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Phase coherence and amplitude correlations across brain regions are two main mechanisms of 
connectivity that govern brain dynamics at multiple scales. However, despite the increasing evidence 
that associates these mechanisms with brain functions and cognitive processes, the relationship 
between these different coupling modes is not well understood. Here, we study the causal relation 
between both types of functional coupling across multiple cortical areas. While most of the studies 
adopt a definition based on pairs of electrodes or regions of interest, we here employ a multichannel 
approach that provides us with a time-resolved definition of phase and amplitude coupling 
parameters. Using data recorded with a multichannel µECoG array from the ferret brain, we found 
that the transmission of information between both modes can be unidirectional or bidirectional, 
depending on the frequency band of the underlying signal. These results were reproduced in 
magnetoencephalography (MEG) data recorded during resting from the human brain. We show that 
this transmission of information occurs in a model of coupled oscillators and may represent a generic 
feature of a dynamical system. Together, our findings open the possibility of a general mechanism that 
may govern multi-scale interactions in brain dynamics.
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Functional connectivity (FC) is a measure of the statistical dependencies between the time series recorded from 
two neuronal populations or brain regions. Evidence supports the idea that FC reflects the communication at 
different scales in the brain and is highly relevant for brain dynamics. For electrophysiological recordings, a 
useful approach is to decompose the signals by their phase and amplitude. These representations have revealed 
the coexistence of two main modes or mechanisms of communication between brain regions. The first one 
corresponds to a fixed relation between the phases of two brain sources and is measured by coherence1,2. In 
the second one, the amplitude or envelope of the signals are correlated, suggesting coordinated excitability 
fluctuations between areas2–4. Both connectivity modes have been associated with a broad variety of brain 
disorders5 and cognitive processes6,7 and for many years the studies of FC have been focused on one or the other 
coupling mode. Whether both types of connectivity are equivalent or perhaps redundant has been addressed 
recently in studies showing that these coupling modes can differentiate strongly, especially during presence 
of stimulation7,8. Furthermore, patterns of both coupling modes differ across cortical areas and frequency 
bands. Although linear measures of phase-phase and amplitude-amplitude correlations may be mathematically 
equivalent for Gaussian-distributed signals9, neural signal distributions may be disrupted by external stimuli10, 
motor execution11, or changes in brain state12. Consequently, Gaussianity cannot be taken for granted, even 
during rest13. Thus, while there are two distinct coupling mechanisms, the nature of their relationship remains 
unclear. One possibility is that they are two representations of a more general mechanism, in which case their 
relationship would likely be limited to a statistical dependency. The other possibility, which presents a more 
dynamic perspective, is that one of the mechanisms drives the other.

Here, we explore the possibility that phase- and amplitude-coupling are related through a causal interaction. 
One difficulty that we faced when addressing this question is that the statistical dependencies that operationalize 
FC are defined during a certain time window, which ideally is determined by the frequency band of the 
underlying neural oscillations. This time window should be sufficiently long to allow for a significance testing. 
However, if the time window is much longer than the causal interaction there is a high risk that any causal effects 
may be blurred. To avoid this issue, we adopted an alternative strategy that consists of defining a parameter of 
similarity across signals in a multichannel manner. This approach allows us to obtain time-series that reflect how 
consistent phase and amplitude are across channels. These two time-series, that we called phase-consistency 
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(PC) and amplitude consistency (AC), are defined for each time-sample, on which causality analysis can be 
applied without restrictions or further assumptions. We applied this approach to data recorded from the ferret 
brain using custom-made µECoG arrays with electrodes covering a large part of the left cerebral hemisphere. 
Furthermore, we tested whether the results can be confirmed in MEG recordings of resting activity from the 
human brain. Finally, we explored in a computational neural-mass-model whether such causality effects can be 
generated from a common neural mechanism.

Results
Time-resolved spatial phase and envelope consistencies
We hypothesized that if a causal interaction between phase and amplitude connectivity modes exists, then 
this should be in the time scales defined by the signal’s frequency. In this case, time scales of the order of one 
oscillatory cycle are clearly too short for the standard measures of connectivity14. To measure a causal relation 
with fine temporal resolution we defined magnitudes that describe the similarity in phase and amplitude across 
multiple channels at each time point t’. For this purpose, we replaced the standard pairwise window-based 
approach of connectivity1,3,4,15 with a multichannel measure of similarity across channels for each time t’. For 
phase, similarity is measured by the phase consistency (PC), defined in Eq. (3) (see Methods), which is a function 
of the instantaneous phases φ k (t) (with k = {1, . . . , 9} , the channel index) and N, the total number of 
channels. Analogously, for the envelope we used the inverse of the coefficient of variation, defined in Eq. (4) (see 
Methods), where µ (t) is the envelope’s mean and σ (t) is the standard deviation. Figure 1B displays example 
recording traces of 9 channels located over the visual cortex and filtered at 1–2 Hz (top) and their corresponding 
PC and AC time series (middle and bottom rows, respectively).

Clearly, time series, as defined in Eqs. (3) and (4), are sensitive to the size N. In our study, the selection of 
N is a trade-off between stability in the probability distributions of PC and AC and the number of channels. 
One of our goals was to perform the current analysis of the ferret LFP data for two distributions of channels 
located either within the same functional cortical system or in different systems. Therefore, we selected the 
smallest number of channels N for which the difference of the probability distribution was small compared 

Fig. 1.  Quantification of PC and AC in ferret LFP data. (A) Representation of our custom-made µECoG array 
on the left hemisphere of the ferret cortex. Colors indicate the three functional systems: visual (blue), auditory 
(green), parietal (yellow). (B) Top: Traces of LFP signals (2–4 Hz) of 9 channels located over the visual cortex. 
Middle: Phase consistency (PC) associated to the above signals. Bottom: associated amplitude’s consistency 
(AC). (C) The number of electrodes in PC and AC was chosen based on the similarity (correlation r) between 
the distributions with N and N + 1 electrodes. Between 9 and 10 electrodes the similarity was significantly 
strong. (D) Spectral characteristics of PC (orange) and AC (blue) for different frequency bands of the 
underlying oscillatory signals.
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with the distribution obtained for a N + 1 population. In this manner, we could establish the minimum number 
of channels required for the within-system condition. Figure 1C shows that the addition of one channel in the 
population becomes less relevant as the population increases, and that the correlation between N = 9 and N = 10 
is highly significant (r > 0.97). Hence, further analyses on the ferret data were performed taking N = 9 electrodes.

Finally, we asked whether PC and AC conserve the spectral characteristics of the preprocessed signal. We 
found for all frequency bands that in general PC and AC spectral distributions were at lower frequencies than 
the frequency band from which they originated (Fig. 1D), implying that PC and AC act as low-pass filters. Any 
component in PC or AC with higher frequency than the LFP signal would suggest the presence of artifactual 
events.

Joint probability distribution of PC and AC
To characterize the statistical dependencies between both quantities we calculated the joint probability 
distribution p(P C; AC) across frequency bands for the ferret LFP data. First, we considered electrodes placed 
over visual areas according to the anatomical maps16 and Fig. 1A) and divided the corresponding PC and AC 
time series in intervals of 10 s. The resulting probability distribution across intervals and animals is shown on the 
top row of Fig. 2. The distributions show a clear relationship between measures that is highlighted by the cyan 
lines, which describe the path along which AC is maximal given a certain PC. This relation was stronger at low 
frequencies; however, it was maintained up to 128 Hz. As a control we computed the distributions when intervals 
were shuffled (Fig. 2, bottom row). Under this condition the time relation within each measure was conserved for 
each measure, but the time relation between intervals was eliminated. In other words, the joint distribution of AC 
and PC was the product of marginal distributions of AC and PC, demonstrating their statistical independence. 
This result supports the hypothesis of a relationship between both measures. Note that this relationship does not 
imply causality yet, but describes a mere statistical dependency between both measures.

Causal relation between phase- and amplitude consistencies
We hypothesized that the observed correlation might be more than a chance statistical dependency of 
multichannel phase and amplitudes and, rather, indicate a causal interaction between both coupling modes. To 
test this hypothesis, we measured causality between PC and AC using transfer entropy (TE), a model-free method 
that been used previously in neuroscience to estimate connectivity17,18. Again, we extended our analysis across 
frequency bands, as defined in the previous section. To rule out effects of the electrode selection, we calculated 
the causality considering electrodes placed over visual areas, over auditory areas and globally distributed across 
all three functional systems. We contrasted both directions in the causality, i.e., assuming that PC is the leader 
and AC is the follower (P C → AC) and the inverse condition (AC → P C). The dots in the distributions 
(Fig. 3) represent the TE during intervals of 30 s. Intervals were non-overlapping and randomly selected. We 
evaluated statistical significance against surrogate data for each interval individually18–20. The results show a 
consistent asymmetry in causality dominated by the flow of information AC → P C. This result was statistically 
significant in frequency bands below 8 Hz (p < 10−4, N = 343). For higher frequencies (8 to 128 Hz) the flow of 
information in both directions was not significantly different from the random condition at all.

Fig. 2.  Joint probability distribution of the time series PC and AC in ferret LFP data. To build these 
distributions we took 100 time-windows of 30 s each for all animals. Cyan lines describe the highest probability 
of AC given a PC. The distributions in the top row suggest a relation between PC and AC that extends to all 
frequency bands. Bottom row shows the distribution after shuffling the time-windows of both time-series. 
Note that the cyan line is almost flat, showing the absence of a relation.
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Fig. 3.  Causal relations AC → P C  and P C → AC . The causal relation was measured by TE on interval 
basis (each dot represents an interval of 30 s). Horizontal bars show the median TE. (A) TE for different 
frequency bands in ferret LFP data. Top and middle rows represent conditions where we considered electrodes 
only over the visual and auditory cortex, respectively. Bottom row represents the sparse condition where 
we took electrodes from areas regardless of the functional system. We observe a prominent leader role of 
amplitude coupling (cyan color) with respect to the opposite condition, in particular at low frequency bands 
(< 8 Hz). (B) AC → P C  side-by-side comparison of between the three functional distributions for the ferret 
data. (C) Transfer entropy for AC → P C  and P C → AC  in human MEG during resting state. AC and PC 
were obtained from 9 sensors at the occipital region of the left hemisphere.

 

Scientific Reports |        (2025) 15:11975 4| https://doi.org/10.1038/s41598-025-95306-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


In the same analysis we asked whether the causality relations are specific to the electrode distribution or 
the cortical system. Similar patterns of distribution were observed if electrodes were located only in visual 
areas, only in auditory areas and globally distributed (Fig. 3B). Altogether, our results show a similar causal 
relation between global network properties based on phase and amplitude coupling modes, suggesting that 
the mechanisms involved are inherent to the dynamics of the neural networks and not specific to a particular 
functional brain system.

The above observations might be related to the recording approach, the spatial scale of the signals and the 
species under consideration. We therefore explored the validity of our results in magnetoencephalography 
(MEG) data recorded in humans during the resting state (Fig. 3C). We selected 9 sensors located above the 
occipital cortex of 10 healthy subjects. The selection of the frequencies of the filters were defined as for the 
ferret LFP data and the duration of the interval for TE computation (dots in Fig. 3C) was also 30 s. Interestingly, 
despite the strong differences in nature and spatial scale of the signals, the asymmetry of TE for AC to PC vs. 
PC to AC observed in the MEG recordings resembled closely the results obtained for the ferret data. However, 
this asymmetry extended up to 16 Hz, in contrast to 8 Hz of the ECoG signal. Thus, our results may reveal a 
fundamental mechanism that is independent of the spatial scale, the recording approach or the species.

Causal relation is brain-state independent
As we showed in a previous study12, the short duration of the sleep-wake cycle in the ferret al.lows the recording 
of several brain-states within a single recording session. We asked whether the different types of causality 
observed above were associated with functional states of the brain. For this we defined the asymmetry ratio 
AR = T E(AP )

T E(P A)  for all intervals by which at least one of the causalities was significant. Thus, a ratio AR > 1 
means that an alignment in amplitude across channels leads to an alignment in the respective phases, whereas 
AR < 1 means the opposite direction. A value AR close to 1 means bidirectionality. In addition, we classified 
the recordings in three main states using their spectral properties, as detailed in Methods. In general, statistical 
analysis showed no significant evidence that directionality in the causality might be related to the putative brain 
state (Kruskal-Wallis H test; p > 0.1). This result extended to all frequency bands and distributions of electrodes 
in the cortex.

Information transfer delay
Once demonstrated that the spatial consistency in amplitude may influence the spatial consistency in phase, we 
proceeded to determine the timescale for this interaction. In its original notation17, transfer entropy between 
two random processes is defined as T E (X → Y ) = I (Yt+1; Xt|Yt), where t = 1 is the delay between leader 
and follower. The true interaction delay between variables X and Y is equivalent to the reduction of uncertainty 
in Y when considering the past values of both Y and X, compared to considering the past values of Y alone21

	 T E(k) (X → Y ) = H (Yt) − H (Yt|Yt−k; Xt−k)� (1) 

We let the parameter k vary between 1ms and 5 s and determined the interaction delay δ  between both time 
series as

	 δ = argmax
(
T E(k) (X → Y )

)
� (2) 

This analysis was separately done for the 3 frequency bands between 1 and 8 Hz (Fig. 4). First, we found similar 
curves that describe the transfer entropy as function of the delay, with maxima at 208 ms (1–2 Hz), 180 ms 
(2–4 Hz) and 176 ms (4–8 Hz). In all three bands, the delays correspond to half to one cycle of oscillation, 
suggesting a mechanism that occurs within a single oscillation cycle and sets an upper limit in the time-scale of 
the interaction.

Computational simulation
We explored whether the characteristics of multichannel coupling and information transfer, as shown above, are 
exclusively associated to biological processes or rather may reflect a more fundamental property of a dynamical 
system. To address this question, we used a model based on a non-biological approach. Our rationale here was, if 
a non-biological system is not able to reproduce characteristics such as the joint distribution of PC or AC, or the 
transfer of information, there is the possibility that the observed phenomena have their roots in the complexity 
of a biological network. On the other hand, if such characteristics were reproduced by a non-biological model, 
then the transfer of information might represent a general network property.

We used a simple model which consisted of an array of 9 masses coupled by Hooke’s law. We allowed 
interactions between all couples of masses, mimicking cortical connectivity in a highly simplified manner. The 
model does not explicitly include parameters such as synaptic delays or excitation and inhibition. However, one 
could interpret the amplitude of the oscillation of each mass as representing a local field potential. Example 
traces of simulated signals and the corresponding PC and AC are shown in Fig. 5A. Our model predicted a joint 
probability distribution of PC and AC (Fig. 5B) that resembled the experimental data (Fig. 2) with maximal 
probability at PCmax = 0.96 and ACmax = 3.7. Interestingly, this simple model not only reproduced the causal 
effect but also the direction of the causality (Fig. 5C), assigning the AC the role of the leader and PC the role of 
the follower as in the low frequency bands in neurophysiological data.
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Analysis of surrogate data
The fact that the time-delay between PC and AC has a relation to the oscillation cycle could be interpreted as an 
indication that the observed relationships reflect the type of signal, rather than a physical property of the system. 
To rule out this possibility, we contrasted the analysis of original data with surrogate data. Surrogate time series 
were generated using the Iterative Amplitude Adjusted Fourier Transform (IAAFT) algorithm22. This method 
allows the generation of surrogate time series preserving both the amplitude distribution of the original signal and 
its autocorrelation function, while introducing phase-shifts compared to the respective original data (Fig. 6A). 
We tested the model for the 1–2 Hz condition in two subjects, using the signals from the same 9 electrodes over 
the visual cortex as targets. Figures 6A to C show a segment, power spectrum, and autocorrelation function of 
an original signal (black) and a surrogate (red) time series, which illustrate their statistical equivalence. The 
resultant PC and AC, and their joint probability distributions, are displayed in Figs. 6D and E, respectively. Note 
the contrast with the joint probability distribution in original data (Fig. 2, panel top-left), which shows a larger 
correlation in phase and amplitudes across channels. For each original interval, extracted from two animals, we 
calculated 100 surrogates and the mean TEsurr and divided it by its original TEorig. The fact that the distribution 
of the values for the quotient TEsurr/TEorig was consistently lower than 1 (Fig. 6F) demonstrates that the result 
is not driven by the characteristics of the signals, but describes a property of the system, validating our results 
obtained on the original data.

Discussion
We have demonstrated that the two major modes of FC that are known to exist in cortical networks, namely, 
phase- and amplitude-coupling of neural signals2,6, interact with each other in a causal manner in ongoing 
brain activity. Our study was carried out in awake freely moving ferrets using a custom-made µECoG array7,12 
that allows distributed recordings over large cortical networks with small-sized electrodes that capture rather 
localized activity, presumably of only few cortical columns23. In addition, we analyzed the relation between 
phase- and amplitude-coupling in human resting state data recorded with whole-head MEG4,8.

Modes of phase and amplitude interaction have been studied for many years mostly in the context of cross-
frequency coupling. In its most common version, the modulation of the amplitude at high frequencies by the 
phase of low frequency components is quantified24. This type of interaction, however, describes an instantaneous 
cross-frequency correlation between different features of signals from the same recording site.

Our study aimed to find a causal relation between different intrinsic coupling modes2 occurring across 
distributed areas in the cortex. We have introduced gross measures of spatial similarity in phase and amplitude 
across multiple channels to characterize phase and amplitude’s similarity at each time point t’, under the 
assumption that strong functional coupling results in high similarity of signals across recording sites. First, the 
interpretation of the resultant time series PC and AC must be taken carefully. Contrary to standard measures 
of connectivity, where values of 1 and 0 mean strong and no-coupling, respectively, PC may have any value 
in between even if the signals are perfectly coupled. For instance, if the signals have different phase, but the 
difference between them remains constant, then PC would be a number between 0 and 1 that remains constant 
over time. Similarly, a low AC does not necessarily mean low connectivity. Therefore, we assume that in both 

Fig. 4.  Time relation of the AC to PC causality. The figure shows the normalized transfer entropy between AC 
and delayed PC in different frequency bands for ferret LFP data. Error bars represent STD.
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coupling modes the mean strength relates inversely with the variability of PC and AC across time, rather than 
their instantaneous value. In fact, we observed unexpected transient periods of desynchronization represented 
by sudden decreases of PC. This behavior exhibits similarities to the metastable oscillatory modes (MOMs) 
recently reported in Cabral et al.25, which arise at sub-gamma frequencies. These modes are influenced by global 
parameters such as mean oscillation frequency and mean coupling, rather than the connectomic structure itself.

By means of transfer entropy we have observed a causal relation between AC and PC. This interaction occurs 
predominantly at low frequencies (1–8  Hz), with amplitude coupling assuming the leading role and phase 
coupling that of the follower. This result suggests that amplitude coupling, which likely reflects coordinated 
excitability fluctuations, can have a causal impact on more precise phase coupling in neural networks2,6. The 
leading role of amplitude at low frequencies contrasts with local cross-frequency phase-amplitude coupling, in 
which the phase at low-frequencies modulates the amplitude of high-frequency oscillations24.

One of the reasons that motivated the multi-channel approach was the definition of PC and AC at each 
time point. We found that the transfer of information occurs with a delay that is inversely proportional to the 
frequency of the signal, a time scale that is much shorter than the ideal time window used for the measures of 
connectivity. These time scales are much longer than the synaptic delay within areas, which are typically on the 
order of a few milliseconds26,27. Analyzing the delays relative to one oscillation period, we observed that within 
the 1–2 Hz band, this corresponds to approximately 2p/3 of the period. For the 2–4 Hz band, this equates to 
approximately p, and within the 4–8 Hz band, this value increases to approximately 2p. These findings lead us 

Fig. 5.  Computational model. For the simulation we considered a set of 9 coupled oscillators allowing 
pairwise all-to-all interaction. (A) Traces of PC and AC obtained for simulated traces of coupled oscillators. 
Note the similarity with the experimental data (Fig. 1B) (B) Joint probability distribution. The similarity 
with the experimental result is remarkable. (C) Contrast of TE between both directionalities. Our simulation 
reproduced the leading role of AC to PC.
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Fig. 6.  Transfer entropy in surrogate data. (A) 15-seconds segment of an original LFP signal (black) and its 
surrogate (red), both band-pass filtered (4–8 Hz). (B) Power spectral distribution of the original signal (black) 
and a surrogate time series (red dashed). (C) Autocorrelation functions of the original (black) and surrogate 
(red-dashed) signals. The green line represents the cross-correlation between the two time series. (D) Segment 
of corresponding surrogate PC and AC. (E) Joint probability distribution of PC and AC. (F) Normalized 
TE. For each of the original 9 channel conditions, we generated 100 surrogate time series, filtered them, and 
calculated the corresponding TE(AC→PC) and TE(PC→AC). The figure shows the distribution of surrogate TE 
in which each dot represents the mean value (across the 100 repetitions) normalized by the original TE AP-> 
PC. The asterisks (***) indicate statistical significance p < < 0.001.
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to two conclusions. First, they validate our hypothesis regarding causal interactions manifesting within time 
scales comparable to oscillation periods, emphasizing the necessity for time-resolved measurements. Second, 
the observed increase in relative delay at higher frequency bands implies the involvement of components at 
lower frequencies in the PC and AC, as illustrated in Fig. 1.D.

Our result that similar patterns of causality were observed in ongoing activity recorded by MEG as well is not 
obvious at all. First, the neural signal recorded by a single sensor in MEG reflects the activity of a much larger 
population than the recorded by our µECoG array, where the recorded signals are much better localized and arise 
from few cortical columns under the recording contact23,28. Second, the spatial extent covered by the 9 µECoG-
electrodes and the 9 MEG-sensors was quite different; the separation between the most distant recording sites 
in the ferret was ~ 1 cm, whereas in the human data it was ~ 6 cm. The coverage proportion of the visual cortex 
was, however, comparable in both cases. This unveils a mechanism that operates across various scales and broad 
measures. Another result that reveals the scale-free properties of the mechanism is the similarity of the spectral 
characteristic for both, PC and AC across carrier frequency bands (Fig. 1.D). The character of the PC and AC 
as function of frequency resembles the ~ 1/f power-law distribution ubiquitous to self-organized criticality29.

Although the goal of our study was not the detailed computational simulation of the relation between PC and 
AC, we explored to what extent a simplistic, non-biological system can predict the observed phenomena. We 
started with a model of coupled linear oscillator with noise. Contrary to established models like Kuramoto’s model, 
our goal was not to explicitly describe effects like synchronization30. Our model, however, predicts statistical 
distribution of AC, PC and their joint probabilities that resemble the ones observed experimentally. We see two 
possible scenarios that may explain the transient events of desynchronization in PC observed in our model. The 
first one would be a variation in the delay that is different for each connection31. This scenario, though, would 
imply jittering in delay at least comparable with the time scale of the frequency band. For instance, jittering in 
2–4 Hz band would require jittering of ~ 100 ms to introduce desynchronization. Since changes in the delay are 
not taken explicitly into account by our model, the fact that the simulation predicts such variation suggests to us 
that they are due to the close similarity in the spectral properties of the oscillators, which in our case are defined 
by mass mi and coupling constants kij. Furthermore, one possibility that may explain why our computational 
model reproduces the probability distributions and the causal relations is the fact that we considered all-to-all 
weak interactions. Finally, the fact that surrogate data do not emulate this result demonstrates that the causality 
is not induced by the statistical characteristics of the function, but reflects a physical property of the system.

In conclusion, our results show a causal relation between global representations of phase and amplitude 
consistency across neural populations. We hypothesize that this relation is an inherent mechanism of brain 
dynamics and its functional role may be the associated with events that require the coordinated action of 
global phase and amplitude. In a recent study, Galinsky and Frank32, using a network of nonlinear oscillatory 
propagating modes, demonstrated that the emergence of collective synchronized spiking activity was possible 
only when both phase and amplitude were taken into account. The present results clearly indicate a causal impact 
of amplitude coupling on phase coupling, which raises the question of the putative functional relevance of such 
an interaction. We have previously suggested that amplitude coupling modes, reflecting correlated excitability 
fluctuations, may serve to gate, or facilitate, faster phase coupling of neural oscillations2,33. This is compatible 
with recent modeling work indicating that scale-free amplitude fluctuations can have an important influence 
on long-range phase coupling. Such critical systems operate at the balance between excitation and inhibition, 
which enhances its dynamic range, allowing for fast reconfigurations of functional connectivity34. Thus, we may 
speculate that the transfer from AC to PC may be altered in neurological disorders with excessive excitation 
or synchronization, such as in epilepsy35. Resolving the origin and the potential functional implications 
of interactions between amplitude and phase coupling awaits future research, possibly requiring specific 
interventions that can separately target these coupling modes.

Materials and methods
Electrophysiological recording of ferret data
Data recorded from 7 freely behaving female ferrets (Mustela putorius furo) were used for the present study. 
A detailed description of housing, implantation of µECoG arrays and recording procedures have been already 
reported in12. Briefly, a custom designed µECoG with 64 electrodes array was implanted over the cortex of the 
left hemisphere (Fig. 1). Before the excised piece of bone was place back in place, we took photographs of the 
distribution of array contacts on the cortex to assign the position of each electrode to one of 16 anatomical 
areas based on the map generated by16. For later analysis we assigned the anatomical areas into 3 main groups 
comprising visual, auditory and parietal areas, respectively. After recovery (~ 7 days) the animal was accustomed 
to a sound attenuated chamber where the experiments were performed. ECoG signals were digitized at 1.4 kHz 
(0.1 Hz high pass and 357 Hz low pass filters), and sampled simultaneously with a 64 channel AlphaLab SnRTM 
recording system (Alpha Omega Engineering, Israel). During the recording sessions the animals were able to 
move freely, and movements were monitored with an accelerometer mounted to the cable-interface attached to 
the head. Further information on animal’s preparation, housing and array implantation can be found in12.

MEG recording of human resting state data
MEG resting state data were acquired using a 275-channel whole-head system (CTF MEG International Services 
LP, Coquitlam, Canada) in a magnetically shielded chamber. For this study, we used resting-state measurements 
in 10 healthy adult subjects, each of whom maintained the eyes closed for an approximate duration of 10 min. 
Prior to their involvement, all participants provided their informed consent in written form. The local ethics 
committee (Ethik-Kommission der Ärztekammer Hamburg) granted approval for all employed methods, and 
all procedures were executed in strict adherence to the stipulations of the Declaration of Helsinki. The data 
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utilized in this study were originally collected for a distinct research project. Data acquisition was conducted at a 
sampling rate of 1200 Hz, and data were offline down-sampled to 300 Hz for subsequent analysis.

Analysis of ferret data and brain state classification
All data analysis procedures were implemented either with MatLab (Mathworks, Natick, MA) or in Python. 
All intervals in which recorded signals were larger than 10 standard deviations were considered as noise and 
consequently rejected for further analysis. Each signal was re-referenced by subtracting the average signal across 
all 64 channels to remove potential artifacts and reduce effects of volume conduction. Signals were filtered in 
steps of 2 Hz with a butterworth filter (2th and 4th order). To reduce dimensionality for the analysis, the filtered 
signals were gathered into 7 frequency bands ranging from 1 to 2, 2–4, 4–8, 8–16, 16–32, 32–64 and 64–128 Hz, 
respectively. Within each frequency the resultant signal was z-scored to normalize amplitude fluctuations across 
frequency bands and electrodes.

Ongoing behaviors display fluctuations in power spectral characteristics that often can be associated with 
changes in states of the brain. To classify brain states we used a procedure that we have applied previously12. We 
performed a power spectral analysis for all individual channels on sliding time-windows (30 s) and calculated 
the global mean spectrogram. This procedure was repeated in sliding windows of 5 s. Subsequently, a principal 
component analysis (PCA) was performed to reduce dimensionality and, finally, a clustering analysis was applied 
(k-means) to extract 3 main clusters that we identified as distinct brain states. The number of states was based on 
the quality of different number of clusters, as we showed in a previous study12.

Analysis of MEG data
In order to make a fair comparison with the ferret data, we selected a cluster of 9 sensors located in the most 
occipital region of the left hemisphere. The signals were down-sampled to 300  Hz and then filtered into 7 
frequency bands as follows: 1–2, 2–4, 4–8, 8–16, 16–32, 32–64, and 64–100 Hz. Within each frequency band, the 
resultant signal was z-scored to normalize amplitude fluctuations across electrodes. Brain-state analysis was not 
performed in the human data as the recording duration was too short for this purpose.

Time resolved phase- and amplitude consistency
Standard measures of connectivity, such as amplitude correlations or coherence, are defined for pairs of recording 
sites (e.g., electrodes or brain regions of interest) during a time-window which can vary in duration from sub-
seconds to minutes. However, for the study of the causal relation between phase and amplitude coupling modes 
we considered it convenient to introduce instantaneous measures that can be defined at each time t’, rather 
than for an extended time window. Here, we propose an approach based on the assumption that strong phase 
(amplitude) coupling is reflected in a less variable relation of phases (amplitudes) across sets of recording sites. 
Conceptually similar to the phase-locking value (PLV), which reflects how consistent the phase related to a 
particular stimulus event is across trials15, we took signals of multiple electrodes and measured the consistency 
of the phase relation across recording sites defined as:

	
P C (t) = 1

N
|

N∑
k=1

eiφ k(t)|� (3)
 

with φk (t) the phase of channel k at time t, and N the number of channels. This value by itself does not say 
much about the connectivity. Assuming that there is a perfect phase correlation between the signals, the PC can 
take any value between 0 and 1. Applying the same rationale to the signal amplitudes, we defined amplitude 
consistency (AC) as: 

	
AC (t) = µ (t)

σ (t) ,� (4)
 

where µ (t) denotes the mean amplitude at time t, computed by averaging the instantaneous amplitudes derived 
from the absolute values of the Hilbert transform. σ represents the standard deviation at time t. Instantaneous 
phase and amplitude were computed after applying the Hilbert transform to the filtered signal s. Note that a 
consistent phase relation between channels can take any arbitrary value between 0 and 1, and whether the phase-
relation remains constant (as an indicator of connectivity) is indicated by a low temporal variation of PC.

Causality measure
We used transfer entropy (TE) to determine the causal relation between phase-based (PC) and amplitude-based 
(AC) time series. TE measures the directed transfer of information between two non-parametric time-series X 
and Y, and is defined as the information shared between the past of X and the present of Y present, given Y’s 
past17:

	 T EX→ Y = I (Yt, Xt−1|Yt−1)� (5) 

Here we calculated TE in both directions, namely, PC playing the role of leader and AC the follower, and vice 
versa. Both quantities were calculated separately for non-overlapping time-windows of 30 s and for all frequency 
bands. The statistical significance test was based on the null-hypothesis of no source-target interaction19,36, with 
time-randomized leader and follower. These surrogates were created from the same set of observations (leader’s 
interval) maintaining the same distribution but with temporal dependency of the source destroyed. For each 
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individual interval we selected the significance level as the mean plus two times the standard deviation. We 
selected the highest significance level across intervals and animals. TE was calculated in Python using the open-
source implementation PyIF37.

Computational simulation
To study whether a relation between PC and AC, if any, is caused by some biological effect or not, we simulated a 
non-biological system of coupled oscillators or springs, in which the interaction obeys Hooke’s law:

	
miẍi = −

n∑
j ̸= i

kij (xi − xj) + ϵ i� (6)
 

where mi is the mass, kij the coupling constant between nodes i and j, and εi is a noise factor. In the model, 
we allowed all-to-all interactions between oscillators, rather than only first neighbors. To directly compare 
with the experimental results, we simulated a system of 9 oscillators randomizing the parameters in each run. 
Parameter’s estimation ki, mi and εi was achieved after applying a modest amount of hand-tuning that delivered 
reasonable predictions. We implemented the following set of parameters: ki = 3 ± 0.1, mi = 4 ± 0.2 and 
ϵ i = 0 ± 0.5. We solved the system of coupled differential equations using the function ODE45 in MatLab.

Data availability
The data that support the findings of this study are available from the corresponding author, upon reasonable 
request.
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