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Recent data-driven deep learning methods for image reflection removal have made impressive 
progress, promoting the quality of photo capturing and scene understanding. Due to the massive 
consumption of computational complexity and memory usage, the performance of these methods 
degrades significantly while dealing with high-resolution images. Besides, most existing methods 
for reflection removal can only remove reflection patterns by downsampling the input image into a 
much lower resolution, resulting in the loss of plentiful information. In this paper, we propose a novel 
transformer-based framework for high-resolution image reflection removal, termed as the Laplacian 
pyramid-based component-aware transformer (LapCAT). LapCAT leverages a Laplacian pyramid 
network to remove high-frequency reflection patterns and reconstruct the high-resolution background 
image guided by the clean low-frequency background components. Guided by the reflection mask 
through pixel-wise contrastive learning, LapCAT designs a component-separable transformer block 
(CSTB) which removes reflection patterns from the background constituents through a reflection-
aware multi-head self-attention mechanism. Extensive experiments on several benchmark datasets 
for reflection removal demonstrate the superiority of our LapCAT, especially the excellent performance 
and high efficiency in removing reflection from high-resolution images than state-of-the-art methods.

Image reflection removal, which aims to reconstruct a clean background image from its reflection-contaminated 
observation, is a crucial yet challenging research topic in computer vision. Present data-driven deep learning 
methods based on generative models1–3 have produced impressive results on regular-resolution images. The key 
challenge is that higher resolution (e.g. 4K) involves quadratically more computational cost and more intricate 
reflection patterns including diverse variants of reflection regions and scales.

Most conventional methods4–9 for image reflection removal are built upon the physical model of reflection 
priors, which has validated its effectiveness in removing simple reflection patterns. However, one crucial limitation 
is the lack of powerful modeling for variable reflection patterns, which results in the inability to remove reflection 
components thoroughly in real-life scenes. This limitation is then mitigated by the generative models10–12 based 
on convolutional neural networks (CNNs), which enjoy excellent capability of feature representation and select 
background components from an input image to reconstruct a reflection-free image via pixel-wise supervised 
learning. The progressive methods13–15 for image reflection removal are further proposed to address the issue 
of reflection modeling. However, with the gradual increase in image resolution, a potential drawback of these 
methods is that they only work well on reflection patterns in regular-resolution images. This drawback leads to 
two negative consequences: 1) the huge computational cost and memory usage hinder the performance of CNN-
based methods for reflection removal on high-resolution images; 2) higher resolution significantly increases 
the difficulty of reflection removal, since images with megapixels enjoy a greater diversity of reflection patterns.

A straightforward way to let CNN-based methods10–15 focus on complete reflection patterns in ultra-high 
resolution images is to first downscale images into regular resolution by the interpolation operations, and then 
upscale it after removing reflection in a global perspective. The drawback is clear that the scale change of images 
results in undesired information loss and significantly reduces the image quality. To enlarge the receptive field 
of deep networks while processing high-resolution images, some methods16,17 iteratively stack the convolution 
layers. However, they still suffer from the burden of computational cost in real-life application scenes for the 
increased image scale.

Inspired by the typical two-stream modeling methods18,19, some ad hoc solutions20–23 for ultra-high 
resolution image processing are proposed. The key idea of these methods is to process images from global and 
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local perspectives respectively. The global branch is designed to coarsely process scale-down but intact images to 
capture global information and high-level semantics, while the local branch focuses on conducting exquisitely 
image processing over local but high-resolution patches. In order to further model multi-scale information in 
the local branch, some multi-stage models24–28, which progressively enlarge perceptive fields by changing the 
resolution of local patches in each stage, are proposed. Whilst such learning paradigm shows great potential to 
deal with reflection removal in ultra-high resolution images, due to the complexity of reflection patterns than 
other degradations, such as rain streak or haze. For reflection removal task, the multi-stage framework is hard 
to separate highly coupled components thoroughly, and yet often works awkwardly with low efficiency on ultra-
high resolution images.

Achieving a trade-off between both the performance and efficiency within one model is a non-trivial task, 
especially separating reflection constituents from high-resolution images. To this end, we establish the Laplacian 
pyramid to separate the high-resolution image into high-frequency information with large image scales and low-
frequency information with a lower scale. To thoroughly decouple the reflection constituents from the reflection-
contaminated image, we further design a specialized component-aware transformer framework that leverages 
the self-attention mechanism to model the difference between the background and reflection constituents. As a 
result, the purified background constituents are able to reconstruct high-quality reflection-free images.

Compared to typical methods for image reflection removal, especially convolution-based generative models, 
our LapCAT framework benefits from the following advantages:

•	 We introduce a novel Laplacian pyramid-based transformer framework for high-resolution image reflection 
removal, which preserves high-frequency information by the Laplacian pyramid and removes reflection con-
stituents in a low-resolution image. Thus, it can remove reflections thoroughly and reconstruct higher-quality 
background images than existing methods while processing high-resolution images.

•	 We design a Component-Separable Transformer Block (CSTB), which is the core unit of proposed transform-
er and follows a collaborative two-stream structure. Under the guidance of reflection masks through dense 
contrastive learning, CSTB is able to separate background content and reflections, and capture pixel-wise 
long-range interactions for completely modeling reflection patterns.

•	 We evaluate our model on both regular- and high-resolution datasets, including Real20, SIR2, Nature and 
UHR4K, for image reflection removal respectively. Experimental results comprehensively demonstrate the 
superiority of our LapCAT over the existing state-of-the-art methods, especially removing reflection for 
high-resolution images.

Related work
Image reflection removal
Optimization-based method Many optimization-based traditional methods for reflection removal rely on 
handcrafted priors to remove reflection components from the background content. A prominent assumption 
is that the reflection layer is more blurring than the background content29–32. Inspired by this assumption, 
Wan et al.7 leveraged Depth-of-Field (DoF) information and predicted the DoF confidence map to reconstruct 
more precise background edge maps. Besides blurry prior, Shih et al.33 further discovered the ghosting effect 
of reflections and leveraged it to thoroughly remove reflection constituents. Further, Levin et al.4 considered 
the guidance by user-interaction scheme to accurately locate the reflections regions. Based on such scheme, 
Heydecker et al.34 proposed to preserve the veins and structures during reflection removal. Arvanitopoulos et al.5 
optimized the gradient intensity in the Laplacian domain for effective reflection suppression. Aiming to convert 
the reflection removal problem to a convex optimization problem, Yang et al.35 adopted the discrete cosine 
transform and significantly improved the computation efficiency. In addition to above works, some methods 
attempted to capture multi-view images36–39 to remove reflections. However, it is still challenging for these 
methods to cover all reflection patterns and often leads to unpleasant restoration results in real-life applications.

Deep learning-based method Leaning upon its powerful capability of feature representation, deep learning 
has led to significant improvements for image restoration10–12,40–43. Based on the prior knowledge of reflections, 
Fan et al.10 introduced a two-stage framework that first estimates the edge map of target background image and 
further leverages it to reconstruct high-quality background image. Later, Wan et al.41 designed a two-stream 
model to collaboratively predict the background as well as the edge map. Dong et al.44 first located the reflection-
contaminated regions with the input image to further iteratively refine the background image. To obtain implicit 
relation between the reflection and background layers, Yang et al.13 first predicted the reflection layer and further 
input it as prior knowledge for thorough reflection removal. Motivated by the effectiveness of perceptual loss 
in other image restoration tasks45, Zhang et al.11 dilated the perceptive fields and performed perceptual loss 
on the reconstructed image to enhance the image quality. Additionally, Wei et al.2 introduced an alignment-
invariant loss to solve pixel misalignment issues in reflection removal datasets. Later, Li et al.42 proposed to 
learn reflection-aware guidance from the contaminated images and then strengthen the reflection-free process. 
Recently, there are some methods12,43 adopted pre-trained generative models to enlarge the training data to learn 
more robust patterns of reflection constituents. Nevertheless, the above methods are able to achieve promising 
performance when processing regular-resolution images, while significant performance degradation occurs for 
high-resolution image reflection removal.

Specialized methods for high-resolution image restoration
High-resolution image restoration is a challenging problem due to the explosion of computational cost and 
the increased diversity of modeling degradation patterns. Though the exploration of high-resolution image 
reflection removal is scarce, many image restoration tasks have involved this challenge. As an early inspiring 
work, Chen et al.21 detach a full high-resolution image into multiple image patches for fidelity details and 
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an interpolated low-resolution for complete context. It further processes them respectively and aggregates 
the detached global-local information. However, it often suffers from complex model structure and unstable 
semantic modeling. Aiming to effectively decrease the computational cost from the degraded high-resolution 
images, Yi et al.46 propose an efficient high-resolution image inpainting framework, which first restores the 
degraded image in low-resolution in a coarse-to-fine manner and then learns a contextual residual for degraded 
regions to counteract the pixel-wise errors caused by interpolation. Nevertheless, since image inpainting task 
often provides the mask of degraded regions as a prior, it is unable to cope with diverse reflection patterns, as well 
as precisely localizing reflection regions. To further strengthen the capability of degradation modeling, Zheng 
et al.22 carefully designed a lightweight model that learns a low-resolution affine bilateral grid to directly model 
haze patterns in each RGB channel for 4K level image dehazing. Though it achieves significant performance for 
high-resolution image restoration, it shows powerless results of dealing with challenging reflection degradation 
patterns. As a result, high-resolution image reflection removal is not fully exploited and thus in this work we 
aim to design a transformer-based framework as the first specialized solution to cope with current challenges for 
high-resolution image reflection removal.

Laplacian pyramid-based component-aware transformer
Given a high-resolution image with reflection I, reflection removal aims to remove the reflection constituents R 
occluded before the background content and reconstruct a clear background image B. In this work, we propose 
a Laplacian pyramid-based component-aware transformer (LapCAT) for ultra-high resolution image reflection 
removal, which first leverages the Laplacian pyramid to downsample input high-resolution image and decouple 
it into multi-scale high-frequency maps and a low-resolution low-frequency map. The component-aware 
transformer (CAT) follows an encoder-decoder framework and is stacked by a designed Component-Separable 
Transformer Block (CSTB), which separates the reflection and background components from the input feature 
maps under the modeling of multi-head self-attention mechanism. By performing contrastive learning on 
sampled pixels according to reflection intensity, LapCAT is able to obtain the reflection mask as guidance for 
each token of input image while coping with different tokens.

In this section, we will first present an overview of the whole framework of our LapCAT. Then we will 
describe how it leverages the Laplacian pyramid to perform high-resolution background image reconstruction. 
Next, we elaborate on the structure of component-aware transformer and how to obtain the reflection mask 
through pixel-wise contrastive learning. Lastly, we show how to perform supervision on our LapCAT in an end-
to-end manner.

Overall framework of LapCAT
As shown in Fig.  1, our proposed LapCAT architecture is composed of a Laplacian pyramid network and a 
component-aware transformer. Specifically, the Laplacian pyramid is employed to downsample the input image 
to a processable resolution and reconstruct the full-resolution background image referring to the restored low-
resolution image and corresponding reflection mask. Then the downscale image is cropped into tokens, which 
are further performed component separation by designed component-aware transformer (CAT), which models 
various reflection patterns via proposed component-aware multi-head self-attention (CA-MSA) mechanism. 
Moreover, LapCAT performs pixel-wise contrastive learning to learn high-level consistency between background 
and reflection constituents, and estimate a binary reflection mask to locate the reflection regions. The overall 
framework is detailed below.

Reflection detection by contrastive learning
To locate the reflection-contaminated regions, in the training stage we train a reflection detector that performs 
pixel-wise contrastive learning in the latent feature space. The reflection detector first obtains a binary reflection 
distribution mask and then employs it as prior guidance to strengthen the modeling of reflection patterns by 
component-aware transformer. Even if contrastive learning47,48 has demonstrated its effectiveness on pixel-wise 
semantic understanding, locating reflection pixels by contrastive learning is still highly challenging. The crux lies 
in the lack of pixel-wise labels for contrastive modeling. Therefore, we estimate the probabilistic distribution of 
reflection pixels by selecting the most representative pixels to perform pixel-wise contrastive learning.

Formulation Given a reflection-contaminated image I ∈ RC×H×W , our reflection detector aims to learn a 
latent space W  to capture the intrinsic semantic distinctions between the reflection and background pixels. Then 
it separates pixels into two clusters by performing clustering analysis and finally obtains a reflection distribution 
mask. Herein, RM ∈ R1×H×W  is a binary map where the values of reflection-contaminated regions are 1 and 
clean background regions are filled with 0. To this end, our LapCAT introduces a probability-based training 
strategy of sample selection for contrastive learning tailored for reflection detection. Specifically, it first estimates 
the reflection intensity as sampling probability (SP) by calculating the difference between the input image I and 
corresponding groundtruth Igt during training:

	 SP = Softmax(|I − Igt|).� (1)

 Note that a larger SP implies stronger likelihood of a reflection pixel and a lower implies stronger likelihood 
of a background pixel. Instead of sampling from all pixels, we perform probabilistic sampling according to the 
value of SP to respectively collect positive and negative sets with high-confidence pixel candidates of reflection 
or background. Concretely, we first establish two candidate sets for further collection of positive samples 
S+

c =
{

ri | SPi <= t+}
 and negative samples S−

c =
{

ri | SPi >= t−.
}

 through thresholds t+ = 0.2 and 
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t− = 0.8, where ri is the representation of the i-th pixel obtained by Fproj. Then, by probabilistic sampling, we 
finally obtain the positive set and negative set for pixel-wise contrastive learning, which follows the formulation:

	

S+ =
{

s+
j | s+

j ∈ S+
c , µj ≤ SPj

}
,

S− =
{

s−
k | s−

k ∈ S−
c , µk ≥ SPk

}
,

� (2)

where S+ and S− are the positive and negative sets for contrastive learning, sc+ and sc− are the items in the 
candidate sets, µ is the sampling probability from the normal distribution, and j and k are indexes of candidate 
samples. In this way, the pixel-wise contrastive learning loss is defined as:

	
Lc = 1

N

i∑
−log

exp(qi · t+
i )/τ∑

exp(qi · t+
i ) +

∑
exp(qi · t−

i )/τ
,� (3)

where qi denotes the i-th extracted query, and τ  is a temperature hyper-parameter. Under the supervision of 
pixel-wise contrastive learning in the latent space, pixels from the same constituents can be clustered together, 
and pixels from different constituents are pushed away. Afterward, by conducting clustering analysis to divide 
them into two clusters, LapCAT is able to obtain the reflection mask RM, which is defined by:

	 RM = K-means(Fproj(I)),� (4)

where Fproj is two fully convolution layers with a GELU49 layer in-between for non-linear mapping.

Figure 1.  Architecture of the proposed Laplacian pyramid-based component-aware transformer (LapCAT), 
which mainly consists of two phases: reflection-free Laplacian pyramid and component-aware transformer. 
The reflection mask is obtained from reflection detector through pixel-wise contrastive learning and provides 
locations of reflection constituents with both phases. Note that the test sample is from the UHR4K-Syn27 
dataset.
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Algorithm 1.  Laplacian Pyramid-based High-Resolution Background Reconstruction

Laplacian pyramid-based high-resolution background reconstruction
Laplacian pyramid (LP)50 is widely applied in many vision tasks, such as image super-resolution51 and image 
blending50. The LP aims to linearly decouple an image into high-frequency and low-frequency parts, and in 
this way the restored low-resolution reflection-free image can be reconstructed invertibly and efficiently to a 
high-resolution image. As shown in Fig.  1, the high-frequency maps are multi-scale and the low-frequency 
map enjoys lower resolution. Specifically, we denote the downsample operation as d(·) and upsample operation 
as u(·), respectively. Given a reflection-contaminated image I ∈ RH×W , it first goes through a low-pass filter 
and then is downsampled into a low-frequency map I1 ∈ R

H
2 × W

2 , as I1 = d(I). To reversely reconstruct the 
high-resolution background image, the LP records the residual map h0 = I − u(I1). Besides, the LP iteratively 
performs such operation to reduce image resolution and obtains a sequence of low-frequency and high-
frequency maps. In the reconstruction phase, the LP conducts the backward recurrence: Ik = u(Ik+1) + hk , 
where k is the number of levels in the pyramid.

By performing the above operations, we establish the LP in our LapCAT framework based on multi-scale 
input images through bilinear interpolation. To be specific, we first extract their high-frequency residual maps 
[h0, h1, h2] to construct the Laplacian pyramid. Next, guided by a binary Reflection Mask RM (see “Component-
aware transformer for reflection removal” section) and the restored low-resolution background image ÎB (see 
“Laplacian pyramid-based high-resolution background reconstruction” section) by CAT, LP learns an updating 
weight Wi = Conv([RM, ÎB]) to refine the multi-scale high-frequency maps. Thus, it enables to obtain 
reflection-free high-frequency maps:

	 ĥi = hi ⊙ Wi,� (5)

where ⊙ is the Hadamard product, and ĥi is the high-frequency components in the i-th level of Laplacian 
pyramid. Lastly, LapCAT reversibly reconstructs the full-resolution background image from the restored low-
resolution image Bl and iteratively purifies high-frequency maps [ĥ0, ĥ1, ĥ2]:
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	 B̂ = ĥ0 + u(ĥ1 + u(ĥ2 + Bl)),� (6)

where B̂ is the reconstructed reflection-free image.

Component-aware transformer for reflection removal
Next we elaborate on the structure of component-aware transformer and how it removes reflection constituents. 
The goal of component-aware transformer is to thoroughly separate the reflection layer from the background 
image by modeling the semantic patterns of reflection constituents in different levels of feature spaces. Specifically, 
we employ the U-shaped vision transformer that exploits shifted windows52 to save calculation cost and develop 
the typical transformer block in two perspectives: 1) it introduces a component-aware multi-head self-attention 
(CA-MSA) mechanism to perform component separation between the background and reflection constituents; 
2) under the guidance of reflection mask obtained by pixel-wise contrastive learning, both the transformer block 
and Laplacian pyramid are able to focus on restoring regions with obvious reflection contamination.

Component-separable transformer block Our component-aware transformer is stacked by a novel transformer 
block variant in different stages to thoroughly separate complex reflection patterns from the background content. 
As shown in Fig. 2, the information flow follows a collaboratively dual-branch manner in each component-
separable transformer block. Particularly, we leverage the proposed component-aware multi-head self-attention 
mechanism to separate input features F into the preserved features Fp and deserted features Fd, and deliver 
them into the background branch and reflection branch, respectively:

	

F+
p , F+

d = FC(CA-MSA(F+)),
F−

p , F−
d = FC(CA-MSA(F−)),

� (7)

Figure 3.  (a) Component-separable transformer block. (b) Component-aware self-attention mechanism.

 

Figure 2.  Structure of the proposed U-shaped component-aware transformer.

 

Scientific Reports |         (2025) 15:9972 6| https://doi.org/10.1038/s41598-025-94464-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


where F+ and F− denote the features of background and reflection branch, respectively, and FC is the fully 
connected layer. Next, we concatenate the preserved features in current branch and deserted features Fd in the 
other branch and obtain aggregated features Fa by leveraging an MLP:

	

F+
a = MLP(Concat[F+

p , F−
d ]),

F−
a = MLP(Concat[F−

p , F+
d ]),

� (8)

where Concat denotes the concatenation operation. As illustrated in Fig. 2, we employ a convolution layer after 
each transformer block to reconstruct spatial structure of the intact image. Note that we also adopt the skip-
connection operation across stages, which provides the alternative path for the gradient with backpropagation 
and addresses the vanishing gradient problem during training.

Component-aware multi-head self-attention Our component-aware transformer captures long-range 
interactions between pixels to perform component separation by component-aware multi-head self-attention 
according to the mathematical definition13,53 of image reflection removal:

	 I = αf1(IB) + βf2(IR),� (9)

where α and β are the coefficients, and f denotes the nonlinear mappings for background and reflection image.
Our key design in CA-MSA aims to concentrate on precisely separating the reflection component from the 

background content under the guidance of predicted Reflection Mask (see “Reflection detection by contrastive 
learning” section). Specifically, the input features of CA-MSA are first projected into Q, K, and V through fully 
connection (FC) layers. Then, we further introduce a reflection mask (RM) that employs contrastive learning 
to provide pixel-wise prior of reflection intensities within the input degraded image. Mathematically, each CA-
MSA produces two separate attention maps:

	

Att+ = Softmax(QKT + RM√
dk

)V,

Att− = Softmin(QKT + (1 − RM)√
dk

)V,

� (10)

where Att+ and Att− are the attention maps targeting the background and reflection content respectively, 
and 

√
dk  is the scaling factor. This process facilitates to precise component separation for the following two 

reasons: (i) Since contrastive learning in our method effectively models the distributions of reflection patterns 
and background content in pixel level, the reflection mask is able to provide strong prior while separating 
different components through typical self-attention. (ii) The attention maps Att+ and Att− from our CA-MSA 
are complement, and our Transformer model is composed of stacked Component-Separable Transformer blocks 
with CA-MSA operations. Thus, it is able to progressively separate the reflection component under effective 
supervision and finally restore a clean background image.

Intuition The rationale behind our design is that our CAT model serves as a collaborative information distiller 
between background and reflection constituents guided by an estimated reflection mask. Each Component-
Separable Transformer Block can use the preserved feature Fp and deserted feature Fd for background and 
reflection reconstruction. As described in Equation  7, the total information of F+ and F− is equivalent to 
that in F+

a  and F−
a . This property guarantees no information flowing away from the interactive process, which 

substantially avoids the problems of vanishing/exploding gradients and redundant features. Besides, Equation 8 
shows that F+

p  is complementary to F−
d , and F+

d  is complementary to the F−
p . By merging the complementary 

counterparts, there is no wasted information in our framework and the repeated use of CA-MSA leads to 
gradually enhancing the background stream while attenuating the reflection constituents, thus it is able to show 
promising performance while coping with challenging reflection patterns for high-resolution images.

End-to-end supervised parameter learning
We optimize the parameters of our LapCAT in an end-to-end manner. Besides pixel-wise contrastive learning 
loss Lc, there are three loss functions, multi-scale pixel reconstruction loss Lpixel, multi-scale perceptual loss 
Lperc, and adversarial loss Ladv, to train our LapCAT.

Multi-scale pixel reconstruction loss We employ the L1 loss to learn the pixel-level reconstruction for each 
resolution of background image and reflection image:

	
Lpixel = α1

N∑
i=1

L1

(
Ii
gt, Î

i
)

+ β1L1

(
Igt, Î

out
B

)
,� (11)

where ̂I
i
 denotes the separated image in the i-th stage, and ̂I

out
B  is the final result by Laplacian Pyramid. Besides, 

we obtain various scales of groundtruth Ii
gt by bilinear interpolation. Empirically, we set α1 =0.1 and β1 = 0.5.

Multi-scale perceptual loss To learn the consistency of semantic information, we perform supervision of the 
perceptual loss45 in each resolution:

	
Lperc = α2

N∑
i=1

LVGG

(
Ii
gt, Î

i
)

+ β2LVGG

(
Igt, Î

out
B

)
,� (12)
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where LVGG denotes perceptual distance between two images measured by a pre-trained VGG-1954. Empirically, 
we set α2 =0.1 and β2 =0.5.

Conditional adversarial loss, which encourages the final separated image ̂I
out

 to be as realistic as the ground-
truth image Igt. We employ the spectral normalization55 in our discriminator to stabilize the adversarial learning 
process:

	 Ladv = −EIgt∽PLapCAT [Dsn(G(I))],� (13)

where Dsn is the discriminator with the spectral normalization operation after each convolution layer. In sum, 
the total loss function is defined as follows:

	 L = λ1Lpixel + λ2Lperc + λ3Ladv + λ4Lc.� (14)

By tuning on a held-out validation set, the hyper-parameters, we empirically set λ1 = 1, λ2 = 0.01, λ2 = 0.01
, and λ4 = 0.01.

Experiments
In this section, we perform experiments to demonstrate the effectiveness of our proposed LapCAT. We first 
elaborate the experimental settings, including datasets, evaluation metrics, and implementation details. Next, 
we compare the experimental results with state-of-the-art methods for reflection removal and further analyze 
how LapCAT dominates in both performance and model efficiency while coping with high-resolution images. 
Finally, we conduct ablation study to investigate the effectiveness of proposed techniques and further discuss the 
problems to be solved in future work.

Experimental settings
Datasets We evaluate our method for image reflection removal using four real-world benchmark datasets: 
SIR253, Nature14, Real2011, and UHR4K27. According to the resolution of images, we roughly divide them into 
regular-resolution datasets (SIR253 and Nature14) and high-resolution datasets (Real2011 and UHR4K27).

SIR2 dataset The SIR2 dataset53 is a real-world benchmark dataset to evaluate the performance of reflection 
removal, and all images have a resolution 540×400. It consists of three sub-datasets, Solid, Postcard, and Wild. 
1) Solid dataset, composed of 200 triplets of images describing indoor solid object scenes; 2) Postcard dataset, 
which is a dataset containing 199 triplets of images obtained from postcards; 3) Wild dataset which contains 55 
triplets of images about wild scenes.

Nature The Nature dataset14 contains 220 real-world image pairs, and 200 images are used for training and 
the rest for evaluation. The images are captured under seven considerations to simulate diverse image conditions 
and the resolution of images in the nature dataset is 600×400.

Real20 The Real20 dataset11 includes 90 images for training and uses 20 images for evaluation, which are 
captured with a portable glass in front of the camera under four conditions. The average resolution of images in 
Real20 dataset is about 1106×902 and altogether 83 different scenes are included.

UHR4K The UHR4K dataset27 is a 4K (3840×2160) level dataset that includes both synthetic and real-world 
paired images for ultra high-resolution image reflection removal: 

	1)	� UHR4K-Syn. The UHR4K-Syn dataset extracts 2,167 frames from numerous 4K videos to simulate re-
al-world scenes. It synthesizes the reflection image by applying the Gaussian kernel to blur the images of 
DIV2K dataset56. Finally, the degraded images are synthesized according to the physical principle of reflec-
tion formation. Consequently, UHR4K-Syn has 2,167 image pairs, and divides 2,117 image pairs for training 
and 50 image pairs for evaluation.

	2)	� UHR4K-Real. The UHR4K-Real dataset collects real-world 4K images using two cameras, Nikon D300 and 
Huawei mobile phone. Altogether 336 image pairs(about 116 real-world scenes) are captured and it divides 
them into 316 image pairs for training and 20 image pairs for evaluation. Thus, the UHR4K-Real data is at 
present one of the most challenging datasets that has both high-resolution and diverse scenes.Evaluation 
metrics We adopt two commonly used evaluation metrics in low-level vision to measure the quality of the 
generated background images in our experiments quantitatively: PSNR and SSIM. PSNR computes the peak 
signal-to-noise ratio in decibels between two images while SSIM measures the perceptual similarity between 
two images. Higher value of PSNR or SSIM denotes higher quality of the restored background image.

Implementation details We implement our LapCAT in distribution mode with 4 RTX 3090 GPUs under Pytorch 
framework. Adam57 is employed for gradient descent optimization with batchsize set to 8. The initial learning 
rate is set to be 1 × 10−4 and the training process takes maximally 100 epochs. Random flipping, random 
cropping and resizing are used for data augmentation. To have fair comparisons between different methods for 
reflection removal, we ensure that all methods are optimized on the same training set and evaluated on the same 
test set following the same optimization and evaluation protocols.

Results analysis
Baselines (1) RmNet12, which specially trains a generative model to obtain more training samples, and thus 
the model for reflection removal is able to become more robust; (2) ERRNet2, which focuses on exploiting the 
misaligned training data and multi-scale features fusion to strengthen the performance of reflection removal; (3) 
IBCLN14, which is a cascaded network that can iteratively refine the quality of synthesized background images; 
(4) Zou et al.3 introduces an adversarial learning-based model to improve the performance of image separation; 
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(5) CFDNet 58, which performs contrastive supervision in the latent feature space to improve the performance of 
feature decoupling for reflection removal; (6) DMGN15, which designs a residual deep-masking cell to filter out 
undesired information and restore a clean background image in a coarse-to-fine manner; (7) MPRNet26 serves 
as a general framework for image restoration, which adopts a progressive strategy to model noise patterns; 98) 
LAS 44, which proposes to detect the guidance map of reflection regions to locate the reflection patterns and 
further leverages it to iteratively remove reflection components; (9) YTMT 59 is a two-stream framework for 
reflection removal that aims to construct block-wisely communication with each branch; (10) Restormer60, which 
is an efficient Transformer model by developing the multi-head attention mechanism to capture long-range pixel 
interactions; (11) Zheng et al.22, which is a specialized method for ultra-high resolution image dehazing and uses 
the bilateral filtering to reconstruct full-resolution images efficiently; (12) GLSGN 27 is a global-local stepwise 
generative network that progressively learns multiple consistencies between different pathways to efficiently 
restore ultra-high resolution images;

Quantitative comparison with state-of-the-art methods
We conduct experiments to compare our LapCAT with twelve state-of-the-art methods2,3,12,14,15,22,26,27,44,58–60 for 
image reflection removal. Table 1 lists the quantitative results of different methods for image reflection removal 
on five real-world benchmark datasets in terms of PSNR and SSIM. In particular, according to the resolution of 
benchmark datasets, we denote Nature14 and SIR253 as regular-resolution datasets and Real2011 and UHR4K27 
as high-resolution datasets.

Results on regular-resolution datasets As listed in Table  1, our CAT model achieves the best performance 
on regular-resolution datasets, including SIR253 and Nature14. While our model outperforms other competing 
methods, methods based on reflection location can boost the performance over other priors based state-of-the-
art methods. For instance, LAS44 predicts a confidence map to locate reflection constituents and further employs 
it to model reflection patterns by convolution-based models. In contrast, our CAT framework synthesizes a 
precise binary mask to locate the reflection pixels within the input image through pixel-wise contrastive learning. 
Furthermore, compared to the state-of-the-art Transformer model for image restoration Restormer60, our CAT 
develops a component-aware self-attention mechanism that captures long-range interactions between pixels and 
explicitly injects the predicted mask into it to refine the details of reflection-contaminated regions. Additionally, 
though Softmax/Softmin activation functions are first proposed by CFDNet58, our LapCAT first introduces an 
iterative scheme to gradually remove reflection constituents with the guidance of reflection mask in the latent 
feature space and finally restores a cleaner background image. As a result, the comparisons on regular-resolution 
datasets demonstrate the superiority of our Transformer framework while modeling various reflection patterns.

Results on high-resolution datasets In order to investigate the performance of our method on high-resolution 
images, we conduct experiments to compare our LapCAT with other state-of-the-art methods on UHR4K27 
(3840×2160) and Real2011 (avg. 1106×902) datasets.

We can make the following observations from the experimental results presented in Table  1. First, our 
LapCAT outperforms other state-of-the-art methods for image reflection removal by a large margin on real-
world high-resolution datasets, which demonstrates the superiority of our proposed Laplacian pyramid stage 
for high-resolution image reconstruction. Besides, benefiting from the powerful capability of feature decoupling 

 Method

Real2011 Nature14 SIR253
UHR4K-
Syn27

UHR4K-
Real27

(1106×902) (600×400) (540×400) (3860×2140) (3860×2140)

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

RmNet12 19.47 0.748 19.07 0.755 20.74 0.836 17.05 0.829 20.86 0.808

ERRNet2 18.87 0.735 20.79 0.796 22.60 0.856 17.54 0.818 21.69 0.819

IBCLN14 19.99 0.759 23.57 0.783 22.68 0.860 20.66 0.879 22.59 0.824

CFDNet58 18.90 0.706 23.79 0.811 23.89 0.884 16.99 0.785 20.84 0.773

Zou et al.3 19.76 0.752 22.34 0.803 23.52 0.877 18.89 0.841 20.57 0.799

DMGN15 19.26 0.745 23.23 0.839 23.41 0.875 20.10 0.865 22.91 0.833

MPRNet26 21.37 0.781 23.42 0.848 23.82 0.880 21.26 0.888 22.71 0.821

LAS44 22.09 0.786 23.45 0.810 24.25 0.900 22.70 0.885 21.94 0.828

YTMT59 20.30 0.735 23.85 0.810 24.08 0.894 19.23 0.850 20.22 0.733

Zheng et al.22 20.61 0.756 22.59 0.782 22.46 0.868 23.57 0.886 20.08 0.712

Restormer60 21.89 0.778 23.98 0.852 24.25 0.889 23.07 0.882 22.77 0.822

V-DESIRR61 22.94 0.801 23.83 0.808 26.49 0.902 23.82 0.890 22.65 0.825

GLSGN27 22.20 0.790 24.27 0.856 24.11 0.903 25.96 0.911 24.35 0.841

DSRNet62 22.32 0.806 22.26 0.801 25.70 0.919 22.96 0.871 23.23 0.816

LGIRS63 22.47 0.809 23.87 0.812 25.86 0.921 23.87 0.889 22.57 0.804

CAT (ours) 22.32 0.794 24.31 0.856 24.29 0.899 23.69 0.891 22.86 0.818

LapCAT (ours) 23.01 0.809 23.95 0.849 24.16 0.897 26.32 0.924 25.18 0.866

Table 1.  Quantitative results of different models for image reflection removal on five datasets in terms of 
PSNR and SSIM. The best results are in bold and the second best results are underlined.

 

Scientific Reports |         (2025) 15:9972 9| https://doi.org/10.1038/s41598-025-94464-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


by the developed component-separable transformer block, CAT without Laplacian pyramid can also obtain 
comparable performance with these ad hoc methods for high-resolution image restoration. It is reasonable 
since effective long-range interactions by self-attention mechanism contribute to thoroughly modeling 
reflection patterns within the input image. Second, compared to specialized methods for high-resolution image 
restoration, such as Zheng et al.22 and GLSGN27, our method still boosts the performance over them by 0.81 
dB on Real20 and 0.83 dB PSNR on UHR4K-Real using the proposed Laplacian pyramid-based reconstruction 
strategy. Zheng et al.22 leverages the bilateral filtering to efficiently restore high-resolution images. However, 
due to the diversity of reflection patterns, such model is not satisfied to adequately model them. GLSGN27 is 
a multi-pathway framework that learns the global-local consistency between pathways. Although it achieves 
the second best performance, it is still challenging for it to remove complex reflections thoroughly owing to 
the lack of capturing long-range interactions between pixels. While both methods are designed specifically for 
high-resolution image restoration, our LapCAT enjoys higher performance due to both effective constituent 
separation and high-resolution detail reconstruction.

Qualitative comparison with state-of-the-art methods
Visual comparison on regular-resolution images To evaluate the visual performance for reflection removal by 
our proposed model on regular-resolution images, we perform a qualitative comparison with other state-of-
the-art methods on real-world test images from SIR253 and Nature14. Specifically, we visualize the restored 
results by different methods in Fig. 4. The results show that our model is able to restore cleaner background 
images than other competing methods on regular-resolution images and the obvious superiority of our method 
mainly benefits from two factors: 1) our reflection detection mechanism can provide the location of reflection 
constituents so that the details of reconstructed images can be obviously improved; 2) the developed component-
aware self-attention mechanism captures long-range interactions between pixels, which models reflection 
patterns more precisely. Besides, its two-stream collaborative structure leads to effective feature decoupling. 
Thus, almost no obvious reflection constituents remain in the second sample in Fig. 4 by our method.

Visual comparison on high-resolution images We perform a visual comparison on high-resolution datasets for 
reflection removal to investigate whether our model enjoys obvious advantages of reflection removal on high-
resolution images compared to the baseline methods. Figure 5 illustrates four examples of high-resolution image 
reflection removal from Real2011 and UHR4K27 datasets. In these cases, it is quite challenging to thoroughly 

Figure 4.  Visual comparison on regular-resolution real-world images from Nature14 and SIR253 for reflection 
removal. Our model can recover higher-quality details in the reconstructed images. Best viewed in zoom-in 
mode.
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remove the reflections in the high-resolution input image since the reflection constituents are highly coupled to 
the background content and become more difficult to be completely recognized.

We can make following observations from the visual comparison with state-of-the-art methods for reflection 
removal in Fig. 5. First, our LapCAT is able to synthesize the cleanest background with higher-quality details 
on test images of high-resolution datasets over all baseline methods, which demonstrates the superiority of 
our proposed model. Besides, compared to the convolution-based generative models, our LapCAT is able to 

Figure 5.  Visual comparison on high-resolution test images from Real2011 and UHR4K27 for reflection 
removal. Prominent reflection-contaminated regions are highlighted by the bounding boxes.
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model more complex reflection patterns. For example, although the reflection constituents in the first example in 
Fig. 5 significantly degrade the quality of background content, our LapCAT can remove most visible reflections 
and synthesize the most realistic and exquisite details compared to other methods. It is reasonable since our 
component-aware multi-head self-attention mechanism first captures pixel-wise long-term dependencies under 
the guidance of reflection detection. Additionally, our model performs contrastive learning to locate reflection 
regions in the latent feature space by the designed reflection detection mechanism and further leverages the 
predicted reflection mask to guide the component-aware transformer to refine the background content. Thus, 
our LapCAT is able to synthesize higher-quality background images compared to the other transformer-based 
method60.

Similar to our LapCAT, GLSGN27 also designs a specialized framework that adopts a global-local mechanism 
to restore high-resolution images and it learns the global-local consistency to capture more effective information. 
However, since the reflection constituents and background content are highly coupled in the input image, it is 
still challenging for GLSGN to completely model reflection patterns without long-range interactions between 
pixels. In contrast, our LapCAT introduces two specializedly designed mechanisms for image reflection removal: 
the reflection detection mechanism which locates the regions of reflection constituents by pixel-wise contrastive 
learning and the component-aware self-attention mechanism which iteratively filters out reflection constituents 
and absorbs the background content. As a result, our model is able to enjoy a more powerful capability of 
recognizing and removing complex reflection patterns in high-resolution image reflection removal.

User study. To further evaluate the visual quality of restored background images, we conduct a user study to 
compare our model with the top-three most powerful methods for reflection removal, including Restormer60, 
GLSGN27 and LAS44. We randomly selected 50 high-resolution test samples from Real2011 and UHR4K27 and 
presented the restoration results by LapCAT and other three methods to 50 human subjects for manual ranking 
of restoring quality. As shown in Table 2, LapCAT achieves 65.72% of the 2500 votes, which is much higher than 
the competing models. Additionally, when we aggregated the evaluation results of all subjects for each sample, 
our model won on 38 test samples, while the other three models won on a total of 12.

Ablation study
In this section, We conduct experiments to investigate the effect of each proposed functional module, including 
contrastive learning-based reflection detector, component-separable Transformer block, and Laplacian pyramid-
based high-resolution image reconstruction mechanism, on restoration performance. To this end, we conduct 
ablation experiments on five variants of our LapCAT, which incrementally activates these proposed functional 
modules:

•	 Base-Transformer, which only employs a shifted window-based U-shaped transformer as the base framework 
without generating the reflection image. Thus, no component-aware transformer block or Laplacian pyramid 
strategy is used with this model. It serves as the baseline to gauge any improvements contributed by each 
subsequent module.

•	 RUT builds on the Base-Transformer by adding a separate reflection branch to synthesize the Reflection im-
age in U-shaped Transformer. Note that RUT only learns to divide reflection-contaminated images into two 
parts, the background image and the reflection image.

•	 RUT-CSTB, which employs the proposed Component-Separable Transformer Block to replace typical Trans-
former blocks, thereby further introducing feature exchange between branches without the guidance of re-
flection mask and serving as the core unit of information collaboration for separating background and reflec-
tion images.

•	 CAT, which augments the model by incorporating a reflection detector and performs pixel-wise contrastive 
learning to predict a reflection mask and further leverages the reflection mask into the self-attention mecha-
nism of Transformer blocks to improve the performance of background reconstruction.

•	 LapCAT is the complete model and further adopts a Laplacian pyramid mechanism to efficiently reconstruct 
high-resolution background images.

Table  3 lists the experimental results of five variants of our proposed LapCAT on high-resolution datasets 
Real2011 and UHR4K27 in terms of PSNR and SSIM. The performance improvement from Base Transformer 
to RUT demonstrates the necessity of the reflection branch. The final performance jump from CAT to LapCAT 
confirms the impact of the Laplacian pyramid strategy on high-resolution image reconstruction. The increasingly 
better performance of five variants shows the effectiveness of proposed technical components in our LapCAT. 

Model Share of the vote (%) Winning samples

Restormer60 1.96 1

GLSGN27 21.0 8

LAS44 11.32 3

Ours 65.72% 38

Table 2.  User study on the reflection removal results. 50 human subjects are asked to perform comparison 
between our LapCAT and other three methods on the restoration results of 50 randomly selected high-
resolution test samples. Our model obtains 65.72% votes among 50 × 50 = 2500 comparisons and wins on 
38 samples.
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Additionally, we visualize the restored background images by different variants of LapCAT in Fig.  6 and it 
qualitatively shows the quality improvements of restored images by our framework as well.

Effect of each loss. Table  3 also shows the performance of our LapCAT model without pixel loss Lpixel, 
perceptual loss Lper, contrastive loss Lc or without the adversarial loss Ladv . We observe that both Lpixel, 
Lper and Lc yield notable performance improvement. It is reasonable that Lpixel provides direct supervision 
on each pixel of restored images, Lper improves the correctness of reconstructed semantics, and Lc provides 
strong prior of reflection regions for iterative Transformer blocks. Besides, adversarial loss aims to improve the 
visual quality of restored results, thus the performance drop by Ladv is not significant compared to other losses.

Investigation on the model efficiency In Table 4, we further compare the computational efficiency of our proposed 
LapCAT with competing methods2,12,14,15,22,27,44,60 on a 4K (3840×2160) image in terms of trainable parameters 
and inference time. The results show that our LapCAT is able to enjoy high efficiency as well as achieving the best 
performance on high-resolution image reflection removal. Note that the results of computational efficiency by 
Restormer60 and LAS44 are not shown on account of the out of memory problem when processing a 4K image.

Effect of reflection detection module To explore the superiority of our designed reflection detection module, 
we visualize the predicted mask of reflection regions by our model and location-aware method LAS44 in Fig. 7. 
LAS44 is a location-aware state-of-the-art method for image reflection removal. Benefiting from the pixel-wise 
contrastive learning, our reflection detection module enables our framework to model reflection constituents 
more precisely and synthesize higher-quality reflection image than the competing method.

Effect of component-separable transformer block We conduct experiments on Real2011 and SIR253 datasets to 
investigate the effectiveness of reflection separation by our proposed component-separable transformer block. 
To this end, we compare it with other ways of component separation, including ReLU-E, Feat-E, and w/o E. 
ReLU-E delivers the deactivated features by ReLU activation to the other branch, Feat-E sends all features, and 
w/o E denotes no feature exchange in our model. The experimental results are illustrated in Table 5, and the 

Methods RmNet12 ERRNet2 IBCLN14 LAS44 DMGN15 Zheng et al.22 GLSGN27 Restormer60 Ours

Params (M) 65.43 18.95 21.61 – 45.49 34.54 15.69 – 13.22

Runtime (s) 0.407 3.210 0.682 – 0.767 0.464 0.082 – 0.063

Table 4.  Model complexity of our LapCAT and eight state-of-the-art methods for image reflection on a 4K 
(3840×2160) test image in terms of trainable parameters and runtime. The best results are in bold.  ‘–’ denotes 
out of memory by a RTX 3090 GPU.

 

Figure 6.  Visualization of reflection removal results by five variants of LapCAT on two test images.

 

 Method

Real2011 UHR4K-Real

PSNR SSIM PSNR SSIM

Base transformer 19.42 0.712 20.54 0.785

RUT 20.37 0.739 21.88 0.801

CSTB 21.02 0.754 22.48 0.812

CAT 22.32 0.794 22.86 0.818

LapCAT (complete) 23.01 0.809 25.18 0.866

w/o Lpixel 22.25 0.791 24.33 0.848

w/o Lper 22.51 0.795 24.71 0.855

w/o Ladv 22.73 0.801 24.86 0.860

w/o Lc 22.42 0.789 24.54 0.852

Table 3.  Ablation study on our LapCAT in terms of PSNR and SSIM to investigate the effectiveness of each 
proposed technique in our model. The best results are in bold.
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Figure 8.  Visualization of attention maps in the component-aware transformer block. The test sample is from 
the Real2011 dataset.

 

Method

Real2011 Nature14

PSNR SSIM PSNR SSIM

w/o E 19.93 0.726 22.09 0.795

Feat-E 20.37 0.742 23.13 0.838

ReLU-E 21.69 0.763 23.76 0.846

LapCAT (ours) 23.01 0.809 23.95 0.849

Table 5.  Comparison of our model with other ways of feature exchange on Real2011 and Nature14 for image 
reflection removal in terms of PSNR and SSIM. The best results are in bold.

 

Figure 7.  Visualization of reflection perception by our model and LAS44 on a test image from Real2011. Best 
viewed in zoom-in mode.
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results show that our designed component-aware transformer block obviously enables our model to reconstruct 
higher-quality background images than other ways of reflection separation. Although our CAT model is inspired 
by YTMT , we find that the performance of reflection removal is significantly improved, benefiting from the self-
attention exchange than features after ReLU activation. Furthermore, we visualize attention maps of separated 
features in the background branch in Fig. 8.

Effect of Laplacian pyramid The performance comparisons between LapCAT and CAT in Table 1 and 3 have 
demonstrated the effectiveness of our designed Laplacian pyramid for high-resolution image reflection removal. 
Besides, we conduct experiments to investigate the effect of downsampling stride in Laplacian pyramid by 
setting it to Down-2, Down-4, and Down-8, and the experimental results are shown in Table 6. The performance 
comparison reveals that our LapCAT achieves the best performance while setting the downsampling stride to 
two.

Conclusion
In this work, we design a Laplacian pyramid-based component-aware Transformer model LapCAT for high-
resolution image reflection removal. Our LapCAT designs a Laplacian pyramid module to preserve and 
synthesize high-fidelity details as well as downsampling the high-resolution image into a processable resolution. 
Additionally, it also introduces a component-aware self-attention mechanism to precisely separate reflection 
constituents from the background content, and such mechanism enables our model to capture long-range 
interactions between pixels in a high-resolution image. Benefiting from the reflection mask from reflection 
detection module through pixel-wise contrastive learning, our LapCAT is able to locate reflection constituents 
in the input image and thus reconstruct cleaner background images.

Limitation Even though our LapCAT shows powerful capability of modeling reflection patterns in high-
resolution images, it is still challenging for it to simultaneously cope with different types of degradation in the 
same image. This is mainly due to the fact that our model is under pixel-wise supervised learning, and thus we 
plan to investigate it in an unsupervised way in our future work.

Data availability
The datasets and codes used and analyzed during the current study are available from the corresponding author 
upon reasonable request.
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