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monitoring
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Extensive research is being conducted in fabricating flexible dry electrodes for electrocardiogram
monitoring, but the electrodes’ efficacy in clinical settings remains underexplored. In transition from
research to commercial settings, investigating the electrode’s performance in real-time monitoring
and patient’s comfort is very crucial. This study compares the ECG signal quality between flexible
silver nanorods embedded in polydimethylsiloxane (AgNRs-PDMS) dry electrodes and commercially
available metal electrodes. This study, conducted in a hospital, involves 50 subjects (40 males, 10
females; age range: 20-74) among which 41 were with cardiovascular disease and 9 normal subjects.
The fabricated dry electrodes are biocompatible and have a lower skin-to-electrode impedance

than the commercial electrodes, resulting in high-fidelity ECG signals. Signal quality was assessed
based on parameters such as signal-to-noise ratio, mean amplitude, maximum amplitude, power
spectral density, and heart rate comparison. The AgNRs-PDMS electrodes demonstrated superior
SNR, confirmed using a paired t-test, with a p-value close to 0, indicating a significant difference in
comparison with commercial electrodes. The amplitude of ECG signals captured by AgNRs-PDMS
electrodes and the heart rate were observed to be comparable to metal electrodes. For automated
arrhythmia classification of the ECG signals, two models were implemented. The first model utilized
R-R interval for arrhythmic rhythm classification, while the second model used principal component
analysis (PCA) for dimensionality reduction followed by support vector machine (SVM) to classify
arrhythmic beats. Large arrhythmia data sets like the MIT-BIH arrhythmia database were used for
training and validating the above models. Accuracy results from the MIT-BIH test data set were 97% for
the R-R interval method and 93% for the SVM method. The heart beats obtained from an arrhythmic
patient using commercial metal electrodes and AgNRs-PDMS electrodes were classified using the
classifiers. The AgNRs-PDMS dry electrodes offer superior signal quality, ease of use due to gel-free
nature, and reusability, making them a promising alternative to commercial electrodes for clinical ECG
monitoring.

Keywords Flexible dry electrodes, Electrocardiogram, Arrhythmias, Support vector machine, Machine
learning, Signal-to-noise ratio

The electrocardiogram (ECG), a vital diagnostic tool for heart monitoring, is used in hospitals with ECG
equipment and electrodes. The type of electrode and the interface between the skin and the electrode significantly
impact ECG signal quality. Metal electrodes and wet Ag/AgCl electrodes are commonly used in hospitals and
clinics to capture ECG data'. Metal electrodes, being dry electrodes, are rigid, prone to motion artefacts, require
skin abrasion and gel application. In contrast, Ag/AgCl electrodes, has robust and stable skin-to-electrode
contact due to their gel layer. But the presence of gel can cause skin irritation due to prolonged use and gel
dehydration can degrade the ECG signal quality. In addition, they are not reusable. Dry electrodes offers several
advantages over the wet electrodes, including gel-free application, reduced skin preparation time and suitability
for long-term ECG monitoring, without any skin irritation. Due to their convenience, various dry electrodes
are being explored which includes textile, polymer electrodes with conductive fillers like PEDOT: PSS, graphene
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and silver. In addition to this, electrodes with microstructures that penetrate the stratum corneum to reduce
skin-to-electrode impedance are also being investigated®-S.

Clinical trials for all types of manufactured electrodes are essential as they provide a more variable and reliable
environment than laboratory conditions, ensuring that the signal quality is not compromised. These trials help
assess the patient’s comfort, ease of usage, and potential difficulties, such as skin irritation. Additionally, it aids
in identifying the necessary improvements to enhance electrodes performance and facilitate market readiness’.
Although previous studies on dry electrodes have demonstrated their feasibility on ECG monitoring, they lack
validation of testing on sufficient number of participants, especially those with cardiovascular diseases (CVDs).
In one study, textile electrodes were tested on 66 healthy participants to assess the effects of motion artifacts using
signal-to-noise ratio (SNR)3. Another study evaluated non-contact capacitive electrodes on 10 subjects, with
atrial fibrillation (AF) monitoring conducted on three healthy individuals and one participant with paroxysmal
AF°. Most studies have been conducted in laboratory settings'®. As a result, the comprehensive performance
evaluation of dry electrodes in real-world hospital settings through extensive patient testing and detailed signal
analysis based on SNR, ECG quality, amplitude, power spectral density (PSD), heart rate (HR), and feature
comparisons remains insufficient.

CVDs are a significant cause of death worldwide. According to the World Health Organization (WHO),
CVD accounted for 20.5 million deaths in 2021, contributing to one-third of all deaths globally'!. To address
the risk posed by CVD, affected patients need continuous monitoring of ECG signals. Automated classification
systems provide a quick alerting mechanism, warning the patient well in advance when episodes of irregular
cardiac activity are detected. Such systems help reduce the risk of mortality from CVD. Various works describing
automated classification systems to detect cardiovascular disorders are available today. Artificial intelligence
(AI) technologies and machine learning (ML) have demonstrated potential in automated classification and
disease diagnosis'>!3. Conventional techniques for diagnosing arrhythmias frequently depend on medical
experts’ interpretation of ECGs. However, the incorporation of ML methods in arrhythmia diagnostics has been
motivated by the complexities of arrhythmia patterns and the requirement for rapid and accurate detection.
Cardiologists can save time and receive objective diagnostic results by applying ML tools to classify arrhythmias
automatically. Tools like support vector machine (SVM)'41%, convolutional neural network (CNN)!¢, combination
of CNN and long short memory network (LSTM)'”, combination of discrete wavelet transform, and SVM!8, and
artificial neural network (ANN)'?, are widely explored for analyzing ECG signals, classification, and analysis
of different types of arrhythmias due to their ability to find patterns in large dataset. By using labelled datasets
as a learning tool, these algorithms can accurately differentiate between cardiac rhythms that are normal and
pathological. Furthermore, ML models can evolve and improve in response to fresh data, strengthening their
diagnostic powers.

This research highlights the potential of dry electrodes for ECG monitoring, aiming to bridge the gap between
laboratory testing and real-world clinical applications. The potential of the electrodes was demonstrated through
a relatively large-scale study involving 50 subjects, including both CVD and healthy individuals. This study helps
to evaluate the electrode’s capability to record signals from subjects with varying skin types and diverse cardiac
conditions, thereby validating its performance under different physiological conditions. The study specifically
investigates the performance of a flexible dry electrode composed of silver nanorods (AgNRs) embedded in
polydimethylsiloxane (PDMS) and compares it with commercial metal electrodes. The AgNR-PDMS dry
electrodes were tested primarily on subjects with CVD to assess their effectiveness in detecting various heart
rhythms across sample size with more CVD subjects. Their performance was analyzed based on key clinical
parameters, including SNR, PSD, ECG signal quality (amplitude), and HR accuracy. Conducted in a clinical
setting, this study demonstrates the suitability of these dry electrodes for medical applications.

Due to the conductive silver layer on their surface, the fabricated electrodes exhibited low skin-to-electrode
impedance, enhanced skin conformance for long-term ECG monitoring, and reusability. A comparative analysis
of ECG signals obtained from commercial metal electrodes and the fabricated dry electrodes was performed
using statistical methods, including paired t-tests. Additionally, an automated arrhythmia classification system
utilizing R-R interval features and a SVM model was employed to evaluate whether the ECG signal quality was
sufficient for reliable automated classification.

Materials and methods
Silver metal powder (99.9%) was purchased from CDH chemicals. Polydimethylsiloxane (PDMS) was prepared
from silicon elastomer Sylgard 184 and a curing agent obtained from Dow Corning Inc. USA.

Fabrication of flexible AGQNRs-PDMS dry electrodes

The AgNRs-PDMS electrode used in this study consists of a layer of AgNRs embedded within the PDMS matrix.
The fabrication steps of the electrodes involve the following steps. First, AgNRs are grown on a silicon substrate
using the glancing angle deposition (GLAD) technique as illustrated in (Fig. 1a). GLAD is a physical vapor
deposition method that allows the controlled growth of nanostructures with specific morphologies. In this
technique, the material is deposited on the substrate at an oblique angle of 85°, causing the incident atoms to
form nucleation centers on the silicon substrate. The angle o represents the angle between the vapor flux and the
substrate’s normal. Due to the shadowing effect, taller structures grow while smaller ones are blocked, leading
to columnar structures aligned with the vapor flux direction. The angle B denotes the tilt angle of the columns,
defined between the columnar axis and the substrate normal, as shown in (Fig. 1b). Next, the flexible PDMS
substrate is prepared by mixing silicon elastomer with a hardening agent in a 10:1 ratio. The mixture is poured
over AgNRs layer on the silicon substrate and cured in an oven at 80°C. After curing, the PDMS is carefully
peeled off the silicon substrate, resulting in silver nanorods embedded within the PDMS matrix.
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Fig. 1. (a) Schematic of silver deposition on a silicon substrate using the GLAD technique. (b) Illustration of
silver nanorods formation on a silicon substrate.

Characterizations and clinical evaluation

Field emission scanning electron microscopy (FESEM, Zeiss EVO 50) was used to analyze the surface morphology
of the silver nanorods on the silicon substrate. Skin-to-electrode impedance, which measures how skin responds
to externally applied electrical currents or voltages, was evaluated for commercial metal electrodes, Ag/AgCl
electrodes, and the fabricated AgNRs-PDMS electrodes using an LCR meter (KEYSIGHT E4980A). For testing,
two electrodes were placed on the forearm with a 3 cm centre-to-centre distance. A frequency sweep from 20 Hz
to 1 kHz was performed at a sinusoidal voltage of 10 mV. Details of electrical, mechanical, long-term usability,
and biocompatibility tests for these electrodes are discussed in our previous study?. The fabricated electrode is
circular with a diameter of 4 cm.

The fabricated AgNRs-PDMS electrode was used for real-time ECG monitoring in a clinical setting at the
All India Institute of Medical Sciences (AIIMS) Rishikesh, Uttarakhand, India. The study was approved by the
Institutional Ethics Committee with registration number AIIMS/IEC/24/365. Informed consent was collected
from all the subjects and all steps were performed in accordance with the relevant guidelines and regulations.
The trial was conducted according to good clinical practice guidelines and was monitored by medical experts. A
total of 50 subjects (40 male and 10 female), aged 20-74 years, participated in the study. Among them, 41 were
CVD and 9 were normal subjects. Informed consent was obtained from all the participants before their inclusion
in the study.

A Philips TC20 ECG machine was used for ECG signal acquisition. Signals were recorded using both
AgNRs-PDMS electrodes and commercial metal electrodes. Minor skin pretreatment, such as gently rubbing
the area with cotton, was performed before placing the electrodes. The electrodes were then positioned on the
four limbs of the subject. To secure the electrodes in place, medical tape was used. The ECG machine settings
were configured with a high-pass filter of 0.5 Hz and a low-pass filter of 150 Hz to display and print the ECG
signals. Motion artifacts and baseline wander were disabled in the settings.

For the analysis of the ECG signals recorded from both electrodes, raw data were exported from the ECG
machine without any built-in filtering. To denoise the signals, a 5th-order high-pass Butterworth filter of 0.5 Hz
and a 50 Hz linear digital filter were applied during post-processing. The ECG data used for analysis were the
unprocessed raw data exported from the machine. Additionally, the ECG machine used a scaling factor of 10 on
the signals for display and printing purposes, which was not reflected in the raw data. As a result, the amplitude
of the ECG signals in this study appears to be ten times lower than the values shown in the printed ECG reports.
The SNR and PSD of the ECG signals obtained from both electrode types were compared. The electrode’s ability
to accurately capture the R-R intervals was assessed by performing arrhythmia classification through both
manual and automated methods and assessing the results. Arrhythmic beats detected with the AgNRs-PDMS
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electrode were classified using SVM with a linear kernel to identity anomalies. The Neurokit2 module was used
for signal denoising, R-peak detection, and QRS delineation?!. The ECG signal was analyzed for QRS complex
and R peaks using the Biopeaks algorithm implemented in Python. Principal components analysis (PCA) was
applied to the extracted ECG segments for dimensionality reduction with the Scipy and NumPy Python modules
while the Scikit_learn module was used to develop the SVM classifier. Both classification methods were trained
using the MIT-BIH arrhythmia database??. Figure 2 outlines the methodology used in this study and Table 1 lists
the abbreviations for the different types of arrhythmias classified.

Signal-to-noise ratio evaluation of the electrodes

ECG consists of three main components: P, QRS and T waves. The P wave represents atrial depolarization,
the QRS indicates ventricular depolarization and the T wave corresponds to ventricular repolarization. The
frequency ranges of these waves are as follows: P wave (5 Hz to 30 Hz), QRS complex (8 Hz to 50 Hz), and T
wave (0-10 Hz)?. ECG signals are often affected by noise, including powerline interference (50/60 Hz), motion
artefacts, muscle noise, and baseline wander. Powerline interference results from electromagnetic disturbances,
improper grounding, nearby electrical devices, or AC field induction in cables?®. This potentially distorts the
essential ECG features®®. Baseline wander, caused by respiration, patient movement, or cable shifts, can alter
signal amplitude and hinder peak detection, making ST-segment analysis for myocardial infarction diagnosis
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Fig. 2. Schematic representation of the systematic workflow in this study, detailing the steps from ECG signal
processing to automated arrhythmia classification.
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VF Ventricular fibrillation

VPC Ventricular premature contraction
2° heart block | 2° heart block

N Normal

RBBB Right bundle branch block

LBBB Left bundle branch block

APC Atrial premature contraction

Table 1. Abbreviations for various ECG beats presented in (Fig. 2), along with their corresponding meanings.

challenging. Filtering methods such as discrete wavelet transforms, and Butterworth high pass filters help
mitigate the baseline wander?®. Motion artefacts, caused by the variations in skin-to-electrode impedance can be
reduced with electrodes having better skin conformance?’.

In this study, the quality of the ECG signals captured by the AgNRs-PDMS electrodes was assessed by
computing the SNR to determine the level of noise present. This was then compared to ECG signals recorded
using metal electrodes on the same subject. SNR was calculated using ECG signals acquired from 45 subjects
(36 males, 9 females, age range: 20-74 years). To minimize interference, a 0.5 Hz, 5th-order high-pass
Butterworth filter was applied to prevent distortion of the P wave, while a 50 Hz linear digital filter was used
to eliminate powerline interference?®. SNR, defined as the ratio of signal power to background noise power

(S NR = M) was calculated after filtering®.

Power of noise

Power spectral density evaluation of the electrodes

To evaluate whether the distribution of signal power across different frequency bands in ECG signals captured
by AgNRs-PDMS electrodes is comparable to that of commercial metal electrodes, PSD was calculated. PSD
analysis was performed using ECG signals from the same 45 subjects recruited for SNR calculation. PSD provides
insights into the dominant frequency ranges within the ECG signal. Welch’s method, an improved periodogram
technique, was used to compute PSD. In this method, the signal is divided into overlapping segments using
a window function. Each segment undergoes a discrete Fourier transform, and the resulting periodograms
are averaged to obtain the final PSD, ensuring a more reliable spectral estimation®*3!. To evaluate the ability
of AgNRs-PDMS electrodes to capture high-quality ECG signals across different patients, the maximum and
mean amplitudes of the recorded ECG signals were analyzed and compared to those obtained using commercial
metal electrodes. This assessment helps determine whether the AgNRs-PDMS electrodes can effectively record
ECG signals from individuals with varying heart rhythms, both normal and abnormal, as well as from people
with different skin types. A comparative analysis provides insights into whether the AgNRs-PDMS electrodes
perform similarly to commercially used metal electrodes in capturing reliable ECG signals.

Heart rate comparison

HR is one of the crucial markers that gives information about the functioning of the heart. HR is defined as the
number of beats per minute (bpm) and is calculated by obtaining the R-R interval, i.e. HR=60,000/R-R interval
(in milliseconds)®?. Here, the R-R interval is the distance between R peaks of a successive QRS complex®>.
The relationship between HR and R-R interval is hyperbolic, but over a limited range, it is linear. These two
parameters have been used interchangeably in a clinical setting®®. R-R interval is crucial in calculating the
irregular heartbeats caused by arrhythmias. R-R interval is also vital in calculating the heart rate variability
(HRV), a sign of neurocardiac (brain-heart interaction) physiology®*. The HR analysis was performed on the
same subjects from which SNR was analyzed. The readings per subject were completed within a short interval
to avoid any significant fluctuations in the HR. Readings were taken using both commercial metal electrodes
and AgNRs-PDMS electrodes from the subject relaxing in a supine position. Readings per subject from both
the metal and dry electrodes were selected for further analysis when the ECG signals became stable. The
maximum and minimum of the R-R interval and the mean HR in the ECG signals were obtained. Then mean HR
obtained from both metal and dry electrodes were compared to check the efficacy of dry electrodes in accurately
calculating the HR, which is one of the important parameters for cardiac health.

Detection of tachycardia and bradycardia

The measurement of HR is crucial in detecting various arrhythmias like tachycardia, bradycardia, and ventricular
and atrial fibrillation. Tachycardia and bradycardia can be easily detected by observing HR. If the HR is higher
than 100 bpm, then it is tachycardia, and when it is less than 60 bpm, it is called bradycardia. A higher value
of HR implies that the heart is beating fast as the result of increased electrical impulses passing through the
heart. HR changes, depending on the physical condition of the body. Increased HR is observed during stress/
exercise, whereas slow HR is when the body is in rest condition®****. Sixteen patients (15 males, 1 female, age
range: 25-74 years, 11 from the original dataset used for ECG parameter analysis and 5 newly added subjects)
having bradycardia and tachycardia and a healthy patient (male, age:45) were screened using commercial metal
electrodes. Then, AgNRs-PDMS electrodes were used to check whether they can accurately detect them or not.
Raw signals of lead II of one tachycardia, bradycardia, and healthy subjects were plotted to check for signal
quality. Mean HR was used for classification into tachycardia (HR > 100 bpm) and bradycardia (HR <60 bpm).
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Various methods for automated arrhythmia detection have been studied and described in journals**-*°. Among
them, some methods rely on beat type detection, others rely on heart rhythm detection and some of them
use both the information obtained from the ECG signal. A method described by Tsipouras et al. detects and
classifies arrhythmias using R-R interval calculated from the ECG signal. This is used in this work for automated
classification of arrhythmic episodes’. The step-by-step method followed for the classification is represented
in (Fig. 3a). The model was trained using the MIT-BIH database and tested for accuracy using the MIT-BIH
arrhythmia database, MIT-BIH long-term ambulatory database, PTB DB, and PTB XL?>4.,
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Fig. 3. (a) Schematic representation of methods followed for arrhythmic episode classification. (b) Illustration
describing five types of beats used for classification using support vector machine.
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Analysis by PCA and SVM

A machine learning model was implemented, as derived from the work Martis R] et al., to detect and classify
arrhythmic beats*>*3. The beats were classified as normal, right bundle branch block, left bundle branch block,
atrial premature contraction, and ventricular premature contraction.

The MIT-BIH ECG database was used for training, and the database mentioned in the previous section
was used to test the model. The heartbeats from the ECG signals were extracted using the Biopeaks algorithm
implemented in the Neurokit2 python module, an open-source software. The extracted heartbeats and annotation
data were used as the classifier for differentiating the five types of beats. R peak detection and classification of the
five types of beats were performed as described below and illustrated in (Fig. 3b).

The ECG signal was filtered using Neurokit2 to remove noise. After filtering, the signal was segmented into
individual beats through QRS window detection using the Biopeaks algorithm in Neurokit2. PCA was applied
to the extracted heart beats for dimensionality reduction using SciPy and NumPy modules. SVM with a linear
kernel was implemented using scikit-learn and trained on the PCA-transformed data. All results were verified
using MATLAB.

Evaluation of the results using statistical methods

Statistical analysis was performed to assess the distribution and comparison of ECG signal parameters. The
Shapiro-wilk test was used to check the normality of SNR clean signals, SNR powerline interference-excluded
signals, and the maximum and mean amplitude of ECG signals, from the metal electrodes and AgNRs-PDMS
electrodes, confirming that all data followed a normal distribution (Table S4). Given this, a paired t-test was
conducted using IBM SPSS Statistics to compare SNR clean signals, SNR powerline interference-excluded
signals, PSD values, and ECG amplitude measures. To evaluate agreement between HR datasets from metal and
AgNRs-PDMS electrodes, a Bland-Altman plot was generated. Additionally, the Pearson correlation coefficient
was calculated to assess the correlation between these two datasets.

Results and discussion

Surface morphology of electrodes

The FESEM image in (Fig. 4a) depicts the rod-shaped geometry of AgNRs formed on a silicon substrate. A
uniform layer of AgNRs, with an average diameter of 150 nm and a length of 1 um was deposited to form the
conductive layer. This layer was transferred onto a PDMS film, which has excellent mechanical properties and
biocompatibility. Figure 4b displays the fabricated AgNRs-PDMS electrodes, with the bottom side containing
the conductive silver layer, while Fig. 4c shows the PDMS layer embedded with silver. Figure 4d, e illustrate
commercially available Ag/AgCl electrodes and metal electrodes, which were used for comparison. Figure 4f
shows the acquisition of ECG signals by placing AgNRs-PDMS electrodes on the limbs of a subject. The presence
of nanorods on the electrode surface significantly increases the surface area, thereby reducing the interface
impedance between the skin and the electrode. This reduction in impedance enhances the overall quality of the
ECG signals**—€.

Skin-to-electrode impedance measurement

The skin-to-electrode impedance was measured for metal electrodes, Ag/AgCl electrodes, and AgNRs-PDMS
electrodes by performing an impedance sweep immediately after electrode placement on the skin. The results are
graphically represented in (Fig. 4g). The skin-to-electrode impedance of metal electrode ranges from 316.1+31
kQ (20 Hz) to 10.9+ 0.6 kQ (1 kHz), for the Ag/AgCl electrode, 202.7 + 15 kQ (20 Hz) to 7.9 £ 0.3 kQ (1 kHz) and
for AgNRs-PDMS electrodes, 77.3 £21 kQ (20 Hz) to 3.7+ 0.9 kQ (1 kHz). This implies that the metal electrode
has a higher skin-to-electrode impedance. At the same time, it was less for Ag/AgCl electrodes due to the presence
of conductive gel, which stabilized the interface between electrode and skin. The AgNRs-PDMS electrode has
the least skin-to-electrode impedance compared to the metal and Ag/AgCl electrodes, signifying its ability to
measure good quality ECG signals. Dry electrodes generally tend to have higher skin-to-electrode impedance
due to the absence of stabilizing gel. Since contact area is inversely proportional to impedance, increasing the
electrode’s contact area with the skin can effectively reduce skin-to-electrode impedance?’. The stability of the
skin-to-electrode interface is a very important parameter which decides the ECG signal quality. Thus, the effect
of stability of the skin-to-electrode interface was checked after keeping the electrodes in the same position for
30 min, represented by (Fig. 4h). It was observed that after a duration of 30 min, skin-to-electrode impedance
of the metal electrode ranges from 186.7£5 kQ (20 Hz) to 7.7+0.2 kQ (1 kHz), for the Ag/AgCl electrode the
range was from 88.5+ 10 k() (20 Hz) to 3.7+ 0.4 kQ (1 kHz) and for AgNRs-PDMS electrodes it was 58.8 + 10 kQ
(20 Hz) to 3.9+0.4 kQ (1 kHz). The skin-to-electrode impedance was reduced for all three types of electrodes
after 30 min. In the case of dry electrodes like metal electrodes and AgNRs-PDMS electrodes, sweat produced
on the skin surface reduces the skin-to-electrode impedance. In case of Ag/AgCl elecrodes, the gel stabilized
the interface, improving the conductivity. Skin-to-electrode impedance is also affected by the nature of the skin,
which differs from person to person. Figure 4i,j represents the comparison of the skin-to-electrode impedance
of the three electrodes at 20 Hz and 1 kHz at a time t_ (immediately after placing the electrodes on the skin) and
at time t (after 30 min), respectively.

Performance in terms of SNR

Lead II of the ECG signals was used for SNR calculation, collected from 45 subjects using metal electrodes and
AgNRs-PDMS electrodes. The ecg_clean() method from Neurokit2 was used to extract the noise and filtered
clean signal from the ECG samples. Figure 5a compares the SNR values across 45 subjects. A paired t-test
revealed a one-tailed p-value close to 0, with a t-statistics 9.60. Since the p-value is less than the significance level
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Fig. 4. Images of (a) FESEM image of silver nanorods deposited on silicon substrate. The fabricated dry
AgNRs-PDMS electrode (b) bottom side (c) top side (d) commercially used wet Ag/AgCl electrodes (e)
commercially used dry metal electrodes (f) Image of ECG acquisition from limb leads of a subject using
AgNRs-PDMS electrodes. Graphical representation of variations in impedance spectroscopy for metal
electrode, Ag/AgCl electrode and AgNRs-PDMS electrode (g) at time t_ (h) at time t. (i) Representation of
skin-to-electrode impedance values at 20 Hz at time t_and time t (j) at 1 kHz at time t and time t.
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of 0.05, it indicates a significant difference between the SNR obtained from the two electrodes, with AgNRs-
PDMS electrodes demonstrating better performance.

The AgNRs-PDMS electrodes have a higher surface area, making them more susceptible to powerline
noise compared to Ag/AgCl or commercial metal electrodes. This study observed that powerline interference
contributed significantly to the noise in AgNRs-PDMS electrodes. To account for this, SNR was recomputed
after removing powerline interference from the background noise in both metal and AgNRs-PDMS electrodes.
A 50 Hz linear digital filter was applied to eliminate powerline noise. Figure 5b compares the powerline
interference-removed SNR for 45 subjects. The filtered signal was processed using the ecg_clean() method
in Neurokit2 to extract the noise component for SNR calculation. After removing powerline interference, the
improvement in SNR for AgNRs-PDMS electrodes was significantly greater than that for metal electrodes. A
paired t-test was performed, yielding a t-statistic of 9.56 and a one-sided p-value close to 0. Since p <0.05, the
result is statistically significant, confirming a notable difference in SNR between the two electrodes. The positive
t-statistic indicates that AgNRs-PDMS electrodes outperform metal electrodes in signal quality.

The maximum and mean amplitude of lead II ECG signals from 45 subjects were computed for both
commercial metal electrodes and AgNRs-PDMS electrodes, as shown in (Fig. 5c, d). A paired t-test was
conducted to assess whether the ECG signal quality obtained using AgNRs-PDMS electrodes was comparable to
that of metal electrodes. For maximum amplitude, the t-statistic was 3.03, with a two-sided p-value of 0.004. As
p<0.05, the null hypothesis is rejected, confirming that the maximum amplitude of ECG signals from AgNRs-
PDMS electrodes is comparable or better than that from metal electrodes. For mean amplitude, the t-statistic
was 3.37, with a two-sided p-value of 0.002. Since p <0.05, the null hypothesis is rejected, indicating a significant
difference. The positive t-statistic suggests that the signal quality of AgNRs-PDMS electrodes is comparable or
better to that of metal electrodes.

The mean amplitude, maximum amplitude, and SNR values of ECG signals before and after applying a linear
digital filter for all 45 subjects using both electrodes are provided in Table S1 in the Supplementary Information.

Performance in terms of power spectral density (PSD)

Figure 5e, f illustrates the PSD across different frequency domains for both metal electrodes and AgNRs-PDMS
electrodes from a single subject. The signal power in the 49-51 Hz range was noticeably higher for AgNRs-
PDMS electrodes compared to metal electrodes, due to increased powerline interference noise resulting from
their larger surface area. However, a comparison of the PSD of ECG signals from both electrodes shows that
signal power is similarly distributed across all frequency ranges, as depicted in (Fig. 5g, h) for the same subject.
A paired t-test was performed to statistically validate these findings. Across all frequency ranges, the two-sided
p-value was found to be greater than 0.05, indicating no significant difference in the power components of ECG
signals acquired using both electrodes. This confirms that AgNRs-PDMS electrodes capture all relevant ECG
features that metal electrodes do, ensuring that signal quality is not compromised despite the absence of gel.

The t-statistics and p-values for the PSD analysis are provided in (Table S5).

Heart rate comparison

Bland-Altman plot

A Bland-Altman plot, which is widely used in evaluating the performance of two measurements of the same
parameter by calculating the mean differences, was represented in (Fig. 6b). The mean difference between the
metal electrode and the AgNRs-PDMS electrode was only 0.422 bpm with almost all the data points lying inside
limits of agreement i.e. 95% confidence level (£1.96 SD of difference in measurements between both types of
electrodes), which was 3.855 bpm and —3.011 bpm, indicating that the AgNRs-PDMS electrode can detect HR
effectively. Since the age range for this study was 20-74, these results indicate that the dry electrodes can be used
on adults as well as on elderly patients with high efficacy.

Paired T-test

The t-statistics obtained was 1.617 with a two-sided p-value of 0.113. Since, the obtained p-value was greater
than the significance level of 0.05, suggesting that there is no significant difference between HR data sets of metal
and AgNRs-PDMS electrodes.

Correlation coefficient
A correlation of 0.99592 (99.592%) was obtained, indicating a strong correlation between data sets of metal and
AgNRs-PDMS electrodes, which further concludes that the measurements have high consistency.

Since, the readings were taken when patients were in resting positions in a quiet environment, therefore,
large fluctuations of ECG can be avoided. It was observed there were differences in some bpm for a few patients,
which can be due to changes in the patient’s cardiac condition (natural variation) or electrode efficacy. Because
measuring HR simultaneously using metal and AgNRs-PDMS electrodes is practically impossible, hence HR in
the same heart condition was not captured. However, for over 45 subjects, the results of the t-test, Bland-Altman
tests, and correlation coefficient for HR comparison indicate that the AgNRs-PDMS detect HR efficiently. The
minimum of the R-R interval of metal and AgNRs-PDMS electrodes are represented in (Fig. 6a). The maximum
R-R interval is represented in (Fig. 6¢). It can be observed that there is no significant difference between the
plots, indicating that AgNRs-PDMS can detect various parameters associated with R-R interval and HR. The HR
values obtained from 45 subjects are provided in Table S2 in supplementary information.

Detection of tachycardia and bradycardia
Figure 6d compares the ECG signals of subjects with tachycardia, normal ECG, and bradycardia, recorded using
AgNRs-PDMS electrodes. The successful detection of tachycardia and bradycardia confirms that the designed
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Fig. 6. (a) Plot representing minimum R-R interval in metal electrode and AgNRs-PDMS electrode (b) Bland
Altman plot for metal electrode and AgNRs-PDMS electrode. (c) Plot representing maximum R-R interval

in metal electrode and AgNRs-PDMS electrode (d) Comparison of ECG signals of tachycardia, normal and
bradycardia (e) Representation of mean HR acquired from the ECG signals of various subjects obtained using
AgNRs-PDMS electrodes and classification into tachycardia and bradycardia.

electrode can accurately measure HR and effectively identify these conditions, as further illustrated in (Fig. 6e).
In subject 9 (tachycardia), when the HR was nearer to 100, some values were less than 100. However, when
the graph was plotted as mean + SD, it did cross 100 bpm. The classification of 16 subjects for tachycardia and
bradycardia is provided in Table S3 in the Supplementary Information.

A comparison of ECG waveforms recorded using metal electrodes and AgNRs-PDMS electrodes has been
illustrated for two subjects one with a normal and another with an abnormal ECG waveform. The corresponding
waveforms are presented in (Fig. 7a, b). The time axis in the graph represents signal with respect to R peak.
The ECG template representing the waveform of ECG signals obtained from 45 subjects has been given in the
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classification with

SVM.

Supplementary Information, section S6. Table 2 shows a comparison of the electrodes used in this study with
other dry electrodes.

Automated arrhythmia detection
The signals obtained using AgNRs-PDMS electrodes were used for automated arrhythmia classification to verify
the signal quality. Automated arrhythmia detection algorithms are sensitive to even small deterioration in the
quality of the obtained ECG signal. In this paper, the works described by Tsipouras et al.,** and Martis, R] et

al 4243
follows.

Arrhythmia detection using RR interval
Arrhythmic beat classification and arrhythmia episode detection based on R-R interval calculated from
the acquired ECG signals. The method relies on accurate peak detection performed on the signal. In the
implementation used here, R peak detection was achieved by using Biopeaks algorithm instead of the Hamilton
and Tompkins algorithm proposed in the work by Tsipouras et al.** Arrhythmic episodes such as premature
ventricular contraction, ventricular flutter/fibrillation and 2° heart block were classified using the R-R
interval. The classification of arrhythmia is carried out in four main steps. ECG signal was preprocessed to
remove baseline wander and powerline interference. Biopeaks algorithm was used to determine R peaks. R-R
interval was calculated by measuring the time interval between adjacent R peaks. Arrhythmia classification
was performed by applying the set of rules as described in the work. Using a 3-interval sliding window, beat
classification was done for premature ventricular contraction, ventricular flutter/fibrillation and 2° heart block.
The beat is classified as normal if it does not belong to any of the above categories. Using the results obtained
from arrhythmia beat classification, six types of arrhythmic episodes were identified. Ventricular bigeminy,
ventricular trigeminy, ventricular couplets, ventricular tachycardia, ventricular flutter/fibrillation, and 2° heart
block are the arrhythmic episodes detected by this implementation. Automated classification was performed
by using multiple test datasets (MIT-BIH, MIT-BIH long-term ambulatory data, PTB DB and PTB XL). The
accuracy obtained using these test data is represented in (Fig. 7c).

are used to implement the automated classification systems. The models and results are described as
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SL Pre-clinical/clinical
no. | Substrate/matrix/support | Conductive part | evaluation details Electrode performance References
Multiwalled
carbon nanotubes Oner and
1 PDMS (MWCNT), Single subject Identical ECG waveform when compared with conventional wet electrodes Yuce 2023%
graphene uce
nanoplatelets
1D single-walled
carbon nanotubes, . . .
5 PDMS 2D reduced Not mentioned Electrode Performance was better than conventional electrode with low Kim fgt al.
. contact resistance 2022
graphene oxide
(rGO)
. Lo . - Wang et al.
3 PDMS Carbon black (CB) | Four healthy subjects | No significant loss in SNR after 2 days of monitoring 202150
4 | PDMS PEDOT: PSS Single volunteer Inkjet-printed conductive and stretchable electrodes showed clear ECG Lo ets';ll.
morphology 2021
. . NI Maithani et
5 PDMS rGO, AgNRs Single volunteer Flexible dry electrode produced similar signal compared to wet electrode al. 202252
6 | PDMS GO A healthy male SNR of dry electrodes was 27.2 dB, greater than those obtained using Ag/ Baloda et al.
r volunteer AgCl electrodes (25.7 dB) 2024
7 Ecoflex CB Not mentioned Stretchable electrodes with a high % of CB showed better ECG signals ga;ldg(-)g_g‘f fa
. Ten subjects, Lo . Xiao et al.
8 Polyester Silver including AF patients 99.8% correlation in RR interval 2023°
9 Cotton PEDOT: PSS Single healthy Developed textile electrodes showed similar ECG morphology compared Maithan_:i_, et
volunteer to wet electrode al. 2022
. . . The developed electrode has a high SNR (22.54 dB) compared to the wet Gaoetal.
10 | PEDOT: PSS PEDOT: PSS Not mentioned electrode (19.52 dB) on dry skin 202356
Thermoplastic polyurethane . SNR of dry electrodes (23.1 dB) was better than the wet Ag/AgCl electrodes | Masihi et al.
11 (TPU) MWCNTs Ten healthy subjects (1.2 dB) 20225
- . Five health Momota et al.
12 | Polyimide Silver volunteers Y Same performance compared to gel electrodes 202358
. . | SNR greater than 28 dB was obtained with almost similar performance in Ferri et al.
13 | Polyamide Silver, carbon Ten healthy volunteers ECG morphology 20225
Fifty subjects (41 Performance evaluated with SNR, ECG signal compared with conventional
14 | PDMS AgNRs Y Sub) electrode using mean and maximum amplitude, HR compared, R-R This work
CVD and 9 healthy) . .
interval comparison

Table 2. Comprehensive comparison with other dry electrodes.

Support vector machine (SVM) classifier for arrhythmic beats

SVM was modeled using the MIT-BIH arrhythmia database for classifying 5 types of heartbeats. The heartbeat
data was extracted from the ECG signal obtained from the dataset and was used as training data for the SVM. The
dimensionality of the data was reduced using PCA. For each QRS complex detected, 200 points were extracted
and then reduced to 12 samples using PCA. The steps used for the classifier are described below.

Preprocessing  Signal noise can interfere with the classification of heartbeats. A high pass Butterworth filter of
order 5 and pass band frequency of 0.5 Hz and a linear digital filter to remove powerline noise at 50 Hz was used.
The ecg_clean() method implemented in the Python module Neurokit2 was used to remove the noise from the
ECG signal.

QRS complex detection and R peak identification The ecg_delineate() and ecg_peaks methods implemented
in neurokit2 were used to identify R peaks and QRS intervals. We used the Biopeaks algorithm as implemented

in neurokit2 for this purpose. Lead II was used for QRS complex detection®.

Extraction After detection of the QRS complex using the Biopeaks algorithm, individual’s heartbeats were
extracted. After finding the midpoint of the QRS complex, 99 samples were taken before the midpoint, and 100
samples were collected after the midpoint. A total of 200 sample points, including the midpoint of the QRS com-
plex, were extracted per heartbeat and performed beat extraction.

Principal component analysis PCA is a statistical method for dimensionality reduction. It is particularly useful
for high-dimensional data sets which contain a large number of variables. PCA gives the projection of the data in
the direction of the highest variance*!. PCA involves the following steps (i) covariance matrix calculation of the
extracted beats from the ECG signal, (ii) computation of eigenvectors and eigenvalues of the covariance matrix
where eigenvectors represent the direction of maximum variance, and the eigenvalues represent the magnitude
of variance. The first principal component represents the eigenvector with the highest variance and the maxi-
mum eigenvalue, followed by the second and third principal components in descending order. Each eigenvalue
is projected in space orthogonally. This model chooses 12 principal components from the first component to
include the maximum variability in the data for pattern classification, as represented in (Fig. 7d).
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Linear kernel support vector machine SVM is a machine learning model generally used to solve complex
nonlinear classification problems with better accuracy. It classifies the data into different classes by choosing an
optimal hyperplane in an N-dimensional space. A maximum margin from the data points in the different classes
around the separating hyperplane is obtained. By applying kernel transformations, we can turn a low-dimen-
sional space into a high-dimensional space where classification is carried out, and features are presumed to be
linearly separable. Here, linear kernel SVM is used to identify the beats. Automated classification was performed
by using multiple test datasets (MIT-BIH, MIT-BIH long-term ambulatory data, PTB DB and PTB XL). The
accuracy obtained using these test data is represented in (Fig. 7e).

The beat classification method used is highly dependent on the reliability and accuracy of the acquired ECG
signal. We tested the model implemented against the signals collected using metal and AgNRs-PDMS electrodes.
Since, the sampling frequency (f ) of the training dataset was 360 Hz and the acquired ECG signal samples had
a sampling frequency of 500 Hz, the acquired ECG signal was down-sampled to 360 Hz using Fast Fourier
Transform (FFT). The signal amplitude was normalized, and segments were extracted as described. The sample
data was annotated by clinicians and compared with the SVM model’s classification. The data of an arrhythmic
patient with atrial premature contraction was used for testing in the model with the metal and AgNRs-PDMS
electrodes. The specificity obtained for metal electrodes was 98.2%, and for AgNRs-PDMS electrodes was 98.7%.

Conclusion

In this study, the performance of AgNRs-PDMS flexible dry electrodes was evaluated and compared with
commercially available metal electrodes in terms of signal quality and clinical applicability. The study was
conducted on a cohort of 50 subjects, including both CVD and healthy individuals. Conducting measurements
on a relatively large sample size helps to assess the electrode’s effectiveness across diverse skin types and health
conditions, providing a broader understanding of its potential for real-world clinical use. Additionally, the study
provides insights into the electrode’s robustness across different skin types and health conditions, emphasizing
their practical applicability in routine healthcare monitoring. The AgNRs-PDMS electrodes exhibited a better
SNR than metal electrodes in clinical settings for continuous monitoring. PSD analysis confirmed that both
electrodes captured all ECG signal components, though powerline noise affected AgNRs-PDMS electrodes due
to their larger surface area, highlighting the need for improved electromagnetic interference (EMI) shielding.
Statistical comparisons of SNR, PSD, HR, and ECG amplitude parameters demonstrate the better efficiency of
AgNRs-PDMS electrodes in clinical settings. Unlike commercial wet Ag/AgCl electrodes, these dry electrodes
do not require a gel layer, which could have led to higher skin-to-electrode impedance and lower signal
quality. However, the high conductivity and large surface area of silver nanorods effectively mitigate this issue.
Nevertheless, certain limitations persist, such as low adhesiveness, which can affect signal stability. Sometimes,
a medical tape or strap is necessary to ensure stable ECG signals. Automated classification models based on
existing works were developed for arrhythmia detection and tested on an arrhythmic patient. Given the high
accuracy of the developed classification models, they can be utilized for future arrhythmia detection using
AgNRs-PDMS electrodes.

Data availability

MIT BIH arrhythmia database used for training the model are available at https://doi.org/10.13026/C2F305.
ECG data generated during the current study are available from the corresponding author on reasonable request.
Due to the restrictions on sharing clinical data, the dataset cannot be shared publicly.
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