examples with high similarity across the two PLMs are 
considered more distinctive or informative compared to others. Second, if we simply apply the contrastive loss to 
a target domain using a single model (i.e., Mg=Md), it may lead to selecting only abnormal examples or outliers, 
as is often the case in the computer vision area  43,44. Therefore, we design the aligned space by introducing 
Mg  and Md, where Mg  has a base or general perspective (i.e., distribution) and Md has a perspective of the 
target domain. We expect that the aligned space between the two PLMs will allow to find domain-informative 
examples that are not merely abnormal or outliers.

Loss function
Following Radford et al. 41, we utilize the InfoNCE loss function 45 to train the align-layer parameters:

	
LNCE(vi, W ) = −log

esim(vi,wi)/τ

∑
wj ∈W

esim(vi,wj )/τ � (1)

where τ  is a temperature, wi and vi indicate i-th element of embeddings generated by the two language models 
within the batch, and W = {w1, ..., w|W |}. The temperature parameter controls the range of the logits in the 
softmax function and is a trainable parameter that is directly optimized during training. In this paper, we employ 
cosine similarity as the similarity function sim between embeddings. We apply this loss both column-wise and 
row-wise, and obtain the total loss L as below.

	 L = (LNCE(ug,i, Ud) + LNCE(ud,i, Ug))/2� (2)

The loss encourages maximizing the similarity of positive pairs while minimizing the similarity of negative pairs. 
In other words, positive pairs are pulled closer together, while negative pairs are pushed farther apart in aligned 

Fig. 2.  The overview of AlignSet, where D̂d is a subset of Dd, M̂d is a domain-adaptive language model, 
Vd and Vg  are embeddings generated by Md and Mg , respectively. And Ud and Ug  refer to the embeddings 
projected into the unified embedding space via the alignment layer.
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space. The positive pairs, represented by the diagonals in Fig. 2, correspond to the embeddings of the same 
examples, whereas the negative pairs correspond to the embeddings of different examples. During the training 
phase, Mg  and Md are frozen, and the parameters of the align-layer are updated. After training, the positive pairs 
are used to compute the self-similarity scores. Specifically, self-similarity scores for positive pairs can be obtained 
from the trained model’s unified embedding space as an inference result. We utilize this score to measure the 
informativeness of each example, and the top-k examples are selected as the subset D̂d.

Experiments
Experimental settings and datasets
For our limited computational resource, we chose to use A Lite BERT (ALBERT)  9 for all models (e.g., Mg , 
Md, and M̂d). Our method only learns the aligned space between encoder-based models without modifying 
architecture, making it easily applicable to other encoder-based models. We utilized a publicly available general-
purposed ALBERT checkpoint from HuggingFace as Mg . As explained earlier, any model can be chosen as Md 
if it is pre-trained with a small subset of the target domain. In our experiments, Md is obtained by performing 
continual pre-training (CPT) on Mg  with a randomly selected subset of Dd. For AlignSet, we set the [CLS] token 
representations of the last layer as Vg  and Vd, and employ a linear layer as the align-layer, which is randomly 
initialized. When we fine-tune the model and predict task labels, the representation of the [CLS] token is passed 
to the task-specific linear layer.

We conducted experiments on multiple domains: computer science (CS), biomedical science (BioMed), 
news, personality, and review, where the review domain is for cross-domain experiments. Table 1 summarizes 
the source and specification of the in-domain pre-training datasets Dd and down-stream task datasets Dt, 
where all datasets are in English. The subset ratio (i.e., 10∼27%) is chosen based on the amount of time required 
to pre-train the models because it mostly takes too long for pre-training. For example, in the personality domain, 
it took 358 hours (15 days) for a single run of pre-training with the 10% subset. On the other hand, the dataset 
size of the news domain is much smaller than the other domains, so we arbitrarily set the subset size to be 10% 
of the personality domain subset, which corresponds to 27%. The task of Dt is a classification task, except for 
the First Impressions V2 dataset which is a regression task on OCEAN factors: openness, conscientiousness, 
extraversion, agreeableness, and neuroticism. Specifically, the OCEAN factor regression is to predict per-factor 
scores ranging from 0 to 1 for a given input text. Therefore, we took mean absolute error (MAE) as a metric 
for the OCEAN factor regression, while we report the classification results using macro-F1 and micro-F1 by 
following Gururangan et al. 14 and Beltagy et al. 6. All experimental results are averages of five independent runs 
with random seeds.

In the pre-training steps, we used Adam optimizer 46 with decoupled weight decay regularization 47, and the 
initial learning rate was 0.0001. We used the batch-size of 16, and the number of epochs was 20. We adopted a 
linear learning rate scheduler with 10,000 warm-up steps. In the fine-tuning steps, we used the batch-size of 32, 
and an initial learning rate of 0.00003 with 10 epochs. The experiments were conducted on 4 NVIDIA GeForce 
RTX 3090 GPUs.

Results
Main result
We compared the AlignSet with two rival methods: a randomly selected subset (RandomSet) and a subset 
obtained from the method of Suzuki et al.  13 (SuzukiSet). Table 2 summarizes the experimental results on 
multiple domains, where FullSet indicates the entire pre-training dataset Dd. We examined the FullSet only on 
the news domain due to our limited computational budget. Note that the domains of D̂d and the task dataset 
are the same for BioMed, CS, news, and personality domains, whereas cross-domain adaptation was examined 
on the review domain. The vanilla model indicates the general purposed model Mg  without any continual 
pre-training. The subset selection methods generally outperformed the vanilla model, which is consistent with 
previous studies showing that domain-adaptive models are superior to general models for target domains. The 

Purpose Domain Dataset Task Subset ratio

Size

Train Val Test

pre-training(Dd)

CS, BIOMED S2ORC 31 – 10% 10,610,430 – - -

News CCNEWS 32 – 27% 708,241 – –

Personality Pandora 33 – 10% 17,640,062 – –

down-stream(Dt)

CS ACL-ARC 34 Citation intent classification – 1688 114 139

BIOMED RCT 35 Abstract sentence roles classification – 180,040 30,212 30,135

News
AGNEWS 36 Topic classification – 115,000 5000 7600

HYPERPARTISAN 37 Partisanship classification – 514 63 65

Personality First impressions V2 38 OCEAN factor regression – 6000 2000 2000

Review
HELPFULNESS 39 Helpfulness classification – 115,251 5000 25,000

IMDB 40 Sentiment classification – 20,000 5000 25,000

Table 1.  Data specification of the domain-specific datasets Dd and down-stream datasets Dt across multiple 
domains.
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AlignSet achieved the best performance amongst them, implying that the AlignSet finds better subsets using the 
aligned embedding space.

Impact of in-domain pre-training dataset
Although the subset selection method is mainly for efficient pre-training, we examined the task performance 
of the FullSet on the news domain. We found that the RandomSet was comparable to the FullSet, but the other 
subset selection methods exhibited better performance than the FullSet. This result is associated with the size of 
Dd. As shown in Table 1, Dd of the news domain is only 4∼6% of other domains, causing a greater distribution 
shift during the subset selection. Specifically, we speculate that RandomSet performed better than FullSet 
because it coincidentally happened to be closer to the distribution of the fine-tuning dataset. The performance 
gap caused by the distribution shift will be relieved as the size of Dd gets larger 48,49. We also conducted cross-
domain adaptation (i.e., personality → review) to check the importance of the in-domain pre-training dataset 
Dd and how well our method works for unseen domains. As shown at the bottom of Table 2, the subset selection 
methods were comparable to or worse than the vanilla model because the domains of Dd and Dt are different. 
This implies that selecting an appropriate Dd is crucial for performance.

Efficiency
As the essential goal of the subset selection is efficient pre-training, we examined how long it takes to construct 
the subsets. Table 3 summarizes the elapsed time of different subset selection methods. The elapsed time for 
AlignSet includes align-layer training (e.g. 88 h) and data selection (e.g. 15 h). The RandomSet was the fastest 
because it just picks arbitrary examples. Even though the AlignSet takes longer than the SuzukiSet, the AlignSet 
is still more efficient than the FullSet. Assuming that we build a domain-adaptive LM for the personality domain. 
If we perform continual pre-training (CPT) for 20 epochs with FullSet, then it takes longer than 150 days using 
4 NVIDIA GeForce RTX 3090 GPUs. On the other hand, the AlignSet will take only 34 days, which is almost 
one-fifth of the FullSet. That is, it takes 15 days to prepare the in-domain initial model Md (i.e., pre-training 
Md using the RandomSet), 103 hours (4.3 days) for subset selection, and another 15 days for pre-training the 
domain-adaptive LM M̂d. We also investigate the memory consumption efficiency of each subset selection 
method using Big-O notation. For RandomSet, since samples are randomly selected from the entire dataset, it 
requires O(1). On the other hand, SuzukiSet and AlignSet operate in small batches of size B, requiring O(B2). 
This memory consumption does not account for the complexity of model training and applies only to additional 
memory complexity.

Aligned space
To check if the AlignSet forms the aligned embedding space well, we visualized the embedding space using 
arbitrary eight examples, as shown in Fig. 3 where the columns and rows of the heatmaps denote Ud and Ug  
within Fig.  2, respectively. In Fig. 3b, aligned diagonal values imply that the align-layer is well-trained and 
properly maps the sentence representations to the aligned space.

Subset visualization
To assess the quality of the subsets, we visualized AlignSet, RandomSet, and FullSet using PCA (principal 
component analysis) plots and presented in Fig. 4. For visualization, we randomly selected 10,000 samples from 

Domain RandomSet SuzukiSet AlignSet

CS, BioMed 4 s 31 h 74 h

News 1 s 2 h 6.5 h

Personality 4 s 74 h 103 h

Table 3.  Elapsed time of subset selection methods.

 

Domain adaptation Task dataset
Vanilla model
(w/o further pre-training) RandomSet SuzukiSet AlignSet FullSet

BioMed → BioMed RCT 85.71 ± 0.06 86.47 ± 0.08 86.39 ± 0.08 86.52 ± 0.04 -

CS → CS ACL-ARC 74.07 ± 5.60 75.71 ± 2.01 75.56 ± 2.48 76.15 ± 1.51 -

News → News
AGNEWS 93.73 ± 0.19 93.90 ± 0.20 93.99 ± 0.06 94.12 ± 0.13 93.84 ± 0.13

HYPERPARTISAN 81.81 ± 4.67 84.84 ± 4.35 84.95 ± 1.26 86.45 ± 1.98 82.63 ± 2.10

Personality → Personality First Impressions V2 0.1128 ± 0.0013 0.1120 ± 0.0004 0.1121 ± 0.0004 0.1118 ± 0.0001 –

† Personality → Review
HELPFULNESS 68.40 ± 0.65 68.21 ± 0.39 68.19 ± 0.28 68.42 ± 0.46 –

IMDB 93.64 ± 0.01 93.32 ± 0.20 90.95 ± 0.24 93.35 ± 0.04 –

Table 2.  Averaged results with standard deviations on four domains, where d1 → d2 indicates the domain 
adaptation from d1 (domain of Dd) to d2 (domain of Dt). We used macro-F1 for the classification tasks, but 
micro-F1 for the RCT dataset. Mean absolute error (MAE) was utilized for the First Impressions V2 dataset. † 
indicates cross-domain adaptation. Significant values are in bold.
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the FullSet and 1000 samples from each remaining subset in the CS domain. In the figure, FullSet is represented 
by red circles, RandomSet by green triangles, and AlignSet by blue X markers. AlignSet appears to better reflect 
the distribution of FullSet compared to RandomSet. Specifically, while RandomSet captures FullSet in a more 
localized manner, AlignSet preserves relatively more essential characteristics of FullSet.

Limitation
This study has a limitation that we utilized the ALBERT checkpoint for all the experiments due to our limited 
computational budget; at the early stage of this study, we found that the estimated time for pre-training 
RoBERTa 3 or BigBird 50 with RandomSet of the personality domain takes longer than 50 days.

Another limitation of this paper is that we did not conduct experiments with decoder-based models 
(e.g., GPT 4,51 or Llama 52,53 series). Previous articles discovered the potential of domain-adaptive generative 
models 54,55, and we believe that the AlignSet will be able to contribute to the efficient development of domain-
adaptive decoder-based models. The AlignSet is just a subset selection method, so it will be applicable to any 
other domains and multimodal tasks. However, the low-resource languages (LRL) have relatively small datasets, 
so dataset augmentation techniques will be more appropriate instead of subset selection methods.

Furthermore, we chose the subset size based on the time required to pre-train the models. Based on the 
previous analysis 1, the time complexity of training transformer is O(N · L2 · d), where L represents sequence 

Fig. 4.  PCA visualization of FullSet, RandomSet, and AlignSet in the CS domain, where circles represent 
FullSet, and triangles and X markers indicate RandomSet and AlignSet, respectively.

 

Fig. 3.  Heatmaps of aligned embedding space, where the columns and rows correspond to Ud and Ug , 
respectively.

 

Scientific Reports |         (2025) 15:9539 6| https://doi.org/10.1038/s41598-025-94085-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


length, d and N indicate dimension and data size, respectively. Since the actual training time is influenced by 
the hardware environment, we manually checked the training time on our machine and determined the subset 
ratio accordingly.

Conclusion
To reduce pre-training costs for a target domain, we proposed a novel subset selection method AlignSet. The 
AlignSet is designed to align the sentence representations of two different PLMs by a unified embedding space, 
and examples with high self-similarity scores are selected as a subset. By experimental results on multiple 
domains, we showed that the AlignSet allows to efficiently pre-train domain-adaptive LMs. As on-device 
language models (i.e., small language models) are having attention lately due to the heavy computational cost 
of training language models, we believe that our subset selection method will contribute to developing small 
but effective language models for a target domain. We also plan to extend the AlignSet by applying it iteratively; 
when we get the domain-adaptive LM M̂d, then it can be used as the initial model Md for another round of 
AlignSet. We expect that through this process, the quality of AlignSet will improve. However, this will also lead 
to an increase in training time. In other words, such an iterative way may degrade in terms of efficiency, but we 
expect to find a suitable balance between efficiency and effectiveness.

Data availability
All datasets used in the current study, except for Pandora and First Impression V2, are publicly available: S2ORC 
(https://huggingface.co/datasets/allenai/peS2o), CCNEWS (https://huggingface.co/datasets/vblagoje/cc_news), 
others (https://github.com/allenai/dont-stop-pretraining). The Pandora and First Impressions V2 datasets are 
available upon reasonable request and with permission from each author: Pandora ​(​​​h​t​t​p​s​:​/​/​p​s​y​.​t​a​k​e​l​a​b​.​f​e​r​.​h​r​/​d​a​t​
a​s​e​t​s​/​a​l​l​/​p​a​n​d​o​r​a​/​​​​​)​, First Impressions V2 (​h​t​t​p​s​:​​/​/​c​h​a​l​​e​a​r​n​l​a​​p​.​c​v​c​.​​u​a​b​.​c​​a​t​/​d​a​t​​a​s​e​t​/​2​​4​/​d​e​s​c​​r​i​p​t​i​o​n​/).
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