www.nature.com/scientificreports

scientific reports

OPEN

W) Check for updates

Disparities in the impact of drought
on agriculture across countries

Hayden Freedman®*, Amir AghaKouchak?, Angela J. Rigden?, André van der Hoek®* &
Bill Tomlinson?

Over the last several decades, droughts driven by climate change have damaged agricultural
production as the planet warms. It is crucial for the future of the global food supply to develop effective
adaptation strategies. However, not all countries and regions are affected equally by drought. We

fit a hierarchical Bayesian model with a dataset containing 60 years of country-level drought and
agricultural productivity data to probabilistically identify the susceptibility of various countries and
regions to drought. We find that regions such as Eastern Africa and Southern Asia are highly susceptible
to drought, with each region exhibiting a >90% chance that drought has negatively affected
agriculture, leading to estimated historical agricultural losses of >14%, while Eastern Asia is the most
drought-resilient region, with only a 44% probability that drought has negatively affected agriculture
in this region. The results of this study can help inform the allocation of future resources to enhance
agricultural resilience in the most vulnerable regions. Additionally, they provide a foundation for case
studies examining specific countries or regions that demonstrate notable resilience or susceptibility to
drought.

As climate change intensifies, so too does the disruption to the global agricultural system. Mounting evidence
highlights how anthropogenic climate change, along with other human-driven activities, has impacted water
availability"* and increased the frequency or severity of extreme weather (e.g., droughts and heat waves)>*,
disrupting the agriculture sector in many parts of the world®~’. These findings have massive implications for both
food security and economic stability for many countries®, highlighting the importance of understanding the
relationship between climate change-driven events and global agriculture.

One of the most significant ways in which climate change affects agriculture is through the well-documented
increase in frequency and severity of droughts in many regions!®!!. Furthermore, climate change increases
the likelihood of drought-related compound hazards including heat wave-drought co-occurrences'>'%. There
have been many case studies at the country'>~2! and regional?’~2¢ levels investigating the effects of drought on
agricultural production, with many studies showing historical agricultural deficits attributable to drought, as
well as predicting future agricultural losses.

Beyond case studies, additional macro-level analyses examining the role that drought has historically played
in agricultural systems around the world have further elucidated the important relationship between drought
and agriculture globally. In one example of such work, Lesk et al.?” use a superposed epoch analysis to estimate
cereal production losses from the effects of drought and extreme heat, finding a 9-10% loss globally and relatively
more losses in developed countries than developing countries. In a more recent work, Zaveri et al.?® use a fixed-
effects regression analysis to generate a gridded world map of mean annual per capita GDP loss associated with
drought. Although Zaveri et al. do not specifically study agricultural impacts, the authors find that much of the
impact on GDP is caused by damage to agriculture?®.

Here, we develop a hierarchical Bayesian regression model that provides, for the first time, country- and
region-specific estimates of historical agricultural total factor productivity (TFP) deficits caused by drought,
inclusive of model parameter uncertainty. This model facilitates comparing a given country’s or region’s
likely range of responses to drought to the global average as well as to its geographic neighbors. Each nation’s
agricultural industry has unique attributes that may affect its overall level of resilience to drought, such as the
resources available to farmers in that country?, the economic prosperity of the country, and the adaptation
and long term planning abilities of the country’s institutions’!, among many others. In addition to country-level
differences, regional factors such as shared climate and weather patterns, similarity between types of crops grown
in neighboring countries, and multi-country collaborative efforts to build resilience*?> may also jointly impact
the overall response to drought of groups of countries situated geographically near to each other, motivating
the regional level analysis. As such, this work provides new insight into historical drought resilience at varying
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spatial scales, which may be useful in informing future policy decisions that are tailored for specific countries
and regions.

The use of agricultural TFP growth as the dependent variable is based on prior work finding that it provides
more consistent and robust results than using agricultural output®>. Unlike many studies that identify extreme
weather based on climate variables, we use the EM-DAT database®*. The main difference between EM-DAT and
other extreme weather indices is that EM-DAT identifies extreme weather based on direct human impact, while
other approaches typically infer the presence of extreme weather based on a fixed definition, such as degree days
above a threshold. The use of EM-DAT mitigates the bias and ambiguities potentially introduced by varying
responses to high temperatures in different areas?”. We include quadratic temperature in the model to isolate the
effect of drought from other climate-related events, and include year-specific intercepts to capture global shocks
in agriculture common to all countries. Our results are presented in terms of probabilities and likely ranges of
values in order to avoid overconfidence in point estimates; these probabilities and confidence intervals stem
from the coherent handling of model parameter uncertainty provided by the Bayesian framework.

Results

National results

The country-level results are presented in Figs. 1 and 2. In the lefthand side of Fig. 1, the total number of
droughts per country are visualized, while on the righthand side, the probability that drought has negatively
affected each country’s agriculture is visualized. The righthand side probabilities are based on the output of
the Bayesian sampling; specifically, they reflect the percentage of drought coeflicient samples that are negative
for each country. For more details see the Methods section. Countries that have not experienced any drought
in the EM-DAT database during the timeframe for which we have agricultural data are shaded in gray. Many
of the world’s countries are shaded in orange or red indicating >80% probability that drought has negatively
impacted agriculture. Overall, we see a high probability of negative drought impacts in the majority of the world’s
countries, affirming the widely-held belief that increasing drought is indeed a major area of global concern for
agriculture moving forward.

Interestingly, many of the countries in Fig. 1 exhibiting extreme results in one direction or the other are
African nations. According to our model, two of the countries with the highest probability of drought negatively
impacting agriculture are Senegal (99%) and Malawi (93%). The two countries with the lowest likelihood of
negative agricultural impacts from drought are Djibouti (40%) and Zimbabwe (42%). Possible explanations
include the potentially questionable reporting of agricultural data in these countries*, as well as the observation
that smaller agricultural sectors are likely more sensitive to year-to-year changes, thus potentially leading to
extreme results from our model. These results suggest that further work performing comparative studies between
the agricultural sectors and agricultural data collection processes of various African nations might bear fruit in
helping to explain the large differences in drought impacts found by our model in these countries.

In Fig. 2, the three maps show the maximum likelihood, upper bound, and lower bound estimates of the
percentage that drought has negatively impacted agriculture for each country within the timeframe for which
we have agricultural data (1961 - 2021). Upper- and lower-bounds reflect one standard deviation from the mean
of the sampled drought coefficients for each country. Countries with no recorded drought during the timeframe
of the analysis are again shaded in gray. One important takeaway from these maps is the large uncertainty
in the model, indicated by the drastic shift from green to red, which many countries undergo between the
upper- and lower-bound maps. This indicates that, at the country level, our model is providing wide ranges of
likely percentage decreases from drought for many countries. Factors such as the quality of the agricultural data
and the way that drought is modeled as a binary variable for each country/year observation may have caused
uncertainty in our results to remain high; this topic will be revisited in the Discussion section.

Some countries present nearly uniform positive or negative responses to drought across the distribution of
drought coefficient samples. For these countries, we can confidently conclude the effects of drought with high
probability. For example, Trinidad and Tobogo, Liberia, Japan, Albania, and Nigeria each suffer only about a
5% or less decrease in TFP in our lower-bound estimate, indicating with high probability that drought has not
severely impacted the agricultural sectors of these countries. On the other hand, based on our upper-bound
estimates, there is high probability that drought seems to have delivered substantial losses to the agricultural

Country Prob. that drought has
Total Droughts by Country (1961 - 2021) decreased TFP (Map)

S Q‘w N A
4

- =
L L C
L SN p y

> 1,7 w

Number of Droughts Percentage (%)

5 10 15 20 25 0.4 0.5 0.6 0.7 0.8 0.9

Fig. 1. The leftward map shows the total number of droughts per country that have occurred in the 1961-2021
time range, according to the EM-DAT database®*. The rightward map shows a geographical depiction of the
probability that drought has decreased TFP in each country, based on the percentage of negative samples for
each country-specific drought coefficient (see Methods Section). Countries with no recorded droughts in the
database are shaded gray.
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Fig. 2. These three maps show the estimated percentage that drought has decreased TFP for each country.
Estimates are provided as a lower and upper bound one standard deviation from the sampled mean, as well as
a maximum likelihood estimate. The top map shows the maximum likelihood estimate for each country, which
is computed by taking the mean of the range of estimates. The middle map shows the estimates at the 84th
percentile of the range of estimates, meaning they form the upper bound of the range of estimates within one
standard deviation of the mean. The bottom map shows the estimates at the 16th percentile, forming the lower
bound of the same range of estimates within one standard deviation of the mean. Countries with no recorded
droughts in the database are shaded gray.

sectors of countries such as Senegal (34% estimated upper-bound loss), Malawi (7%), and Afghanistan (8%).
These observations reflect the utility of the hierarchical analysis for targeting specific countries particularly
affected by drought; while there is no global solution to drought, resources can likely be used most efficiently by
prioritizing the most vulnerable countries, which our model can help to identify. Supplementary Table S2 shows
the estimated impacts of drought for all countries as a reference.

Regional results

The regional results of our analysis are presented in Figs. 3 and 4. The barplot at the top of Fig. 3 shows the
probability that drought has negatively impacted the overall agricultural productivity for each of the 20 World
Development Indicator regions in our dataset. The same data are shown as a map at the bottom right of the
figure. The map at the bottom left of the figure shows the total number of droughts recorded by EM-DAT>* for
each region in the time range for which agricultural TFP data is available.

Regional impacts are computed from the same model as the country impacts. To compute the regional
impacts, the posterior distribution of the drought coeflicient for each individual country is multiplied by that
country’s regional share of agricultural production for each year that the country experienced drought, and these
products are summed to create the posterior distribution of the total regional impact (see Section 4 for a more
in-depth explanation). This methodology leads to more productive countries having more of an impact on the
overall regional results than smaller ones, and “smooths out” some of the more heterogeneous country-level
impacts seen in Fig. 2. For example, Botswanas unexpected resilience to drought displayed by the model at the
country level has been erased at the regional level, where we see that agriculture in the Southern Africa region
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Regional Prob. that drought has decreased TFP (Barplot)
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Fig. 3. The barplot (top) shows the probability that drought has historically decreased agricultural TFP within
the historical time period for which we have agriculture data (1961-2021), for each of the 20 world regions in
our dataset. These probabilities are based on the percentage of negative samples for each regional slope. The
map in the bottom left shows the total number of droughts per region that have occurred in the 1961-2021
time range, according to the EM-DAT database®®. The map in the bottom right shows a geographical depiction
of the same data as the barplot. Countries with no recorded droughts in the database are shaded gray.

appears highly drought-sensitive as a whole. While less granular than the country-level impacts, the regional
impacts should be less susceptible to noisy or badly-collected data from individual countries, potentially
providing a more robust perspective on overall drought impacts.

Despite the reduction of country-level heterogeneity in response to drought, we still see that impacts of
drought vary substantially between regions. Green regions South America and Eastern Asia appear relatively
more resilient to drought, with the probability of drought having negatively affected agriculture around 60%
and 44%, respectively for these regions. On the other hand, the reddest regions - Western Asia, Eastern Africa,
Northern Europe, and Western Africa - all have probability greater than 97% that agriculture has been negatively
affected by drought. One region of particular concern based on these results is Eastern Africa, which has a 99%
of having been negatively affected by drought, likely in large part to having reported by far the most country-
years in drought (181) of any region. Interestingly, Northern Europe, the region that has reported the fewest
droughts (4), has one of the highest probabilities of having been negatively affected by drought. These results
affirm previous findings that the African continent is among the most vulnerable to drought®, while Latin
America is one of the more drought-resilient areas?’.

Figure 4 shows three maps, which collectively show the maximum likelihood, upper bound, and lower bound
estimates of the percentage decrease of TFP caused by drought for each region. The upper and lower bound
estimates reflect one standard deviation from the mean of the distribution of samples for each country, while
the maximum likelihood reflects the mean of the distribution. The Eastern Africa and Southern Asia regions
appear to have suffered substantial declines in TFP from drought in all likelihood scenarios, with maximum
likelihood estimate of 15% historical damage for both of these regions. In other world regions, the effect has been
less drastic. For example, Northern Europe, a region that has experienced few droughts, is estimated to have lost
only .7% of agricultural productivity due to drought. These maps provide a regional-level visualization of areas
of concern, indicating that future work at the regional level should focus on the Eastern Africa, Southern Asia,
and Northern America regions to help build drought resilience. Supplementary Table S2 shows the estimated
impacts of drought for all regions as a reference.

In Fig. 5, we show the distribution of possible values of historical TFP change from drought for these three
regions of concern, in the form of histograms. The yellow vertical lines show the means of the distributions,
while the colored bins between the two orange lines show the range of values one standard deviation from the
mean. Here, we see that the range of possible impacts in Northern America is quite large, indicating higher
model uncertainty, while the variance of impacts in Eastern Africa is much smaller, indicating that the model is
more certain about the impacts of drought in this region. The Southern Asia region exhibits higher uncertainty
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Fig. 4. These three maps show the estimated percentage that drought has decreased TFP for each world region.
As in Fig. 2, percentage loss estimates are provided as an upper bound and lower bound one standard deviation
from the sampled mean, as well as a maximum likelihood estimate. Countries with no recorded droughts in
the database are shaded gray.
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Fig. 5. This figure shows the histograms of possible values for the percentage change in TFP due to drought
in three world regions of concern. The horizontal yellow line in each histogram represents the mean, while
the colored bins between the orange lines represent the range of values one standard deviation from the mean.
The percentage likelihood that drought has decreased TFP is the percentage of samples below 0, or to the left
of the red vertical line, for each region. Note that the yellow line representing the mean in each histogram
corresponds to the maximum likelihood estimate in Fig. 4, while the rightward orange line in each histogram
corresponds to the upper bound value and the leftward orange line corresponds to the lower bound.
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than Eastern Africa, but less than Northern America. By focusing on the variance in possible impacts rather
than maximum likelihood estimates, we acknowledge that uncertainty is an inherent component of regression
models, and emphasize the importance of being forthcoming regarding model parameter uncertainty, rather
than ignoring it when convenient.

Discussion

The results of this paper show a diverse array of historical impacts of drought on agricultural sectors at both
the regional and national levels between the years 1961 - 2021. Although in this paper we focus specifically on
droughts, our Bayesian methodology should be applicable to analyze the historical global impacts of any extreme
weather event for which there is data available, as well as combinations of extreme weather events occurring
simultaneously, including a coherent treatment of uncertainty.

We find that there are substantial differences between regions in the probability that drought has historically
decreased agriculture, ranging from around 40% to nearly 100%. At the national level, we also see a wide range
of responses between different countries. There are various possible factors that could cause this diversity of
results between regions, such as the number and characteristics (intensity, duration) of droughts, the water
requirements of particular crops grown in these areas, the climate of the regions, or adaptive measures taken
by governments and perhaps individual farmers. The global response we compute estimates around a 5% global
decrease in agriculture based on drought, with a 12% lower bound estimate (see Supplementary Figure S1).

Policy-driven drought management may play a large role in the heterogeneity of impacts observed at the
country and regional levels. For example, Botswana has institutionalized its drought management at the level of
the federal government and performs a rigorous drought assessment at the end of the rainy season every year*’,
which may help explain our study’s finding that it has been relatively drought-resilient compared to its neighbors.
At the regional level, East African countries have failed to consistently implement drought mitigation policies,
but could improve their agriculture’s resilience to drought via efforts to increase biodiversity and improve farm
technology?®. In future work, statistical analyses such as ours should be integrated with qualitative analyses of
drought management policies, which will help to elucidate the relationship between drought management and
the corresponding economic effects of drought in various countries and regions.

Further research may wish to use these results to perform within-region case studies comparing the
agricultural conditions of regions and countries that appear particularly drought resilient, as well as neighboring
countries that appear particularly susceptible. Of particular interest is the African continent, which is considered
perhaps the most vulnerable continent to climate change generally*. In our models, Africa exhibits a diverse
array of responses at both the regional and national levels, ranging from some of the most susceptible to the most
resilient areas. Eastern Africa is the world region that has experienced the most drought and has suffered some
of the most negative affects, with nearly all countries severely negatively impacted. However, Western Africa
has also suffered a high number of droughts but includes countries, such as Nigeria and Liberia, that appear
very resilient. In Southern Africa, a region that has suffered fewer droughts, Botswana and Zimbabwe appear
to respond substantially better to droughts than neighbors South Africa and Mozambique. Further analysis of
these neighboring countries exhibiting different responses to drought could perhaps help elucidate cross-border
exchanges of ideas to promote unified regional responses using the best available techniques and knowledge.

The treatment of model parameter uncertainty facilitated by the Bayesian approach demonstrates the reality
that drought’s impact on a given region or country is not always clear. While representing high model uncertainty
in climate research may lead to communication challenges®, it is typically better than pretending uncertainty
does not exist and presenting only the maximum likelihood estimates. Large uncertainty in climate econometric
models is common, and presents the inconvenient reality that it is often difficult to be sure of the impact of
the measured phenomenon on the target. While we can say with high probability that drought has decreased
agricultural productivity globally based on our model results, there are many countries or regions for which
we are much less certain of the historical effect on drought. For this reason, our results are better interpreted as
general trends rather than hard estimates.

Along these lines, we recommend that our maximum-likelihood estimates be viewed as initial indicators
of drought vulnerability and resilience, and contextualized with the explanation that they are means of a
distribution with a certain variance, which can be presented alongside the mean estimates. These results are
intended to be used as drivers of future research, rather than as a definitive and exact source of answers for
where aid and resources should be targeted. Especially for national and regional drought responses exhibiting
high uncertainty in our model, a within-country region-by-region analysis of agricultural response to drought
(such as Chen et al’s Bayesian approach to assessing regional drought response in China?®) should be carried out
before any definitive conclusions are drawn about a given country.

A limitation of the current work is that, unlike gridded drought data, the EM-DAT?* database’s treatment of
drought as a binary variable for each country/year does not account for the scale of the droughts. In our model,
a small portion of a country experiencing drought counts the same as if the entire land area of a country is in
drought, even though these two scenarios will obviously impact agriculture differently. This problem may be
especially apparent in larger countries like the United States and China. For example, a drought in California will
have little effect on agriculture in New York, and may have led to high uncertainty about the effect of drought
for these countries (and corresponding regions) in our model. Other factors unaccounted for in the EM-DAT?
data that may influence the effects of drought are whether the agricultural land is irrigated or rainfed***!, and
whether the drought occurred specifically over agricultural lands.

These factors likely play a role in our model’s high uncertainty for large countries such as China, even though
past work using gridded drought and agricultural data has shown substantial negative impacts of drought on
China’s agriculture?>*3. However, most papers relying on gridded data have to grapple with how to define a
drought based on climate variables, which may introduce bias by identifying droughts that did not have any real
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impact?’. An advantage to the use of the EM-DAT database as our source of drought data is that droughts are
identified purely based on human impact, which helps to mitigate this bias. It would be useful for future work to
compare impacts of drought on agriculture using both gridded data and EM-DAT, inclusive of uncertainty, for
each country and region.

Methods

Data sources

Our regression model investigates the global effect of drought on the first difference of the natural log of
agricultural TFP. Using the hierarchical Bayesian approach, we simultaneously compute samples for a global
slope for drought as well as a regional or country slope for drought. The regional definitions come from the
20 world regions present in our dataset, as defined by the World Bank Development Indicators. We obtain
agricultural TFP data from the United States Department of Agriculture (USDA) Economic Research Service
(ERS)** and data on droughts from the Emergency Events Database (EM-DAT)**. This database marks
emergency disasters that have led to one of at least 100 people affected, 10 fatalities, a declaration of emergency,
or a call for international assistance. The model also includes quadratic annual average temperature weighted by
agricultural land as an additional explanatory variable. Temperature and precipitation data for each country year
is extracted from the gridded temperature data made available by the NCEP/NCAR 40-year reanalysis project®’,
and we use the agricultural dataset available at www.earthstat.org?® to compute weights for climate variables.

Model training
We trained a hierarchical Bayesian model to learn the relationship between drought and TFP growth at the
country level. Note that in other literature, hierarchical models are sometimes also referred to as both multi-level
models and random slopes models. Drought is represented as a binary variable for each country year, in which
a 1 represents that EM-DAT recorded at least one drought somewhere in the country during the specified year.
The model also includes quadratic annual average temperature weighted by agricultural land to account for non-
drought-related effects of climate on agriculture, and year-specific fixed effects to account for global events that
affected all countries.

Based on its hierarchical nature, the model samples country-specific coefficient values for drought based on
a single, global distribution of coefficient values which is learned simultaneously as part of a joint multivariate
distribution, allowing for variance in the country-specific outcomes based on locality-specific policies and
adaptations. The set of equations for the hierarchical model is shown below in Egs. (1) to (2).

Yit ~N (uie, HN(0o)) (1)
k
uit =Bot + (B1s * Diz) + Z(’Bj * Cit) )
j=2

Bot 140 oo
( B > ~N [(N(N(ulm)uHN(@l))) (HN(92)>] 3)
Bi — Bk 142 o2

Equation (1) shows the outcome y (first difference of the natural log of agricultural TFP) for each i (country)
and t (year) represented as a Normal distribution (') parameterized by a mean p which is the sum of the
regression terms in Eq. (2) as well as a variance term. Equation (2) shows the sum of the regression terms, where
Bo represents the year-specific intercepts, 31 represents the country-specific coefficient for drought D, and fy, -
f3; represent the coefficients for C, the matrix of climate covariates, which are Temperature and Temperature?.
Equation (2) shows that the year-specific intercepts 5o and the model coeflicients 31 - 84 are drawn from normal
distributions. Coefficients 81 for drought in a given country i represent the hierarchical component. The mean of
B14 is drawn from a normal distribution for each country whose mean is in turn drawn from a global distribution
of coefficients. To allow for the model to flexibly learn the variance of the global and country-level distributions
for drought, the variance term for these distributions are Half Normal (HN) distributions parameterized by scale
terms 01 and 65.

We used uninformative priors to allow the data to guide the sampler, which are displayed in Supplementary
Table S1. The code for the model is written in PyMC*” and sampling is performed using the NUTS algorithm*.
We sampled across 4 Markov Chain Monte Carlo chains and burn-in 5000 samples and save 5000 samples per
chain, for a total of 20,000 posterior samples.

Robustness checks
In order to assert the robustness to permutation of the model shown in Egs. (1) - (2), we fit two additional
hierarchical models with different climate covariates. The first additional model includes no climate variables
(with drought as the only covariate), and the second additional model includes quadratic temperature and
quadratic precipitation as covariates (Temperature, Temperature?, Precipitation, Precipitation?). Like our
primary model, both model variations include year-specific fixed effects. The country-specific drought coeflicient
means learned in each of these models were quite similar to those learned in the primary model, indicating that
our model is robust against different permutations of climate covariates. The drought coefficients for each model
are shown in Supplementary Table S4.

As an additional robustness check, we fit a model using vegetation coverage, rather than agricultural
productivity, as the dependent variable. The purpose of doing so was to help address data quality concerns
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regarding the USDA agricultural productivity data we used in our primary analysis. We used the PKU
Normalized Difference Vegetation Index (NDVI) dataset® for this purpose. The drought coefficients for this
model are also shown in the last column of Supplementary Table S4. We observed that the coefficient means are
mostly similar between this model and the other three models using the USDA data, indicating that our results
are not simply a product of the selected agricultural dataset. However, there are some notable exceptions which
might indicate concerns about the validity of the findings for certain countries. For example, countries such as
Afghanistan, Botswana, and Djibouti exhibited a much more negative response to drought using the NDVI data
than the USDA data, which may indicate questionable agricultural data for these countries. It might also indicate
that NDVT is not a good proxy for agricultural impacts in these countries, since natural vegetation and cropland
may respond differently to drought.

Computing impacts
After training the models, we obtain the probability that drought has decreased TFP within the timeframe
spanned by our data source in each country by observing the percentage of samples for the drought coefficient
for that country that are below 0, which provides the data for the right panel of Fig. 1.

Percentage losses for each country is computed by carrying out the following steps:

1. Our model provides a country-specific posterior distribution representing the impact of a single drought on
agricultural productivity.

2. This distribution is multiplied by the total number of droughts that the country has experienced in the ob-
served time period to obtain distributions for the change in the natural log of TFP based on drought for each
country.

3. The resulting distribution is converted into a percentage change by unlogging the value (raising e to the value
of the total), subtracting 1, and multiplying by 100.

Since the posterior distribution of each country-specific coefficient is comprised of many samples, this procedure
leads to a range of possible percentage loss estimates for each country, which provides the data for Fig. 2.

We also compute impacts at higher levels using three country groupings: by region, the entire globe (for
Supplementary Figure S1), and by UN development group (for Supplementary Figure S2). We obtain country
weights from the share of each country’s agricultural revenue in the larger group, using data from the United
States Department of Agriculture®. Then, for the countries in each group (which, for the global group, includes
all countries), we execute the following steps to compute group-level impacts:

1. For each country, the posterior distribution of the drought coefficient is multiplied by the country weight,
which represents the share of agricultural revenue that the country holds with respect to the larger group.

2. The resulting distribution is multiplied by the number of droughts that the country has experienced in the
observed time period.

3. These distributions are then summed across all countries in the region to provide distributions for the total
change in natural log of TFP from drought for the region.

4. This total is converted into a percentage in the manner described in Step 3 in the previous list.

This procedure provides the region-specific data for Figs. 3 and 4. The data from the barplot and bottom right
panel of Fig. 3 represents the number of samples from the regional distributions that are below 0. In Fig. 5,
we show three selected regional impact estimates as histograms rather than as a map, using the same regional
estimates as in the map figure.

Data and code availability
The data and code for the models and data processing is available at https://github.com/greenguy33/hierarchica
1_bayesian_drought_study_code.

Received: 15 November 2024; Accepted: 12 March 2025
Published online: 18 April 2025

References
1. Kuang, X. et al. The changing nature of groundwater in the global water cycle. Science 383(6686), 0630 (2024).
2. Tang, Q. Global change hydrology: Terrestrial water cycle and global change. Science China. Earth Sciences 63(3), 459-462 (2020).
3. Lavell, A. et al. Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working
groups I and II of the intergovernmental panel on climate change (IPCC) 3, 25-64 (2012).
4. Cogato, A., Meggio, E, De Antoni Migliorati, M. & Marinello, F. Extreme weather events in agriculture: A systematic review.
Sustainability 11(9), 2547 (2019).
5. Battisti, D. S. & Naylor, R. L. Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323(5911),
240-244 (2009).
6. Seneviratne, S.I,, Zhang, X., Adnan, M., Badi, W., Dereczynski, C., Luca, A.D., Ghosh, S., Iskandar, L., Kossin, J., Lewis, S., et al.
Weather and climate extreme events in a changing climate (2021)
7. Madadgar, S., AghaKouchak, A., Farahmand, A. & Davis, S. J. Probabilistic estimates of drought impacts on agricultural production.
Geophysical Research Letters 44(15), 7799-7807 (2017).
8. Food, United Nations, A.O. The impact of natural hazards and disasters on agriculture and food security and nutrition: a call for
action to build resilient livelihoods. Food and Agriculture Organization of the United Nations (2015)
9. Mbow, H.-O.P,, Reisinger, A., Canadell, . & O’Brien, P. Special report on climate change, desertification, land degradation,
sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems (sr2). Ginevra, IPCC 650 (2017).
10. Chiang, F, Mazdiyasni, O. & AghaKouchak, A. Evidence of anthropogenic impacts on global drought frequency, duration, and
intensity. Nature communications 12(1), 2754 (2021).

Scientific Reports |

(2025) 15:13465 | https://doi.org/10.1038/s41598-025-94166-z nature portfolio


https://github.com/greenguy33/hierarchical_bayesian_drought_study_code
https://github.com/greenguy33/hierarchical_bayesian_drought_study_code
http://www.nature.com/scientificreports

www.nature.com/scientificreports/

11.
12.
13.
14.
15.
16.
17.
18.
19.

20.
21.

22.

23.

24.
25.
26.
27.

28.
29.

30.
31.
. ESCAP, U, et al. Ready for the dry years: building resilience to drought in South-East Asia. United Nations (2021)
33.
34.
35.
36.
37.

38.
39.

40.
41.
42.

43.
44,

45.
46.
47.
48.

49.

Mukherjee, S., Mishra, A. & Trenberth, K. E. Climate change and drought: a perspective on drought indices. Current climate change
reports 4, 145-163 (2018).

Chiang, E, Greve, P. & Mazdiyasni, O. Intensified likelihood of concurrent warm and dry months attributed to anthropogenic
climate change. Water Resources Research 58(6), 2021-030411 (2022).

Zscheischler, J. et al. A typology of compound weather and climate events. Nature reviews earth & environment 1(7), 333-347
(2020).

AghaKouchak, A. et al. Climate extremes and compound hazards in a warming world. Annual Review of Earth and Planetary
Sciences 48(1), 519-548 (2020).

Kuwayama, Y., Thompson, A., Bernknopf, R., Zaitchik, B. & Vail, P. Estimating the impact of drought on agriculture using the us
drought monitor. American Journal of Agricultural Economics 101(1), 193-210 (2019).

Hlavinka, P. et al. Effect of drought on yield variability of key crops in czech republic. Agricultural and forest meteorology 149(3-4),
431-442 (2009).

Dellal, I. & McCarl, B. A. The economic impacts of drought on agriculture: The case of turkey. Options Méditerranéennes 95,
169-174 (2010).

Lu, J., Carbone, G. J., Huang, X., Lackstrom, K. & Gao, P. Mapping the sensitivity of agriculture to drought and estimating the effect
of irrigation in the united states, 1950-2016. Agricultural and Forest Meteorology 292, 108124 (2020).

Yaddanapudi, R. & Mishra, A. K. Compound impact of drought and covid-19 on agriculture yield in the usa. Science of the Total
Environment 807, 150801 (2022).

Oleksiak, T. et al. Effect of drought on wheat production in poland between 1961 and 2019. Crop Science 62(2), 728-743 (2022).
Leister, A. M., Paarlberg, P. L. & Lee, . G. Dynamic effects of drought on us crop and livestock sectors. Journal of Agricultural and
Applied Economics 47(2), 261-284 (2015).

Lin, Y., Deng, X. & Jin, Q. Economic effects of drought on agriculture in north china. International Journal of Disaster Risk Science
4, 59-67 (2013).

Musolino, D. A., Massarutto, A. & Carli, A. Does drought always cause economic losses in agriculture? an empirical investigation
on the distributive effects of drought events in some areas of southern europe. Science of the Total Environment 633, 1560-1570
(2018).

Ray, R. L., Fares, A. & Risch, E. Effects of drought on crop production and cropping areas in texas. Agricultural ¢& Environmental
Letters 3(1), 170037 (2018).

Nath, R., Nath, D,, Li, Q., Chen, W. & Cui, X. Impact of drought on agriculture in the indo-gangetic plain, india. Advances in
Atmospheric Sciences 34, 335-346 (2017).

Chen, H,, Liang, Z., Liu, Y,, Jiang, Q. & Xie, S. Effects of drought and flood on crop production in china across 1949-2015: spatial
heterogeneity analysis with bayesian hierarchical modeling. Natural Hazards 92, 525-541 (2018).

Lesk, C., Rowhani, P. & Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 529(7584),
84-87 (2016).

Zaveri, E.D., Damania, R. & Engle, N. Droughts and deficits: The global impact of droughts on economic growth (2023).

Savari, M., Damaneh, H. E. & Damaneh, H. E. Effective factors to increase rural households’ resilience under drought conditions
in iran. International Journal of Disaster Risk Reduction 90, 103644 (2023).

Mirza, M. M. Q. Climate change and extreme weather events: can developing countries adapt?. Climate policy 3(3), 233-248
(2003).

Briintrup, M. & Tsegai, D. Drought adaptation and resilience in developing countries (Technical report, Briefing Paper, 2017).

Xiang, T., Malik, T. H., Hou, J. W. & Ma, ]. The impact of climate change on agricultural total factor productivity: A cross-country
panel data analysis, 1961-2013. Agriculture 12(12), 2123 (2022).

Delforge, D., Wathelet, V., Below, R., Sofia, C.L., Tonnelier, M., Loenhout, J., Speybroeck, N.: Em-dat: The emergency events
database (2023)

Jerven, M. Poor numbers: how we are misled by African development statistics and what to do about it. Cornell University Press
(2013).

Gemeda, D. O. & Sima, A. D. The impacts of climate change on african continent and the way forward. Journal of Ecology and the
Natural environment 7(10), 256-262 (2015).

Motsumi, K. O., Ziervogel, G. & New, M. Drought governance: A cross-level governance analysis in botswana. Climate Risk
Management 42, 100557 (2023).

Haile, G. G. et al. Droughts in east africa: Causes, impacts and resilience. Earth-science reviews 193, 146-161 (2019).

Lohre, E., Juanchich, M., Sirota, M., Teigen, K. H. & Shepherd, T. G. Climate scientists’ wide prediction intervals may be more
likely but are perceived to be less certain. Weather, climate, and society 11(3), 565-575 (2019).

Ozelkan, E., Chen, G. & Ustundag, B. B. Multiscale object-based drought monitoring and comparison in rainfed and irrigated
agriculture from landsat 8 oli imagery. International Journal of Applied Earth Observation and Geoinformation 44, 159-170 (2016).
He, Y., Chen, E, Jia, H., Wang, L. & Bondur, V. G. Different drought legacies of rain-fed and irrigated croplands in a typical russian
agricultural region. Remote sensing 12(11), 1700 (2020).

Yu, C. et al. Assessing the impacts of extreme agricultural droughts in china under climate and socioeconomic changes. Earth’s
Future 6(5), 689-703 (2018).

Zeng, Z. et al. Agricultural drought risk assessment in southwest china. Water 11(5), 1064 (2019).

Fuglie, K. & Rada, N. International agricultural productivity, usda. Economic Research Service. available at https://www. ers. usda.
gov/data-products/international-agricultural-productivity/(Accessed on 2.20.2024) (2019).

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., et al. The
NCEP/NCAR 40-year reanalysis project. Routledge (2018).

Ramankautty, N., Evan, A.T., Monfreda, C. & Foley, J.A. Farming the planet: 1. geographic distribution of global agricultural lands
in the year 2000. Global biogeochemical cycles 22(1) (2008).

Abril-Pla, O. et al. Pymc: a modern, and comprehensive probabilistic programming framework in python. Peer] Computer Science
9, 1516 (2023).

Hoffman, M. D. & Gelman, A. The no-u-turn sampler: adaptively setting path lengths in hamiltonian monte carlo. J. Mach. Learn.
Res. 15(1), 1593-1623 (2014).

Li, M. et al. Spatiotemporally consistent global dataset of the gimms normalized difference vegetation index (pku gimms ndvi)
from 1982 to 2022. Earth System Science Data 15(9), 4181-4203 (2023).

Author contributions

Conceptualization: Hayden Freedman, Amir AghaKouchak, André van der Hoek, Bill Tomlinson. Methodol-
ogy: Hayden Freedman, Amir AghaKouchak, Angela J. Rigden. Writing - Original Draft: Hayden Freedman.
Writing - Review and Editing: All authors. Software: Hayden Freedman. Visualization: Hayden Freedman.
Funding acquisition: Bill Tomlinson.

Scientific Reports |

(2025) 15:13465 | https://doi.org/10.1038/541598-025-94166-2 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Declarations

Competing Interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/1
0.1038/s41598-025-94166-z.

Correspondence and requests for materials should be addressed to H.E
Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and
indicate if changes were made. The images or other third party material in this article are included in the article’s
Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy
of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2025

Scientific Reports |

(2025) 15:13465 | https://doi.org/10.1038/s41598-025-94166-z nature portfolio


https://doi.org/10.1038/s41598-025-94166-z
https://doi.org/10.1038/s41598-025-94166-z
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/scientificreports

	﻿Disparities in the impact of drought on agriculture across countries
	﻿Results
	﻿National results
	﻿Regional results

	﻿Discussion
	﻿﻿Methods
	﻿Data sources
	﻿Model training
	﻿Robustness checks
	﻿Computing impacts

	﻿References


