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With improvements in industrial automation, the reliability of the gearbox, a key transmission device, 
has become increasingly crucial for the stable operation of an entire operating system. However, 
predicting the remaining useful life of the gearbox is challenging because of complex working 
environments and dynamic load changes. Several existing methods assume an inaccurate model 
structure and parameter estimation during life prediction, owing to the limited availability of similar 
fault sample data. In this study, we analyse the influence of kernel density estimation (KDE) based on 
time-varying distribution on the results of residual useful life prediction, considering the characteristics 
of such systems and the problems faced by current research methods. First, a time-varying KDE model 
with an incremental distribution of degradation features is established, and the influence of sample 
timing on KDE is introduced. Second, the exponential weighted moving average method is employed 
to predict the degraded samples, and recursive update was employed to reduce unnecessary double 
calculations during the estimation of the time-varying weight kernel density in the system operation 
process. Finally, the adaptability and effectiveness of the proposed method are verified using actual 
collected gearbox data. Research results indicate that the remaining useful life prediction outcomes of 
the method proposed in this paper are superior to those of the DGN model and the Ensemble model, as 
evidenced by its lower RMSE and MAE values.
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The complexity and precision of mechanical systems have undergone continuous development; however, the 
probability and types of failures of these systems have also increased. In particular, a sudden failure of the gearbox, 
a critical transmission device, may interrupt the operation of the entire system, which can adversely affect 
production management and even endanger personal safety1,2. Therefore, from the perspective of industrial big 
data, effective monitoring and evaluation of the remaining system life are essential3. Several studies have focused 
on predicting the remaining useful life (RUL) as the core of prognostics and health management4.

Various residual life prediction methods have been widely used, including methods based on physical 
mechanisms, expert prior knowledge, and data-driven approaches5–7. Physical models8,9 are often challenging 
to establish for complex mechanical equipment, as the requisite expert knowledge is difficult to acquire10,11. 
Therefore, data-driven life prediction methods are becoming increasingly prevalent. Yan et al.12 utilised support 
vector machines to establish a degradation model for predicting the residual life. Yang et al.13 modelled the 
degradation state of components as a discrete semi-Markov process. Hu et al.14 reviewed residual life prediction 
models, such as regression, proportional risk, stochastic filter, and hidden Markov models, considering data-
driven aspects. Several monotonous degradation processes that represent the development of wear or cracks in a 
system have been modelled as Gamma processes15–17. However, these data-driven prediction methods typically 
make assumptions regarding the model structure18,19, and a significant gap often exists between an actual process 
and assumption-based degradation models. The optimisation of parameter estimation may converge only to a 
local rather than the global minimum. Consequently, these prediction models cannot ensure final asymptotic 
convergence to the real sample model.

Moreover, actual monitored gearbox systems primarily operate under time-varying working conditions, with 
the distribution of their sample sequence tending to be unstable. Unlike time-invariant systems, the distribution 
rules of the degradation process constantly changes with time. Diyin et al.20 described the dynamic condition 
as a uniform Markov chain and used the Bayesian method to update the signal parameters and residual life 
distribution of components. Li et al.21 proposed a probabilistic model to estimate the residual life for a degradation 
process within a specific region under dynamic time-varying operating conditions. Zhou et al.22 transformed 
the residual life prediction problem into a time-varying trajectory modelling problem and proposed a dynamic 
control network method to determine the RUL trajectory in a lifetime observation sequence. However, the 
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Bellman equation in the Soft Actor-Critic (SAC) algorithm, an actor-critic reinforcement learning algorithm 
based on maximum entropy, may affect the prediction. Cao et al.23 developed the time-domain convolution 
network residual self-attention mechanism, a new deep learning framework to predict the remaining service life 
of systems under different working conditions.

Long et al.24 proposed a random hybrid system-based method to estimate the RUL based on the complexity 
and variability of degraded signals under time-varying operating conditions. The RUL under time-varying 
conditions can be predicted online by modelling the degraded signals and operating conditions of the components; 
however, the prediction accuracy continuously decreases with an increasing number of working conditions and 
the amount of calculations required. Furthermore, artificial neural networks require a large amount of high-
quality observation data during training, which cannot be easily obtained. The “black box” characteristics of 
artificial intelligence technology can also reduce the transparency of intelligent learning methods. Additionally, 
the structure and parameters of neural network models must be formulated beforehand or initialised randomly. 
These issues cause bottlenecks in prediction performance, hindering artificial intelligence methods from 
accurately modelling the system mechanism of monitoring equipment.

The kernel density estimation (KDE) method is a data-driven method that makes no assumptions regarding 
data distribution. It is a non-parametric estimation method that analyses its distribution law based on the 
data25,26. Xu et al.27 employed KDE for life prediction using real-time degradation characteristic information to 
determine the prior distribution of parameters in real-time life predictions based on the Bayesian method. Jia et 
al.28 proposed a new density extrapolation method for efficient reliability analysis. They used KDE and boundary 
correction to accurately identify the different shapes of target distribution. This method is suitable for calculating 
the probability density of cylinder failure events under a known number of failure cycles in a cylindrical sample. 
Zhang et al.29 considered sudden changes in the wear process of a gearbox system and proposed a useful life 
prediction method based on KDE by detecting the point of sudden change. However, this model assumes that 
the degradation process remains stable and unchanged.

This study considers the range of issues presented and the time variability of most gearbox systems, and it has 
the following core components:

	(1)	� A method for predicting the RUL of a system is proposed by determining the degradation distribution from 
observed data.

	(2)	� Owing to the time variability of the degradation distribution, an RUL prediction model based on time-var-
ying KDE is constructed.

	(3)	� Owing to the impact of the window width h on the estimation accuracy in KDE, an RUL prediction model 
based on adaptive h and time-varying KDE is constructed.

	(4)	� To avoid unnecessary repeated calculations of KDE when new observation data are added, a recursive up-
date model based on adaptive h and time-varying KDE is constructed.

Time-varying KDE for the incremental distribution of degenerate features
Modelling of time-varying KDE
The incremental distribution of the degenerate features in a time-varying system changes with time. Thus, the 
concept of time-varying weights was introduced to analyse the effect of time series on the KDE and life prediction 
accuracy of monitoring systems30. Specifically, the closer the sample points are to the current moment, the better 
they reflect the running status of the current degenerate system over time. Conversely, the further a sample point 
is from the current moment, the less it influences the current running state. The time-varying weight factor was 
introduced based on the conventional KDE model to consider the influence of the time-varying weight. Thus, 
the time-varying weight KDE at time t is estimated as

	
f̂t(∆x) = 1

h

t∑
i=1

K

(
∆x − ∆Xi

h

)
wt,i, t = 1, 2, . . . , T ′� (1)

Its corresponding cumulative distribution function is given as

	
F̂t(∆x) =

t∑
i=1

H

(
∆x − ∆Xi

h

)
wt,i, t = 1, 2, . . . , T ′� (2)

where wt,i denotes the time-varying weight factor, T ′ denotes the lifetime of the current monitoring equipment, 
K  selects the most widely used Gaussian kernel, and h denotes the window width of the time-varying KDE.

Due to the uneven density distribution of the collected sample data, with the presence of regions of high 
density and low density, employing a fixed window width in a time-varying KDE model can lead to over-
smoothing in high-density areas and under-smoothing in low-density regions. This can adversely affect the 
accuracy of the time-varying KDE and the prediction of remaining useful life. Therefore, to ensure that the 
time-varying kernel density estimation is closer to the actual values, by introducing a local window width factor 
λi = f̂(∆Xi)− 1

2  to dynamically adjust the window size in response to changes in data density, the time-varying 
weighted KDE model based on an adaptive window width can be expressed as follows:

	

⌢

f t(∆x) =
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1
hi
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hi
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here hi denotes the adaptive window width: hi = h0 · λi = h0 · f̂(∆Xi)− 1
2 , where h0 is the initial optimal 

window width of the sample dataset, obtained by minimising the integral mean squared error between the KDE 
and the actual density; f̂(∆Xi) is the KDE of the initial optimal window width29.

Time-varying weight selection
In the KDE model with time-varying weights, wt,i denotes a time-varying weighting factor. Assuming that wt,i 
decreases exponentially with increasing interval between the sample data ∆Xi(i = 1, 2, . . . , t) and the current 
sample ∆Xt, wt,i can be defined as

	 wt,i = (1 − ω)ωt−i, i = 1, 2, . . . , t� (4)

where ω denotes the forgetting factor and satisfies 0 ≤ ω < 1. The interval between i and t reflects the interval 
between ∆xi(i = 1, 2, . . . , t) and ∆xt. The smaller the interval, the larger the time-varying weight (wt,i), and 
vice versa. The sum over wt,i, denoted by st, can be expressed as

	
st =

t∑
i=1

wt,i =
(1 − ω)ωt−1

[
1 −

(
1
ω

)t
]

1 − 1
ω

=
(1 − ω)ωt−1 ωt−1

ωt

ω−1
ω

= 1 − ωt� (5)

Evidently, wt,i satisfies the sum of its weights when t → ∞.

	
st =

t∑
i=1

wt,i = 1� (6)

Model parameter estimation
The current observable moment t(t = 1, 2, . . . , T ′) and current known sample ∆Xi(i = 1, 2, . . . , t) obey 
the respective time-varying KDEs, 

⌢

f i(∆x)(i = 1, 2, . . . , t). The unknown parameter ω in the model can be 
determined through maximum likelihood estimation. Substituting the known sample ∆Xi(i = 1, 2, . . . , t) 
into the time-varying KDE 

⌢

f i(∆x)(i = 1, 2, . . . , T ′), the likelihood function, L(ω), of ω can be expressed as

	
L(ω) =

t∏
i=1

⌢

f i(∆Xi) =
⌢

f 1(∆X1) ·
⌢

f 2(∆X2) · · · · ·
⌢

f t(∆Xt) (t = 1, 2, . . . , T ′)� (7)

The log-likelihood function l(ω), which is normalised according to the sample size, can be expressed as

	
l(ω) = 1

t

t∑
i=1

ln
⌢

f i(∆Xi) = 1
t

t∑
i=1

ln

[
t∑

j=1

1
hj

K

(
∆Xi − ∆Xj

hj
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wi,j (ω)

]
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The derivative of l(ω) with respect to ω is set equal to 0, as follows:

	

{
dl(ω)

dω
= 0

0 ≤ ω ≤ 1 � (9)

here the value of ω can be obtained using the finite difference method, dl(ω)
dω

= l(ω+∆ω)−l(ω)
∆ω , to maximise the 

constraint.

Recursive update of time-varying KDE for degenerate feature increment
This study used real-time monitoring equipment wherein the number of samples continuously increased during 
the real-time operation process. Therefore, the time-varying weight, wt,i, had to be recalculated and reallocated 
for each additional sample data. The time-varying KDE for known historical samples also had to be recalculated. 
In the time-varying weight KDE model, the introduction of a weight factor wt,i enabled the function 

⌢

f t(∆x) to 
be updated efficiently through a recursive formula. This method significantly reduced the amount of redundant 
computation required for kernel density estimation in continuous monitoring systems, substantially enhanced 
the computational efficiency of the estimation process, and thus optimised the overall performance and efficiency 
of the system.

The time-varying weighted KDE 
⌢

f t(∆x) at time t(t = 1, 2, . . . , T ′) can be further expressed using Eq. (3) 
as follows:
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The time-varying weighted kernel density estimate 
⌢

f t−1(∆x) at time t − 1 is given as
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Accordingly,

	

⌢

f t(∆x) = ω
⌢

f t−1(∆x) + 1
ht

K

(
∆x − ∆Xt

ht

)
(1 − ω)� (12)

Equation (12) shows that the time-varying weighted KDE 
⌢

f t(∆x) at time t can be recursively obtained from 
⌢

f t−1(∆x) at time t − 1. This helps recursively update the time-varying KDE of the degenerate feature increment 
and reduce the amount of unnecessary repeated calculations when the time-varying weight KDE is solved in the 
continuous monitoring process.

Prediction of the degradation feature increment
In time-varying systems, the increment in the uncollected degenerate features must first be estimated to 
accurately predict the remaining life. Owing to the time series of the sample data, it is assumed that the closer a 
sample data instance is to the current sample, the better it can reflect the running state of the following samples, 
and vice versa. According to the exponentially weighted moving average method, which is a scheme used to 
weigh current and past sample data, the weights of sample data instances closer to the current time are larger 
and decrease as the time interval increases. Owing to its simplicity, this method has been extensively used in 
practical applications.

By setting t as the current time, the prediction model of the random time series ∆Xt at time t can be 
expressed as

	
∆Xt =

t−1∑
i=1

w′
t,i∆Xt−i + εt� (13)

where εt denotes white noise, which satisfies E(εt) = 0 and E(ε2
t ) = σ2

ε > 0; and w′
t,i represents the 

exponential weight coefficient of sample ∆Xt−i, which satisfies

	 w′
t,i = (1 − β)βi−1� (14)

where β represents the decay factor, which satisfies 0 ≤ β < 1; when i → ∞, its weight sum is 
s′

t =
∑∞

i=1 w′
t,i = 1.

Equation (14) can be further expressed as

	

(
1 −

t−1∑
i=1

w′
t,iB

i

)
∆Xt = εt� (15)

where B denotes the backwards operator31.
Moreover,

	
1 −

t−1∑
i=1

w′
t,i Bi = 1 −

t−1∑
i=1

(1 − β)βi−1Bi� (16)

When t → ∞,

	
1 −

∞∑
i=1
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t,iB
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i=1

(1 − β)βi−1Bi = 1 − B
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� (17)
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Therefore,

	
1 − B

1 − βB
∆Xt = εt� (18)

which can be written as

	 (1 − B)∆Xt = (1 − βB)εt� (19)

here,

	 Wt = ∆Xt − ∆Xt−1� (20)

When t → ∞, the prediction model of a random time series ∆Xt becomes equivalent to

	

{
Wt = ∆Xt − ∆Xt−1
Wt = εt − βεt−1

� (21)

When both sides of Wt = εt − βεt−1 are multiplied by Wt, the following mathematical expression can be 
obtained:

	 var(Wt) = σ2
ε(1 + β2)� (22)

By multiplying the two sides of Wt by Wt−1 and calculating the mathematical expectation, we obtain

	 cov(Wt, Wt−1) = −βσ2
ε � (23)

The correlation coefficient can then be obtained from Eqs. (22) and (23) as follows:

	
ρ1 = cov(Wt, Wt−1)

var(Wt)
= −β

1 + β2 � (24)

As 0 ≤ β < 1, a parameter β can be defined as

	
β =

−1 +
√

1 − 4ρ2
1

2ρ1
� (25)

In actual monitoring systems, the number of samples collected is often limited. If t(t = 1, 2, . . . , T ′) represents 
the current monitored time, the estimated value β̂ of β in the exponential weighted moving average model can 
be obtained from the known sample (∆X1, ∆X2, . . . , ∆Xt) as follows:

	(a)	� Calculate Wi = ∆Xi − ∆Xi−1 (i = 2, 3, . . . , t)
	(b)	� Calculate W = 1

t−1

∑t

i=2 Wi.

	(c)	� Calculate τ̂0 = 1
t−1

∑t

i=2 (Wi − W )2, τ̂1 = 1
t−2

∑t−1
i=2 (Wi − W )

(
(Wi+1 − W )

)
.

	The correlation coefficient can then be expressed as

	
ρ̂1 = τ̂1

τ̂0
� (26)

	(d)	� The estimated value β̂ of β is then expressed as

		
β̂ =

−1 +
√

1 − 4ρ̂2
1

2ρ̂1
� (27)

For a finite number of samples at time t(t = 1, 2, . . . , T ′), the prediction model of the time series ∆Xt can be 
expressed as

	

∆Xt =
t−1∑
i=1

w′
t,i∆Xt−i + εt =

t−1∑
i=1

(
1 − β̂

)
β̂i−1∆Xt−i + εt

=
(
1 − β̂

)
β̂0∆Xt−1 +

(
1 − β̂

)
β̂1∆Xt−2 + · · · +

(
1 − β̂

)
β̂t−2∆X1 + εt

=
(
1 − β̂

)
∆Xt−1 +

(
1 − β̂

)
β̂∆Xt−2 + · · · +

(
1 − β̂

)
β̂t−2∆X1 + εt

� (28)

Accordingly, the predicted values of the incremental samples of the degraded features at any time after t can be 
obtained by using the time series prediction model of the known samples.
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Time-varying KDE of degenerate eigenvalue distribution
Considering the time dependence, the time-varying KDEs change with the addition of degenerate feature 
increment samples. Assuming that the samples are collected once per unit time, the time-varying KDE can 
be obtained using the degenerate characteristic incremental samples at the initial time, which is denoted by 
⌢

f 1(∆x). The time-varying KDE for the degraded feature increment samples at the next time (denoted by 
⌢

f 2(∆x)) can be obtained as the number of continuous monitoring samples increases. The time-varying 

KDE for the cumulative degradation quantity, X2 = ∆X1 + ∆X2, at time t = 2 (denoted by 
⌢

f 2(x)) can 

be expressed as the convolution of the time-varying KDE (
⌢

f 1(∆x)) of the degraded feature increment and 
⌢

f 2(∆x), expressed as

	
⌢

f 2(x) =
⌢

f 1(∆x) ∗
⌢

f 2(∆x)� (29)

Accordingly, the time-varying weighted KDE (denoted by 
⌢

f t(x)) for the characteristic cumulative degradation, 

Xt, t = 1, 2, . . . , T ′, at different times can be obtained as follows:

	
⌢

f t(x) =
⌢

f 1(∆x) ∗
⌢

f 2(∆x) ∗ · · · ∗
⌢

f t(∆x)� (30)

To reduce unnecessary redundant calculations, Eq. (30) can be expressed recursively as follows:

	

⌢

f t(x) =
[

⌢

f 1(∆x) ∗
⌢

f 2(∆x) ∗ · · · ∗
⌢

f t−1(∆x)
]

∗
⌢

f t(∆x)

=
⌢

f t−1(x) ∗
⌢

f t(∆x)

� (31)

Essentially, the time-varying weight KDE 
⌢

f t(x) of the characteristic degradation quantity Xt at a different 
time t can be obtained through recursion from the time-varying weight KDE of the characteristic degradation 
quantity Xt−1 at time t − 1.

Real-time residual life prediction model based on time-varying KDE
Figure 1 depicts the prediction method flow based on the time-varying KDE.

We set t as the present monitoring moment and xth as the failure threshold. When the cumulative feature 
degradation reaches xth, the system is considered to have failed. Figure 2 depicts the change trend curve of the 
overall degradation characteristics of the degraded system. Let T  be the RUL of the degenerate system at point t 
and Ft(T ) be the probability distribution function of the remaining life. Ft(T ) can then be expressed as

	
Ft(T ) = p(Xt+T ≥ xth) =

∫ ∞

xth

⌢

f t+T (x) dx� (32)

where 
⌢

f t+T (x) denotes the probability density of the degenerate characteristic Xt+T  at time t + T , which can 

be obtained from the convolution of the time-varying KDE 
⌢

f i(∆x), i = 1, 2, . . . , t + T , of the characteristic 
degradation increment at different historical times and can be expressed as

Fig. 1.  Flowchart of residual life prediction.
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⌢

f t+T (x) =
⌢

f 1(∆x) ∗
⌢

f 2(∆x) ∗ · · · ∗
⌢

f t(∆x) ∗ · · · ∗
⌢

f t+T (∆x)� (33)

Equation (33) can be expressed recursively as follows:

	
⌢

f t+T (x) =
⌢

f t+T −1(x) ∗
⌢

f t+T (∆x)� (34)

Essentially, the probability density 
⌢

f t+T (x) of the degenerate characteristic Xt+T  at time t + T  can be obtained 

through the convolution of the probability density 
⌢

f t+T −1(x) of the characteristic degradation quantity 

Xt+T −1 at the previous time and the time-varying KDE 
⌢

f t+T (∆x) of the characteristic degradation increment 
prediction value ∆Xt+T  at time t + T .

Substituting Eq. (34) into Eq. (32), the probability density function f̂t(T ) of the RUL, which is estimated 
based on the time-varying kernel density, can be expressed as follows:

	

f̂t(T ) = dFt(T )
dt

=
d

[∫ xth

0

⌢

f 1(∆x) ∗
⌢

f 2(∆x) ∗ · · · ∗
⌢

f t(∆x) ∗
⌢

f t+1(∆x) ∗ · · · ∗
⌢

f t+T (∆x)d∆x

]

dt

=
d

[∫ xth

0

⌢

f t+T −1(x) ∗
⌢

f t+T (∆x)d∆x

]

dt

� (35)

Similarly, the real-time residual life can be predicted at any time after t.

Case analysis
To further verify the applicability of the proposed method, the RUL was predicted based on the data collected 
during gear fatigue. The data were derived from the test bench presented in Fig. 3, which depicts the positions of 
the main test gearbox and the accompanying test gearbox. The centre distance between the gearboxes was 15 cm. 
The monitored data collected during the test included temperature and vibration data. The gears were meshed 
using staggered teeth, as shown in Fig. 4. Figures 5 and 6 depict the specific installation positions of the vibration 
and temperature sensors. Table 1 lists the functions of the sensors installed at different positions.

The output torque of the monitored gear was 822.7 N m. Tooth breakage due to continuous gear wear under 
time-varying working conditions was defined as failure.

The root mean square (RMS) was used to accurately reflect the change in the degradation state during gear 
wear. By preprocessing the vibration signals received by the sensor (4)32, we extracted the RMS feature of the 
signal. The signal was sampled at a rate of 25.6 kHz, with a duration of 60 s and a sampling interval of 9 min, 
resulting in an RMS Monitoring Time (RMS-MT) curve, as shown in Fig. 7.

Figure  7 depicts the RMS characteristic curve representing the degradation state of the gear during the 
process from meshing to failure, and the specific description is presented in Table 2.

Prediction of the degradation feature increment
In a time-varying system, the degradation distribution of the sample series changes with time. Therefore, the 
degradation feature increment must first be predicted to predict the RUL of the degenerate system. Figure 8 
depicts the mean curve of the degradation state obtained by the accumulation of the incremental values of 

Fig. 2.  Degradation characteristic curve and residual life prediction.
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the degradation characteristics estimated using the exponential weighted moving average method when the 
monitored gear wear test was run for different periods.

Figure  8 depicts the difference between the degradation state prediction curves at different times. The 
predicted degradation characteristic curve at 70  h significantly deviates from the actual value, indicating a 
large error in the estimated degradation characteristic increment value. The monitoring information gradually 
increases with increasing monitoring time, and the degradation state prediction curve becomes closer to the 
actual degradation curve. Therefore, the error in the estimated degradation feature increment value gradually 
decreases. The dynamic changes in the gear wear degradation feature can be tracked and monitored effectively 
based on the estimated value of the degradation feature increment. Furthermore, the degradation feature 

Fig. 5.  Sensor locations in the main test box.

 

Fig. 4.  Installation of the test gears.

 

Fig. 3.  Gear fatigue test bench.
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increment value estimated using the exponential weighted moving average method is closer to the actual 
degradation feature increment value.

Monitoring time RMS curve Monitoring gear status

t ∈ [0, 10] h Showing a gradual decrease Initial meshing stage

t ∈ [10, 68] h Showing a gradual increase Normal fatigue wear stage

t ∈ [68, 77] h Starting to increase sharply Fatigue and wear increase until the tooth is broken

Table 2.  Gear status at different monitoring times.

 

Fig. 7.  RMS curve of the vibration signal eigenvalues.

 

Number Sensor Installation position Function

(1)–(4) Acceleration Radial of the main test box bearing seat Monitoring the vibration signal of the main test box

(5), (6) Acceleration Radial of the accompanying test box bearing seat Monitoring the vibration signal of the accompanying test box

(7), (8) Acceleration Axial of the main test box bearing seat Monitoring the vibration signal of the main test box

(9) Acoustic 40 cm above the main test box Monitoring the noise signal of the main test box

(10) Acoustic 40 cm above the accompanying test box Monitor the noise signal of the accompanying test box

(11) Temperature Inside the test gearbox Monitoring the gearbox lubricating oil temperature signal

Table 1.  Sensors installed at different positions.

 

Fig. 6.  Sensor locations in the accompanying test box.
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Comparison of residual life prediction results for different window widths
The window width is adaptively selected based on the change in the sample density to improve the accuracy of 
the estimation of the degraded feature distribution owing to the random change in the sample density of the 
degraded features during the gear wear test. Essentially, the area with dense samples is estimated using a smaller 
window width, whereas the area with sparse samples is estimated using a larger window width.

Table 3 presents a comparison of the mean time to failure (MTTF)33 results for fixed and adaptive smoothing 
window widths with time-varying KDE during the gear wear test for different running times.

	
MT T F = E(T ) =

∫ ∞

0
tfT (t) dt� (36)

Fig. 8.  Comparison of the predicted degradation states at different instances.
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A comparison of the data in Table 3 shows that the remaining useful life prediction using the adaptive window 
width kernel density method is more accurate than the method based on fixed window width kernel density 
estimation. Additionally, Table 3 also indicates that for datasets of different sizes, the accuracy of remaining 
useful life prediction using adaptive window width kernel density with large datasets shows a more significant 
improvement compared to using small datasets.

Figure 9 presents a comparison of the corresponding prediction results. Table 3 and Fig. 9 reveal that with 
increasing gear running time, the errors between the MTTF values predicted using the two window width 
methods and the actual remaining life decreased continuously. Furthermore, the MTTF predicted via the 
window width method used in this study was closer to the true value than that predicted by the fixed window 
width method, indicating that the uncertainty of the prediction results was reduced.

To demonstrate the advantages of the proposed method more directly, the root mean square error (RMSE) 
and mean absolute error (MAE) were introduced as measurement standards. Table  4 and Fig.  10 present a 
comparison of the RMSE and MAE of the remaining lives of various prediction methods. The smaller the 
standard value, the greater the accuracy of the prediction and the better the performance. The RMSE is expressed 
as follows:

	

RMSE =

√√√√ 1
n

n∑
i=1

∆2
i � (37)

The MAE is expressed as follows:

Methods

Errors

RMSE
MAE

Adaptive h time-varying KDE 1.2307 0.9750

Fixed h time-varying KDE 1.4469 1.1978

Table 4.  Comparison of the RMSE and MAE of the two methods for predicting the RUL.

 

Fig. 9.  Comparison of the prediction results for fixed and adaptive smoothing window widths.

 

Current moment (h) Actual RUL (h) Adaptive h time-varying KDE MTTF (h) Relative error (%) Fixed h time-varying KDE MTTF (h) Relative error (%)

70 7.2 5.751 20.125 5.263 25.514

72 5.2 4.392 15.538 4.112 20.923

74 3.2 2.876 10.125 2.702 15.563

76 1.2 1.074 10.500 1.026 14.500

Table 3.  Comparison of MTTF prediction results for fixed and adaptive smoothing window widths.
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MAE = 1

n

n∑
i=1

∆i� (38)

where i represents the monitoring time point and ∆i denotes the absolute error between the average remaining 
life predicted at different and corresponding times.

Time-varying kernel density comparison of the probability density for real-time remaining 
life estimation
Figure 11 compares the MTTF predicted by the time-varying KDE and the actual RUL for different running 
times during actual gear operation.

Evidently, at the initial stage of gear wear, the error between the predicted and actual values of the real-
time residual life was large owing to the limited number of known degradation samples. As the gear wear 
test continued, the sample data continued to increase, and the probability density curve of the predicted RUL 
narrowed, indicating that the variance and the uncertainty of life prediction continued to decrease. The predicted 
residual life became increasingly close to the actual residual life.

Comparison of time-varying KDE and DGN model-based RUL predictions
To verify the competitiveness of the proposed method, Table 5 and Fig. 12 present the results of two highly rated 
methods that were evaluated on the same dataset, in addition to the method suggested in the present study.

Fig. 11.  RUL probability density comparison for different monitoring times.

 

Fig. 10.  Error comparison results of the two RUL prediction methods.
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As SAC in a previous study22 uses the Bellman equation to update the estimates of the state and action value 
functions, the improper setting of the discount factor in the Bellman equation under time-varying operating 
conditions results in poor generalisation of the algorithm under time-varying operating conditions. The 
ensemble model34 in the process of training multiple base models, due to the inability to fully capture certain 
unique features in the data, coupled with the risk of overfitting in the process of model selection and parameter 
tuning, leads to unsatisfactory prediction effects of the ensemble model. The data shown in Table 5 and Fig. 12 
indicate that although the method proposed in this study is not complex in theory, it still maintains a high level 
of accuracy, thus fully demonstrating the practical application effect and reliability of this method.

To thoroughly evaluate the predictive performance of our proposed method and compare it with two highly 
regarded methods, we conducted analyses using RMSE (Root Mean Square Error) and MAE (Mean Absolute 
Error). Tables 6 and Fig. 13 provide a detailed presentation of this comparison.

By contrasting the prediction errors of the three methods, we observed that our proposed method surpasses 
the DGN time-varying trajectory method and the integrated model in terms of prediction accuracy. Furthermore, 
the error observed between our proposed method and the actual values was significantly smaller, confirming its 
higher prediction accuracy and reliability.

Methods

Error

RMSE
MAE

Time-varying KDE model 0.8475 0.6767

DGN model 0.9931 0.8323

Ensemble model 0.9823 0.8145

Table 6.  Comparison of the prediction evaluation results of the three models.

 

Fig. 12.  Comparison of prediction results of the three models.

 

Current moment (h) 70 72 74 76

Actual RUL (h) 7.2 5.2 3.2 1.2

Proposed method’s MTTF (h) 5.751 4.392 2.876 1.074

Relative error (%) 20.125 15.538 10.125 10.500

DGN22 (h) 5.615 4.134 2.679 1.043

Relative error (%) 22.014 20.5 16.281 13.083

Ensemble model34 (h) 5.589 4.211 2.684 1.058

Relative error (%) 22.375 19.019 16.125 11.833

Table 5.  Comparison of the results of the three models.
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Conclusion
In this study, different influence weights were assigned to samples at different times during KDE, and a remaining 
life prediction method based on time-varying weight KDE was proposed while considering the time variability 
of gearbox systems and time seriality of the sample data.

Because the system distribution changes with time, a time-varying weight was introduced in the proposed 
model based on the different impacts of the time series samples collected at different instances on the distribution 
in the time-varying system. The closer the samples were to the current time, the greater the influence on the 
distribution and the larger the weight to be assigned, and vice versa.

For samples that were not collected during continuous monitoring, the exponential weighted moving average 
method was employed to make predictions based on the past and current sample data. Additionally, as the 
proposed model was repeatedly implemented when the sample data continuously increased during the operation 
of the gearbox system, a real-time update model was established to effectively improve the computational 
efficiency. Finally, the rationality and competitiveness of the proposed model were verified through a gear wear 
test.

Owing to advancements in the manufacturing industry, single-component systems are no longer effective for 
mechanical equipment, and the interdependence between multiple components cannot be ignored. Therefore, 
in future works, we aim to analyse the prediction and health management of multi-component systems from the 
perspective of random correlations among gearbox system components.

Data availability
Data is provided within the manuscript file.
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