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High-speed threat detection in 5G
SDN with particle swarm optimizer
Integrated GRU-driven generative
adversarial network

R. Shameli & Sujatha Rajkumar™*

Detecting attacks in 5G software-defined network (SDN) environments requires a comprehensive
approach that leverages traditional security measures, such as firewalls, intrusion prevention systems,
and specialized techniques personalized to the unique characteristics of a 5G network. The attack
detection in 5G SDN involves Machine learning (ML) and Deep learning (DL) algorithms to analyze
large volumes of network data and identify patterns indicative of attacks. The study’s main objective
is to develop an efficient DL model to improve the detection performance and respond to security
breaches effectively in a 5G SDN environment. The DL model integrates the Particle Swarm Optimizer-
Gated Recurrent Unit Layer-Generative Adversarial Network-Intrusion Detection System classifier
(PSO-GRUGAN-IDS). The PSO optimizes the network weight of the GAN model to improve the
backpropagation while generating the synthetic data (attack data) in the generator model using GRU.
The discriminator model uses the PSO-optimized generator model to produce synthetic and real attack
data to forecast the attack. Finally, a deep classification (IDS) model is trained using a GRU network
with a GAN model-produced attack data and real data to classify whether the SDN traffic is malicious
or normal. Moreover, the performance of this model is evaluated using the InSDN dataset and
compared with existing DL model-based intrusion detection approaches and the results demonstrate
a significantly higher accuracy rate of 98.4%, precision rate of 98%, recall rate of 98.5%, less detection
time of 2.464 s, lesser Log loss rate of 1.0 and more metrics instilling confidence in the effectiveness of
the proposed method.

Keywo rds 5G, Deep learning, Gated recurrent unit, Generative adversarial network, Intrusion detection,
Particle swarm optimization, Software defined network

Integrating Intrusion Detection Systems (IDS) in 5G software-defined networks (SDN) is necessary for
maintaining robust network security and improving the quality of service (QoS) in networks'. 5G networks may
be made secure and resilient by using an intrusion detection system (IDS) that uses SDN’s programmable and
dynamic features to enable real-time threat detection. This paper addresses these challenges and implements best
practices for effective IDS deployment in this advanced network environment. The architecture of 5G networks
leveraging SDN is typically divided into three primary layers, each designed to perform different network
functions, providing a clear structure for implementing and managing the network effectively. By understanding
and addressing the security needs at each layer of the 5G SDN network in Fig. 1, organizations can create a
robust intrusion detection (ID) and response strategy that enhances overall network security and resilience. A
network monitoring application in the application layer detects an unusual traffic pattern indicative of a potential
Distributed Denial of Service (DDoS) attack?>. The control layer monitoring applications (Ex, IDS tools) send
alerts and decide to reroute the traffic to mitigate the attack. The infrastructure layer’s SDN controller’™” uses
the southbound APIs to update the switch and routers, flow rules, redirecting malicious traffic to a honeypot for
further analysis while ensuring that traffic is unaffected. The interaction between these layers was determined
using northbound and southbound APIs. Northbound APIs enable communication between the application
and the control layers. Applications use these APIs to request network resources and send instructions to an
SDN controller. Southbound APIs allow communication between the control layer and the infrastructure layer.

The SDN controller uses these APIs to configure network devices and manage traffic flows. ID in the
control plane of a 5G network using SDN? is crucial for ensuring the security and integrity of the network. The
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Fig. 1. PSO-GRUGAN-IDS model of intrusion detection framework placement in 5G SDN network.

control plan in SDN is responsible for making decisions about how packets should flow through the network;
any compromise here can lead to significant security breaches. The controller comprehensively views the
entire network, enabling efficient traffic management and security monitoring. The integration IDS with SDN
controller plane to monitor control plane traffic. Use a controller’s APIs to gather data on flow entries, network
configurations, and traffic patterns. The main characteristics of the 5G network are high bandwidth and low
latency, network slicing, and edge computing. Latency reduction and improving response time are the challenges
in the 5G network. This system has high device density, and diverse applications increase the attack surface.
The low latency requirement of a 5G network necessitates a real-time detection system and response to threats.
The centralized nature of the SDN control plane makes it a high-value target for attacks. Compromise of the
SDN controller’ can lead to widespread network disruption. These limitations in the 5G SDN networks require
centralized ID', distributed ID!!, ML'2, DL'3, artificial intelligence (AI) tools!*, and network slicing security.
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Centralized ID systems require controller-based detection systems. It embeds IDS functionalities within the
SDN controller to leverage its global view and centralized control. The flow monitoring mechanism monitors
and analyzes flow entries in the SDN controller to detect abnormal patterns indicative of malicious activities. The
distributed detection system deploys edge-based IDS at the network edge to monitor traffic closer to the source,
providing early detection and reducing the load on the central controller.

Collaborative detection uses a network of distributed IDS nodes that communicate and collaborate to detect
and respond to threats. So, adequate DL!%, ML!®, and Al models'” need to be developed for anomaly detection.
It utilizes ML/DL models to establish a baseline of normal behavior and detect deviations. Predictive analysis
approaches implement Al techniques to predict potential attacks based on historical data and patterns. This
approach uses statistical, ML, and DL techniques'®!® to detect unknown threats by identifying deviations from
normal behavior.

Moreover, the analysis helps the response system to use SDN capabilities to reroute or isolate suspicious
traffic quickly—the automatic response systems of SDN control to respond to certain types of IDS-detected
threats®®. Snort, Zeek, and bro are the popular IDS tools?! in the market that can serve as IDS in the SDN
network. However, these tools require colossal investment to integrate and implement in real-time. So, this
research focuses on developing a cost-effective IDS tool to continuously monitor network traffic and adjust
detection strategies based on emerging threats and network changes. Tensorflow and Python libraries are the
prevalent source frameworks for implementing various ID algorithms. Benign users are legitimate network users
who engage in normal, non-malicious activities (attacks). Distributed Denial of Service (DDoS) attacks??, User
root (U2R) attacks?®, and Brute force attacks (BFA) pose significant attacks due to the crucial functionalities
provided by the 5G SDN network. These three attacks are common attacks occurring in SDN layers. The DoS,
DDoS, Malware, and Probe attacks impact all the aspects of SDN (Externally except DDoS), including the data
plane (DP), southbound interface (SI), controller, northbound interface (NI), and application plane (AP). Web
attacks create impacts on NI and AP. A brute force attack impacts all the elements except SI, and the exploitation
attack impacts the controller, NI, and AP. DDoS attacks aim to overwhelm network resources, services, or
infrastructure with massive traffic, rendering them unavailable to legitimate (Benign) users. The BFAs?* involve
attackers trying numerous combinations of usernames and passwords to gain unauthorized access to systems
or services. The U2R attacks? include attackers gaining unauthorized root or administrative access to a system,
usually by exploiting application or operating system vulnerabilities. Distinguishing between benign and
malicious behavior is crucial for the effective functioning of an IDS?*. Understanding benign user behavior
helps reduce false positive rates, where legitimate actions are mistakenly flagged as threats, and enhances the IDS
model’s overall accuracy. Effectively managing benign users in an IDS involves establishing accurate baselines,
implementing context-aware detection mechanisms, and continuously refining detection methods to reduce
false positives. By understanding and monitoring benign user behaviors, IDS can more accurately identify
potential threats while minimizing disruptions to legitimate activities, ensuring a secure and efficient network
environment.

This study developed a DL-based hybrid IDS model, and the InSDN dataset is used to evaluate the DL model
on an SDN networKks traffic abnormality detection problem. Additionally, the proposed model is assessed using
two other datasets, EDGE_IIoT and BoT-IoT, to achieve improved performance accuracy. The SDN controller
plane trains the DL model with internal and external attacks. The internal attacks come from the organization’s
internal users (who have full access to their network), and the external attacks come from outside the network.
While most research focuses on SDN network-based IDS, the increasing use of Internet of Things (IoT) devices
and cloud-based applications presents a growing challenge for network security providers.

The Motivation and Contributions of the Work are,

o The critical challenge for 5G SDN network developers is to create efficient intrusion detection, continuous
network traffic monitoring, and immediate response to security breaches.

« As SDN plays a vital role in 5G it is essential to safeguard and Preserve the SDN infrastructure which guaran-
tees peak performance and avoids problems such as bottlenecks and congestion.

« SDN security contributes to protecting the data against breaches and illegal access.

« This study develops an efficient intrusion system to safeguard the 5G SDN network from security breaches.

« In this context, the study introduces a novel DL-based IDS framework, the PSO-GRUGAN-IDS model, which
significantly enhances attack detection accuracy and reduces the false positive rate.

« The model’s generated synthetic traffic samples strengthen the SDN security mechanism with access control
by optimizing the network performance.

« The DL model-based attack detection mechanism is designed to improve the security mechanism in the SDN
controller plane to enable centralized monitoring, analysis, and enforcement of security policies across the
entire 5G SDN infrastructure.

The following are the primary objectives of this paper.

« The DL model has recently played a key role in attack detection due to their advanced capabilities in handling
sophisticated attacks.

o The DL model can reduce false positive and negative rates and achieve higher Performance metrics of accu-
racy, precision, Recall, F1-score, and Throughput.

o It can improve detection and reduce the burden on security teams.

o The DL model can scale with the growth of the network infrastructure, maintaining effectiveness as the vol-
ume and complexity of the traffic increase.
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« Robust DL model solutions address the boundaries of traditional detection methods, safeguarding a more
secure and strong SDN network environment.

+ DL models can mechanically learn the extracted features from traffic data, simplifying detection.

« This automation can improve the detection system’s efficiency, allowing it to adapt quickly to new threats
without extensive reconfiguration.

The remainder of the section is arranged as follows: Part 2 discusses the literature review on different IDS and
their methodologies. Part 3 describes the various functionalities of the PSO-GRUGAN-IDS model, and part 4
discusses the model performance evaluation results. Part 5 discusses the research findings and future directions
as a final point.

Literature review

Shahid Allah Bakhsh et al.?” prepared a performance analysis of Feedforward neural network (FFNN), Long
short-term memory (LSTM), and random, artificial neural network (RandNN) models for cyber threats
detection in the IoT environment. The performance analysis demonstrated that the FENN model outperformed
the other two DL models in managing the complexity of IoT data. D. Javeed et al.?® presented a novel SDN-based
IDS using a DL model to separate the control and data planes for a smart consumer electronics network (SCEN).
The DL model utilizes the Cuda-enabled bidirectional LSTM (Cu-BLSTM). It is designed to identify different
attack types in the SCEN. The simulation analysis demonstrated that the DL model-based framework provides
solutions for recent security issues in the network.

Maddu M et al.? utilized the DL-based IDS for SDN networks. The IDS approach uses CenterNet for feature
extraction. Deep convolutional generative adversarial network (DCGAN) performs data augmentation to
reduce class imbalance issues. Slim mould algorithm (SMA) optimized ResNet152V2 is developed to classify the
attacks in InSDN and Edge IoT datasets. Once the attack is detected, a predefined defense module restores the
connectivity of the SDN network. Khekare Ganesh et al.*® integrate the GAN with a Recurrent neural network
(GAN-RNN) to manage traffic engineering and accessibility control in the SDN environment. The GAN-RNN’s
performance analysis shows the model performs well in flexible rule access management.

D.M. Brandao Lent et al.>! propose an anomaly detection system for DDoS attacks using GAN with GRU.
This approach designs a mitigation algorithm to stop DDoS attacks from harming the SDN network. This model
is evaluated with two datasets, including Orion and CIC DD0S2019. Moreover, the detection performance is
evaluated using GRU, LSTM, convolutional, and temporal convolution. Alzughaibi Saud et al.>? developed two
DL model for IDS. The first model uses a multi-layer perceptron (MLP), and the second uses a PSO-optimized
MLP for binary and multiclass attack class classification. These models use the CSE-CIC-IDS2018 dataset to
evaluate their efficiency. The analysis shows that these models give better performance for binary classification.

Sundaram K et al.** developed a novel IDS approach to improve IoT security against cyber-attacks in
wireless networks. The IDS model integrates the Ant Lion optimization (ALO) with GRU. This approach gives
promising results while validating with NSL-KDD and UN-NBI15 datasets. Sontakke P V et al.** developed
a weight-optimized DNN model to detect and mitigate intrusions. This approach uses two phases: the first
phase performs traffic feature extraction and vehicle position extraction. The intrusion detection and mitigation
system uses the improved PSO algorithm to increase the DNN model’s network weight. This framework uses
a BAIT-based mitigation process. The model performance is compared with five existing DNN models. P F de
Araujo-Filho et al.?® Prepare an investigation of the performance of GANs for IDS. The GAN-based IDS detects
attacks using a temporal convolution network and self-attention mechanism. The IDS leverages edge computing
and servers, bringing computation resources closer to end notes.

Vikash Kumar et al.* designed a DL model to deal with imbalanced data and improve attack detection
accuracy. This approach combines the Wasserstein conditional GAN (WCGAN) with the XGBoost classifier.
The WCGAN model’s balanced data and XGBoost’s gradient penalty help for stable learning. The results show
that the Wasserstein variant GAN model achieves a lower loss rate for NSL-KDD, UNSW-NB15, and BoT-
IOT datasets. Banitalebi Dehkordi, B. et al.’”, A novel computer architecture known as SDN is described in
this study. As a result, the security of these networks is at risk from various types of threats. DDoS attacks are
one of the most recent and severe computer network threats. A statistical & ML is used to create an attack
detector. This approach uses entropy to identify attacks based on destination IP, normal distribution, and the
dynamic threshold is possible. Hassan A. Alamri et al.*® offer a DDoS mitigation strategy to ensure precise attack
detection and optimal network resource usage for SDN. This approach integrates the bandwidth management
mechanism with the XGBoost classifier. When the threshold is exceeded, the XGBoost algorithm kicks in
based on an adjustable frequency profile threshold and bandwidth control algorithm. If the network traffic flow
exceeds a threshold, the XGBoost algorithm categorizes it as normal or abnormal. Various data sets were used
to evaluate the approach’s effectiveness. M S Elsayed et al.** developed an attack-specific SDN dataset (InSDN)
to evaluate IDS performance. The dataset contains several attacks and normal traffic samples and evaluates the
performance of different ML models.

Sokkalingam S et al.%® introduced a hybrid machine learning (ML) intrusion detection system (IDS) using
a 10-fold cross-validation technique for feature selection, reducing the dimensions of the NSL-KDD dataset.
The model’s performance was validated with a confusion matrix, and SVM parameters were optimized using
a hybrid Harris Hawks Optimization (HHO) and Particle Swarm Optimization (PSO). The optimized SVM
model showed superior DDoS detection capabilities. Sumathi S et al.*! employed an LSTM network with an
autoencoder-decoder deep learning approach, optimized using a hybrid HHO-PSO algorithm. This model
outperformed existing literature in attribute selection and performance metrics. Further, Sumathi S et al.*? found
that integrating features selected by the C4.5 algorithm with SVM and KNN models improved performance.
The hybrid C4.5-SVM model achieved an accuracy of 0.9604, surpassing other models. In 2024, Sumathi S et
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al.*? proposed an ANN-based hybrid IDS combining GWO, BPN, and SOM for cloud computing. Using the
UNSW-NS 15 dataset, the model achieved a detection accuracy of 99.40%, with minimal false alarms and fast
prediction times.

Finally, Sumathi S et al.** addressed stochastic model parameters in ANN-based IDS by introducing the
HHOPSO algorithm, improving BPN and MLP IDS models’ accuracy to 97.08% and 97.74% respectively, with
high F1 scores. Han et al.*> propose a new feature selection (FS) approach, BPSO-SA, combining Binary Particle
Swarm Optimization (BPSO) and Simulated Annealing (SA) with Gray Wolf Optimization (GWO) to enhance
the LightGBM model for detecting reflective Distributed Denial of Service (DDoS) attacks. BPSO-SA improves
global search capabilities, while GWO optimizes LightGBM hyperparameters. Experimental results show the
model surpasses conventional methods in accuracy, precision, recall, F1 score, and prediction time. (A) A. E.
(B) Donkol et al.*¢ introduce an enhanced long-short-term memory (ELSTM) technique with recurrent neural
network (RNN) to address issues like gradient vanishing and overfitting in intrusion detection systems (IDS).
Using likely point particle swarm optimization (LPPSO) and ELSTM, the system was validated on datasets like
NSL-KDD and UNSW-NB15. Results indicate reduced training time and superior performance compared to
LPBoost and deep neural networks (DNNs). Wahab et al.*’ present a cognitive hybrid-deep learning model
for intrusion detection in IoT, leveraging software-defined networking (SDN). The model, trained on N-BaloT
and CICDDoS2019 datasets, demonstrates high accuracy with minimal false positives and efficiently handles
IoT resource constraints. The proposed model outperforms the other hybrid-DL models like Cu-GRU + LSTM.

Liu et al.*® designed an Adaptive Load Balancing based on Traffic Prediction (ALB-TP) using a GRU-attention
model to improve congestion prediction and network scalability. ALB-TP reduces Flow Completion Time (FCT)
and increases throughput, showing a 28.2% improvement in prediction accuracy over existing models. Rani et
al.* introduce a hybrid deep learning model, DINet, combining a deep temporal convolution network and gated
recurrent unit, optimized using the Improved Chimp Optimization Algorithm (IChOA). This model effectively
detects intrusions with 97% accuracy and precision, outperforming prior methods in malware detection.
Hnamte et al.>® propose a deep neural network (DNN) for DDoS detection in SDN environments. The model
analyzes network traffic to detect DDoS patterns, showing superior performance over traditional methods with
high detection accuracy and low loss rates on datasets like InSDN and CICIDS2018.

Maddu et al.>! developed an intrusion detection system using deep learning and DCGAN for data
augmentation. The system employs a ResNet152V2 and Slime Mold Algorithm (SMA) to detect network
intrusions effectively in InSDN and Edge IloT datasets, demonstrating robust detection and mitigation
capabilities. Aslam et al.>? provide a taxonomy of DDoS defense solutions, reviewing 132 ML- and DL-based
studies. They highlight the importance of feature selection algorithms and SDN-specific datasets for improving
DDosS detection, outlining future research challenges in SDN security.

Most IDS models discussed in this section use highly imbalanced data samples. Most dataset studies use
outdated attack datasets, including KDD’99, NSL-KDD, CICIDS-2018, and CSE-CIC-IDS2018. Resulting in
a biased ID model towards the majority classes. However, these approaches have yet to impact the detection
accuracy improvement. So, this study uses the current SDN network attacks-based dataset while building an
IDS model. Most of the SDN attack dataset has class imbalance issues. So, this study utilizes the GAN model to
generate synthetic data to avoid imbalance issues. The attack dataset’s temporal nature needs models suitable for
efficiently handling the time-dependent attack data. So, this study integrates the GRU layer in GAN to handle
the temporal attack data while detecting abnormal traffic behaviors in the SDN system.

The literature review discusses various GAN and deep learning-based IDS models for SDN and IoT
environments, focusing on 5G SDN security:

« Model Architectures and Features: Shahid Allah Bakhsh et al.?” highlight FFNN’s efficacy for IoT data, though
it lacks SDN specificity. D. Javeed et al.?® use Cu-BLSTM for SCEN, offering scalability for 5G. Maddu M et
al.? and Khekare Ganesh et al.*® focus on DCGAN for data augmentation and GAN-RNN for traffic man-
agement, respectively. D.M. Brandao Lent et al.>! and P F de Araujo-Filho et al.® use GAN with GRU and
temporal convolution for DDoS detection and edge computing.

« Handling Imbalanced Data: Maddu M et al.?’ and Vikash Kumar et al.*® use GAN variants to address class
imbalance, improving detection accuracy in 5G networks.

« Performance and Optimization: Alzughaibi Saud et al.*? and Sundaram K et al.3* employ PSO and ALO for
optimization, enhancing IDS performance. Hassan A. Alamri et al.’® use XGBoost for efficient bandwidth
management and attack detection.

« Evaluation of Diverse Datasets: While many studies rely on older datasets, M S Elsayed et al.** and Wahab et
al.*” utilize newer ones like InSDN, better reflecting current 5G network threats.

The proposed PSO-GRUGAN-IDS model addresses the limitations of previous models by integrating a GRU
layer to handle the temporal nature of attack data in SDN and employing PSO for optimal weight initialization.
This model aims to enhance detection accuracy and reduce processing time, crucial for the dynamic and high-
throughput demands of 5G SDN security. The advancements in GAN-based IDS models have significantly
improved the capability to detect and mitigate cyber threats in SDN environments. However, challenges
remain in handling imbalanced datasets, real-time processing, and adapting to the evolving 5G landscape. The
integration of techniques like PSO and GRU in GAN models, as proposed in the PSO-GRUGAN-IDS model,
presents a promising approach to addressing these challenges, enhancing both the accuracy and efficiency of
IDS in 5G SDN networks.
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Proposed framework of PSO optimized GRU integrated GAN-IDS model for traffic
attack classification approach

Using IDS data for attack detection involves analyzing the logs and alerts generated by the IDS to identify signs
of malicious activities. This process involves data collection, preprocessing, analyzing data to detect patterns
indicative of attacks, and model evaluation.

Figure 2 illustrates the dynamic process of the PSO-GRUGAN-IDS model of traffic abnormality detection
approach. This approach performs three critical stages: min-max and standard scalar-based normalization, PSO
optimized GRU integrated GAN model for attack detection. Finally, the GRUGAN - IDS model detects the real
attack traffic and benign traffic. The functionalities of the methodologies used in this approach are given in this
section.

Dataset analysis

This study utilized three different datasets such as InSDN dataset, EDGE_IIoT, and BoT-IoT. The InSDN
dataset®>>® comprises 68,424 normal and 275,515 attack traffic samples, categorized into normal, metasploitable-2,
and OVS groups. The dataset includes 80 features which are categorized into 56 feature clusters.

The Edge-TloTset dataset™, designed for IoT and IloT cybersecurity, supports centralized and federated
learning modes for machine learning-based intrusion detection systems. It spans seven layers: Cloud Computing,
Network Functions Virtualization, Blockchain Networks, Fog Computing, Software-Defined Networking, Edge
Computing, and IoT/IIoT Perception. Each layer integrates emerging technologies like the ThingsBoard IoT
platform, OPNFV, Hyperledger Sawtooth, and ONOS SDN controller. Data is generated from over 10 IoT device
types, including temperature sensors, pH meters, and heart rate sensors. The dataset covers 14 attack types
across five threat categories: DoS/DDoS, information gathering, man-in-the-middle, injection, and malware
attacks, with exploratory analysis provided for machine learning evaluation.

The BoT-IoT dataset®, created at UNSW Canberra’s Cyber Range Lab, features normal and botnet traffic
with a focus on attacks like DDoS, DoS, keylogging, and data exfiltration. Available in pcap, argus, and CSV
formats, it contains over 72 million records, with a 5% subset extracted for ease of handling, totaling about 1.07
GB and 3 million records. This dataset supports detailed labeling and analysis of various attack categories.

For evaluation, 60,000 instances were used for binary classification in the PSO-GRUGAN-IDS model, with
80% for training and 20% for testing. The generator model produced synthetic attack data, combined with real
attack and benign data from the InSDN dataset, to assess the model’s ability to distinguish between attack and

Take network traffic data (InSDN dataset)

Attack samples

Preprocess (min-max normalization)

i Particle Swarm Optimization initialization and Iterate PSO to
optimize GAN parameters |

Optimal weight ! GAN

Synthetic sample generation using GRU | MODEL

Real attack samples from InSDN datasé

Generate Synthetic attack

| Discriminator evaluation with GRU to distinguish
attack and synthetic data |

Attacks (Synthetic & real)

Normal and vulnerable traffic from InSDN Dataset

IDS model for attack classification (GRU)

4

[ Normal or Malicious ’

Fig. 2. Workflow of PSO-GRUGAN-IDS proposed model for identifying traffic anomalies.
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benign traffic in 5G SDN networks. Table 1. demonstrates only a few sample feature values of normal traffic,
U2R, BFA, DDoS, and Probe class attacks.

Data preprocessing

Min-max normalization and standard scalar are the common techniques used in preprocessing to rescale the
values of features of the fixed range, typically [0,1]. It benefits ML and DL models sensitive to the scale of input
features, including RNN-based models. The normalization method ensures that all the features contribute
equally to the model, preventing features with large ranges from dominating those with smaller ranges. This
process can significantly improve the IDS model performance.

X' = (z — min(z)) /(max(z) — min(z)) (1)

The mathematical formula of the min-max scaler is expressed in Eq. (1). The variable x indicates the input
feature values.

e

The mathematical formula for the standard deviation (o ) Scaler is in Eq. (2). The variable z; ith feature value
from the input instances and the notation p indicate the feature’s mean value. The min-max and standard scalar
normalized datasets are input to the PSO-optimised GAN and IDS model to strengthen the model’s performance.

PSO-GRUGAN-IDS proposed model for attack detection in SDN
A strong framework for predicting attacks and identifying anomalies in traffic is developed by the PSO-
GRUGAN-IDS model, which combines several technologically advanced approaches. The intrusion detection
system (IDS) examines network data to find abnormalities that can point to an attack using the temporal
pattern recognition skills of GRU and the optimal settings from PSO. The synthetic data produced by the GAN
contributes to improving the training procedure, strengthening the IDSs resistance to different kinds of attacks.
The entire functionalities of each stage of the PSO-GRUGAN-IDS model are discussed in the following
sub-sections. The PSO-GRUGAN-IDS model offers a potent and effective method for predicting attacks and
identifying irregularities in network traffic by including these advanced techniques.

Deep generative adversarial network

Using the GAN model to handle the imbalance data error in the dataset. Using the discriminator, the GAN model
can augment the synthetic samples to distinguish the attack samples effectively. The GAN uses a generator (GR)
and discriminator (DR) model to efficiently handle the imbalance error. The GR is used to generate synthetic
attack data, and the DR model distinguishes the real attack samples by determining the synthetic samples. Refine
the GAN model and fine-tune its parameters (including weight updating) to improve the quality of synthetic
samples and the effectiveness of attack detection. Integrate the GAN-based attack detection system with the
traditional intrusion detection system (IDS) to provide comprehensive network security for the SDN network.
By leveraging the power of deep GAN, we can develop robust and adaptive instruction detection or attack
forecasting systems capable of predicting sophisticated attacks and anomalies in SDN network traffic, thereby
enhancing the overall security posture of the network. So, this research uses Deep GAN to identify the anomalies
or attacks in SDN using the InSDN dataset.

Training the generator (GR) and discriminator (DR) of the GAN model

The twin or parallel network contain generative and discriminative networks. The GR network creates the synthetic
samples. It is generated from the real attack samples by taking random samples. The DR network functionality
differentiates the synthetic samples generated by the generator. The DR assigns a maximum possibility to real
data and a minimum possibility to the GR-generated synthetic data. The GAN model simultaneously discards
synthetic data using the gradient information given by the DR.

The attack data is taken from the real attack data distribution, gdata, and q g is the GR’s distribution over
attack data, and synthetic data vector z comes from a priority distribution g.. The GR takes hidden vector z as
input and output to a sample GR (z) to bring GR (z) as close as possible to GR (s). DR is simply a classifier in
which DR (s) = 1if s ~ qdate and DR (s) = 0if s ~ gq.

Flow ID Src IP Src Port | Dst IP Dst Port | Protocol | Timestamp Flow Duration | Tot Fwd Pkts | Class
185.127.17.56-192.168.20.133-443-53648-6 | 185.127.17.56 443 192.168.20.133 | 53,648 6 5/2/2020 13:58 | 245,230 44 Normal
192.168.3.130-200.175.2.130-38694-4444 192.168.3.130 | 38,694 200.175.2.130 4444 6 10/1/2020 5:02 | 269,709 4 U2R
192.168.3.130-200.175.2.130-3632-33747-6 | 200.175.2.130 | 33,747 192.168.3.130 3632 6 10/1/2020 5:02 | 22,194 5 BFA
192.168.3.130-6.234.132.122-0-0-0 6.234.132.122 0 192.168.3.130 0 0 10/1/2020 5:56 22 0 DDoS
192.168.3.130-200.175.2.130-7134-43853-6 | 200.175.2.130 | 43,853 192.168.3.130 7134 6 9/1/2020 17:32 5 0 Probe
192.168.3.130-200.175.2.130-41967-4444-6 | 192.168.3.130 | 41,967 200.175.2.130 4444 6 10/1/2020 4:41 | 270,361 6 U2R

Table 1. Sample of few feature values of normal traffic, U2R, BFA, DDoS, probe class attacks of InSDN dataset.
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minmaxV (GR, DR) = rgi}glr%&}%XESquam [logDR (s)] + Ezn~g. [log (1 — DR (GR (2)))] 3)

9Gcr9 DR

A min-max binary cross entropy objective function is used to train GR and DR models jointly, as in Eq. (3).
The V(GR, DR) indicates the binary cross entropy function. GR and DR models use the loss function to back-
propagate the model while training it through their respective model update parameters.

{6 DR‘t+1),0 GR‘t+1)}+« {(updateif DR(x) forecastingiswrong
updateif DR(GR (z)) forecasting is wrong
updateif DR(GR(z))  forecasting is correct (4)

The update rule in Eq. (3) is changed as in Eq. (4). The Eq. (4) uses the update parameters of GR (6 _ G Rt + 1))
and DR (# DRt 4 1)) at t*"Iteration. GR and DR models use the loss function to back-propagate the model
while training it through their respective model update parameters.

PSO for GANs weight initiation
As an alternative to its remarkable success in creating real attack data and training, the performance of GAN

remains challenging for various factors: convergence trouble, vanishing gradients, and hyper-parameters
optimization. Weight optimization is one of the crucial parts of the DL model. The un-matching weight
parameter values create impacts on the models’ overall performance (training time, increased prediction loss
rate. So, this study adopts the PSO algorithm to initialize the GAN’s weight initialization. It is crucial to assign
suitable weight to train the model to reduce the time and impact, improving accuracy. The PSO identifies the
global best (global optima) and assigns it as a weight parameter initial value.

PSO is a population-based stochastic optimization technique; it mimics the social behavior of a bird or fish
swarm. PSO is characterized by its simplicity, ease of implementation, and ability to handle non-linear and
multimodal optimization problems. The PSO is successfully applied to various optimization problems, including
feature selection, scheduling, control problems (in engineering and operation research), and parameter turning
(including weight, Optimization) in ML and DL. Figure 3 illustrates the architecture of the PSO-optimized
GRU-integrated GAN-IDS model for attack detection.
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Fig. 3. Architecture of proposed PSO-GRUGAN-IDS detection model for traffic abnormality.
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So, this research uses the PSO to optimize the weight parameter of GAN. The effectiveness of PSO lies in its
ability to balance exploration (searching the solution space broadly) and exploration (focusing on promising
regions) to efficiently find near-optimal solutions in complex optimization landscapes. The aim of the
optimization is minimizing or maximizing input variable (X) depending on fitness function f(X). The fitness
function evaluates the position vector and determines how good or bad the X = [x,, x,, x,, . X, | variable. The
PSO represents position vector as Xi‘:(xil), (x,)s (X;3) -eos (xinT). The swarm particle (P) is used to determine
the number of input samples for the variable (i=1,2,3, ..., P) of the position vector and velocity vector Vit =
Vi) (V) (Vig)sees (v;,1). The variable t indicates the iteration of each particle, and the variable n indicates the
dimensions of samples j=1,2,3,...,n.

Each particle enticed and randomly moved towards current ( p®***#4) and then personal ( g***%7) global best
positions. Each particle updates the current position whenever it finds a better position than the previous one
and considers the updated position as the current best position. The objective of the search is to identify the
global best among all the current best solutions. The search process continues till no more improvement after a
specific iteration.

best

V%“ —w ij + 017“5 I:pbeStij _ ij] + cyﬁ [gbestj . Xitj] (5)

The Eq. (5) forms a new velocity vector Vﬁj-“. The two random vectors (r, and r,) values can be assigned
between the range [0,1]. The learning parameters (c, and c,) are initialized as ¢, =c, = 2. The starting stage
particle positions are uniformly distributed, and the starting stage of velocity is assigned as (v,'=0 =0). The
exploration parameter (inertia weight constant) w is used to balance the global search, and the w value must
always be higher for the global search. The local search(exploitation) value must be set as low always. This
random parameter plays a significant role, as it avoids premature convergences, increasing the most likely global
best(optima).

t+1 _ ot t+1
X5 = XG4V (6)

In Eq. (6), each particle’s new positions are updated for every iteration. Although V;; can be any value, it is
usually bounded in some range [0, V 42 ]he optimization logic searches for minimums and assesses all position
vectors by the fitness function (). This research uses global optima obtained using the PSO algorithm as input
to the weight updating parameter value for the GAN classifier to improve and optimize the performance and
functions of GAN. By using PSO for weight optimization in deep learning models, the weight space can be
effectively searched to find optimal or near-optimal solutions that yield improved performance for the GAN on
the intrusion prediction task. This approach is practical when random search methods are impractical due to the
high dimensionality of the weight space in the GAN model.

Input: Population size, position vector, and velocity vector.

Step 1: Initialization
For each particle i in a swarm population size P.
Initialize position vector X;; and velocity vector (Vl-j-) Randomly.
Calculate fitness function value. f(X;)
Initialize the p?¢stt with a copy of X; and g% with a copy of the fitness value £ (X;).
End For
Step 2: Repeat step 2 until the stopping criteria are satisfied.
For each particle i:
Update velocity ( Viﬁ-“) and position (X, l-tj“) according to eq(5) and eq(6).
Calculate fitness function value. f(Xf)
Update p?®*t « X[ if f(p"**)) <f (X})
Update g***%i « X[ if f (g"**) <f (X{)
End For

Output: Get global optima to initialize the weight parameter w to the GR in GAN.

Algorithm 1. PSO for weight optimization in GAN model.

GRU layer in generator and discriminator model of GAN

The GRU is one of the popular RNN architectures designed to overcome restrictions in other RNNs. It is specially
designed to effectively distinguish temporal dependencies between data (patterns). GRUs are computationally
more efficient and can be faster in the training and inference phases. Despite being more straightforward, GRUs
are often as effective as LSTM for many sequential data tasks. GRUs are widely used for identifying unusual
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patterns in time series data, such as network ID. The ID involves applying this type of RNN to analyze and model
sequential data patterns typically found in network traffic. So, this study incorporates the GRUs layer in GAN
models for network traffic data, making them suitable for detecting time-dependent traffic anomalies.

Figure 4 illustrates the four components and functions of the GRU layer. This layer performs four functions
to remember the current input and previously predicted output data: updating the gate, resetting the gate,
determining the candidate hidden state (HS), and determining the final HS.

Zt =0 (Wz . [[ht_hwt]]) (7)

The mathematical form of the update gate function is represented in Eq. (7). The notation ¢ indicates the
sigmoidal activation function (AF), W is the weight matrix for the update gate, h;_1 is the previous HS,
and x; is the current input. The update gate determines the extent to which the HS of the prior time step
(h¢—1) should be carried forward to the current time step. It supports the GRU in deciding the number of past
information required to be remembered.

Tt =0 (Wr . [[htfl, .Tt]]) (8)

The mathematical form of the reset gate is given in Eq. (8). Its functionalities are similar to those of the update
gate. is the weight matrix of the reset gate. It controls how much of the previous HS should be avoided or reset.
It allows the model to forget the irrelevant parts of the past state.

he = tanh (Wy, . [r:® hi—1, z]) 9
The mathematical representation of the candidate HS is expressed in Eq. (9). The notation 7indicates the
element-wise multiplication, tanh is the hyperbolic tangent activation function, and W}, is the weight matrix

of the candidate HS. It is a potential new state that could be integrated into the final new HS for the current time
step. The reset gate influences it.

he = (1 — 2z¢) Ohe—1 + 2¢ @Zt (10)

The mathematical derivation of the final HS is expressed in Eq. (10). The final HS for the current time step is
computed by combining the previous and candidate HSs, weighted by the update gate.
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Fig. 4. Architecture of the GRU Model*®.
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Input: Sequence of inputs (x4, X5, ..., X7)
hg, W, W,., Wy, Initialize HS, weight parameters of update gate, reset gate, and candidate hidden state.

U,, U,, Uy, by, b, by,: Weight matrix for recurrent connections and bios vectors for the gates

Begin
Initialize h; = hy and H to an empty list
Fort from1to T
hy=GRU cell (x_T,h_t, W_z,W_r,W_h,U_z,U_r,U_h,b_z,b_r,b_h)
Append h; to H
End for
Return H
End
Output: Sequence of hidden states (h_1,h_2,h_3, ....,h_.T)

Algorithm 2. GRU cell layer.

GRUs are particularly well suited for this ID because they can capture temporal dependencies and attack
patterns over time. So, this research integrates the GRU layers with GANs GR and DR models to improve the
GR’s performance while generating synthetic data and the discriminator’s classification performance while
classifying the synthetic data effectively. This research integrates the GRU layer in the GR and DR of the GAN
model to improve the model’s detection accuracy.

Activation functions
The Rectified Linear Unit (ReLU) AF is suitable for performing the GAN model’s state activation decisions.

ReLU (max (0, p)) (11)
ReLU'(p):{lo D Yr =11 (12)
Sigmoid (z) =1/ ((1+e' —x))) (13)

The representation of the ReLU AF is given in Eq. (11), and the state activation condition of ReLU is shown in
Eq. (12). The variable denotes the forecasted value. Whenever the computed hidden node values and weights
achieve 1, the ReLU activates the gate to train the sample. The ReLU considers — 1 the minimum loss rate to allow
backpropagation and update node weights. This gate helps forecast correct attack data. The sigmoidal AF is given
in Eq. (13) for the final attack classification.
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Input: Training (preprocessed features and attack class labels) from the InSDN dataset Num GRU_units
(number of units in GRU layer), Num_epochs (number of epochs for training), batch size, learning rate, initialize
GAN Weight w (obtained from PSO’s optimal global best)

Begin
Step 1: Load the data and class labels (benign and attacked) from the real InSDN dataset (after preprocessing).
Step 2: Initialize the GRU model with the number of units

Step 3: Compile the model

Step 4: Train the model

Add a Dense layer with ReLu activation
Add a Dense layer with ReLu activation
Add a Dense layer with ReLu activation

Add sigmoid activation to the output layer.

Compile with a binary cross entropy loss and an optimizer with the given learning rate.

For each epoch from 1 to Num_Epochs
For each batch of training data
Extract batch features and labels
Train the model on the batch
End for
Print epochs and training loss (GR or DR training loss)
End for
Return trained GRU_Model
End

Output: Trained GRU as GR model or DR model

Algorithm 3. GRU Layer integrated in GAN model.

The PSO-optimized GRU-based GAN model generated attack data, and the real InSDN attack data are
utilized to evaluate the GRU-based IDS model. The methodology and functions of the IDS model are given in
the subsequent section.

GRU-driven IDS model for anomaly classification

GRUs are computationally efficient compared to LSTMs, making them suitable for real-time IDS. GRUs can
handle sequences of varying lengths and are robust against the vanishing gradient problem. IDS aims to identify
unauthorized access or anomalies that may indicate malicious activities.

GRU architecture contains four layers, including the input layer, the GRU layer, the Dense layer, and the
output layer. Define the input shape based on the number of features and the length of the sequences. Stack
one or more GRU layers. More layers can help capture complex patterns but may require more computational
resources. A dense layer (fully connected) to map the GRU outputs to the desired number of output classes
(normal or attack). Use a sigmoidal AF for binary classification. The IDS model also uses the GRU layer to
forecast the network abnormality by remembering the previous output and current input.
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Input: Training and testing data (features and attack class labels) from the InSDN dataset Num_GRU_units

(number of units in GRU layer), Num_epochs (number of epochs for training), batch size, learning rate.

Begin
Step 1: Load the data and class labels (benign and attacked) from the real InNSDN dataset (after preprocessing)
The Load DR model of GAN produced attack data as input.
Step 2: Initialize the GRU model with several units
Add a Dense layer (for binary classification)
Add a sigmoid activation to the output layer.
Step 3: Compile the model
Compile with a binary cross entropy loss and an optimizer with the given learning rate.
Step 4: Train the model
For each epoch from 1 to Num_Epochs
For each batch of training data
Extract batch features and labels
Train the model on the batch
End for
Print epochs and training loss
End for
Step 5: Evaluate the model
Prediction = predict on Test_features using the trained GRU model
Calculate evaluation metrics value using predictions and test_labels.
Return trained GRU_Model, Evaluation metrics

End

Output: Trained GRU as IDS model, Evaluation metrics values

Algorithm 4. GRU-IDS model for SDN traffic classification.
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Input: Network traffic data

Begin Algorithm
Step 1: Initialize Parameters:
e Initialize the GAN model with GRU as the generator and discriminator.
o Set the initial weights and biases for GRU.
e Define the Particle Swarm Optimization (PSO) parameters: number of particles, inertia weight,
cognitive and social coefficients.
Step 2: Data Preprocessing:
e Preprocess the network traffic data (normalize, remove noise, etc.).
o Split the data into training and testing sets.
Step 3: GRU-GAN Training:
o Step 3.1: Use the GRU model as the generator to create synthetic traffic data.
o Step 3.2: Use the GRU model as the discriminator to distinguish between real and synthetic
traffic data.
Step 4: PSO Optimization:
e Step 4.1: Initialize a swarm of particles where each particle represents a set of weights for the GRU
model.
o Step 4.2: Evaluate the fitness of each particle using a predefined fitness function(e.g., accuracy, loss).
o Step 4.3: Update the particle velocities and positions using the PSO equations:
o Velocity update
o Position update
o Step 4.4: Update the personal best (p_best) and global best (g_best) for each particle.
e Step 4.5: Repeat the optimization process for a set number of iterations or until convergence.
Step 5: GRU Model Integration:
o Integrate the optimized GRU model to classify normal and attack traffic classes.
e Train the GRU model on the labelled data to improve classification accuracy.
Step 6: Evaluation:
o Evaluate the performance of the GAN-based IDS using metrics such as accuracy, precision, recall,
F1-score, and detection time.
End Algorithm

Output: Classification of normal and Malicious (attack data) traffic

Algorithm 5. Overall proposed PSO-GRUGAN-IDS model (GAN-based IDS with PSO optimization) for
identifying anomalies in SDN traffic.

The algorithm begins by initializing the parameters necessary for setting up the GAN model, where a
GRU model functions both as the generator and discriminator. The initial weights and biases for the GRU are
configured, and the Particle Swarm Optimization (PSO) parameters, including the number of particles, inertia
weight, and cognitive and social coefficients, are defined to optimize the model’s performance.

Next, the network traffic data undergoes preprocessing, which involves normalizing the data and removing
any noise to ensure clean input for model training. The data is then split into training and testing sets to facilitate
both the learning and evaluation phases of the model.

During the GRU-GAN training phase, the GRU model first acts as a generator to produce synthetic
attack traffic data that mirrors the traffic patterns. Simultaneously, the GRU model serves as a discriminator
to differentiate between real and synthetic attack data, which helps in refining the model’s ability to detect
anomalies. PSO optimization follows, where a swarm of particles is initialized, each representing a potential set
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of weights for the GRU model. The fitness of each particle is assessed using metrics such as accuracy and loss,
guiding the optimization process. The particles update their velocities and positions based on the PSO equations,
which factor in both personal and global best positions. This iterative process continues until a set number of
iterations is completed or convergence is achieved, leading to an optimized GRU model.

Once optimized, the GRU model is integrated into the IDS framework to classify network traffic as either
normal or malicious (attack data). This model is further trained using labeled data to enhance its classification
accuracy. Finally, the performance of the GAN-based IDS is evaluated using metrics such as accuracy, precision,
recall, Fl-score, and detection time, ensuring the system’s effectiveness in detecting network threats and
anomalies.

The trained PSO-GRUGAN-IDS model is designed to identify the different attacks in the 5G SDN layers.
This model can be deployed in the control plane of an SDN network to manage network activities and control
traffic. The PSO-GRUGAN-IDS detects traffic abnormalities by continuously monitoring the SDN network
traffic activity data. The performance of the PSO-GRUGAN-IDS is discussed in a subsequent section.

Result and discussions

This section discusses the performance analysis of the PSO-GRUGAN-IDS model-based traffic abnormality
detection. The model is implemented and evaluated using Python Tensorflow libraries with many prebuilt ML
and DL-based model functions. The efficiency of the model is estimated by comparing the performance of the
PSO-GRUGAN-IDS model with the existing DL-based intrusion detection approaches on the InSDN dataset,
including GRU-GAN?!, DNN*, PSO-DNN?*, GAN-LSTM?, PSOGRU, and PSO-GAN-LSTM. The comparison
models are chosen based on their performance in recent years. This study uses the InSDN dataset to train the
PSO-GRUGAN-IDS model and evaluate the model performance using different accuracy metrics such as
accuracy, precision, recall, f1-score, specificity, Root mean square error (RMSE), Mean Absolute error (MAE),
Log loss, throughput, attack detection time, CPU utilization, ROC cure area, and Evasion increase rate (EIR). In
addition, two other datasets EDGE_IIoT and BoT-IoT are used to evaluate the proposed model, demonstrating
its high accuracy in the context of 5G SDN networks. These datasets further validate the model’s performance.

The dataset is designed and labeled for training and testing the SDN environment’s intrusion detection
system (IDS). The generator (GR) model takes 10,000 attack data as input to generate a synthetic attack, and the
GR model generates 10,000 synthetic attack data and 10,000 real attack data. Finally, the IDS model has taken
20,000 attack data (Real attack and synthetic) from the PSO-GAN Model and 10,000 attack data from the InSDN
dataset and uses 30,000 Benign data from the InSDN dataset for the training and testing phase (a total of 60,000
data instances) to determine the SDN data traffic as attack traffic or benign traffic in 5G SDN networks. Table 2
illustrates the Hyperparameter values for PSO optimization, GAN model and IDS used by the PSO-GRUGAN-
IDS model for traffic abnormality detection.

The Fig. 5. demonstrates the ROC curve obtained for five epochs. The best ROC curve for traffic attack
detection should exhibit a high True positive rate (TPR) and a lower false positive rate (FPR). The area under
the ROC curve represents the performance. The higher the ROC value, the closer to 1. The results show that the
PSO-GRUGAN-IDS achieves ROC values closer to 1 for each epoch.

The PSO-GRUGAN-IDS model’s functionality is assessed by examining its results against the outcomes of
other deep learning-based intrusion detection techniques like PSO-GRU, GRU-GAN?!, DNN%, PSO-DNN?%,
GAN-LSTM?*, and PSO-GAN-LSTM using the InSDN dataset for different performance metrics. Table 3
illustrates the comparison between deep learning-based intrusion detection techniques against the proposed
work of the PSO-GRUGAN-IDS Model for different numbers of Epochs for different classification metrics
like Accuracy, Precision, Recall, F1-Score, and Specificity with a specific higher rate value of vulnerability and
malicious traffic detection in 5G Software Defined Networks. Training time and Detection time were achieved at
a lesser rate for rapid detection of attacks. Table 4 highlights a comparison of the projected PSO-GRUGAN-IDS
Model work for varying numbers of epochs for different Evaluation metrics with deep learning-based intrusion
detection approaches. The Evaluation metrics are Root mean square error, Mean Absolute error, Log loss rate,
Throughput, CPU utilization in which the error function attains the minimum value. A low root mean square
error (RMSE) provides more accurate predictions. Where CPU Utilization also decreases, indicating a decrease
in the amount of CPU processing power needed for 5G SDN Network threat identification. The throughput of
this overall work hooks the greater value where more samples can be generated per second.

The remarkable performance is shown in Fig. 6. of various attack detection models for the InSDN dataset.
Notably, the PSO-GRUGAN-IDS model stands out with a maximum accuracy rate of 0.984, surpassing other
models such as DNN, PSO-DNN, GRU, PSO-GRU, GAN-LSTM, PSO-GAN-LSTM, and GRU-GAN-IDS this
exceptional performance of the model’s potential as a superior IDS framework for 5G SDN network.

Figure 7 showcases a crucial finding the PSO-GRUGAN-IDS model, with its exceptional precision rate of
0.98, recall rate of 0.985, specificity rate of 0.986, F1 score rate of 0.982 outperforms the other attack detection
models such as DNN, PSO-DNN, GRU, PSO-GRU, GAN-LSTM, PSO-GAN-LSTM, and GRU-GAN-IDS. This
significant performance difference underscores the importance of our research in network security, particularly
in the context of 5G SDN networks.

Figure 8 demonstrates the MAE and RMSE rate comparison of various attack detection models for the InSDN
dataset. The comparison analysis shows that the PSO-GRUGAN-IDS model obtains a minimum MAE rate of 1.6
and RMSE rate of 1.2 which is very low compared to other attack detection models such as DNN, PSO-DNN,
GRU, PSO-GRU, GAN-LSTM, PSO-GAN-LSTM, and GRU-GAN-IDS.

Figure 9 demonstrates the Log Loss rate comparison of various attack detection models for the InSDN
dataset. The comparison analysis shows that the PSO-GRUGAN-IDS model obtains a lesser Log loss rate of
1.0, which is low compared to other attack detection models such as DNN, PSO-DNN, GRU, PSO-GRU, GAN-
LSTM, PSO-GAN-LSTM, and GRU-GAN-IDS.
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Parameters Value
PSO optimizer

Number of particles 10
Convergence threshold 0.5
Inertia weight 0.5
Cognitive weight 0.8
Social weight 0.8

Global best fitness value

Dynamic (converges during optimization)

Iteration count

Dynamic (depends on convergence)

GAN model
GRU layer (128 units)
Dense (512 units, relu)
GR layers Dense (256 units, relu)
Dense (128 units, relu)
Dense(output_dim, sigmoid)
GR optimizer Adam
learning_rate 0.0005
beta_1 0.5
GRU (128 units)
Dense (256 units, relu)
DR layers Dense (128 units, relu)
Dense (64 units, relu)
Dense (1 unit, sigmoid)
DR optimizer Adam
learning_rate 0.0002
beta_1 0.5

Discriminator loss function

Binary cross-entropy

Combined model loss function

Binary cross-entropy

GAN training epochs 25
GAN batch size 32
IDS model
GRU(128 units)
Model layers Dense(64 units, relu)
Dense(1 unit, sigmoid)
Optimizer Adam
learning_rate 0.0005
beta_1 0.5

The loss function

Binary cross-entropy

Epochs

25

Batch size

32

Table 2. Hyperparameter values used by the PSO-GRUGAN-IDS model for traffic abnormality detection.

This demonstrates a Throughput and CPU utilization comparison for various attack detection models for the
InSDN dataset in Fig. 10. The comparison analysis shows that the PSO-GRUGAN-IDS model obtains the lowest
CPU utilization rate of 4.449% for training the model and attack identification and obtains a higher throughput
rate of 2567 samples/seconds for training the model.

The PSO-GRUGAN-IDS framework integrates PSO with a GAN featuring a GRU layer for IDS in SDN
environments. This combination aims to optimize weight initialization, enhance temporal data handling, and
improve detection performance in dynamic 5G networks.

Training time complexity
PSO Component: The PSO algorithm optimizes the initial weights for the GAN. The time complexity of PSO
is typically O(P x I x D), where P is the number of particles, I is the number of iterations, and D is the
dimensionality of the search space.

GAN Component: The GAN training involves a generator and a discriminator, each typically with a time
complexity of O(T x N x M), where T is the number of epochs, N is the number of samples, and M is the
number of parameters in the network.
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Receiver Operating Characteristic (ROC) Curve

Receiver Operating Characteristic (ROC) Curve
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Fig. 5. ROC curve of PSO-GRUGAN-IDS model for threat identification.

GRU-IDS Component: The GRU layer adds complexity due to its recurrent nature, with each operation
within a layer being O(N x H?), where H is the number of hidden units, and N is the input size. Overall, the

training time complexity of the PSO-GRUGAN-IDS model can be approximated as

OPx Ix D+Tx Nx M+N x H?)
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DL Models for different classification metrics using InSDN dataset
PSO-
GRUGAN-
IDS
Classification No. of PSO- (proposed
metrics epochs | DNN | DNN | GRU | PSO-GRU | GAN-LSTM | PSO-GAN-LSTM | GRU-GAN-IDS | work)
5 0.933 | 0.924 | 0.937 | 0.963 0.972 0.975 0.970 0.975
10 0.914 | 0.943 | 0.926 | 0.948 0.965 0.969 0.974 0.981
Accuracy 15 0.943 | 0.975 | 0.935 | 0.961 0.962 0.962 0.972 0.980
20 0.926 | 0.943 | 0.943 | 0.953 0.945 0.971 0.962 0.982
25 0.928 | 0.958 | 0.953 | 0.962 0.976 0.979 0.977 0.984
5 0.91 0.929 | 0.935 | 0.943 0.961 0.961 0.979 0.98
10 0.915 | 0.925 | 0.935 | 0.945 0.965 0.964 0.975 0.979
Precision 15 0.924 | 0.933 | 0.944 | 0.953 0.96 0.97 0.978 0.978
20 0.925 | 0.935 | 0.945 | 0.955 0.965 0.978 0.981 0.979
25 0.938 | 0.945 | 0.952 | 0.962 0.971 0.981 0.98 0.98
5 0.912 | 0.922 | 0.932 | 0.94 0.972 0.981 0.975 0.982
10 0.915 | 0.925 | 0.935 | 0.945 0.974 0.982 0.976 0.981
Recall 15 0.924 | 0.932 | 0.942 | 0.951 0.973 0.982 0.977 0.985
20 0.925 | 0.935 | 0.945 | 0.955 0.978 0.979 0.978 0.98
25 0.93 0.942 | 0.952 | 0.962 0.98 0.981 0.98 0.984
5 0.912 | 0.924 | 0.935 | 0.942 0.966 0.971 0.977 0.981
10 0.915 | 0.925 | 0.935 | 0.945 0.969 0.973 0.975 0.98
F1-score 15 0.926 | 0.936 | 0.943 | 0.951 0.966 0.976 0.977 0.981
20 0.925 | 0.935 | 0.945 | 0.955 0.971 0.978 0.979 0.979
25 0.938 | 0.944 | 0.957 | 0.965 0.975 0.981 0.98 0.982
5 0.91 0.915 | 0.923 | 0.932 0.952 0.958 0.962 0.984
10 0.915 | 0.921 | 0.931 | 0.944 0.963 0.969 0.973 0.982
Specificity 15 0.922 | 0.932 | 0.942 | 0.956 0.968 0.971 0.978 0.98
20 0.925 | 0.943 | 0.951 | 0.965 0.971 0.975 0.979 0.983
25 0.931 | 0.945 | 0.961 | 0.977 0.975 0.978 0.979 0.986
5 753 | 463 |445 |4.23 4.14 3.92 1.92 1.78
10 556 |3.76 |3.53 |342 3.31 3.01 2.63 2.34
g‘;‘g;‘(“;&‘gguare 15 412 392 [386 [374 3.61 35 251 12
20 6.53 | 4.65 |251 |249 243 2.36 2.24 1.82
25 554 |396 |292 |285 2.73 2.54 1.91 1.74
5 5 43 3.7 39 2.8 2.2 2.3 2.1
10 52 4.7 4.8 3.8 25 2.1 2 1.9
gffgf‘(ﬁfgte 15 45 |34 |54 |51 2.8 2 1.9 16
20 6.6 5.8 4.3 52 24 2 22 1.8
25 5.5 5.7 4.2 4.5 24 1.9 23 1.7

Table 3. Comparison of deep learning models for different classification metrics using InSDN dataset.

Detection time complexity

Once trained, the detection time primarily involves the forward pass through the GAN’s discriminator and the
GRU-IDS layer, with a complexity of O(N x H?), where N is the input size and H is the number of hidden
units.

Scalability analysis
The results in Fig. 11 demonstrate that the PSO-GRUGAN-IDS model achieves the least training time of 185.1 s
and a less detection time of 2.464 s when identifying threats in the InSDN dataset. This efficiency highlights the
model’s suitability for real-time 5G environments due to:

Fast Training: The optimized weight initialization via PSO reduces convergence time during training,
essential for quick deployment in dynamic 5G networks.

Quick Detection: The low detection time ensures that the model can respond to threats promptly, which is
critical for maintaining the high throughput and low latency requirements of 5G networks.

Handling Large-scale Data: The use of GANSs for data augmentation and GRU for temporal data management
allows the model to effectively handle large volumes of data typical in 5G environments, ensuring robustness and
reliability in real-time scenarios.
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5 200.34 | 695.38 | 490.34 | 485.29 380.24 359.55 278.35 185.1
10 44031 | 52523 | 413.21 | 385.86 480.65 379.86 379.23 279.71
Training time (sec) | 15 606.77 | 719.67 | 590.92 | 575.38 650.34 579.93 679.67 352.81
20 823.19 | 705.88 | 790.34 | 785.47 780.46 779.92 779.25 503.82
25 998.35 | 995.13 | 990.29 | 985.28 980.46 979.63 879.85 564.67
5 3954 |3452 |2351 |2475 2.998 2.872 2.845 2474
10 4035 |3.947 |3.524 |2.769 3.538 3.484 3.357 2.478
tslgg (tsr:gc detection 75 4145 |4.174 | 4345 |3.456 4335 3545 3.134 2.464
20 4557 | 4285 |4.679 |3.646 4.855 4193 4,035 3.444
25 4679 |4735 |4.936 |4.346 5.643 4.483 4.457 3.465
5 55 54 43 42 41 32 2.9 1.75
10 45 5.4 48 43 41 2.1 2.4 1.6
Log loss rate 15 5.9 52 4.9 4.7 3.6 2.6 2.4 1.59
20 42 415 |41 35 3.1 34 1.9 1
25 45 42 44 335 33 325 22 1.2
5 2000 |2100 |2200 | 2300 2350 2400 2430 2443.66
10 1800 [1900 |2000 | 2100 2150 2200 2230 2251.33
gﬁgfgﬁ’g@ 15 1850 | 1900 | 2000 | 2100 2150 2200 2250 2327.08
20 1850 | 1900 |2000 | 2100 2150 2200 2250 2327.05
25 1900 [2000 |2100 | 2200 2250 2300 2325 2567.89
5 1490 |14.35 |1245 |12.34 8.81 9.24 10.43 8.33
10 1443 | 1578 |1357 |10.46 8.75 9.14 12.57 6.80
CPU utilization (%) | 15 1478 [15.89 |14.69 |13.48 9.88 7.78 8.36 4.45
20 1522 |16.33 |16.77 |15.89 9.28 8.55 8.45 548
25 1622 |1535 |1567 |14.38 10.32 7.57 7.36 477
Table 4. Comparison of deep learning models for different evaluation metrics using InSDN dataset.
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Fig. 6. Accuracy rate comparison for different DL Models with InSDN dataset.
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In summary, the PSO-GRUGAN-IDS framework demonstrates favorable time complexity and scalability,
making it a viable solution for real-time threat detection in 5G SDN environments, where rapid training and
detection are crucial.

Table 5 contains the attack detection rate, EIR rate, and GR and DR loss of the GRU-GAN and PSO-GRU-
GAN models. The GR loss, GR loss, and Detection rate in the table show the stable loss rate in each iteration,
resulting in a robust GAN capable of detecting traffic attacks efficiently. The best loss rates for the GR and DR
in a GAN model for attack detection are those that reflect a well-balanced training process where both models
improve concurrently without dominating one another. The minimum EIR rate for traffic attack detection can
enhance the detection capabilities.

Figure 12 shows the resultant confusion matrix for the actual and predicted data. It is essential for traffic
attack detection as it provides detailed insights into the model’s performance, helps understand errors and
guides improvements to enhance security and usability.

The Table 6 summarizes the performance of various algorithms on different datasets in terms of accuracy,
precision, recall, and F1-score. The BPSO-SA-LightGBM algorithm achieves high accuracy of 99.96% on the
CICDD0S2019 dataset. The LPPSO-enhanced LSTM shows varied performance on different datasets, with an
accuracy of 96.89% on KT-21 and 99.93% on KD-P. BILSTM + GRU also performs well on CICDD0S2019 with an
accuracy of 99.86%. IChOA-DINet and DNN models show high accuracy on APA-DDoS, InSDN, CICIDS2018,
and Kaggle DDoS datasets, with DNN reaching 100% on CICIDS2018. The GRU-Attention and ResNet152V2-
SMA-DCGAN models are listed without specific performance metrics.

Many of the datasets used in previous work were outdated and unable to handle 5G SDN network traffic
in real-time scenarios particularly when it came to adapting to rapid changes in traffic patterns within the 5G
SDN network. They struggled to detect unusual packet sizes or a sudden surge in connections from a particular
IP address. In contrast, the proposed PSO-GRUGAN-IDS model for 5G networks integrates a GRU, which
improves the model’s ability to identify malicious activities in sequential data packets arriving in a specific
order over time. This shows strong results across multiple datasets, achieving up to 99.98% accuracy on Kaggle
EDGE_IIoT, 99.97% on Kaggle BoT-IoT and 98.4% on InSDN dataset with specific integrated GRU in PSO
optimized GAN and IDS model demonstrating competitive performance compared to other models. The time
complexity and scalability of existing models are constrained compared to the proposed model PSO-GRUGAN-
IDS. Few existing approaches struggle with high computational demands and inefficiency as the network size
or traffic volume grows. In contrast, the proposed model utilizes optimized algorithms with GRU GAN that
minimize processing time and enhance scalability and enabling it to manage larger and more intricate datasets
more effectively in real-time 5G SDN network environments, which is essential for high throughput, low latency
and high-quality service in 5G SDN Networks.

Limitations and potential solutions

Addressing the risk of overfitting to synthetic data in PSO-GRUGAN-IDS

Risk of Overfitting: The PSO-GRUGAN-IDS model shows promising performance across various datasets,
leveraging synthetic attack data generated by the GAN for training. However, a significant risk arises from
potential overfitting to the synthetic distribution, leading to diminished generalization when faced with real-
world, unseen data.
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Fig. 10. Throughput an CPU Utilization comparison for InSDN dataset with other DL Models.

Proposed solutions
Validation on unseen real-world data

« Diverse Dataset Utilization: Incorporate diverse and realistic datasets such as CICDD0S2019, KT-21, KD-P,
and real-world traffic from different IoT and IIoT environments. This can help the model adapt to real-world
variability and reduce dependency on synthetic data.
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Fig. 11. Training time and Detection time comparison for the InSDN dataset with various DL models.

« Cross-Dataset Validation: Validate the model on multiple datasets beyond InSDN, ensuring robustness across
different network environments and attack scenarios.

Data augmentation techniques

« Hybrid Data Mix: Use a balanced mix of real and synthetic data during training to avoid overfitting. This
includes dynamically updating the training set with newly captured real-world traffic data.
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GRU-GAN model PSO-GRUGAN (proposed model)
Detection
Epochs | GRloss | DR loss | Detection rate | EIR | GRloss | DR loss | rate EIR
5 22 2.68 93.8 -0.1 ]0.69 0.66 96.9 -0.2
10 3.92 3.64 94.2 -0.05 | 0.71 0.62 97.9 -0.08
15 3.96 3.96 94.8 -0.7 10.70 0.576 95.87 -0.78
20 2.1 2.954 95.6 -0.05 | 0.72 0.53 97.43 -0.1
25 3.92 3.51 95.8 -0.1 10.73 0.49 96.22 -0.15

Table 5. Comparison of detection effectiveness metrics for GRU-GAN and PSO-GRU-GAN model.

« Domain Adaptation: Apply domain adaptation techniques to align the synthetic data distribution more close-
ly with real-world data, enhancing the model’s adaptability to unseen attacks.

Performance metrics validation

The performance metrics of the PSO-GRUGAN-IDS model, including high accuracy (up to 99.98% on Kaggle
EDGE_IIoT, 99.97% on Kaggle BoT-IoT, 98.4% on InSDN dataset), highlight its potential. However, validating
these results on unseen, real-world datasets can provide a more comprehensive evaluation of its true effectiveness.
This approach will help assess the model’s generalization and fine-tune its parameters for optimal performance
in real-time 5G SDN environments.

To mitigate the risk of overfitting to synthetic data, the PSO-GRUGAN-IDS framework should be rigorously
validated on diverse real-world datasets. This ensures that the model remains effective and scalable in dynamic,
real-time 5G network environments, fulfilling its primary objective of accurate and efficient intrusion detection,
particularly for varying attack patterns and rapid changes in traffic. The overall performance analysis of this
section shows that the PSO-GRUGAN-IDS model-based attack detection approach obtains better performance
than other approaches for all the performance metrics.

Conclusion

This research focuses on developing a robust IDS framework for 5G SDN to ensure secure and reliable
communication. The unique attributes of 5G SDN, such as efficient resource utilization, rapid response times,
and seamless data flow, introduce specific security challenges, including vulnerabilities that could jeopardize
network availability and integrity. Overcoming these challenges requires an advanced system capable of
effectively monitoring network traffic behavior. The primary aim of this study is to design an advanced deep
learning-based Intrusion Detection System (IDS) to anticipate and identify emerging attacks within 5G SDN
networks, facilitating real-time, continuous monitoring of network traffic. In pursuit of this objective, the
research introduces the cutting-edge PSO-GRUGAN-IDS model, which utilizes the InSDN dataset to analyze
and predict abnormal traffic patterns that could indicate malicious activity in SDN environments. A key focus is
on optimizing the model’s performance by reducing false positives, detection time, and detection loss, thereby
enhancing the accuracy of attack detection and maximizing throughput. Furthermore, the study emphasizes the
importance of scalability, ensuring that the model can handle large volumes of data and adapt to the growing
complexity of 5G SDN networks. This approach aims to not only improve security but also maintain network
efficiency in dynamic, real-time 5G environments.

Performance analysis from the previous sections demonstrates that the PSO-GRUGAN-IDS model
outperforms other methods across various metrics, achieving high accuracy (0.984) and throughput (2567
samples/second). Additionally, the model shows favorable results in terms of attack detection loss for GR and
DR (0.69 and 0.66, respectively), RMSE (1.2), MAE (1.6), detection time (training in 185.1 s and detection in
2.464 s), and CPU utilization (4.449%). Moreover, the proposed PSO-GRUGAN-IDS model shows strong results
across multiple datasets, achieving up to 99.98% accuracy on Kaggle EDGE_IIoT, 99.97% on Kaggle BoT-IoT,
and 98.4% on InSDN dataset demonstrating competitive performance compared to other models. Performance
analysis shows the model excels across various metrics, achieving high accuracy (up to 99.98%), low detection
loss, and efficient processing times. The study recommends the PSO-GRUGAN-IDS for efficient monitoring
of 5G SDN traffic, addressing various traffic patterns and ongoing changes in traffic, while ensuring effective
intrusion detection.

Future scope

o While the current study shows promising results, its performance could improve with more extensive data-
sets. Future research should focus on developing more efficient Lightweight Deep Learning models to manage
and scale with growing volumes of attack data, ensuring robust detection capabilities in dynamic 5G SDN
environments.

« Additionally, creating a lightweight security mechanism for integration into the three phases of 5G SDN net-
work plans could help mitigate various attacks at different stages of the network.

« Expanding the study to monitor attack activities and vulnerabilities across multiple SDN controllers in 5G
SDN networks is another potential area for future work. The present research is limited to a single SDN con-
troller, but future efforts could extend to multi-controller SDN networks.
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« Furthermore, continuous network behavior monitoring methodologies could be developed to provide re-
al-time alerts to network developers, enabling timely updates to network security.
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Refs & year Algorithms Dataset Accuracy (%) | Precision (%) | Recall (%) | F1-score (%)
Han et al. (2024)% BPSO-SA- LightGBM CICDDoS2019 99.96 99.96 99.97 99.95
A. A.E. B. Donkol et al. (2023)* | LPPSO- enhanced LSTM KT-21 96.89 99.93 96.99 98.44
A. A.E. B. Donkol et al. (2023)*¢ | LPPSO- enhanced LSTM KD-P 99.93 99.99 99.96 99.97
Wahab et al. (2024)* BiLSTM + GRU CICDDoS2019 99. 86 99. 96 99.903 99.93
Rani et al. (2024)* IChOA-DINet APA-DDoS Dataset | 97 97 NA NA
Hnamte et al. (2024)° DNN InSDN 99.98 99.98 99.98 99.98
Hnamte et al. (2024)>° DNN CICIDS2018 100 99.99 99.98 99.97
Hnamte et al. (2024)° DNN Kaggle DDoS 99.99 99.99 99.97 99.96
Maddu et al. (2024)°! ResNet152V2- SMA- DCGAN | Edge IToT 99.31 99.25 99.21 99.23
Our (proposed work) PSO-GRUGAN-IDS InSDN 98.4 98 98.5 98.20
Our (proposed work) PSO-GRUGAN-IDS Kaggle EDGE_IIoT | 99.98 99.99 99.97 99.98
Our (proposed work) PSO-GRUGAN-IDS Kaggle BoT-IoT 99.97 99.98 99.98 99.97

Table 6. Performance comparison of PSO-GRUGAN-IDS with state-of-the-art methods on traffic attack

datasets.

Scientific Reports |

(2025) 15:10025

| https://doi.org/10.1038/s41598-025-95011-z

nature portfolio



http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Data availability
http: //iotseclab.ucd.ie/datasets/SDN, https://www.kaggle.com/datasets/mohamedamineferrag/edgeiiotset-cybe
r-security-dataset-of-iot-iiot, https://www.kaggle.com/datasets/vigneshvenkateswaran/bot-iot.
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