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The increasing demand for sustainable waste management has driven innovation in the production of 
activated carbon (AC) from waste. AC’s textural properties, including its surface area (SA), total pore 
volume (TPV), and micropore volume (MPV), are critical for applications such as gas purification and 
wastewater treatment. However, the traditional assessment methods are expensive and complex. This 
study employed machine learning (ML) models to predict AC’s properties and optimize its production 
process. Random Forest (RF), Decision Tree (DT), Gradient Boosting Regressor (GBR), support vector 
machines (SVM), and Artificial Neural Networks (ANN) were applied along with key input parameters, 
including raw material type, particle size, and activation conditions. A genetic algorithm (GA) 
integrated with the GBR model optimizes the synthesis process. The ML models, particularly RF and 
GBR, accurately predicted SA with R2 values exceeding 0.96. In contrast, the linear regression models 
were inadequate, with R2 values below 0.6, emphasizing the non-linear relationship between the 
inputs and outputs. Sensitivity analysis showed that the activation temperature, ratio of the activating 
agent to carbon, and particle size significantly affected the AC properties. Optimal properties were 
achieved under activation temperatures between 800 and 900 °C and activating-agent to the carbon 
ratio 3.8. This approach provides a scalable solution for enhancing AC production sustainability, while 
addressing critical waste management challenges.
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Abbreviations
AC	� Activated carbon
ANN	� Artificial neural networks
C	� Carbon content (at%)
D	� Nitrogen doping
DT	� Decision tree
GA	� Genetic algorithms
GBR	� Gradient boosting regressor
H	� Hydrogen content (at.%) 
Hr	� Heating rate (°C/min)
ML	� Machine learning models
MPV	� Micropore volume (cm3/g)
N	� Nitrogen content (at.%)
n	� Number of data points
Ps	� Particle size (µm)
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R	� Correlation coefficient
RAC	� Ratio of the activating agent to carbon
RF	� Random forest
S1	� Sobol’s first-order index
SA	� Surface area (m2/g)
SSE	� Summation of residuals squares
ST	� Sobol’s total-order indices 
SYY	� Summation of squares of data variation to the data mean value
Ta	� Activation temperature (°C)
th	� Holding time (hours)
TPV	� Total pore volume (cm3/g)
xi	� Values of the input variables in a sample
−
x	� Mean of the values of the input variable
−
y 	� Mean of the values of the output variable
ŷi	� Predicted data values

yi	� values of the output variable in a sample

Global awareness of energy security, environmental conservation, and climate change has prompted nations 
to prioritize the development and use of renewable energy sources1. Biomass and agricultural waste are the 
principal renewable sources of carbon-based fuels and chemicals2. Activated carbon (AC), which is known for 
its porous structure, is widely used for air and gas purification3 and wastewater treatment4. Structurally, AC is 
a highly porous amorphous carbon material consisting of graphitic layers with sp² hybridization. It possesses a 
comprehensive pore network, including micropores (< 2 nm), mesopores (2–50 nm), and macropores (> 50 nm), 
along with a substantial specific surface area of 600–2000 m²/g4. Moreover, AC exhibited significant surface 
reactivity and superior adsorption capacity. AC is generally produced from lignocellulosic precursors that 
are abundant in nature, utilizing physical or chemical activation methods. Prevalent raw materials include 
carbonaceous sources such as coal, wood, and lignite. The substantial surface area and varied pore structure 
of AC render it a highly efficient adsorbent. AC is extensively employed for pollutant removal, including the 
adsorption of heavy metals and dyes, owing to its large surface area, abundant functional groups, and adjustable 
properties. Adjustable surface chemistry further augments its adaptability to particular applications4. Compared 
to non-renewable petroleum resources, deriving AC from agriculture and forestry waste offers advantages such 
as environmental sustainability, abundant supply, and cost-effectiveness5. AC is a highly porous adsorbent 
with substantial adsorption capacity and superior surface reactivity6. Owing to these characteristics, it is 
widely employed as an adsorbent and catalyst in multiple industries such as manufacturing, pharmaceuticals, 
water treatment, and agriculture7,8. AC can be produced from various feedstocks including coal, petroleum 
residues, wood, agricultural by-products, and other carbon-rich materials9. There is increasing interest in 
utilizing renewable feedstocks, including biomass and agricultural or industrial waste, owing to their potential 
to diminish the environmental impact and enhance natural resource use efficiency across the product life cycle9. 
The most common procedure for AC manufacturing consists of two major steps: carbonization and activation. 
Chemical activation is preferred for producing AC because of its ability to develop various pore sizes, structures, 
and improved surface areas, which are usually attained with a shorter activation time10. Chemical activation is 
commonly employed to produce AC11, and the physicochemical properties of the resulting AC are influenced by a 
range of factors. These factors include feedstock composition, activation parameters (duration, temperature, and 
heating rate), and ratio of activating agents to carbon source materials12. Producing AC with enhanced textural 
properties requires an in-depth understanding of how various biomass feedstocks and activation conditions 
affect these results. Moreover, given the wide range of potential biomass sources, there is a growing need for 
decision-support tools to aid scientists, engineers, and industry professionals in evaluating different biomass 
types and refining initial process design strategies tailored to specific feedstocks. The subsequent paragraph 
provides a concise overview of the pertinent literature regarding the use of machine learning models to predict 
the textural properties of carbon materials derived from biomass feedstocks.

Scientists have used several approaches to understand the connections between AC sources, processing 
conditions, and resulting textural properties. However, previous research in this sector has had the following issues: 
(1) Experimental work requires significant manpower-intensive, time-consuming, and costly experiments13. 
(2) Although optimization and simple regression analyses have been used to predict the surface area (SA) in 
previous studies14, the reliability and generalizability of these models are bound by their construction based 
on a small number of experimental data points. With the advancement of machine learning (ML), several ML 
systems, such as artificial neural networks (ANN) and random forests (RF), have acquired general acceptance as 
techniques capable of handling nonlinear issues. Recent research has demonstrated favorable outcomes of ML 
applications, mainly RF, in producing biochar and activated biochar and utilizing these carbon compounds15. 
Previous studies have shown that ML models can optimize and guide experimental studies, such as engineering 
and producing biochar with a higher heating value or carbon storage16. RF and GBR models have been used to 
forecast and optimize SA, Nitrogen (N) content, and biochar yield17. ML assisted in predicting and designing 
biochar SA and total pore volume (TPV) using the RF and GBR models18. However, this study focused on 
biochar rather than on AC. Several studies have attempted to develop predictive models for the AC-derived 
waste materials. Multilayer feedforward artificial neural network (ANN) models were developed to forecast AC’s 
total yield and SA of AC from diverse biomass feedstocks via pyrolysis and steam activation19. ML prediction of 
physical characteristics and N content using three tree-based models of porous carbon from agricultural waste20. 
Nevertheless, no study has attempted to examine the impact of particle size, activation processing conditions, and 
N doping on the textural properties of AC derived from waste materials. To the best of our knowledge, no study 
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has developed ML modelling for the prediction and optimization of the texture properties of AC-derived solid 
waste materials based on particle size, activation processing conditions, and N doping of the resulting texture 
characteristics (SA, TPV, and micropore volume (MPV)). The subsequent section delves into the significance of 
this investigation, its objectives, and general methodology.

The textural properties of AC (SA, TPV, and MPV) are crucial for assessing their efficacy in adsorption 
applications, including water purification, gas storage, and carbon capture. Optimizing and enhancing these 
textural characteristics is essential for maximizing the adsorption efficiency, selectivity, and overall effectiveness 
of AC in diverse environmental and industrial applications. It is well known for its porous structure, making it 
ideal for air and gas purification and wastewater treatment applications. The performance of AC is significantly 
influenced by its textural properties such as SA, TPV, and MPV.

Traditional experimental approaches for determining the textural properties of activated carbon (AC) are 
often expensive, time-consuming, and limited in scalability. While previous studies have explored machine 
learning (ML) techniques for predicting AC properties, they have largely overlooked the combined effects of 
particle size, activation processing conditions, and nitrogen doping on AC’s textural characteristics. This study 
introduces a comprehensive ML framework that integrates multiple advanced algorithms—including Random 
Forest (RF), Gradient Boosting Regressor (GBR), Decision Tree (DT), Artificial Neural Networks (ANN), and 
Support Vector Machines (SVM)—to model and optimize AC’s surface area (SA), total pore volume (TPV), 
and micropore volume (MPV). These models were chosen because they encompass a variety of machine 
learning techniques, including ensemble learning, decision-based models, kernel methods, and deep learning 
architectures. These models capture the nonlinear relationships and complex interactions between input 
parameters, which simpler regression methods fail to address. A Genetic Algorithm (GA) was coupled with 
the GBR model to optimize the synthesis process, making this study one of the first to systematically integrate 
ML-based predictive modeling with optimization techniques for AC production. The proposed ML-based 
approach enhances predictive accuracy and provides a scalable solution for fine-tuning synthesis parameters, 
thereby minimizing experimental efforts while maximizing AC’s performance for adsorption applications such 
as carbon capture, water purification, and energy storage.

Methodology
Figure 1 describes the methodology for predicting and optimizing the textural properties of the AC materials. The 
process begins with data collection, involving a literature review to identify relevant papers on AC derived from 
various waste materials. Data extraction is then performed to compile useful datasets for analysis. Following this, 
data preparation is carried out, which includes cleaning, processing, and describing the data using univariate 
and bivariate statistical analyses. This step ensures the dataset is well-structured and informative for subsequent 
analysis.

The initial phase of the analysis involved testing linearization techniques to simplify the relationship between 
variables, employing linear regression, and calculating correlation coefficients to assess the strength of these 
relationships. This step ensured a clear foundational understanding of the data dynamics before applying 
more complex models. Subsequently, different ML models were developed and compared. These models were 
rigorously trained and tested to evaluate their performance in predicting the textural properties of the AC. 
The hyperparameters were optimized to enhance the accuracy and efficiency of the model, and the model was 
evaluated using different evaluation matrix parameters, including the coefficient of determination (R2) and 
average absolute percentage error (AAPE). A sensitivity analysis of the input parameters was conducted using 
the best-performing ML model. This included Sobol index calculations to quantify each parameter’s effect on the 
predicted outcomes. The analysis enhanced our understanding of how varying input parameters influence the 
predicted outcomes, providing valuable insights into the factors affecting the properties of AC. The controlled 
parameters were optimized in the final stages by integrating the selected ML model with the GA. This combination 
aimed to refine the synthesis conditions of AC, thereby maximizing desirable textural properties. In addition, 
the dependency between the two parameters was examined using topography plotting. This graphical analysis 
helped to visualize the interaction effects between variables and identify the optimal conditions that lead to the 
best material characteristics, ultimately facilitating the practical application of the findings in industrial settings.

Data collections
The data collected for the models aimed at the prediction and optimization of texture properties, including SA, 
TPV, and MPV, were analyzed for AC derived from various waste materials, such as petroleum coke21–25, coconut 
shell26–28, date29, rice husk char30, peanut shell char31, pine sawdust32, corn stover33, tea seed shell34, d-glucose35, 
rotten strawberries36, lotus stalks37,38, spent coffee39, oil residue40, walnut shell41, lemon peel42, bamboo shoot 
shell43, greasy back shrimp shell44, chitosan45, and banana peel46. AC was prepared via chemical activation using 
KOH, NaNH2, and K2CO3. Nitrogen (N) - doped and undoped carbon materials are considered. All collected 
data, along with the corresponding reference and conditions, can be found in the Supplementary file.

Data description
A diverse dataset was compiled from various literature sources, encompassing AC texture properties, including 
SA, TPV, and MPV, as a function of the activation process and synthesis conditions. A comprehensive data 
processing procedure was applied to retain only relevant measurements for analysis. Table 1 provides a univariate 
statistical summary of the input and output parameters from a dataset after processing containing approximately 
150 data points. In various studies from which the data were collected, the particle size was defined as a range, 
as detailed in Table 1. However, in the current study, the mean particle size was used instead of the range. The 
average particle size (Ps) ranged from 112 to 425 μm, with an average of 168.45 μm, and showed a positively 
skewed distribution. The ratio of the activating agent to carbon (RAC) varied between 1 and 4, averaging 2.38. 
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(D) is a binary variable with values of either 0 for non-doped materials or 1 for doped materials. The elemental 
composition showed carbon (C) content (at %) between 48.26% and 96.96%, while hydrogen (H) and N contents 
varied between 0.17% and 6.01% and 0.17% and 4.27%, respectively. activation temperature (Ta) ranged from 
450 °C to 900 °C, averaging around 618.95 °C, with a high positive skew in heating rate (Hr), ranging from 5 
to 10 °C/min. The holding time (th) was between 1 and 5 h, with an average value of 1.34 h and high positive 
skew. The SA varies widely from 502  m²/g to 2532  m²/g, with an average of 1517.29  m²/g, and displays a 
nearly symmetric distribution. The TPV and MPV also varied significantly, with TPVs ranging from 0.22 to 
1.914 cm³/g and MPV from 0.16 to 1.01 cm³/g. The standard deviations for particle size, carbon content, and 

Ps Range Ps RAC D C H N Ta Hr th SA TPV MPV

Units µm µm - - At. % At. % At.% oC oC/min hr (m2/g) (cm3/g) (cm3/g)

Minimum 74–150 112 1 0 48.26 0.17 0.17 450 5 1 502 0.22 0.16

Maximum 180–450 315 4 1 96.96 6.01 4.27 900 10 5 2532 1.914 1.01

Standard deviation - 99.47 1.00 0.49 13.33 1.90 1.27 94.97 1.04 0.83 476.55 0.26 0.19

Skewness coefficient - 1.57 0.16 0.50 -0.80 0.59 0.21 0.07 4.35 3.38 -0.05 0.85 -0.31

Average - 168.45 2.38 0.38 75.49 2.68 1.94 618.95 5.23 1.34 1517.29 0.69 0.62

Table 1.  Univariate statistical analysis of input and output parameters.

 

Fig. 1.  Flowchart describing the methodology of predicting and optimizing activated carbon texture 
properties.
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activation temperature indicated substantial variability, whereas the skewness coefficients revealed that most 
variables, including particle size, H content, and holding time, showed right-skewed distributions, suggesting 
long tails. Conversely, SA and MPV exhibited nearly symmetric distributions, indicating a balanced data spread 
in these measures.

Figure 2 presents a seaborn pair plot that shows cross-plots of the parameters against each other, with the 
diagonal displaying the individual data distributions. The plots reveal distinct relationships between the input 
parameters and the output properties. Particle size exhibited a clear negative impact on all three output parameters 
(SA, TPV, and MPV). Conversely, the ratio of activating agent to carbon positively influences the output. The 
carbon content and N-doping displayed a positive trend with SA and MPV, but almost no correlation with TPV. 
N content, on the other hand, revealed an inverse relationship with the MPV. Most input parameters appear to 
behave independently, showing minimal interdependence. However, both the carbon content and particle size 
exhibited a positive trend with the activation temperature. The diagonal plots indicate the distribution of each 
parameter, with SA and MPV displaying nearly symmetrical distributions. In contrast, the other parameters 
exhibit slightly right-skewed distributions, as reflected by their positive skewness coefficients.

Fig. 2.  Seaborn pair plot showing cross plots of the parameters against each other and the diagonal displaying 
individual data distributions.

 

Scientific Reports |        (2025) 15:11313 5| https://doi.org/10.1038/s41598-025-95061-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


To examine the dependence of the different output parameters on the input parameters, the Pearson 
correlation coefficient (R) was calculated. The R-values were calculated using Eq. 1.

	

R =

∑ n
i=1

(
xi−

−
x
) (

yi−
−
y
)

√∑ n
i=1

(
yi−

−
y
)2∑ n

i=1

(
xi−

−
x
)2 � (1)

R = correlation coefficient.
xi = values of the input variables in a sample−
x = mean of values of input variables
yi = values of the output variable in a sample−
y  = mean of the output variable values
Figure 3a shows a heat map of the correlation coefficients between all parameters, while Fig. 3b summarizes 

the correlation coefficients between the different output and input parameters. The analysis revealed that certain 
synthesis parameters have a pronounced impact on the textural properties of the synthesized porous carbon 
materials, while others exhibited minimal influence. The particle size demonstrated a strong negative correlation 
with SA (-0.13), TPV (-0.18), and MPV (-0.29), indicating that smaller particle sizes favor the formation of 
a highly porous structure. This is likely due to the increased surface-to-volume ratio of the smaller particles, 
which enhances the overall porosity of the material, making it more suitable for applications such as carbon 
capture. The Ratio of Activating Agent to Carbon is another crucial parameter, showing a positive correlation 

Fig. 3.  Correlation coefficient results, (a) Heat map for the Pearson correlation coefficient between all 
parameters with each other, and (b) correlation coefficient between the AC texture properties and the different 
input parameters.
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with SA (0.56), MPV (0.56), and TPV (0.44). This suggests that higher levels of activating agents promote the 
development of a more interconnected pore network, leading to an enhanced adsorption potential and larger 
SA, both essential for gas storage and separation efficiency.

N doping also showed a significant positive relationship, particularly with MPV (0.41), and a moderate 
impact on SA (0.13), which can enhance the formation of stable micropores. Carbon content (C) had a similar 
effect, positively correlating with SA (0.29) and MPV (0.37). This suggests that increasing the carbon content 
supports microporosity development without notably affecting the overall pore volume, thereby providing a 
pathway to optimize material performance, specifically for microporous applications. Conversely, N content 
showed a negative correlation with MPV (-0.28) and a slight inverse trend with SA (-0.21), implying that higher 
N levels may reduce microporosity.

Parameters such as the Activation Temperature positively impacted SA (0.25) and MPV (0.24). In contrast, 
the Heating Rate and Holding Time exhibited almost no correlation with the SA, TPV, or MPV. Their weak 
influence suggests that these parameters do not significantly alter the pore characteristics of the material within 
the tested range, indicating that they are less critical for tailoring the porous properties of carbon for specific 
applications.

Model development
The highlighted part in Fig.  1 illustrates the step-by-step procedure for developing ML models. The process 
begins with preparing, collecting, and processing relevant data to ensure high-quality inputs for model building. 
The min–max normalization approach was used to ensure consistency across all features, where the normalized 
values of each feature varied from 0 to 1. The data were randomly split into training and testing sets using 
ratios ranging from 60/40 to 80/20 to evaluate the performance of the model under different conditions. During 
the training stage, the hyperparameters were optimized to enhance accuracy. The split ratio was then adjusted 
during the testing phase to further refine the model’s performance and ensure optimal generalization. After 
testing, a sensitivity analysis was performed to examine the influence of each input parameter on the output 
predictions, providing insights into parameter importance. Finally, the process includes an optimization step, 
in which the developed model is integrated with a GA to optimize the input parameters for improved output 
performance. This comprehensive workflow ensured that the model was robust, accurate, and applicable to 
various input scenarios.

The model evaluation matrix consisted of the coefficient of determination (R2) and average absolute 
percentage error (AAPE). The R2 and AAPE were calculated using Eqs. 2–547.

	
R2 = 1 − SSE

SSYY
� (2)

	
SSE =

∑ n

i=1
(yi − ŷi)

2� (3)

	
SYY =

∑ n

i=1

(
yi−

−
y
)2

� (4)

	
AAPE =

∑ n
i=1abs((yi − ŷi)

n
∗ 100� (5)

Where SSE is the summation of residual squares, n is the number of data points, yi is the actual data value, ŷi is 
the predicted data value, and SY Y  is the summation of squares of data variation to the data mean value.

To accurately predict each target parameter (SA, TPV, and MPV) in the study of AC derived from waste 
materials, this study implemented a multifaceted approach using various ML models. The necessity for 
precision in predicting the textural properties of AC underscores the need for comprehensive application of 
advanced analytical models that can handle the complexities of the dataset and provide reliable predictions. 
Multiple machine learning algorithms were assessed for their efficacy in predicting specific target parameters. 
Random Forest (RF), Decision Tree (DT), Gradient Boosting Regressor (GBR), Support Vector Machines 
(SVM), and Artificial Neural Networks (ANN) were selected as they represent a diverse range of machine 
learning techniques, covering ensemble learning, decision-based models, kernel methods, and deep learning 
architectures. These models were chosen based on their established effectiveness in similar predictive tasks and 
their ability to balance interpretability, computational efficiency, and predictive accuracy. These algorithms were 
selected based on their proven capabilities for various ML challenges, particularly those involving complex and 
high-dimensional data. Following are more details about each ML model and its capabilities.

A decision Tree (DT) model was employed for straightforward interpretability. A DT clearly visualizes 
the decision-making process from the root to the leaves, showing how input features affect outputs. This 
transparency is invaluable in scientific studies where understanding the influence of each parameter is as crucial 
as the accuracy of the predictions. DT models are particularly useful in scenarios where stakeholders require 
clear explanations of decisions, thus supporting the interpretability of complex machine learning models in real-
world applications48. The splitting criterion is based on impurity measures, such as Entropy or Gini Index, which 
assess how well a feature divides the dataset. The tree grows by selecting the attribute that maximizes information 
gain, ensuring the most informative splits at each level. Entropy (H) measures the impurity or unpredictability 
in a dataset, whereas The Gini Index measures how often a randomly chosen element is incorrectly classified if 
labeled randomly48.
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Gini = 1 −

∑
c
i=1p2

i � (6)

	
H = −

∑
c
i=1pilog2(pi)� (7)

Information Gain (IG) can be calculated as follows

	
IG = Hparent −

∑ |Sv|
|S| Hchild� (8)

Where:

•	 pi​ denotes the probability of class i in a given node.
•	 H is the entropy of the dataset,
•	 C is the number of classes,
•	 IG is the improvement in information content due to a split,
•	 Sv is the subset of data where attribute A takes value v,
•	 |Sv|

|S|  is the proportion of data belonging to subset Sv​.

The Random Forest (RF) algorithm was predominantly utilized for its ensemble method, enhancing prediction 
accuracy. RF improves the model performance by integrating multiple decision trees, which reduces the risk of 
overfitting by averaging the predictions from various trees. This method is particularly effective in managing the 
high-dimensional data characteristics of textural properties in materials science. RF’s ability of RF to handle large 
datasets with multiple input variables makes it ideal for predicting properties such as SA, TPV, and MPV, where 
interactions between variables can be highly nonlinear and complex49. Random Forest is an ensemble learning 
algorithm that constructs multiple decision trees and combines their outputs to improve the prediction accuracy 
and reduce overfitting. Each tree was trained on a randomly sampled subset of the data, and the final prediction 
was obtained by averaging the outputs of all trees in regression tasks or majority voting in classification tasks50.

	
ŷ = 1

N

∑
N
i=1Ti (x)� (9)

Where:

•	 ŷ​ denotes the predicted output.
•	 NNN is the number of decision trees,
•	 Ti (x) represents the prediction from the ith tree.

The Gradient Boosting Regressor (GBR) was selected for its proficiency in handling complex non-linear 
interactions between variables. The GBR builds an ensemble of weak prediction models, typically decision trees, 
sequentially, in which each subsequent model attempts to correct the errors of its predecessors. This technique 
gradually improves the prediction accuracy and is highly effective in reducing bias and variance, making it 
suitable for intricate datasets involved in predicting the textural properties of AC derived from waste materials51. 
Gradient Boosting is an iterative ensemble method that builds a sequence of weak learners, typically decision 
trees, where each new model corrects the residual errors of the previous model. This approach minimizes the 
loss function using gradient descent, resulting in an optimized predictive model52.

	 Fm (x) = Fm−1 (x) + γ mhm (x)� (10)

Where:

•	 Fm (x) is the model at iteration mmm,
•	 Fm−1 (x) is the previous iteration model,
•	 hm (x) is the weak learner (decision tree),
•	 γ mis the learning rate.

Artificial Neural Networks (ANN) were included in this study because of their exceptional capability to model 
the complex non-linear relationships between inputs and outputs. With their deep-learning capabilities, ANNs 
can learn high-level features from data using architectures that mimic human neural networks. This makes them 
exceedingly effective for tasks in which the relationship between the input parameters and the desired output 
is intricate and not easily discernible by simpler ML models. ANNs have shown great promise for accurately 
predicting material properties that depend on subtle interactions among multiple factors53. An ANN consists of 
layers of neurons with activation functions. The network learns by adjusting the weights using a backpropagation 
algorithm to minimize errors.

	 Z = W X + b� (11)

	 A = σ (z)� (12)

Where:
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•	 Z is the weighted sum of inputs,
•	 W is the weight matrix,
•	 X is the input feature vector,
•	 b is the bias,
•	 σ(Z) is the activation function (e.g., ReLU, Sigmoid, Tanh).

The support vector machine (SVM) model was also explored in this study owing to its renowned capability for 
regression and classification tasks. The SVM finds a hyperplane that best divides a dataset into classes or predicts 
values with a maximum margin, thus ensuring greater model generalization. For regression tasks, SVM uses a 
similar approach to fit the error within a certain threshold, making it particularly useful for datasets in which 
the prediction must be accurate and robust against potential outliers. Support Vector Machines (SVMs) are 
supervised learning models that determine the optimal hyperplane that maximizes the margin between different 
classes in a dataset. The fundamental idea is to map the input data into a higher-dimensional feature space, 
where a linear decision boundary can be established. The optimal hyperplane is defined by support vectors, 
which are the closest data points to the boundary54. The optimal hyperplane is given by:

	 f (x) = wT x + b� (13)

Where:

•	 w is the weight vector that defines the hyperplane,
•	 x is the input feature vector,
•	 b is the bias term,
•	 The decision boundary is given by f (x) = 0.

SVM for regression tasks, the objective is to minimize the prediction error while maintaining a margin 
∈ :

	
minw,b,ϵ ,ϵ ∗

1
2?w?2 + C

∑
i(ϵ i + ϵ ∗

i ) � (14)

C is the regularization parameter that controls the trade-off between maximizing the margin and minimizing 
misclassification, ϵ i, and ϵ ∗

i are slack variables for violations.
The final optimization process integrated a GA with a developed model to refine the prediction of the AC 

properties by optimizing the input parameters. This process involves initializing a diverse population, where 
each individual represents a unique set of input parameters55,56. These individuals are assessed for fitness and 
quantified based on how well the output properties satisfy the desired performance criteria. A high fitness score 
indicates better performance and guides the selection process. In the GA, selection is based on a tournament 
style, where the best among a randomly chosen subset of the population is selected for reproduction. This 
selection process ensures that traits from higher-performing individuals are carried to the next generation while 
maintaining genetic diversity. Crossover, the next step, blends traits from two-parent individuals to produce new 
offspring, allowing the algorithm to explore new parameter combinations that may yield better results. Mutation 
introduces random, small-scale changes to the offspring’s traits, preventing the algorithm from becoming stuck 
in local optima and encouraging solution space exploration. This is particularly useful for navigating complex 
landscapes of model responses where the optimal conditions are not immediately apparent. As generations 
progress, the population theoretically evolves towards an optimal set of input parameters, with the GA iterating 
through cycles of selection, crossover, and mutation until a stopping criterion is met, such as the maximum 
number of generations or a plateau in fitness improvement.

Results and discussion
Testing linearization
A linear regression (LR) model was applied to assess the linear relationship between the input and output 
variables SA, TPV, and MPV. Figure  4 shows the cross plots of the predicted versus actual values for each 
output variable using both the training and testing datasets. The results demonstrated a significant discrepancy 
between the predicted and actual values, indicating that the LR model failed to capture the relationships within 
the data accurately. This misalignment suggests that the relationship between the inputs and outputs is likely 
non-linear and complex, underscoring the limitations of a simple linear model for predicting these properties. 
Consequently, more sophisticated ML models are necessary to effectively model underlying interactions for 
accurate predictions.

model for both training and testing datasets.

Machine learning models results
Several ML models, including RF, GBR, DT, SVM, and ANN, have been developed to predict the SA, TPV, and 
MPV. Figure 5 highlights the evaluation matrix, including R2 and AAPE, for the different models for predicting 
SA values at different splitting ratios. The optimal training/testing split ratio was determined to be 70/30, offering 
the best balance between model learning and validation performance. This ratio ensures the model is trained 
on sufficient data while preserving an adequate testing set for robust evaluation. At this split, RF achieves its 
highest testing R2 accuracy (0.957) while maintaining strong training performance (0.994), but with an AAPE 
of 10 on the test set, indicating some variance in prediction accuracy. Similarly, GBR reaches its peak testing 
accuracy (0.964) with minimal overfitting (training R2: 0.997), while its AAPE for testing remains at 6, making 
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it a strong contender for reliable predictions. DT exhibits notable improvement at the 70/30 split, with a testing 
R² of 0.95 and a substantial drop in AAPE from 8.9 (60/40) to 5, demonstrating improved generalization. ANN 
and SVM also maintain high testing R2 values (0.963 and 0.96, respectively), while their AAPE values remain 
at 7 and 5, respectively, reflecting stable prediction accuracy. Overall, the 70/30 split provides the best trade-off 
between R2 accuracy and AAPE, minimizing overfitting while ensuring strong predictive capability across all 
models, making it the most balanced choice for robust AC texture property prediction. A similar performance 
was observed in the case of TPA and MPV prediction models.

Each model underwent hyperparameter tuning to maximize the predictive performance, and the optimal 
hyperparameters are summarized in Table  2. For the RF model, the best results were achieved using “sqrt” 
for maximum feature selection, a maximum depth of 25, and 125 estimators. For the GBR model, an optimal 
learning rate of 0.21, 50 estimators, and a subsample rate of 0.5. The DT model performed the best, with a 
maximum depth of 9 and “sqrt” as the feature selection method. For ANN, the optimal configuration included a 
sequential network architecture with 4 nets, 64 neurons per layer, and a combination of ‘relu’ and ‘tanh’ activation 
functions. Similarly, A grid search was utilized to optimize the SVM hyperparameters, and the best performance 
was achieved using an RBF kernel with C set to 5000 and gamma set to ‘scale. ’ These optimized settings are 
crucial for improving the predictive accuracy of each model and ensuring robust predictions tailored to each 
output parameter of the synthesized porous carbon materials.

Figure 6 presents cross-plots of the actual versus predicted SA values for the developed ML models evaluated 
on the training and testing datasets. All models demonstrated high performance, with R2 values exceeding 
0.95 and AAPE values remaining below 10% across both datasets. Most data points in these cross-plots align 
closely along the 45-degree line, indicating accurate predictions of SA as a function of element composition and 
synthesis parameters.

Among the models, GBR and ANN exhibited the best performance, with R² values of 0.997 (Fig. 6c) and 
0.980 (Fig. 6g) for the training set and 0.964 (Fig. 6d) and 0.963 (Fig. 6h) for the testing set, respectively. This 
balance suggests that both the GBR and ANN models generalize well to new data without significant overfitting. 
The SVM demonstrated comparable results to GBR and RF, achieving R2 scores of 0.993 (Fig. 6i) in training 

Fig. 5.  Different models evaluation parameters for SA prediction at different data training/testing splitting 
ratios: R2 on the Left, AAPE on the right.

 

Fig. 4.  Cross plots for the actual versus the predicted parameter values from linear regression.
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and 0.96 (Fig. 6j) in testing, with slightly lower errors of 1% AAPE in training and 5% in testing. In contrast, the 
Decision Tree (DT) and Random Forest (RF) models displayed slightly more overfitting, with R2 values dropping 
from 0.988 (Fig. 6e) to 0.959 (Fig. 6f) for DT and from 0.994 (Fig. 6a) to 0.957 (Fig. 6b) for RF. This slight 
discrepancy in DT and RF indicates that, while they capture trends effectively during training, their predictive 
accuracy slightly decreases on unseen data. Table 3 summarizes the performance indicators of the R2 and AAPE 
values for the predicted surface areas from the different ML models.

To assess the effectiveness and reliability of the predictive model for estimating the SA of AC materials, a 10-
fold cross-validation method was applied, which represents a substantial improvement over the previously used 
random-subsampling approach. This method involved segmenting the dataset into ten separate parts or folds, 
where each segment was alternately used as a validation set, while the others were employed for training. This 
procedure was repeated until each fold was used exactly once for validation, providing a thorough assessment of 
model performance across the entire dataset. The outcomes of this meticulous validation process are illustrated 
in Fig. 7a, which shows a cross-plot of the predicted values against the actual values from the validation sets 
using the GBR model. The plot reveals a precise alignment of the data points along the 45-degree reference line, 
indicating excellent accuracy and consistency of the model across different data segments. This precise alignment 
underscores the robust generalization ability of the model. Figure 7b shows the R2 statistics for each fold, where 
the values fluctuated between 0.91 and 0.99, with an average of 0.96, and a low standard deviation of 0.03. These 
results confirm the high performance of the model and demonstrate its ability to generalize effectively without 
overfitting, thereby underscoring its reliability under diverse conditions.

Figure 8 presents crossplots of actual versus predicted TPV values from various ML models, revealing the 
effectiveness of each model in capturing the relationship between the input parameters and TPV across the 
training and testing datasets. Table 4 shows that all models performed well, achieving R2 values above 0.93 and 
an AAPE below 10% for both datasets, demonstrating effective predictive capability with some variation among 
models. The GBR achieved outstanding results, with an R2 of 0.997 (Fig. 8c) for training and 0.96 (Fig. 8d) for 
testing, and low AAPE values (3% for training and 7% for testing). Its close alignment with the diagonal in 
both datasets indicates strong predictive accuracy and balanced generalization, positioning the GBR as a top 
performer. The ANN also performed accurately, particularly on the testing data, with an R² of 0.966 (Fig. 8h) 
and an AAPE of 8%.

RF showed strong performance on the training set (Fig. 8a) (R2 = 0.994 and AAPE = 3%), but a slight drop 
in accuracy on the testing set (Fig. 8b) (R2 = 0.949, AAPE = 9%). This deviation, along with points that stray 
further from the diagonal in the testing data, suggests mild overfitting, because the RF appears to have adapted 
too closely to the training data. DT exhibited a more pronounced overfitting, with a nearly perfect R2 of 0.999 
(Fig. 8e) on training but a reduced R² of 0.935 (Fig. 8f) during testing. Its AAPE increased from 1% during 
training to 6% during testing, indicating limited generalization because of its tendency to fit too closely with 
training nuances. SVM displayed marginally lower performance than RF, ANN, and GBR in predicting TPV, 
with R2 scores of 0.96 (Fig.  8i) in training and 0.94 (Fig.  8j) in testing, and AAPE values of 12% and 11%, 
respectively. However, it maintained a consistent balance between the training and testing results, indicating 
no overfitting issues, unlike the DT model in which the training performance significantly exceeded the testing 
performance. This consistent behavior of the SVM could be attributed to its ability to generalize better, avoiding 
the common pitfall of overfitting observed in more complex models.

To evaluate the effectiveness and reliability of the predictive model for estimating the TPV of AC materials, 
10-fold cross-validation was implemented using the GBR model. The results in Fig. 9a show a cross-plot of the 
predicted versus actual values, revealing a precise alignment along the 45-degree reference line. This alignment 
indicated excellent accuracy and consistency across the data segments, highlighting the robustness of the 
generalization ability of the model. Figure 9b summarizes the R2 statistics for each fold, which ranged between 

Method Hyper-parameter Available options Optimum option

RF

Maximum features [“auto”, “sqrt”, “log2”] sqrt

Maximum depth [3, 4, 5, …, 30] 25

N of estimators [3, 4, 5, …, 150] 125

GBR

learning rate 0.1–0.9 0.21

estimators 3-150 50

subsample 0.1–0.9 0.5

DT
adept 2–20 9

max_features [“auto”, “sqrt”, “log2”] sqrt

ANN

Number of nets 1–5 4

Number of Neurons 5-128 64

net Sequential,… Sequential

Activation Function ‘relu’, ‘tanh’ ‘relu’, ‘tanh’

SVM

kernel ‘rbf ’, ‘poly’, ‘sigmoid’ rbf

C 0.1-10000 5000

gamma ‘scale’, ‘auto’ scale

Table 2.  Tested options selected for the optimization of the developed ML.
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0.91 and 0.99, with an average of 0.968 and a low standard deviation of 0.03. These results confirmed the high 
performance and effective generalization of the model, demonstrating its reliability under diverse conditions.

Different ML models were similarly applied to predict MPV based on the input parameters. Figure  10 
presents cross plots for the actual versus predicted MPV values, highlighting each model’s predictive capabilities 
across the training and testing datasets. Table 5 summarizes the R2 and AAPE values of the different ML models 
for the actual versus predicted MPVs. GBR and ANN emerged as the top-performing models for predicting 

Fig. 6.  Cross plots for the actual versus the predicted surface area values from the different ML models for 
both training and testing datasets.
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MPV, with GBR demonstrating balanced performance across both datasets and ANN achieving the highest 
testing accuracy. Specifically, the GBR achieved R2 values of 0.995 (Fig. 10c) for training and 0.951 (Fig. 10d) for 
testing, with low AAPE values of 3% for training and 7% for testing. Conversely, ANN outperformed the other 
models on the testing dataset, achieving the highest R2 value of 0.987 (Fig. 10h) and a minimal AAPE of 3%. RF 
and DT performed well during training, with R2 values of 0.992 (Fig. 10a) and 0.999 (Fig. 10e), respectively, and 
AAPE values of 5% and 0.1% for RF and DT, respectively. However, they exhibited a decline in accuracy during 
testing, which was indicative of mild overfitting. RF showed an R2 of 0.930 (Fig. 10b) with an AAPE of 9%, 
whereas DT had an R2 of 0.913 (Fig. 10f) and an AAPE of 5% for the testing dataset. This decline suggests that 
while RF and DT captured the training data well, they struggled to generalize effectively to new data compared 

Figure 6.  (continued)

Fig. 7.  10-fold cross-validation results, (a) Predicted versus actual SA values cross plot, (b) R2 values for the 
different folds during the cross-validation process.

 

Model

SA Evaluation parameters

SVMRF GBR DT ANN

R2
Training 0.994 0.997 0.988 0.980 0.993

Testing 0.957 0.964 0.959 0.963 0.96

AAPE
Training 3% 3% 2% 5% 1%

Testing 10% 6% 5% 7% 5%

Table 3.  Summary of performance indicators for surface area prediction using different ML models.
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to GBR and ANN. Similar to the TPV predictions, the SVM model demonstrated consistent but slightly lower 
performance in predicting MPV, achieving R2 scores of 0.94 (Fig. 10i) for training and 0.93 (Fig. 10j) for testing 
and an Average Absolute Percentage Error (AAPE) of 13% for both the training and testing phases.

To evaluate the accuracy of the predictive model in estimating the MPV of AC materials, 10-fold cross-
validation was performed using the GBR model. The results are shown in detail in Fig.  11a, which displays 
a cross plot of the predicted versus actual values. The data points align closely with the 45-degree reference 

Fig. 8.  Cross plots for the actual versus the predicted total pore volume values from the different ML models 
for both training and testing datasets.
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line, demonstrating the excellent accuracy and consistency of the model across different data segments and 
highlighting its robust generalization capabilities. Figure 11b provides an overview of the R2 statistics for each 
fold, showing values ranging from 0.89 to 0.99, with an average of 0.958 and a low standard deviation of 0.039. 
These figures confirm the high performance and effective generalization of the model, attesting to its reliability 
under diverse conditions.

The results of the different ML models showed that RF, GBR, and ANN demonstrated superior performance 
over DT and SVM because of their inherent characteristics that mitigate common issues such as overfitting and 
underperformance. In particular, the GBR model presented a higher performance without overfitting problems, 
as highlighted by the 10-fold cross-validation process using different models to predict all AC texture properties.

Figure 8.  (continued)

Fig. 9.  10-fold cross-validation results, (a) Predicted versus actual TPV values cross plot, (b) R2 values for the 
different folds during the cross-validation process.

 

TPV Evaluation parameters

SVMRF GBR DT ANN

R2
Training 0.994 0.997 0.999 0.995 0.96

Testing 0.949 0.96 0.935 0.96 0.94

AAPE
Training 3% 3% 1% 4% 12%

Testing 9% 7% 6% 8% 11%

Table 4.  Summary of performance indicators for total pore volume prediction using different ML models.
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RF and GBR, both ensemble learning methods, leverage multiple learning algorithms to obtain better 
predictive performance, thus reducing the overfitting commonly observed in DT. By aggregating the results 
of numerous decision trees, RF improves accuracy and stability without substantially increasing the risk of 
overfitting50. Similarly, GBR systematically combines weak predictive models to form a strong learner, thereby 
iteratively enhancing the performance52. ANNs excel in capturing complex patterns in large datasets owing to 
their deep learning capabilities and multiple layers of non-linear processing units. This makes them particularly 

Fig. 10.  Cross plots for the actual versus the predicted micropore volume values from the different ML models 
for training and testing datasets.
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adept at handling nonlinear relationships that SVMs, which typically excel in high-dimensional space, might 
struggle with when the data lacks a clear margin of separation57. Although influential in classification tasks 
and high-dimensional spaces, SVMs often exhibit a slightly lower performance in regression or complex 
nonlinear prediction scenarios than RF, GBR, and ANN. This is partly because of their reliance on defining 
a decision boundary that is not always optimal for every dataset, particularly those with overlapping classes 
or intricate patterns54. Different strategies can be implemented in future studies to enhance model robustness 
and ensure consistent performance across the training and testing phases. These include increasing the 
diversity and size of the training dataset to better capture the variability inherent in real-world applications 
and employing regularization techniques to penalize excessive model complexity. Additionally, integrating 

Figure 10.  (continued)

Fig. 11.  10-fold cross-validation results, (a) Predicted versus actual MPV values cross plot, (b) R2 values for 
the different folds during the cross-validation process.

 

MPV Evaluation 
parameters

SVMRF GBR DT ANN

R2
Training 0.992 0.995 0.999 0.996 0.94

Testing 0.930 0.951 0.913 0.987 0.93

AAPE
Training 5% 3% 0% 2% 13%

Testing 9% 7% 5% 3% 13%

Table 5.  Summary of performance indicators for micropore volume prediction using different ML models.
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10-fold cross-validation during model development helps assess the model’s ability to generalize beyond the 
training data by repeatedly validating the model’s performance across ten subsets. This method reduced the 
likelihood of overfitting and ensured reliable performance metrics. Moreover, the continuous monitoring of 
model performance and iterative tuning of hyperparameters based on new data can improve the reliability of the 
models in practical applications.

Sensitivity analysis
As the GBR model showed the best performance, it was used to conduct a sensitivity analysis of the input 
parameters on the texture property (SA, TPV, and MPV) values. In this analysis, the GBR model is employed 
to predict the output parameters based on random values of the input parameters within the range of the data 
listed in Table  1. A Sobol sensitivity analysis was used to assess the relative influence of each parameter on 
the predicted parameters. Sobol’s method is beneficial for quantifying both the first-order and total-order 
sensitivities. First-order indices (S1) indicate the direct effect of a single parameter on the output, whereas total-
order indices (ST) measure the combined effect of a parameter, including its interactions with other parameters. 
This sensitivity analysis helps to identify which input factors significantly affect the prediction of porous carbon 
material properties, guiding future experimental and modeling efforts.

Figure 12 shows the S1 and ST bar charts used to predict texture properties. For SA predictions, the analysis 
underscored carbon content (C) as the most influential factor, with a significant first-order S1 of 0.366 and ST of 
0.408, indicating a predominant influence on variability. Similarly, the activating agent-to-carbon ratio markedly 
affected the SA, as highlighted by an S1 of 0.187 and an ST of 0.284. The activation temperature also demonstrated 
considerable influence, with an ST of 0.150. In the case of TPV, the activation temperature emerged as the most 
critical parameter, with S1 of 0.416 and ST of 0.424, reflecting its substantial effect on the output variance. The 
hydrogen content (H) and ratio of activating agent to carbon also showed significant first-order effects, with S1 
values of 0.193 and 0.121, respectively. MPV, the carbon content again proved highly impactful, with an S1 of 
0.271 and an ST of 0.313, whereas the particle size and activation temperature also showed notable effects on the 

Fig. 12.  First-order indices (S1), and total-order indices (ST) for the Sobol sensitivity analysis.
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model predictions. This underscores the critical role of these parameters in governing the properties of porous 
materials, especially in carbon capture and hydrogen storage applications.

The correlation coefficient shown in Fig.  13 illustrates the linear relationship between the AC material 
properties and input parameters. The correlation coefficients elucidate these relationships, revealing positive 
correlations between carbon content and activation temperature with all output parameters, suggesting their 
pivotal role in enhancing AC’s textural properties of AC. Conversely, negative correlations between particle 
size and N content across different models indicated a reduction in pore volume, highlighting the complex 
interactions within the synthesis parameters.

Sensitivity analysis showed that the ratio of activating agent to carbon significantly influenced SA. The 
etching effect of the activation agent acts as an oxidizing agent, resulting in the formation of pores in the carbon 
skeleton58. Choosing the right impregnation ratio is crucial because it affects the porosity and prevents carbon 
skeleton collapse from over-activating agents59. Generally, a porous carbon structure is formed by improved 
chemical etching during activation. The activation temperature is critical for determining the surface area 
and porosity of the samples; however, higher temperatures can cause the carbon skeleton to collapse, thereby 
reducing the carbon texture properties. It has been reported that increasing the activation temperature increases 
SA and TPV32. According to the sensitivity analysis illustrated in Fig. 12, the activation temperature was the 
most relevant factor for the three target attributes and had a greater influence on SA and TPV. The significance 
of the activation temperature has been previously investigated20. As the activation temperature increased, the 
holes formed expanded further, increasing the SA, TPV, and the average pore size. An unusually high activation 
temperature causes the pore structure to collapse or shrink, decreasing the porosity, SA, and micropores59,60. 
Thus, the activation temperature considerably affects the morphological structure of the carbon. Furthermore, 
increasing the activation temperature and amount of activator resulted in a more intense reaction, causing severe 
etching, greater microporous pore size, and the production of additional mesopores. It has also been reported 
that increasing the chemical-to-carbon ratio increases the proportion of micropores22. It has also been found 
that increasing the activation temperature and chemical-to-carbon ratio increases SA, TPV, and MPV21. The 
particle size substantially affects the SA, TPV, and MPV of AC61. Smaller particles have a larger SA owing to 
their higher surface-area-to-volume ratio61. Decreasing the particle size also enhances access to internal pores, 
frequently increasing TPV. Furthermore, smaller particles may expose more micropores, thereby producing 
a larger MPV61. Thus, regulating the particle size is critical for maximizing the textural properties of the AC. 
The carbon content affected the textural properties of AC. For instance, higher impurities and ash yield lower 
carbon content in less-developed porous structures and lower SA10. During activation, the biomass feedstock 
ash content had a greater impact on SA. This could be because the amount of ash in the biomass feedstock 
directly affects pore formation during the activation process10. The N content influenced AC’s textural properties 
of the AC (SA and MPV) (Fig. 12). N-containing materials can act as catalysts during activation, affecting the 
pore formation kinetics and processes62.

Optimizing the synthesis parameters
The textural properties of AC (SA, TPV, and MPV) are important in determining its performance in adsorption 
applications such as water purification, gas storage, and carbon capture63. Therefore, balancing and improving 
these textural properties is critical for maximizing AC’s adsorption efficiency, selectivity, and overall efficacy 
of AC for various environmental and industrial applications. A large SA allows more active sites for adsorbate 
molecules to adhere to, boosting the adsorption capacity of the carbon64. TPV indicates the amount of space 
within the carbon structure that can be used to store or trap molecules, allowing AC to contain more adsorbates65. 
In particular, the MPV is critical for trapping tiny molecules because micropores provide a larger interior surface 

Fig. 13.  Correlation coefficient for the input parameters versus different material properties reflecting the 
importance of each based on the sensitivity analysis.
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in a limited volume66. To produce AC with improved textural properties, it is necessary to understand how 
various biomass feedstocks and activation conditions affect these properties. Therefore, it is essential to optimize 
the AC synthesis process to improve textural properties.

The GA was integrated with the developed Gradient Boosting Regressor (GBR) models to optimize the AC 
synthesis process of AC to enhance SA, TPV, and MPV. The genetic operations utilized included tournament 
selection for reproducing the best candidates, blend crossover with a 50% mixing rate for combining genetic 
materials, and a customized mutation function designed to toggle discrete parameters and apply bounded 
Gaussian mutations to continuous parameters. The fitness function is directly linked to the output of the ML 
model, which the GA strives to maximize. The process involves the iterative selection of the top-performing 
individuals from the population, application of genetic operations, and evaluation of new generations to refine 
the solutions over a designated number of generations. Figure 14 shows the progression of this GA, showing 
the increase in maximum fitness over 40 generations. The rapid improvement in fitness from generations 0 to 
15 indicates an effective exploration of the solution space, where various potential solutions are assessed, and 
the most promising ones are replicated. Beyond generation 15, the increase in fitness levels was off, suggesting 
a plateau that began around generation 20 and continued until generation 40. This plateau indicated that the 
algorithm may have attained a near-optimal or optimal solution. Table 6 presents the optimized input parameters 
and their corresponding outputs for AC properties.

In the optimization process, controlling parameters such as the particle size, ratio of activating agent to 
carbon, activation temperature, heating rate, and holding time were optimized for a specific AC material with 
a defined carbon composition. The values for the composition parameters (C, H, and N) were set to medians 
of 80, 2, and 1 wt%, respectively, while the controlled parameters varied within the minimum and maximum 
ranges specified in Table 1. This optimization resulted in a SA of 1775 m²/g, a TPV of 1.4 cm³/g, and a MPV of 
0.88 cm³/g.

Two-factor partial dependence plots were used to demonstrate the impact of the combination of these two 
factors on the properties of the porous materials. This analysis aimed to examine the most significant parameters 
identified from the sensitivity analysis, including the activation temperature, ratio of the activating agent to 

Parameters Minimum end Maximum end Optimum values without N Doping

Inputs

Particle size, µm 112 315 137

The ratio of activating agent to carbon 1 4 3.83

N-Doping 0 0 0

Activation temperature, oC 450 900 844

Heating rate, oC/min 5 10 6.57

Holding time, hr 1 5 3.62

Outputs

SA, m2/g - - 1775

Total pore volume, cm3/g - - 1.4

Micropore volume, cm3/g - - 0.88

Table 6.  The optimized controlled input parameters and the corresponding texture properties (without 
N-Doping).

 

Fig. 14.  the evolution of the GA to reach the optimum solution.
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carbon, particle size, and holding time. During each evaluation, these two parameters were varied within the 
ranges provided in Table  1, whereas the other parameters were assumed to be at their optimum values, as 
outlined in Table 6.

Figure  15 illustrates the influence of the activation temperature and ratio of activating agents on various 
material properties. The data show noticeable improvements in material properties as the activation temperature 
increases up to 850 °C, specifically within the optimal range of 800 to 900 °C. The SA increased from approximately 
1200 to 1700, TPV rises from 0.4 to about 1.4, and MPV improved from 0.55 0.83. A pronounced increase was 
observed with increasing activation temperature, whereas the trend related to the ratio of the activating agent 
was more gradual.

Similarly, Fig.  16 depicts the variations in material properties as a function of particle size and holding 
time. A negative trend was noted for particle size, where smaller sizes correlated with higher property values, 
particularly between particle sizes of 74 and 150 μm. The holding time significantly affected the SA and MPV, 
with optimal properties observed between 3 h and 4 h.

These optimum conditions were based on the GBR model developed using a range of input parameters, 
as listed in Table 1. Hence, future studies should examine the performance at lower particle sizes (outside the 
current study ranges).

Conclusions
Different advanced ML models were developed in this study to predict and optimize the AC texture properties 
as a function of the raw material type, particle size, and activation processing conditions. Sensitivity analysis was 
performed using the developed ML model to evaluate the impact of the input parameters. The key findings of 
this study are as follows.

•	 The Gradient Boosting Regressor (GBR), artificial neural network (ANN), and Random Forest (RF) models 
demonstrated high predictive accuracies, with R2 values exceeding 0.96.

•	 Support Vector Machines (SVM) exhibited consistent but slightly lower performance, particularly in predict-
ing TPV and MPV.

•	 The Decision Tree model revealed a tendency to overfit, particularly for TPV and MPV predictions, indicat-
ing the need for careful model selection and parameter tuning to balance the accuracy and generalizability.

•	 Sensitivity analysis identified carbon content, activation temperature, and particle size as the most influential 
parameters affecting the textural properties of the activated carbon.

Fig. 15.  the SA(a), TPV(b), and MPV(c) as a function of the activation temperature and the ratio of the 
activating agent to carbon.
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•	 The integration of GA with GBR optimizes the synthesis processes for activated carbon, achieving ideal tex-
tural properties at activation temperatures of 800–900 °C, and C and ratio of activating agent to carbon of 3.8. 
This optimization is based on the parameter ranges used in this study, and the optimal results may vary if the 
input values extend beyond these limits.

•	 Future research should consider collecting additional data related to different routes for chemical activation, 
considering feedstock with low particle sizes, and validating the developed ML models with experimental 
data.

Machine learning streamlines the development of AC with enhanced textural properties, and promises to 
revolutionize waste management practices by transforming waste into valuable adsorbents. In addition, 
Combining ML models with GA offers substantial benefits for industrial scalability. It reduces the experimental 
burden by predicting outcomes before physical trials and identifying optimal conditions faster and more 
accurately.

Data availability
All collected data, along with the corresponding references and conditions, can be found in the Supplementary 
file.
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