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Energy consumption serves as a critical indicator of energy utilization efficiency and environmental 
sustainability in the steel production process. Accurately predicting the Heat energy consumption 
per ton (HEC, GJ/t) of steel billet in Steel Rolling Reheating Furnace (SRRF) presents a formidable 
challenge owing to the complex interplay of factors such as production scheduling, raw material 
characteristics, process parameters, and equipment condition. This study proposes a novel approach 
to predict HEC (GJ/t) by utilizing actual production data from SRRF. A genetic algorithm (GA) optimized 
back-propagation neural network (BPNN) is developed and its performance is compared to that of 
a standard BP model. Experimental results reveal that the optimized GA-BP model, with a neural 
network structure of 17-10-1, achieves a prediction accuracy of 94.7% surpassing the 90.24% accuracy 
of the standard BP model. The proposed GA-BP model demonstrates superior predictive capabilities 
and robustness, offering valuable insights for optimizing process parameters and improving energy 
efficiency in SRRF operations.

Keywords  Heat energy consumption per ton of steel billet, Prediction model, Genetic algorithm, Steel 
rolling reheating furnace

General introduction
Amid the intensifying global energy crisis and worsening environmental degradation, implementing energy-
saving and emission-reduction strategies has become essential for achieving sustainable development goals1–3. 
As a pillar of the manufacturing sector and national economies4,5, the iron and steel industry represents one of 
the most energy-intensive sectors6, accounting for approximately 5% of global energy consumption7,8. However, 
the industry grapples with significant challenges related to pollution and emissions9. Despite these challenges, 
substantial opportunities remain for energy conservation and emission reduction within the sector.

Research background
The Steel Rolling Reheating Furnace (SRRF), a critical component of the iron and steel rolling process10,11, plays 
a vital role in achieving the required initial rolling temperature of billets12. Consuming 15–20% of the total 
energy in iron and steel production and approximately 60–70% of the energy used in the rolling process13–15, 
optimizing SRRF energy efficiency is essential for improving energy utilization and promoting sustainability in 
steel production.

Effective energy management is crucial in energy-intensive industries such as steel production16,17. 
A key metric for SRRF optimization is the Heat Energy Consumption per ton of steel billet, abbreviated as 
HEC (measured in GJ/t). Hereafter, this metric will be referred to as HEC (GJ/t) for simplicity. This metric 
significantly impacts product quality, production costs, and energy management. However, identifying the 
factors contributing to HEC (GJ/t) fluctuations remains challenging due to the complex interactions among 
various operational parameters. Traditional methods fail to comprehensively and quantitatively assess energy 
utilization, highlighting the need for innovative approaches.

Research contributions
This study presents a hybrid GA-BP model for predicting the heat energy consumption of billets during the 
reheating process in steel rolling. Utilizing actual production data from a steel plant and integrating equipment 
and operational parameters, the proposed model enhances prediction accuracy and offers actionable insights for 
optimizing SRRF operations. Unlike conventional methods, the GA-BP model integrates energy management 
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with advanced machine learning techniques, providing a novel and systematic approach to energy efficiency 
management in the steel industry.

The key contributions of this research are given as follows:

•	 Methodological innovation: This study pioneers the integration of GA and BPNN for predicting HEC (GJ/t) 
in SRRF, marking the first application of this combined approach. Existing research in the steel industry lacks 
such a combined approach for accurately forecasting and managing the energy consumption of heating fur-
naces. Our innovative method integrates traditional energy management strategies with data-driven machine 
learning techniques, addressing this critical gap and offering a novel solution. It provides fresh perspectives 
and opens new possibilities for accurate energy consumption prediction and efficient management in SRRF, 
establishing itself as a distinct and valuable contribution to the field.

•	 Model enhancement: By using GA to optimize BPNN initialization, we effectively mitigate its sensitivity to 
initial weights and reduce the risk of being trapped in local optima. This optimization substantially improves 
the model’s robustness and prediction accuracy, offering a more reliable and precise tool for estimating HEC 
(GJ/t) in SRRF.

•	 Industry impact: The proposed model offers robust, data-driven support for optimizing SRRF operations. By 
accurately predicting HEC, it empowers steel manufacturers to make informed decisions about parameter 
adjustments and production planning. This not only reduces production costs but also plays a vital role in 
advancing sustainable steel production practices, contributing to the industry’s long-term environmental and 
economic sustainability.

The remainder of this paper is organized as follows: Section “Literature review” reviews and analyzes existing 
research on heating furnaces, highlighting the novelty and contributions of this study. Section "Problem 
description" outlines the research problem and provides details on the data sources and datasets used in this study. 
It also presents the modeling methods, describing the construction of the GA-BP model, parameter settings, 
and evaluation metrics. Section "Results and performance analysis" presents the results and analysis, covering 
model training, performance evaluation, error analysis, and regression analysis to validate the proposed model’s 
effectiveness. Section  “Managerial insights and practical implications” discusses the model’s contributions, 
focusing on managerial insights and practical applications. Section “Conclusions and perspectives” summarizes 
the study and offers directions for future research.

Literature review
Related research on SRRF
The potential for energy savings and emission reductions in SRRF has been demonstrated through structural 
improvements18,19, operational refinements20,21, and enhanced management practices22. Among these, HEC 
(GJ/t) serves as a simple yet comprehensive metric for evaluating energy efficiency23,24. Specifically, the allocation 
of HEC (GJ/t) for billets in SRRF is influenced by furnace gas fuel consumption and billet output. This metric 
plays a crucial role in analyzing energy consumption patterns and guiding optimization strategies.

The complexity of energy consumption in SRRF arises from the interplay of numerous factors and their 
intricate operational mechanisms. Currently, energy management in the industry often operates independently 
of advanced information technologies, resulting in inaccuracies in parameter analysis and inefficiencies in 
performance evaluations25.

The highly non-linear and coupled relationships between HEC (GJ/t) and its influencing factors complicate 
conventional analysis methods26,27. The relationship between these diverse factors and HEC (GJ/t) is highly 
intricate, exhibiting pronounced non-linearity and coupling. Conventional theories and mechanistic methods 
have struggled to effectively elucidate the coupling relationship and patterns of variation between HEC (GJ/t) 
and its influencing factors28. Consequently, there is an increasing demand for advanced modeling techniques 
capable of capturing these relationships.

Related research on machine learning
In the field of applying machine learning to heating furnace research, numerous scholars have conducted 
extensive investigations29–31. Among the various methods explored, the Back Propagation Neural Network 
(BPNN) has gained significant attention due to its exceptional ability to model nonlinear relationships32–34.

For example, Wang and Hou35 used actual production data from the SRRF process and applied the BPNN 
approach to model billet tapping temperatures, yielding promising results. However, the BPNN is subject to 
inherent limitations. It is highly sensitive to initial weights and thresholds, and it is prone to getting trapped in 
local optima.

To address the limitations of the BP neural network, some scholars have introduced optimization algorithms. 
Jiang and Li36 applied the particle swarm optimization (PSO) algorithm to optimize the BPNN, allowing the 
PSO-BP neural network to outperform the traditional BPNN in terms of prediction accuracy and convergence 
speed. Similarly, Sun and Yu37 optimized the BPNN using the Ant Colony Algorithm to develop a model for 
predicting billet tapping temperatures, successfully meeting actual production requirements.

In addition to optimizing the BPNN, some scholars have explored alternative approaches. Zhou and Zheng38 
combined the Improved Pelican Optimization Algorithm (IPOA) with Long Short-Term Memory (LSTM) to 
predict billet tapping temperatures. They further developed the model by incorporating Principal Component 
Analysis and other techniques, achieving excellent performance. Bao and Zhang39 proposed a partition model 
based on multiple linear regression with variable parameter space–time (MLR-VPST) to predict the temperature 
distribution within the SRRF. Additionally, Kim and Moon40 developed an improved modular neural network 
for monitoring the SRRF, capable of determining the optimal dimensions to describe its dynamic behavior.
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Overall, a significant portion of these studies has focused on the temperature of the SRRF, particularly 
emphasizing billet tapping temperatures. This temperature is a critical indicator of the operation and quality 
control of the heating furnace process, reflecting heating efficiency and directly impacting the subsequent 
processing of the billet.

Research gap
A comparative overview of relevant research on SRRF is provided in Table 1. Although some scholars have 
employed optimization methods, these studies primarily focus on billet tapping temperature as the prediction 
index, with limited attention given to the overall energy consumption index of SRRF. Energy consumption in 
SRRF plays a crucial role in cost control and the sustainable development of steel production, and accurately 
predicting this index forms a critical foundation for production optimization.

In contrast, while some scholars have applied GA to optimize the BP neural network in certain contexts, a 
significant gap remains in existing research regarding the prediction of energy consumption in Steel Rolling 
Reheating Furnaces (SRRF) using data-driven methods. This study fills this gap by leveraging a GA-optimized 
BP neural network to predict the energy consumption of SRRF, presenting a novel approach within this specific 
domain.

The GA, when used to optimize the BP neural network, especially considering the complex scenarios of SRRF 
energy consumption prediction where multiple factors interact intricately to form highly nonlinear relationships, 
offers distinct advantages over other algorithms41, which are elaborated as follows:

•	 Superior diversity maintenance: Compared to the Particle Swarm Optimization algorithm, GA simulates natu-
ral selection and genetic mechanisms. This unique feature ensures better maintenance of population diversity 
during the search process, effectively mitigating the risk of premature convergence to local optima. Conse-
quently, GA allows for a more thorough exploration of the solution space, increasing the likelihood of finding 
optimal or near-optimal solutions for complex problems such as SRRF energy consumption prediction.

•	 Higher efficiency in large-scale problems: Compared to the Ant Colony Optimization algorithm, GA demon-
strates greater efficiency in handling large-scale problems associated with SRRF energy consumption predic-
tion. Its ability to rapidly navigate complex solution landscapes makes it a more suitable choice for addressing 
the intricate nonlinear relationships inherent in this context. This capability enables faster and more accurate 
predictions, which are crucial for real-time decision-making in industrial settings.

•	 Established theoretical foundation and rich experience: Compared to the Improved Pelican Optimization Al-
gorithm (IPOA), GA offers a more robust theoretical foundation and extensive application experience. Its 
well-defined selection, crossover, and mutation operations provide it with greater comprehensiveness and 
flexibility in exploring diverse solution spaces. These features make GA particularly well-suited for addressing 
the complex nonlinear dynamics of heating furnace energy consumption, allowing for more accurate and 
reliable predictions.

This research is highly significant as it successfully addresses the long-standing gap in data-driven prediction 
of SRRF energy consumption. By pioneering the application of the GA-BP algorithm, our research introduces 
a novel and practical solution for accurately predicting the HEC (GJ/t) of SRRF. This innovative approach not 
only offers a fresh perspective but also provides crucial data-driven support for optimizing SRRF operations, 
addressing aspects that have been underexplored in previous studies. Specifically, the key innovations and 
contributions of this research are outlined as follows:

•	 Comprehensive factor consideration: For the first time, the GA-BP algorithm is used to predict the HEC of 
SRRF, considering a comprehensive range of influencing factors in the SRRF production process. This ho-
listic approach greatly improves the reliability of predictions by capturing the complex interactions between 
various operational parameters. By taking multiple factors into account simultaneously, the model offers a 

Reference Methodology Specific method Case study Model basis
18 Simulation CFD Scale formation Mechanism model
19 Design Optimized Design Design of burner Mechanism model
20 Simulation CFD Process simulation in furnace Mechanism model
21 Theoretical analysis Nonlinear model Analysis of energy flow and efficiency of SRRF Mechanism model
22 Theoretical analysis Weighted sum of gray gas model Performance of SRRF Mechanism model
35 Machine learning BPNN Prediction of billet tapping temperature Data model
36 Machine learning BPNN, PSO Prediction of billet tapping temperature Data model
37 Machine learning BPNN, CA Prediction of billet tapping temperature Data model
38 Machine learning IPOA, LSTM, PCA Prediction of billet tapping temperature Data model
39 Machine learning MLR-VPST Temperature distribution within the SRRF Data model
40 Machine learning Modular neural network Describe the dynamic behavior of the SRRF Data model

This research Machine learning BPNN, GA Prediction of energy consumption of SRRF Data model

Table 1.  Related works. Significant values are in bold.
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more accurate depiction of real-world scenarios, leading to more informed decision-making in production 
optimization.

•	 Robust model optimization: The GA optimizes the initial parameters of the BP neural network, improving its 
robustness and prediction accuracy. By avoiding local optima, the model provides more accurate and stable 
predictions of HEC, which is essential for practical applications in steel production. This optimization not 
only enhances the model’s performance but also improves its generalization capability, making it suitable for 
a broader range of production conditions.

•	 Practical operational support: Based on actual production data, the model effectively captures the complex, 
nonlinear relationships among various factors. It provides actionable, data-driven support for parameter ad-
justment and production optimization, enabling steel plants to develop more effective operational strategies 
for sustainable production. This practical aspect addresses a significant gap in previous theoretical or partially 
operational studies, offering a tangible solution for improving energy efficiency and sustainability in steel 
manufacturing processes.

Problem description
This study aims to accurately predict the HEC (GJ/t) of SRRF using a data-driven approach, leveraging historical 
data from SRRF. Rather than relying solely on traditional laboratory experiments, this study provides a field-
based alternative. It utilizes operational data directly collected from the SRRF production environment in 
domestic steel mills. This dataset captures real-time production information, reflecting the dynamic conditions 
of the reheating process. Unlike controlled laboratory settings, this “field experiment” approach ensures greater 
authenticity and robustness, better representing real-world operations.

The SRRF is structurally divided into distinct zones along its length: the preheating section, the first and 
second heating sections, and the soaking section.

Data resource
These zones correspond to distinct stages of billet heating, each with its own unique operating characteristics 
and energy consumption patterns. The factors influencing the HEC (GJ/t) are categorized into billet attribute 
parameters and operational parameters, comprising a total of 17 key factors (Fig. 1). These include billet size, 
heating mode, and equipment performance, all of which are widely recognized in the industry as critical 
determinants of furnace energy efficiency.

A data-driven approach was employed to predict billet energy consumption by considering the interplay 
of multiple variables. Including all 17 factors ensures that their complex interactions are captured, thereby 
enhancing the comprehensiveness and accuracy of the model. The dataset consists of 1200 data samples, divided 
into training, validation, and test subsets in proportions of 75%, 15%, and 10%, respectively, to ensure effective 
model performance evaluation.

Fig. 1.  Schematic illustration of the SRRF structure and factors affecting HEC (GJ/t).
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Method
Indices
t	 Set of influence factors; t ∈ T = [1, 17] ,
i	 Set of sample serial number; i ∈ n = [1, 2, · · · n] ,
Parameters
s	 Influence factor; (Influence factor t),
u	 Number of input layer nodes,
l	 Number of hidden layer nodes,
m	 Number of output layer nodes,
a	 Adjustment constant; (1 ≤ a ≤ 10),
f ()	 Is the single-level Active function of the transfer function from the input layer to the hidden layer 
and from the hidden layer to the output layer of the BPNN,
F (X)	 Is the relationship between the input and the output,
W	 Weight matrix of the input layer and the hidden layer,
b1	 Threshold of the hidden layer,
b2	 Threshold of the output layer,
V	 Weight matrix of the hidden layer and the output layer,
P	 Initial population size,
e	 Maximum evolutionary epochs,
cro	 Crossover probabilities,
mu	 Mutation probabilities,
Goal	 Minimum training error target,
Epochs	 Maximum number of network training iterations,
Show	 Display frequency of training process,
Lr	 Learning rate,
Mc	 Momentum factor,
Min_grad	 Minimum performance gradient,
Max_fail	 Maximum number of consecutive training failures,
Variables
n	 Is the sample size of the data set;
xi	 Sample data(sample group i); (A set of data contains 17 influencing factors.)
yi	 Actual value of HEC (GJ/t)(Actual value of the i sample;),
ŷi	 Predicted value of HEC (GJ/t)(Predicted value of the i sample;),
z	 Original data,
Zmax	 Maximum value of the sample,
zmin	 Minimum value of the sample,
Z	 Normalized data,
X	 Input vector;X = [s1, s2, · · · s17]T ,
Y	 Output vector; Y = [ŷ] ,
MS	 Mean Square Error of HEC (GJ/t) between actual value and predicted values,
MAPE	 Mean Absolute Percentage Error of HEC (GJ/t) between actual value and predicted values,
RMSE	 Root Mean Square Error of HEC (GJ/t) between actual value and predicted values,
R	 Correlation Coefficient.

BP neural network structure
Figure  2 illustrates the topological structure of a three-layer BPNN. The general signal forward propagation 
process is presented in Eq. (1). The training process of this model is divided into three stages:

	1.	� Input stage: Data from 17 factors influencing HEC (GJ/t) in SRRF are fed into the network.
	2.	� Error evaluation: The network output is compared with the actual HEC (GJ/t) data, and the prediction error 

is assessed using an objective function.
	3.	� Weight adjustment: Weights and thresholds are updated through backpropagation to iteratively minimize the 

prediction error.

	 Y = F (X) = f [V · f (W · X + b1) + b2]� (1)

 

Genetic algorithm optimized BP neural network
The Genetic Algorithm (GA) is an adaptive heuristic search method based on Darwinian natural selection 
principles. It simulates biological processes such as replication, crossover, and mutation to efficiently and globally 
solve optimization problems42,43. Starting from an initial population, the GA iteratively generates individuals 
with higher fitness through selection, crossover, and mutation operations, ultimately converging to an optimal 
solution (Fig. 3).

Proposed model
While the BP neural network is effective for prediction tasks, it is susceptible to local optima and slow convergence 
during gradient descent. To address these limitations, the GA optimizes the initial weights and thresholds of the 
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Fig. 3.  Schematic diagram of selection, crossover, and mutation operations in the genetic algorithm.

 

Fig. 2.  Schematic diagram of the BP neural network topology.
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BP network, enhancing stability and convergence speed. This hybrid GA-BP method is used to predict HEC 
(GJ/t) in SRRF. The overall training process is illustrated in Fig. 4.

The process of optimizing the BP neural network based on the genetic algorithm is as follows:

	(1)	� Determining the neural network topology: In the BP neural network model, the input layer consists of 17 
factors influencing the HEC (GJ/t) for each dataset group, while the output layer represents the HEC (GJ/t). 
Therefore, the number of nodes in the input and output layers of the BP neural network structure is 17 and 
1, respectively. The approximate range of nodes in the hidden layer is determined using empirical Formula 
2. Ultimately, the number of hidden layer nodes is set to 10 through the trial-and-error method, guided by 
the RMSE index analysis. The process and results are illustrated in Fig. 5;

	 l <
√

u + m + a� (2)

	(2)	� Data preprocessing: To eliminate the impact of different data dimensions, the input data is normalized, as 
shown in Eq. (3);

	
Z= z − zmin

zmax − zmin
� (3)

	(3)	� The genetic algorithm procedures include determining the initial population size, setting evolutionary ep-
ochs, evaluating fitness, and performing selection, crossover, and mutation. Specific parameter settings are 
provided in Table 2. The fitness function value is calculated as the average Mean Squared Error (MSE) across 
both the training and test datasets. A smaller fitness function value indicates better training precision and 
higher prediction accuracy. The selection operation in the genetic algorithm uses the roulette wheel meth-
od, with crossover and mutation probabilities set to 0.8 and 0.2, respectively.

	(4)	� The BP neural network is constructed using the optimal initial weights and thresholds determined through 
iterative optimization. As shown in Fig. 5, the optimal number of nodes in the hidden layer of the BP neural 
network is 10, with 17 nodes in the input layer and 1 node in the output layer. Therefore, the structure of the 
BP model is 17-10-1. There are 180 weights (17 × 10 + 10 × 1 = 180) and 11 thresholds (10 + 1 = 11). Thus, the 
individual encoding length of the GA-BP neural network is 191 (180 + 11 = 191).

	(5)	� Import the training data to train the BP neural network model.
	(6)	� Input the data of the test set into the trained neural network for testing, and perform denormalization on 

the predicted data.

Fig. 4.  Flowchart of the GA-BP neural network training process.
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	(7)	� Perform an error analysis by comparing the predicted values with the actual values obtained.

GA-BP model parameter setting and evaluation index selection
Training is performed using the Levenberg–Marquardt algorithm, with the parameter settings of the GA-BP 
model detailed in Table 3.Model validation is carried out using RMSE and MAPE, as defined in Eqs. (4 and 5), 
respectively.

	

RMSE =

√√√√ 1
n

n∑
i=1

(yi − ŷi)2� (4)

	
MAPE = 100%

n

n∑
i=1

∣∣∣∣
ŷi − yi

yi

∣∣∣∣� (5)

Parameter Value

Training goal minimum error (Goal) 0.00001

Maximum training times (Epochs) 1000

Learning rate (Lr) 0.01

Momentum factor (Mc) 0.1

Minimum performance gradient (Min_grad) 10−6

Maximum number of failures (Max_fail) 6

Training iteration display frequency (Show) 25

Activation function (f( )) Sigmoid

Table 3.  Parameter setting for the BP and GA–BP model.

 

Parameter Value

Initial population size (P) 30

Maximum evolutionary epochs (e) 60

Crossover probabilities (cro) 0.8

Mutation probabilities (mu) 0.2

Table 2.  Parameter setting of genetic optimization algorithm.

 

Fig. 5.  RMSE of the model with different number of hidden layer nodes.
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Results and performance analysis
Optimization process
The sample data is divided into training, validation, and test datasets. The training dataset is used to train the 
prediction model, while the validation and test datasets are used to evaluate and verify the accuracy of the GA-
BP model. Figure 6a presents the MSE during the iterative optimization process for the training, validation, and 
test datasets. The error decreases with additional training iterations, reaching its minimum value of 0.0023943 
for the validation dataset MSE at the 37th generation.

The optimization process of the genetic algorithm is illustrated in Fig. 6b. The process begins with an initial 
population size of 30 and a maximum of 60 evolutionary epochs, with a crossover probability of 0.8 and a 
mutation probability of 0.2. The population shows an average fitness of 0.0164, and the highest fitness is achieved 
in the 33rd generation, with an optimal value of 0.00624.

Results and analysis
Simulation results
The predictive performance of the developed model was evaluated using the test dataset. Figure 7 illustrates 
the actual value curve and the prediction curve for HEC (GJ/t) produced by both the BP model and the GA-
BP model. Across 120 samples in the test set, the actual HEC (GJ/t) values exhibit fluctuations according to 

Fig. 7.  Comparison of predicted and actual values between BP model and GA-BP model.

 

Fig. 6.  Train the optimization process. (a)Mean square error of training set, verification set and test set. (b) 
Genetic algorithm optimization process diagram.
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the sample number. Both models effectively capture the underlying trends and patterns. However, a detailed 
comparison reveals that the GA-BP model, optimized through a genetic algorithm, demonstrates superior 
prediction accuracy and alignment with the actual values. In contrast, the conventional BP model, while 
capturing overall trends, lacks precision. The MAPE was used to quantify prediction accuracy. The original BP 
neural network achieved an accuracy of 90.24%, while the GA-BP model attained 94.75% accuracy on the test 
dataset. The GA-BP model’s optimization minimizes prediction errors, enabling accurate predictions of HEC 
(GJ/t) values and meeting the desired accuracy objective.

To maintain data integrity and ensure realistic applicability in industrial scenarios, the collected data 
were normalized without removing outliers. This approach reduces the risk of overfitting and enhances the 
generalization performance of the trained model in real-world applications.

Error analysis
The majority of prediction errors for the GA-BP model fall within the range of -0.2 to 0.2 GJ/t. Only a small 
fraction of prediction errors deviate beyond this range, compared to a notably higher frequency of such deviations 
in the BP model. The average prediction errors for the GA-BP and BP models are − 0.065 and 0.131, respectively 
(Fig. 8a). As shown in Fig. 8b, the sample point distribution of the GA-BP model is predominantly concentrated 
within the dark green area, corresponding to an absolute percentage error of less than 0.1. In contrast, the BP 
model displays a more scattered sample point distribution, with several points located beyond the reference line. 
These findings highlight the GA-BP model’s ability to reduce both error magnitude and variability, significantly 
enhancing prediction accuracy44.

Figure 8c,d illustrate the error distribution histograms for the two models. The BP model exhibits an error 
range from − 1.252 to 0.522 GJ/t (Fig. 8c), as indicated by the purple vertical reference line at zero error. In 
contrast, the GA-BP model achieves a narrower error range of − 0.3409 to 0.2675 GJ/t (Fig. 8d), with the orange 
vertical line representing zero error. The narrower range and more uniform distribution demonstrate the GA-BP 
model’s effectiveness in reducing prediction error.

Fig. 8.  Performance analysis. (a) Prediction Error. (b) Absolute Percentage. (c) BP error distribution. (d) GA-
BP error distribution. (e) Correlation coefficient in BP model. (f) Correlation coefficient in GA-BP model.
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Regression analysis
The correlation coefficient serves as a key metric for evaluating model performance, quantifying the linear 
relationship between the model’s predicted results and the observed values45. Figure 8e,f highlight a clear contrast 
in data fitting between the BP neural network and the GA-BP neural network. Notably, the GA-BP model 
demonstrates superior fitting performance, with a correlation coefficient (R) of 0.9884 (Fig. 8e), outperforming 
the BP model, which has a coefficient of 0.94536 (Fig. 8f). This improvement highlights the GA-BP model’s 
superior ability to capture linear relationships in the data. The enhanced performance of the GA-BP model is 
attributed to the optimization capabilities of the genetic algorithm, which efficiently explores the parameter 
space and identifies optimal configurations. In contrast, the traditional BP model tends to get trapped in local 
optima, restricting its predictive performance.

Managerial insights and practical implications
In steel production, the GA-BP model accurately predicts the HEC (GJ/t) of SRRFs, aiding in strategic production 
scheduling. Managers can optimize batches using these predictions, reducing energy waste, minimizing idle 
time, and increasing throughput.

As energy costs constitute a significant portion of steel production expenses, the GA-BP model factors in risk 
elements, enabling precise energy budgeting. By optimizing the fuel mix, adjusting parameters, and scheduling 
off-peak maintenance, costs can be reduced, leading to enhanced enterprise efficiency.

As a reliable SRRF performance evaluation tool, the GA-BP model compares actual and predicted 
consumption, helping to identify issues such as equipment failures and inefficiencies. This allows for the 
establishment of realistic targets, improving quality control and maintenance.

Amid environmental and competitive pressures, the model aids enterprises in navigating energy price 
fluctuations and regulations. Its predictions inform investments in energy-saving technologies and upgrades, 
enhancing both reputation and competitiveness. The model’s application contributes to technological 
advancements and sustainability within the steel industry, helping to reduce emissions. Furthermore, its 
approach provides valuable insights for energy management in other industries, such as metallurgy and chemical 
engineering, fostering energy optimization across sectors.

In conclusion, managers and policymakers should adopt the GA-BP model and integrate it into decision-
making to make informed, efficient, and sustainable choices that benefit enterprises, the industry, and society.

Conclusions and perspectives
Conclusions
Considering the nonlinear, strongly coupled, and highly complex nature of calculating the Heat Energy 
Consumption per ton (HEC, GJ/t) in a Steel Rolling Reheating Furnace (SRRF), a prediction model for HEC 
(GJ/t) has been established. This model integrates a Back Propagation (BP) neural network optimized using a 
genetic algorithm (GA). By employing 17 process parameters as input features and setting the predicted HEC 
(GJ/t) as the output, the following model details were determined:

The key findings of this study are summarized as follows:

•	 Determination of the optimal model structure: Through a series of trial-and-error experiments, the optimal 
structure of the BP model, denoted as (17-10-1), was determined. This structure consists of 17 input features 
derived from process parameters, 10 neurons in the hidden layer, and 1 output representing the predicted 
HEC (GJ/t). This structure forms a solid foundation for the model’s subsequent performance.

•	 Exceptional model performance: The GA-BP model significantly outperforms the conventional BP model in 
terms of prediction accuracy. The Mean Absolute Percentage Error (MAPE) of the BP model is 0.0976, while 
the GA-BP model achieves a MAPE of 0.0525, reflecting a 46.2% reduction in error. Furthermore, compared 
to the BP model, which has a regression coefficient (R) of 0.9454, the GA-BP model exhibits a narrower error 
range and a higher regression coefficient (R = 0.9884). Overall, the GA-BP model achieves a prediction accu-
racy of 94.7% for HEC (GJ/t) values, fully meeting the expected accuracy criteria.

•	 Substantial application value: This research provides valuable insights into process control and parameter 
optimization within SRRF operations. The accurate prediction of HEC (GJ/t) by the GA-BP model facilitates 
strategic production scheduling, enabling more efficient energy utilization and minimizing unnecessary en-
ergy waste. Additionally, by providing a better understanding of energy consumption patterns, the model 
enhances the operational reliability of SRRFs, supporting more informed decision-making in areas such as 
equipment maintenance and production planning. Consequently, it contributes to improved energy efficien-
cy, leading to positive economic and environmental benefits for the steel production industry.

Perspectives
Expanding the research scope
Future research will focus on combining data-driven models with physics-based models to develop a hybrid 
forecasting framework. This dual-driven approach is expected to enhance the interpret ability and stability of 
predictions, compensating for the limitations of purely data-driven methods. By integrating physical models 
or domain expertise, the explanatory power and generalizability of the predictive framework can be further 
improved.

Improving model performance
Future investigations will focus on optimizing feature selection to minimize redundancy and enhance predictive 
accuracy, particularly in high-dimensional data environments. Techniques such as dimensionality reduction 
and feature extraction will be employed to retain critical information. Additionally, more advanced machine 
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learning algorithms, such as deep learning and reinforcement learning, will be explored to enhance the model’s 
adaptability and predictive performance.

Expanding practical applications
Efforts will be directed toward applying the developed model to broader industrial scenarios, including complex 
technological processes and dynamic environments. Systematic testing and experimental validation under 
various conditions will be conducted to evaluate the robustness and generalizability of the model. Collaborations 
with industry partners will focus on translating research findings into practical applications, promoting energy 
conservation, and improving efficiency in industrial processes.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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