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Pre-trained language models have brought significant performance improvements in many natural
language understanding tasks. Domain-adaptive language models, which are trained with a specific
domain corpus, exhibit high performance in their target domains. However, pre-training these

models with a large amount of domain-specific data requires a substantial computational budget and
resources, necessitating the development of efficient pre-training methods. In this paper, we propose
a novel subset selection method called AlignSet, which extracts an informative subset from a given
domain dataset for efficient pre-training. Our goal is to extract an informative subset that enables
faster learning of the language model compared to learning from the entire dataset. By experiments
across multiple domains, we demonstrate that AlignSet generates better subsets than other methods.

With the advent of Transformer !, pre-trained language models (PLMs) showed remarkable performance across
a range of natural language understanding (NLU) tasks >~>. Especially, domain-adaptive LMs obtained through
continual pre-training (CPT) were found to be effective for target domains °-8. Despite its effectiveness, the high
cost of pre-training limits its applicability. For example, pre-training RoOBERTa-large takes approximately one
day using 1,024 V100 GPUs °. Therefore, it is necessary to develop an efficient way to develop domain-adaptive
LMs.

There are mainly two approaches for efficiently pre-training domain-adaptive LMs with a limited
computational budget: a model-centric and a data-centric. The model-centric approach involves designing
a compact model such as ALBERT ° and EarlyBERT !°, whereas the data-centric approach focuses on data
management or selection. As one of the data-centric approaches, subset selection refers to extracting only a
portion of a large dataset that includes representative or informative instances, thereby creating a subset that is
much smaller in size than the original dataset. Recently, there have been studies that efficiently train language
models using subsets while maintaining or improving performance !!-13. However, these studies have limitations,
such as relying on downstream task datasets or not outperforming random sampling.

The subset selection methods can be categorized into three groups based on the data dependency: down-
stream dependent, down-stream fully-dependent, and down-stream independent group, as depicted in Fig. 1. The
three groups commonly utilize a large general pre-training corpus Dy that is used to pre-train general-purposed
foundation models (e.g., Bidirectional encoder representations from transformers (BERT) 2). The upper two
groups in the figure exploit the down-stream dataset D;={Xp,, Yp, } where Xp, and Yp, indicate the input
texts and the output labels, respectively. Specifically, the down-stream dependent group takes D, and Xp,, and
the down-stream fully-dependent group employs Dy, X p, and Yp,. The dependency to the down-stream dataset
D, may cause bias when we do not have a sufficient amount of the down-stream data. On the other hand, the
down-stream independent group does not suffer from this issue as it takes only D, and D4, where Dy is a dataset
of a target domain. Note that the Dy is unlabelled corpus in the target domain, whereas the general dataset Dy
incorporates multiple domains.

In this study, we propose a new subset selection method called AlignSet, belonging to the down-stream
independent group, to efficiently pre-train a domain-adapted LM within a limited computational budget while
avoiding the aforementioned limitations. The main idea of AlignSet is to align sentence representations obtained
from two different PLMs so that we can exploit the aligned representations to score examples. Based on the
finding that there exist representative subsets for a target domain '3, our goal is to extract an informative subset
that makes the language model better work on domain-specific tasks. Note that our model is designed to extract
a subset in such a way that the language model achieves better performance on target domain tasks compared
to a randomly selected subset. However, it is not designed to outperform a language model trained on the entire
dataset. Our contributions are as follows.
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Fig. 1. Three groups of subset selection methods according to the dependency to the down-stream dataset,
where D, represents the pre-training corpus of the general domain, D4 indicates the pre-training corpus of a
target domain, and X p, and Yp, represent text and label in down-stream task dataset Dy, respectively.

« AlignSet: We propose a new subset selection method of down-stream independent group. It utilizes the simi-
larity between aligned embeddings obtained from two PLMs.

« Experiments on multiple domains: Similar to Gururangan et al. %, we perform the experiments on several
domains (e.g., biomedical science, computer science, news, and personality), and show that the proposed
method outperforms other subset selection methods.

Related works

Pre-training language models

After Transformer ! sheds light on natural language processing (NLP) field, language models (LMs) using
Transformer architecture pre-trained on large datasets from the general domain have shown outstanding
performance across various NLP tasks. 2+!>1¢ BERT 2, one of the most well-known LMs, employs the encoder
part of the Transformer, effectively capturing latent representations and making it applicable to various NLU
tasks. Such encoder-based LMs are known as powerful to NLU tasks as it is designed to encode or comprehend
the context of given texts. Indeed, compared to decoder-based LMs (e.g., Generative Pre-trained Transformer
(GPT) series *1>1718 Llama series 1°-%!), the encoder-based LMs mostly achieve the better performance on NLU
tasks if the LMs are of the same scale (i.e., same model size). Furthermore, recent studies found that adapting
LMs to a target domain through fine-tuning or continual pre-training (CPT) contributes to performance gain.
In this paper, we focus on the encoder-based LMs and propose a new subset selection method for efficient CPT.

Efficient pre-training

While the pre-training >* or continual pre-training(CPT) !* is a promising way to build a general or domain-
adaptive language model, it demands significant computational resources. > To mitigate this issue, there have
been studies on model-centric and data-centric approaches to efficiently pre-train language models with a limited
computational budget. As a model-centric approach, Chen et al. 1° designed a way of training models based on
the lottery ticket hypothesis. Lan et al. * and Dehghani et al. > introduced parameter sharing techniques for
making the models to have fewer parameters. Such parameter sharing enables better performance in language
modeling and allows to efficiently construct the language models. In this paper, we chose the ALBERT ? utilizing
such efficient parameter sharing technique as our base model for experiments.

As a data-centric approach, there have been subset selection techniques that extract informative examples
from a large dataset to construct a small but effective or representative subset. The subset allows efficient training
without losing much performance compared to the total dataset. Yao et al. !' employed BM25%6 by treating the
textual data of down-stream task as a query. This allows the similarity measurement between the pre-training
data and the query to facilitate subset selection. Wang et al. 12 introduced a subset selection based on influence
function 272, and showed that their method outperforms other previous domain-specific language models. It
finds samples that have the most positive impact on the down-stream task using the influence function. These
studies commonly rely on the dataset of target task D;; they are of down-stream dependent or down-stream
fully-dependent groups. Suzuki et al. ', belonging to down-stream independent group, defined scores based on
the difference in length-normalized per-word cross-entropy between a domain-adaptive language model My
and a general language model M. They proved that there exist representative subsets for a given domain, but
their method did not exhibit much performance improvement over randomly extracted subsets. We believe that
the biggest reason for their marginal performance gain might be that they strongly rely on the model loss, so it
became difficult to distinguish between noisy samples and informative samples >*°.

Method

Suppose we want to construct a domain-adaptive language model for a target domain d. The best way is to
borrow a general-purposed language model (i.e., a language model pre-trained with general domains), and
adapt it to the domain d through fine-tuning or continual pre-training (CPT). However, even if we have a pre-
training corpus Dy of the domain d, it is expensive to perform CPT with the entire corpus Dg. Our subset
selection method extracts a subset Dy that comprises a certain portion of Dy, where the subset Dy is much
smaller than Dg but contains informative samples. In this paper, we arbitrarily set | Dg| ~ (0.1 ~ 0.27) X |Dy4|
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based on our limited computation resources. Please refer to the subsection of Experimental settings and datasets
for more details.

AlignSet

Following Suzuki et al. !*, we assume that we have two pre-trained language models (PLMs): a general-purposed
language model M, and an initial in-domain language model My of the target domain, as shown in Fig. 2.
Any model can be chosen as the initial model My when it is pre-trained with any small amount of the target
domain; in this paper, as random selection is the simplest way to get a subset, a language model pre-trained with
a randomly selected subset of the target domain is employed as M. The goal of this study is to design a subset
selection method for efficiently pre-training language models, so it might seem problematic that the initial model
is already a PLM. It is worth noting that the initial model is pre-trained with an arbitrary in-domain subset (e.g.,
random subset), and we use such initial model as a proxy for the target domain to extract an informative subset
that provides performance gain. Through experiments, we demonstrate that AlignSet is effective and efficient,
even when considering the time required to build the initial model.

The two PLMs My and M, take the same set of texts as input and yield sentence embeddings V4 € RN *ma
and V, € RY*™s where N is the number of sentences in a batch. The embeddings can be any vectors derived
from the PLMs (e.g., output vectors of [CLS] token, mean vectors of all tokens, etc). The two PLMs have different
embedding spaces, so Vy and V;; must be different even for the same text. Inspired by Radford et al. *! and
Karpukhin et al. 2, we design align-layer that pr}c\)}'ects V4 and Vj into an unified embedding space, where the
projected embeddings Uy € RY*™ and U, € RY*™. The unified embedding space allows to get the similarity
between sentence embeddings, where the diagonal values are self-similarities, as depicted in Fig. 2.

The motivation of AlignSet is as follows. First, we assume that if a particular example differs from or is more
distinguishable than the others, then the example is more informative. To find such informative examples, we
introduce a contrastive loss that measures the similarity of an example to itself and to other examples. This
approach enables us to train a unified embedding space that captures the similarity between the two PLMs.
After training with contrastive loss, a high similarity between positive pairs indicates that they are clearly
distinguishable from other examples. In other words, examples with high similarity across the two PLMs are
considered more distinctive or informative compared to others. Second, if we simply apply the contrastive loss to
a target domain using a single model (i.e., My=Mg), it may lead to selecting only abnormal examples or outliers,
as is often the case in the computer vision area *>*4. Therefore, we design the aligned space by introducing
Mgy and Mg, where M, has a base or general perspective (i.e., distribution) and My has a perspective of the
target domain. We expect that the aligned space between the two PLMs will allow to find domain-informative
examples that are not merely abnormal or outliers.

Loss function

Following Radford et al. *!

, we utilize the InfoNCE loss function *° to train the align-layer parameters:

esim(vi,wi)/‘r

Z esim(v%,wj)/‘r
wi;eW

Lnce(vi, W) = —log (1)

where 7 is a temperature, w; and v; indicate i-th element of embeddings generated by the two language models
within the batch, and W = {w1, ..., w;w}. The temperature parameter controls the range of the logits in the
softmax function and is a trainable parameter that is directly optimized during training. In this paper, we employ
cosine similarity as the similarity function sim between embeddings. We apply this loss both column-wise and
row-wise, and obtain the total loss L as below.

L = (Lnce(ug,i,Ua) + Lnce(ud,i, Ug))/2 )

The loss encourages maximizing the similarity of positive pairs while minimizing the similarity of negative pairs.
In other words, positive pairs are pulled closer together, while negative pairs are pushed farther apart in aligned
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Fig. 2. The overview of AlignSet, where ﬁd is a subset of Dy, M 4 is a domain-adaptive language model,
Va and V; are embeddings generated by Mg and M, respectively. And Ug and Uy refer to the embeddings
projected into the unified embedding space via the alignment layer.
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space. The positive pairs, represented by the diagonals in Fig. 2, correspond to the embeddings of the same
examples, whereas the negative pairs correspond to the embeddings of different examples. During the training
phase, M, and Mg are frozen, and the parameters of the align-layer are updated. After training, the positive pairs
are used to compute the self-similarity scores. Specifically, self-similarity scores for positive pairs can be obtained
from the trained model’s unified embedding space as an inference result. We utilize this score to measure the
informativeness of each example, and the top-k examples are selected as the subset Dg.

Experiments

Experimental settings and datasets

For our lin}ited computational resource, we chose to use A Lite BERT (ALBERT) 9 for all models (e.g., My,
Mg, and Mg). Our method only learns the aligned space between encoder-based models without modifying
architecture, making it easily applicable to other encoder-based models. We utilized a publicly available general-
purposed ALBERT checkpoint from HuggingFace as M. As explained earlier, any model can be chosen as My
if it is pre-trained with a small subset of the target domain. In our experiments, Mg is obtained by performing
continual pre-training (CPT) on M, with a randomly selected subset of Dg4. For AlignSet, we set the [CLS] token
representations of the last layer as V,; and Vg, and employ a linear layer as the align-layer, which is randomly
initialized. When we fine-tune the model and predict task labels, the representation of the [CLS] token is passed
to the task-specific linear layer.

We conducted experiments on multiple domains: computer science (CS), biomedical science (BioMed),
news, personality, and review, where the review domain is for cross-domain experiments. Table 1 summarizes
the source and specification of the in-domain pre-training datasets D4 and down-stream task datasets Ds,
where all datasets are in English. The subset ratio (i.e., 10~~27%) is chosen based on the amount of time required
to pre-train the models because it mostly takes too long for pre-training. For example, in the personality domain,
it took 358 hours (15 days) for a single run of pre-training with the 10% subset. On the other hand, the dataset
size of the news domain is much smaller than the other domains, so we arbitrarily set the subset size to be 10%
of the personality domain subset, which corresponds to 27%. The task of D; is a classification task, except for
the First Impressions V2 dataset which is a regression task on OCEAN factors: openness, conscientiousness,
extraversion, agreeableness, and neuroticism. Specifically, the OCEAN factor regression is to predict per-factor
scores ranging from 0 to 1 for a given input text. Therefore, we took mean absolute error (MAE) as a metric
for the OCEAN factor regression, while we report the classification results using macro-F1 and micro-F1 by
following Gururangan et al. 1 and Beltagy et al. ®. All experimental results are averages of five independent runs
with random seeds.

In the pre-training steps, we used Adam optimizer *° with decoupled weight decay regularization ¥/, and the
initial learning rate was 0.0001. We used the batch-size of 16, and the number of epochs was 20. We adopted a
linear learning rate scheduler with 10,000 warm-up steps. In the fine-tuning steps, we used the batch-size of 32,
and an initial learning rate of 0.00003 with 10 epochs. The experiments were conducted on 4 NVIDIA GeForce
RTX 3090 GPUs.

Results

Main result

We compared the AlignSet with two rival methods: a randomly selected subset (RandomSet) and a subset
obtained from the method of Suzuki et al. '* (SuzukiSet). Table 2 summarizes the experimental results on
multiple domains, where FullSet indicates the entire pre-training dataset D4. We examined the FullSet only on
the news domain due to our limited computational budget. Note that the domains of Dy and the task dataset
are the same for BioMed, CS, news, and personality domains, whereas cross-domain adaptation was examined
on the review domain. The vanilla model indicates the general purposed model M, without any continual
pre-training. The subset selection methods generally outperformed the vanilla model, which is consistent with
previous studies showing that domain-adaptive models are superior to general models for target domains. The

Size
Purpose Domain Dataset Task Subset ratio | Train Val Test
CS, BIOMED | S20RC ! - 10% 10,610,430 | - -
pre-training(Dg) | News CCNEWS 32 - 27% 708,241 -
Personality | Pandora * - 10% 17,640,062 | - -
Cs ACL-ARC** Citation intent classification - 1688 114 139
BIOMED RCT % Abstract sentence roles classification | — 180,040 30,212 | 30,135
News AGNEWS % Topic classification - 115,000 5000 | 7600
down-stream(D) HYPERPARTISAN %7 | Partisanship classification - 514 63 65
Personality First impressions V2 3 | OCEAN factor regression - 6000 2000 | 2000
Review HELPFULNESS * Helpfulness classification - 115,251 5000 25,000
IMDB % Sentiment classification - 20,000 5000 25,000

Table 1. Data specification of the domain-specific datasets D4 and down-stream datasets D; across multiple
domains.
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Vanilla model
Domain adaptation Task dataset (w/o further pre-training) | RandomSet SuzukiSet AlignSet FullSet
BioMed — BioMed RCT 85.71 £ 0.06 86.47 £0.08 86.39 £0.08 86.52 + 0.04 -
CS — CS ACL-ARC 74.07 £ 5.60 75.71+£2.01 75.56 + 2.48 76.15 £ 1.51 -
AGNEWS 93.73 £0.19 93.90 £ 0.20 93.99 £ 0.06 94.12 £ 0.13 93.84 £0.13
News — News
HYPERPARTISAN | 81.81 + 4.67 84.84 £ 4.35 84.95+1.26 86.45 + 1.98 82.63 £2.10

Personality — Personality | First Impressions V2 | 0.1128 + 0.0013

0.1120 £ 0.0004 | 0.1121 £ 0.0004 | 0.1118 + 0.0001 | -

t Personality — Review

HELPFULNESS 68.40 + 0.65
IMDB 93.64 £ 0.01

68.21 +0.39
93.32+£0.20

68.19£0.28
90.95 +0.24

68.42 + 0.46 -
93.35 £ 0.04 .

Table 2. Averaged results with standard deviations on four domains, where di — d2 indicates the domain
adaptation from d; (domain of Dg) to d2 (domain of D;). We used macro-F1 for the classification tasks, but
micro-F1 for the RCT dataset. Mean absolute error (MAE) was utilized for the First Impressions V2 dataset. {
indicates cross-domain adaptation. Significant values are in bold.

Domain RandomSet | SuzukiSet | AlignSet
CS, BioMed | 4s 31h 74 h
News s 2h 6.5h
Personality | 4s 74h 103h

Table 3. Elapsed time of subset selection methods.

AlignSet achieved the best performance amongst them, implying that the AlignSet finds better subsets using the
aligned embedding space.

Impact of in-domain pre-training dataset

Although the subset selection method is mainly for efficient pre-training, we examined the task performance
of the FullSet on the news domain. We found that the RandomSet was comparable to the FullSet, but the other
subset selection methods exhibited better performance than the FullSet. This result is associated with the size of
Dg. As shown in Table 1, D4 of the news domain is only 4~6% of other domains, causing a greater distribution
shift during the subset selection. Specifically, we speculate that RandomSet performed better than FullSet
because it coincidentally happened to be closer to the distribution of the fine-tuning dataset. The performance
gap caused by the distribution shift will be relieved as the size of Dg gets larger 4. We also conducted cross-
domain adaptation (i.e., personality — review) to check the importance of the in-domain pre-training dataset
D, and how well our method works for unseen domains. As shown at the bottom of Table 2, the subset selection
methods were comparable to or worse than the vanilla model because the domains of D4 and D, are different.
This implies that selecting an appropriate Dy is crucial for performance.

Efficiency

As the essential goal of the subset selection is efficient pre-training, we examined how long it takes to construct
the subsets. Table 3 summarizes the elapsed time of different subset selection methods. The elapsed time for
AlignSet includes align-layer training (e.g. 88 h) and data selection (e.g. 15 h). The RandomSet was the fastest
because it just picks arbitrary examples. Even though the AlignSet takes longer than the SuzukiSet, the AlignSet
is still more efficient than the FullSet. Assuming that we build a domain-adaptive LM for the personality domain.
If we perform continual pre-training (CPT) for 20 epochs with FullSet, then it takes longer than 150 days using
4 NVIDIA GeForce RTX 3090 GPUs. On the other hand, the AlignSet will take only 34 days, which is almost
one-fifth of the FullSet. That is, it takes 15 days to prepare the in-domain initial model My (i.e., pre-training
M using the RandomSet), 103 hours (4.3 days) for subset selection, and another 15 days for pre-training the
domain-adaptive LM Mgy. We also investigate the memory consumption efficiency of each subset selection
method using Big-O notation. For RandomSet, since samples are randomly selected from the entire dataset, it
requires O(1). On the other hand, SuzukiSet and AlignSet operate in small batches of size B, requiring O(B?).
This memory consumption does not account for the complexity of model training and applies only to additional
memory complexity.

Aligned space

To check if the AlignSet forms the aligned embedding space well, we visualized the embedding space using
arbitrary eight examples, as shown in Fig. 3 where the columns and rows of the heatmaps denote Uz and Uy,
within Fig. 2, respectively. In Fig. 3b, aligned diagonal values imply that the align-layer is well-trained and
properly maps the sentence representations to the aligned space.

Subset visualization
To assess the quality of the subsets, we visualized AlignSet, RandomSet, and FullSet using PCA (principal
component analysis) plots and presented in Fig. 4. For visualization, we randomly selected 10,000 samples from
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Fig. 3. Heatmaps of aligned embedding space, where the columns and rows correspond to Ug and Uy,
respectively.
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Fig. 4. PCA visualization of FullSet, RandomSet, and AlignSet in the CS domain, where circles represent
FullSet, and triangles and X markers indicate RandomSet and AlignSet, respectively.

the FullSet and 1000 samples from each remaining subset in the CS domain. In the figure, FullSet is represented
by red circles, RandomSet by green triangles, and AlignSet by blue X markers. AlignSet appears to better reflect
the distribution of FullSet compared to RandomSet. Specifically, while RandomSet captures FullSet in a more
localized manner, AlignSet preserves relatively more essential characteristics of FullSet.

Limitation

This study has a limitation that we utilized the ALBERT checkpoint for all the experiments due to our limited
computational budget; at the early stage of this study, we found that the estimated time for pre-training
RoBERTa ? or BigBird ** with RandomSet of the personality domain takes longer than 50 days.

Another limitation of this paper is that we did not conduct experiments with decoder-based models
(e.g., GPT **! or Llama > series). Previous articles discovered the potential of domain-adaptive generative
models >, and we believe that the AlignSet will be able to contribute to the efficient development of domain-
adaptive decoder-based models. The AlignSet is just a subset selection method, so it will be applicable to any
other domains and multimodal tasks. However, the low-resource languages (LRL) have relatively small datasets,
so dataset augmentation techniques will be more appropriate instead of subset selection methods.

Furthermore, we chose the subset size based on the time required to pre-train the models. Based on the
previous analysis !, the time complexity of training transformer is O(N - L? - d), where L represents sequence
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length, d and N indicate dimension and data size, respectively. Since the actual training time is influenced by
the hardware environment, we manually checked the training time on our machine and determined the subset
ratio accordingly.

Conclusion

To reduce pre-training costs for a target domain, we proposed a novel subset selection method AlignSet. The
AlignSet is designed to align the sentence representations of two different PLMs by a unified embedding space,
and examples with high self-similarity scores are selected as a subset. By experimental results on multiple
domains, we showed that the AlignSet allows to efficiently pre-train domain-adaptive LMs. As on-device
language models (i.e., small language models) are having attention lately due to the heavy computational cost
of training language models, we believe that our subset selection method will contribute to developing small
but effective language models for a target domain. We also plan to extend the AlignSet by applying it iteratively;
when we get the domain-adaptive LM My, then it can be used as the initial model My for another round of
AlignSet. We expect that through this process, the quality of AlignSet will improve. However, this will also lead
to an increase in training time. In other words, such an iterative way may degrade in terms of efficiency, but we
expect to find a suitable balance between efficiency and effectiveness.

Data availability

All datasets used in the current study, except for Pandora and First Impression V2, are publicly available: S20RC
(https://huggingface.co/datasets/allenai/peS20), CCNEWS (https://huggingface.co/datasets/vblagoje/cc_news),
others (https://github.com/allenai/dont-stop-pretraining). The Pandora and First Impressions V2 datasets are
available upon reasonable request and with permission from each author: Pandora (https://psy.takelab.fer.hr/dat
asets/all/pandora/), First Impressions V2 (https://chalearnlap.cvc.uab.cat/dataset/24/description/).
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