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Hybrid convolutional neural
network and bi-LSTM model with
EfficientNet-BO0 for high-accuracy
breast cancer detection and
classification
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Breast cancer detection remains one of the most challenging problems in medical imaging. We propose
a novel hybrid model that integrates Convolutional Neural Networks (CNNs), Bidirectional Long
Short-Term Memory (Bi-LSTM) networks, and EfficientNet-B0, a pre-trained model. By leveraging
EfficientNet-B0, which has been trained on the large and diverse ImageNet dataset, our approach
benefits from transfer learning, enabling more efficient feature extraction from mammographicimages
compared to traditional methods that require CNNs to be trained from scratch. The model further
enhances performance by incorporating Bi-LSTM, which allows for processing temporal dependencies
in the data, which is crucial for accurately detecting complex patterns in breast cancer images. We fine-
tuned the model using the Adam optimizer to optimize performance, significantly improving accuracy
and processing speed. Extensive evaluation of well-established datasets such as CBIS-DDSM and MIAS
resulted in an outstanding 99.2% accuracy in distinguishing between benign and malignant tumors. We
also compared our hybrid model to other well-known architectures, including VGG-16, ResNet-50, and
DenseNet169, using three optimizers: Adam, RMSProp, and SGD. The Adam optimizer consistently
achieved the highest accuracy and lowest loss across the training and validation phases. Additionally,
feature visualization techniques were applied to enhance the model’s interpretability, providing deeper
insight into the decision-making process. The Proposed hybrid model sets a new standard in breast
cancer detection, offering exceptional accuracy and improved transparency, making it a valuable tool
for clinicians in the fight against breast cancer.

Keywords Transfer learning, Breast Cancer prediction, CNN-BiLSTM model; Adam optimization, Precision
medicine; medical imaging

Breast cancer is still one of the most common and deadly diseases in the world, accounting for a significant
proportion of cancer-related deaths in women. Breast cancer kills over 670,000 people worldwide each year,
according to current statistics, and the number of new cases increases year after year!. Early detection of
breast cancer is critical for lowering mortality rates because it allows for more effective treatment options and
improves survival. Early detection of tumors enables healthcare professionals to provide more targeted and
personalized treatment, significantly improving prognosis. Breast cancer often appears asymptomatic in its early
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stages, necessitating the development of dependable and accurate predictive models to detect subtle signs of
malignancy>”.

A variety of traditional methods have been used over the years to analyze and classify breast cancer, with
a focus on imaging techniques such as mammography, ultrasound, and biopsy’. Mammography is the most
reliable method for detecting early breast cancer; however, it has limitations, particularly in patients with
dense breast tissue, where tumors may be concealed. Ultrasound and magnetic resonance imaging (MRI) are
frequently used as adjuncts to mammography; however, these techniques necessitate specialized evaluation and
can result in subjective interpretations>®.

Recent years have demonstrated the ability of statistical and machine learning models to improve the accuracy
of breast cancer diagnosis. Support Vector Machines (SVM), Random Forests, and k-nearest Neighbours (k-NN)
algorithms have been used to predict the likelihood of malignancy in various datasets, including mammography
images and clinical information. However, these models frequently fail to capture the complex relationships in
breast cancer data, especially in large and multidimensional datasets. Traditional machine learning methods
may not fully exploit the spatial and temporal patterns inherent in medical imaging data”?.

Role of machine learning and deep learning in breast cancer diagnosis

Machine learning (ML) and deep learning (DL) are crucial in breast cancer detection, offering significant
improvements over traditional methods. Machine learning algorithms, such as decision trees, support vector
machines, and logistic regression, have effectively classified breast cancer from mammographic images
and diverse clinical data. Nevertheless, their capacity to derive significant patterns from intricate and high-
dimensional data is frequently constrained®°.

Deep learning models, particularly CNNs, have revolutionized the approach to medical image analysis.
CNNs can independently learn features from raw medical images, significantly reducing the need for manual
feature extraction. These models have exhibited significant effectiveness in breast cancer diagnosis, especially
in mammogram analysis, where CNNs can detect anomalies that may be overlooked by human specialists'!.
Despite their proficiency in recognizing spatial features, CNNs are not particularly adept at capturing temporal
patterns, such as tumor growth or morphological changes over time, which are crucial for accurate predictions.

The amalgamation of spatial and temporal data has improved the effectiveness of deep learning models
in breast cancer diagnosis. Models like Recurrent Neural Networks (RNNs) and, more recently, Bi-LSTM
networks have demonstrated remarkable efficacy in tasks requiring temporal data processing. These models
are particularly beneficial in situations where the progression of the disease is monitored over time!>!3. Despite
these advancements, existing models still face challenges, including the requirement for large labeled datasets,
hyperparameter optimization difficulties, and overfitting issues.

Challenges in existing research

ML and DL are essential in breast cancer detection, providing substantial advancements compared to
conventional techniques. Machine learning algorithms, including decision trees, support vector machines,
and logistic regression, have effectively classified breast cancer using mammographic images and clinical
data. Nonetheless, their ability to extract meaningful patterns from complex and high-dimensional data is
often limited!?. Deep learning models, especially CNNs, have transformed the methodology of medical image
analysis. CNNs can autonomously extract features from unprocessed medical images, greatly diminishing the
necessity for manual feature extraction. These models have demonstrated considerable efficacy in breast cancer
diagnosis, particularly in mammogram analysis, where CNNs can identify anomalies that may be missed by
human experts®!4. Although CNNs excel at identifying spatial features, they are not exceptionally skilled at
capturing temporal patterns, such as tumor growth or morphological changes over time, which are essential for
precise predictions.

Integrating temporal and spatial information has enhanced the efficacy of deep learning models in breast
cancer diagnosis. Models such as RNNs and, more recently, Bi-LSTM networks have exhibited exceptional
efficacy in tasks necessitating temporal data processing. These models are especially advantageous when the
diseas€’s progression is tracked over time!®. Notwithstanding these advancements, current models continue
to encounter challenges, such as the necessity for extensive labeled datasets, hyperparameter optimization
complications, and overfitting problems.

Motivation for the research

The detection and classification of breast cancer through mammographic images is a critical but challenging
task, mainly due to the limitations of existing deep-learning models. While state-of-the-art models, such as
CNNs, VGG-16, and ResNet, have succeeded in image classification, they often struggle with complex features in
mammogram images, such as subtle differences between benign and malignant tumors. Moreover, these models
typically do not capture the temporal or contextual dependencies in medical imaging, which are essential for
accurate diagnosis. Additionally, the performance of these models can be limited by the need for large amounts
of labeled data and the computational cost of training deep networks from scratch.

Our proposed hybrid model addresses these deficiencies by effectively combining advanced CNNs with Bi-
LSTM and EfficientNet-B0'°, using transfer learning to extract features from the pre-trained EfficientNet-B0
model. This allows us to overcome the need for large labeled datasets while improving accuracy. The Bi-LSTM
component enhances the model’s ability to capture temporal dependencies in the images, further improving
classification performance. By fine-tuning the model’s hyperparameters and leveraging advanced optimization
techniques, we improve the model’s speed and accuracy. This novel approach significantly outperforms existing
models in breast cancer detection, providing a more reliable, interpretable, and efficient solution for clinical use.
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Key contributions of the work

Our research develops an Improved Adam optimization-optimized hybrid CNN-LSTM model to address these
challenges. We aim to build a model that improves breast cancer image prediction and integrates complex spatial
and temporal features. We want to improve the model’s computational efficiency and interpretability. The key
contribution of the article is as follows:

o Improved CNN architecture By adding more convolutional layers and sophisticated feature extraction tech-
niques, the aim is to capture intricate spatial patterns more effectively in breast cancer images. This adjust-
ment improves the overall performance of the model and represents features more precisely.

o Enhanced Bi-LSTM and Transfer Learning: Improve the Bi-LSTM structure to represent sequential relation-
ships in data better. The LSTM is optimized to handle temporal aspects of the data more effectively, resulting
in higher prediction accuracy and model stability. Similarly, a Transfer learning method uses pre-trained
CNN EfficientNet-B0, which is trained on ImageNet.

o Optimize hyperparameter tuning This is performed by Adam optimization, which addresses issues such as
overfitting and underfitting, resulting in faster, more reliable predictions and improved model efficiency.

o Improved prediction accuracy across the popular breast cancer datasets CBIS-DDSM and MIAS, the proposed
approach outperforms existing deep learning models, i.e., VGG-16, VGG-19, DenseNet169, ResNet-50, and
DenseNet201, with better accuracy.

The complete article is organized as follows: section two covers related breast cancer detection and analysis
work using machine and deep learning methods. Section three covers materials and techniques related to the
research. This section covers the functioning of the proposed model and details the dataset. Section four covers
the simulation results and analysis of existing and proposed methods; section five covers the conclusion and
future direction of the research.

Related works

Breast cancer remains a prominent issue in worldwide healthcare, necessitating the development of sophisticated
and accurate diagnostic technologies. Recently, there has been a significant focus on utilizing deep learning
methodologies in medical image processing, specifically in breast cancer forecasting and categorization.

Deep learning applications in breast cancer diagnosis

Deep learning models have recently shown significant promise in breast cancer diagnosis. Diverse methodologies
have been proposed to improve the accuracy of breast cancer detection and classification using medical
imaging techniques. A study used CNNs to detect breast cancer, with a classification accuracy of 89% using
mammographic images. The study highlighted the importance of integrating deep learning models to improve
model robustness and applicability across diverse populations, implying that future research should prioritize
data collection from multiple research institutions.

A recent study introduced a hybrid model that uses MRI scans to predict the treatment response of breast
cancer patients by combining radiomic features with convolutional neural networks. The model achieved an
accuracy rate of 88%. The authors emphasized the importance of rigorous validation across various imaging
protocols to ensure the model’s relevance in clinical settings. An alternative method, described in!'!, used
intra- and inter-modality attention mechanisms for prognostic prediction in breast cancer and achieved a
sample accuracy of 91%. This model highlighted the need for more extensive and diverse datasets to address
data imbalances and improve predictive accuracy. Many ancillary studies have focused on histopathological
images and cytopathology about breast cancer classification. An ensemble learning method in!? used annotated
histopathological slides from various sources to improve diagnostic accuracy, achieving a precision of 90%.
Another study in'” used CNNss to classify cytopathology images and achieved an accuracy of 85%. These studies’
findings emphasize the importance of feature extraction and the challenges of interpretability in complex
models. They propose that future initiatives prioritize the development of explainable AI to assist healthcare
professionals in clinical decision-making.

Integrating multimodal data for improved diagnosis

Recent advances in multimodal data fusion approaches have improved the efficacy of machine learning models
for detecting breast cancer. A study cited in'® investigated using HER-2 and ER biomarkers with deep neural
networks to detect breast cancer. The study combined biological markers and imaging data, demonstrating a
high potential for accurate breast cancer segmentation and classification. Furthermore® looked into using deep
neural networks to classify breast cancer using mammographic images, with a pre-processed dataset to improve
clinical relevancy. The study cited in'® demonstrated a significant improvement, as the authors used the XGBoost
algorithm to identify the most relevant features for breast cancer prediction, achieving accuracy comparable
to all features while significantly shortening training time. The study found that feature selection significantly
improves model efficiency.

Studies show that deep learning methods are effective for early detection of breast cancer in a variety of
settings. A study by'® investigated using machine learning algorithms and Artificial Neural Networks (ANNs)
to predict breast cancer recurrence. This method showed promise in providing personalized treatment
recommendations and increasing patient survival rates. A one-of-a-kind research initiative developed a
classification system for breast cancer detection using IoT-enabled imaging data that achieved an accuracy of
89.2%. This study emphasized the importance of real-time data processing in shortening diagnostic timelines
while recognizing potential privacy and security concerns'*.
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Emerging trends and future directions

Numerous studies have illustrated the efficacy of deep learning models in breast cancer detection; however,
several domains remain for future research to enhance model performance. For instance?’, recognized the
necessity for enhanced model generalisability across varied patient demographics and imaging methodologies.
This constraint underscores the need to employ more extensive and diverse datasets in model training.
Furthermore, research including®?! has indicated that despite the remarkable accuracy of deep learning models,
issues concerning data imbalance, feature extraction, and overfitting remain prevalent.

An additional critical focus is the advancement of explainable AI (XAI) methodologies to improve model
transparency. Research®?? indicates that offering interpretable results to healthcare professionals will enhance
their confidence in machine learning tools and facilitate clinical decision-making. Moreover, integrating diverse
datasets, including clinical, biological, and imaging data, will enable the development of more comprehensive
models that yield more precise and holistic predictions. Furthermore, the incorporation of emerging technologies
like the Internet of Medical Things (IoMT) can significantly augment the efficacy of breast cancer prediction
models through real-time data collection and analysis. Nonetheless, the imperative of safeguarding data privacy
and security must be confronted to protect patient information while preserving model efficacy, as indicated
in'3,

Table 1 presents a comparative analysis of various existing research. In summary, even though deep learning
models for breast cancer detection have advanced significantly, much work remains to enhance the models’
generalisability, interpretability, and robustness. Future research must concentrate on tackling the issues of data
imbalance, overfitting, and the necessity for explainable Al, along with the incorporation of multimodal data to
develop more precise and dependable breast cancer prediction models.

Materials and methods
This section covers the dataset details, proposed model architecture, and work.

Proposed model for breast cancer

The architecture of the proposed hybrid model incorporates various advanced techniques to enhance the accuracy
and reliability of breast cancer detection from mammogram images. The model comprises EfficientNet-B0,
CNNs, and Bi-LSTM, collaboratively processing and classifying the input images®>?*. Figure 1 presents the

architecture of the proposed hybrid model. The complete work is described in the following sub-sections.

Reference Architecture/approach | Dataset Key findings Limitations Results
Ellis et al. Deep Learning for Risk | UK Screening Cohort, Focused on rlsk prediction using deep learning | Limited to screening pf)pulatlf)ns Moderate: Ach}evgd
L for large screening cohorts with CBIS-DDSM and lacks fine-tuned diagnostic 85% accuracy in risk
(2024) Prediction CBIS-DDSM, MIAS . . o
and MIAS. classification. prediction.
N Combined radiomics and deep learning to It requires extensive preprocessing | Moderate: Improved
Z[a(gr(;lzo 4(;d et 5::;3;:“5 +Deep CBIS-DDSM, MIAS enhance mammogram diagnosis using CBIS- and may not be generalized across | classification
. & DDSM and MIAS datasets. data modalities. accuracy by 7%.
Laghmati et - Improved prediction of breast cancer using ML | It may not capture complex Normal: Achieved
al. (2024) ML +PCA for Prediction | MIAS and PCA with the MIAS dataset. patterns without deep learning. 80% accuracy.
Rahman etal. | SNN fpr Tumor Used CNNs to detect and localize mammogram | Lack of robustness for rare cancer High: A igh
Detection and CBIS-DDSM, MIAS A . . o detection accuracy
(2024) o tumors, utilizing CBIS-DDSM and MIAS. types or other imaging modalities. .
Localization for common tumors.
Deep Learning for Focused on improving classification and It may not perform well with . . o
é}(l);la)d etal. Classification and MIAS, CBIS-DDSM detection accuracy with deep learning methods | unbalanced data or diverse dHeltge}l.ti‘;\);h;i\cfleﬁais %
Detection applied to the MIAS and CBIS-DDSM datasets. | datasets. ¥
Xiao et al. . Ap Phe.d tran Sf?r learning for d.a ssification, Drop in performance when tested | High: Achieved 90%
CNN + Transfer Learning | MIAS achieving significant accuracy improvements X 3 e
(2024) on MIAS on diverse or smaller datasets. accuracy on MIAS.
- - PN P T,
Liu et al. Multi-modal Fusion with Multi modal fu§ ion with intra ax_ld inter Complex model architecture .ngh' 92% aceuracy
. MIAS, CBIS-DDSM modality attention networks significantly . . S in prognosis
(2024) Attention Network . . s requires substantial training data. Lo
improved prognosis prediction. prediction.
. . - . High: Achieved
Ray et al. Hybrid ML + CNN for i A hybrid approach was applied, .con?bmmg Dataset b1a§ towards well'- o 95% histopathology
! BreakHis, TCGA ML and CNN for histopathological image processed tissue samples is limited . ;
(2024) Histopathology P . classification
classification. to only certain cancer types.
accuracy.
Wane et al. Vision Leveraged vision transformers and CNNs Requires ample computational High: 93% accuracy
g etal Transformer + CNN for | Camelyon16 for breast cancer metastasis detection using q ple computz in metastasis
(2024) Hi resources and training time. X
istopathology Camelyon16. detection.
Naz et al. Internet of Things + Deep Breast Cancer Data Integrated IoT data and dgep lear'mr}g for Limited validation on real-time Moderate: Achleved
Learning for Early early breast cancer detection, achieving good . . o 89% accuracy in
(2024) . H from UCI - . data; potential IoT security issues. . .
Diagnosis diagnostic performance. early diagnosis.
K Support Vector Used SVM to classify breast histopathology SVM’s linear nature might struggle M(:der'ate: Achieved
aruppasamy . . . T . . 87% histopathology
Machine (SVM) for BreaKHis images, achieving high accuracy on the with more complex patterns in e
etal. (2024) Hi : . . . classification
istopathology BreaKHis dataset. high-dimensional data.
accuracy.
Gullo et al. Al-enhanced MRI for Focuseq on using Al-enhanced breast MRI data | Results may not be gengrgllzable High: Achieved 91%
Treatment Response Breast MRI dataset to predict treatment response for breast cancer | to other imaging modalities or Sl
(2024) . 2 prediction accuracy.
Prediction patients. datasets.

Table 1. Comparative analysis of various existing research in the field of breast cancer research.
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Fig. 1. Architecture of proposed model.

Working of the proposed hybrid model
The proposed model uses EfficientNet-BO, improved CNN, and Bi-LSTM with Transfer learning and Adam
optimization. The complete workings are as follows:

EfficientNet-B0

In the proposed hybrid model for breast cancer detection, EfficientNet-BO0 is crucial to the feature extraction
process. The model’s initial step integrates the efficient extraction of pertinent features from input mammogram
images, which is essential for precise cancer detection. EfficientNet-B0, pre-trained on the ImageNet dataset, is
employed to extract features ranging from low-level to high-level from mammogram images. EfficientNet-B0
utilizes pre-trained weights to extract critical image features without requiring comprehensive training on
the mammogram dataset. This is significant because training deep neural networks from inception typically
necessitates substantial data and computational resources, which can be problematic when handling medical
images such as mammograms, which are comparatively limited in quantity. Figure 2 presents the EfficientNet-B0
Feature Extraction Process in a proposed hybrid model.

Improved CNN-based feature extraction

An improved CNN uses deeper architectures, advanced convolutional techniques, and regularization methods
to improve performance. The proposed model enhances the standard CNN model in various ways. Figure 3
presents the architecture of the improved CNN2°-27,

o Using deeper convolutional layers In the improved CNN model, the shallow convolutional layer is updated by
deeper convolutional layers to enhance the depth of the network. It helps to learn more complex and relevant
features from breast cancer images®®.

o Smaller filter sizes Standard CNN uses a filter size of (5% 5) or (7x7), which is slower and cannot capture
accurate and filtered details. In improved CNN, the filter size is (3x3), which enhances the accuracy and
speeds up the training®’.

o Dilated convolutions In improved CNN ‘Standard convolutions are replaced by ‘dilated convolutions.

o Batch normalization: The proposed hybrid CNN model is updated by applying batch normalization after each
convolutional layer. This upgrade helps to accelerate and stabilize the training process.

o Advanced activation functions In this improved CNN model, a Standard ReLU activation function is updated
using Leaky ReLU, a more advanced activation function. This change helps to deal with the dying neurons
problem and allows the CNN model to learn more complex breast cancer patterns.

o Mixing of pooling layers In the improved CNN, we have replaced ‘Standard max pooling’ with average pooling,
which helps minimize the spatial dimensions and enhance the feature retention process.

o Use of adaptive dropout The improved CNN model utilizes Adaptive Dropouts instead of fixed dropouts,
which helps to address overfitting issues.

« Use of global average pooling The improved CNN model utilizes Global Average Pooling instead of Global Av-
erage Pooling. These changes help average each feature map to a single value, lower the number of parameters,
and prevent overfitting, taking the place of flattening.

o Regularized dense layers In the improved CNN model, a Standard dense layer is replaced by applying L2 regu-
larization to the dense layer. This change helps penalize large weights to prevent overfitting and maintain the
model’s generalizability.

o Optimized with ADAM In the improved CNN model, an SGD optimizer is replaced by an ADAM optimizer,
which offers quicker convergence and improved handling of sparse gradients by combining the advantages of
AdaGrad and RMSProp.

Temporal dependencies by improved Bi-LSTM model
The Bi-LSTM component of the hybrid model that combines CNN and Bi-LSTM has undergone several significant
modifications and enhancements to improve its performance for breast cancer prediction. The enhanced Bi-
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Fig. 2. The EfficientNet-B0 feature extraction process.
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CNN Feature
Vectors

LSTM model for breast cancer prediction operates by analyzing feature vectors extracted from images that a
CNN has previously studied. The vectors are inputted into the Bi-LSTM layers, which analyze the data in both
the forward and backward directions to comprehend intricate temporal patterns. To address the overfitting issue,
dropout layers are incorporated between the Bi-LSTM layers to enhance the model’s resilience?>*.

An attention mechanism improves the model’s capacity to focus on the most essential elements of the
sequence, thus enhancing the accuracy and interpretability of the predictions. Next, the data is fed into a fully
connected layer with L2 regularization to improve features and reduce overfitting. In the final stage, the output
layer generates breast cancer probability scores using SoftMax activation. This hybrid model uses spatial and
temporal features to improve prediction accuracy with CNNs and Bi-LSTMs. Figure 4 presents the architecture
of the improved Bi-LSTM model?>*!. The critical changes in enhanced Bi-LSTM are as follows.

o Input layer CNN feature vectors are fed to a normal Bi-LSTM. In improved Bi-LSTM, properly normalized
and scaled feature vectors improve learning.

o Used of stacked multiple Bi-LSTM layers The enhanced Bi-LSTM model utilizes multiple stacked Bi-LSTM lay-
ers. This enhancement facilitates the capture of intricate temporal relationships in the sequence data, thereby
augmenting the model’s capacity to acquire knowledge from the data.

o Use of attention mechanism The enhanced Bi-LSTM model incorporates an attention mechanism following
the Bi-LSTM layers. This enhancement enables the model to concentrate on the most pertinent segments of
the input sequence, thereby enhancing the interpretability and efficiency of the overall model.

o Use of dropout layers The improved Bi-LSTM model Implemented dropout layers between the Bi-LSTM lay-
ers. This enhancement aids in mitigating overfitting by introducing a random dropout of units during the
training process>®32,

o Use of fully connected (dense) laye The enhanced Bi-LSTM model incorporates a dense layer using L2 regu-
larization. This enhancement facilitates the dense layer’s acquisition of high-level characteristics using the
sequence data, whereas L2 regularization prevents overfitting.

o Use of output layer The enhanced Bi-LSTM model applied the SoftMax activation function to classify mul-
ti-class and generate matched probabilities?*>”.

Let Bi-LSTM input as BiLST M;nput, then LSTM cell operations can be represented by the following equations
from (1) to (4).

Fe={o [(Wy)*(H:—1)] + Br} 1
Iy ={o [(W,)*(H,—1)] + B} )
Ci = { tanh (W )*(H, —1)] + Bc} 3)
Ce={[(F* (C:— D]+ (L + C¢)} (4)

In these equations, the sigmoid function is used as an activation function, “tanh” is used as a hyperbolic tang
function, I;: Input Gate, Ft: Forget Gate, O, Output Gate, C: Define Memory contains and C';: New Memory
includes. As mentioned, the sigmoid function consists of three gates, while a hyperbolic tangent boosts a cell’s
outputs>> 1121718,

Transfer learning (pre-trained CNN)
Transfer learning is a method in machine learning where a pre-existing model developed for one specific task is
utilized as the initial foundation for building a model for a different task. It uses the acquired knowledge from a
pre-trained model that has undergone training on a substantial dataset (such as ImageNet) to carry out a new,
correlated task®!%1419-21 This approach is beneficial when working with a limited amount of data because it
allows the latest model to benefit from the overall characteristics of a large and diverse dataset. The breast cancer
prediction model uses transfer learning to extract features from breast cancer images using a pre-trained CNN
known as ‘EfficientNet-B0> The characteristics are then fed into a BILSTM network for classification!®1420-33,
EfficientNet-B0 was chosen for this task because of its efficient architecture and excellent performance in
image classification tasks. EfficientNet-BO strikes a balance between model size and accuracy, making it ideal
for medical imaging applications that may have limited computational resources. EfficientNet-B0 contains

Bi-LSTM Bi-LSTM Fully Output
Layer 1 +| Dropout | Layer2 . Attention Connected Layer
(Forward & A Layer "] (Forward & | Mechanism Layer (Softmax
Backward) Backward) (L2 Reg) Activation)

Fig. 4. Architecture of improved Bi-LSTM model.
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pre-trained weights for the ImageNet dataset. The model has learned to recognize general features like edges,
textures, and patterns>4-3¢,

Role of Adam optimization

ADAM, Adaptive Moment Estimation, is an optimization algorithm specifically developed to train deep
learning algorithms. This algorithm integrates the advantages of two other variations of stochastic gradient
descent (SGD), AdaGrad (which is effective for sparse gradients) and RMSProp (which is effective for online
and non-stationary scenarios). ADAM calculates adaptive learning rates with each parameter, which makes it
highly suitable for large datasets and parameter spaces with high dimensions. The critical functions of ADAM in
the proposed hybrid model are as follows®” .

o Adaptive learning rates ADAM adjusts learning rates for each parameter based on the gradients’ first and
second-moment estimates. This feature helps the model converge faster and more effectively by dynamically
adapting to the learning process, especially in high-dimensional deep-learning models.

 Handling sparse gradients ADAM’s essential function works well when gradients are sparse or vary greatly. It
helps in complex models like the hybrid CNN-BiLSTM, where some parameters may receive sparse updates.
ADAM improves model performance by updating all parameters consistently.

« Bias correction ADAM’s essential function includes bias-correction steps to account for moment estimates’
initial bias towards zero. It ensures stable and reliable learning from the start of training, leading to more
accurate and faster convergence.

o Efficiency and scalability ADAM is computationally efficient and memory-efficient, crucial for large datasets
and complex models. This efficiency lets the hybrid model be trained on larger datasets with higher dimen-
sionality without excessive computational cost or memory usage®’.

o Preventing overfitting ADAM’s adaptive learning rates fine-tune the model by precisely adjusting parameters.
Preventing overfitting ensures that the model generalizes well on unseen data, which is crucial for medical
predictions like breast cancer detection.

o Stability in training ADAM’s essential function combines mean and uncentered variance moment estimates
for more stable and reliable training. Training deep models like CNN-BiLSTM requires stability to avoid poor
convergence and model performance®”*!.

Algorithm for the proposed hybrid model
The algorithm for the proposed hybrid model is as follows.

Step 1: Pre-process Data:
FUNCTION preprocess_data(images):
RETURN resize(normalize(images), (299, 299))
Step 2: Load EfficientNet-B0:
FUNCTION load_EfficientNet-B0():
model = EfficientNet-B0(weights='imagenet’, include top=False)
FREEZE ALL layers in the model
RETURN model
Step 3: Enhance CNN:
FUNCTION enhance_cnn(base_model):
x = Flatten(base_model.output) and  x = Dense(x, units=512, activation="relu’)
RETURN x
Step 4: Build Hybrid Model:
FUNCTION build model(base_model):
input = Input(shape=(299,299,3)
x = base_model(input), x = Flatten(x), x = Dense(x, units=512, activation="relu’)
x = Bidirectional(LSTM(x, units=256))
output = Dense(x, units=1, activation="sigmoid’)
RETURN Model(inputs=input, outputs=output)
Step 5: Train Model:
FUNCTION train_model(model, data, labels):
model fit(data, labels, epochs=50, batch_size=32, validation split=0.2)
Step 6. Evaluate Model:
FUNCTION evaluate_model(model, test data, test labels):
loss, accuracy = model.evaluate(test_data, test_labels)
predictions = model.predict(test_data)
RETURN accuracy, confusion_matrix(test_labels, predictions), roc_auc(test labels,
predictions)
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Algorithm 1. For hybrid CNN-BiLSTM model for breast cancer prediction.

Mathematical modelling
Developing a mathematical framework for the analysis of breast cancer utilizing the hybrid architecture of CNN
Bi-LSTM, transfer learning, and Adam optimization is a complex Endeavour that necessitates the establishment
of mathematical formulas and relationships to depict the dynamics and interdependencies across the model*-44.
Although the architecture primarily relies on computational methods and data-driven approaches, this section
presents a mathematical representation of the proposed model.

Let Imeut represents the set of breast cancer images;

XM, 18 the input matrix with dimensions (N, H, C, W);

Where N is the number of data samples, H is the height of the input image, C Channel, and W is the weight
of input images.

o CNN The CNN section of the mathematical framework comprises several different layers, such as convolu-
tional, pooling, and wholly connected layers. The layer known as convolutional can be mathematically rep-
resented by Eq. (5).

OFM; = {f( Wi x IXj—1 + BV; )} (5)

Where: OFM; Output feature map of jth layer, f: Activation function, IX;_i: Input feature map, BVi: Bias
Vector.

o Bi-LSTM The Bi-LSTM element of the model processes the features that the CNN has extracted sequentially.
The equations governing Bi-LSTM models involve gate operations. However, for simplification, the LSTM
output at time stamp T, denoted as HO,, can be expressed by Eq. (6).

HOr = {LSTM(IXr, HOr_1) (6)
Where HO~: Hidden output state, 1X; : input at time interval T, HOr_ : Hidden state.

o Hybrid CNN-LSTM The hybrid model integrates the outputs generated by the CNN and LSTM components.
Let Houtput Denote the ultimate output of the hybrid model. The results obtained from the CNN model
OCNN and the outcome from the LSTM model OLSTM can be combined via an appropriately weighted
combination presented in Eq. 7.

Houtput = {(f X Ocnn)+ (1= f)x Orsrm} (7)

o Adam optimization The Adam optimization algorithm is employed to determine the optimal number On
That maximizes a performance metric, including precision and F1 Score. The optimization process can be
formally expressed through the utilization of mathematical syntax, specifically denoted as Eq. (8).

On = {ArgnrrazonPer formancenratriz 1X Minpu:(On)} (8)

Datasets and data preprocessing
The research utilizes popular breast cancer mammogram datasets CBIS-DDSM* and MIAS*S; the complete
details are as follows.

Cancer imaging archive - digital database for screening mammography (CBIS-DDSM)

A CBIS-DDSM breast cancer dataset in an enhanced version of DDSM datasets. The CBIS-DDSM is an essential
dataset for studying breast cancer. The collection has many different kinds of mammographic images. The
images are digitized film scans that have detailed notes added to them that label lesions as either benign or
malignant. This variety of cases makes it easier to train and test machine learning models for finding breast
cancer. CBIS-DDSM is a standard used to compare how well different diagnostic algorithms work. It can be
accessed through The Cancer Imaging Archive (TCIA), which makes it an essential tool for researchers who
want to make diagnostics more accurate®.

Data pre-processing on CBIS DDSM  After pre-processing, the images were resized to (299 x 299) by remov-
ing the regions of interest (ROIs), as presented in Fig. 5a—c. TensorFlow stores the data in TFRecord files. The
dataset comprises 55,890 training data samples, with 14% classified as positive and 86% as unfavorable, distrib-
uted across 5 TFRecord files. The data has been partitioned into training (80%) and testing (20%) sets according
to the delineation in the CBIS-DDSM dataset. The test files have been evenly partitioned into test and validation
datasets. Table 2 presents the Data count of the CBIS-DDSM Breast cancer Dataset.

The dataset consists of images from the DDSM and CBIS-DDSM datasets, both positive and negative. The
data underwent preprocessing to produce (299 x299) images. Once the negative (DDSM) images were tiled
into (598 x 598) tiles, they were resized to (299 x 299) pixels. The masks were used to extract the ROIs from the
positive (CBIS-DDSM) images, with a small amount of padding added for context. The images were then resized
to (299 % 299) after each ROI was randomly cropped three times into (598 x 598) images with random flips and
rotations. Two labels are attached to the images:
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o label_normal: full multi-class where label_normal: 0 for negative and 1 for positive; and,
o labels: 0 is negative, 1 is benign calcification, 2 is benign mass, 3 is malignant calcification, and 4 is malignant
mass.

Mammographic image analysis society (MIAS)

The second dataset, the MIAS mammography database, was used in this investigation. It is used in a lot of research
on breast cancer, especially research that looks at mammograms. This is a group of digital mammograms that
show both normal and abnormal cases. The pictures have notes explaining any sores and how they are grouped.
They have many different pictures and views in the dataset, which makes it great for testing and producing
new ways to look for breast cancer and look at pictures. MIAS is used in much academic research to improve
automated detection methods and make diagnoses more accurate?®.

Data pre-processing on MIAS The images are grayscale with different views, so we utilize craniocaudal (CC)
and mediolateral oblique (MLO) view images. Every image in the MIAS dataset has (1024 x 1024) portable grey
map (PGM) formatted dimensions. The 322 images in the MIAS are divided into three classes: 64 are classified
as benign cases (B), 51 as malignant cases, and 207 as standard cases>*3.

It supplies comprehensive ground-truth information regarding mammogram images, including background
tissue, classification of abnormalities, tumor type, coordinates of the abnormality center, and an approximate
radius for delineating the abnormality classes. There are six types of abnormalities in this class: well-defined
circumscribed masses (CIRC), calcification (CALC), other ill-defined masses (MISC), spiculated masses (SPIC),
architectural distortion and asymmetries (ARCH)*. Figure 6 presents the class count in the MIAS dataset, and
Fig. 7 presents the class distribution and count for the MIAS dataset for abnormality classes.

Several steps are needed to pre-process the MIAS dataset to improve model training properly. First, the
images are resized to a (224 x 224) size to ensure the whole dataset is the same as in Fig. 8.

The next step is to make the pixel values more consistent so that the model can learn faster. We employ data
augmentation techniques such as flipping, rotating, and zooming to diversify the training samples to increase the
dataset from 322 to 1620 images, as presented in Table 3. This enhances the model’s capacity for generalization.
The dataset is divided into training and test sets to evaluate the model’s performance accurately. We have also
utilized a morphological operation to relate filtering the image shape features. Data preprocessing is crucial for
enhancing the accuracy and reliability of the breast cancer detection model?*-36:40:41,

Performance metric
To measure the performance of the existing and proposed model, this research utilizes the following
parameters'®37-3°. Here TP: True positives, TN: True Negatives, FP: False Positives, FN: False Negatives.

o Accuracy Accuracy is a metric that quantifies the ratio of accurately identified instances to the overall number
of representative samples as presented by Eq. (9).
[TP + TN]
[TP + TN + FP + FN]

Accuracy =

©)

o Precision Precision is an indicator that evaluates the correctness of optimistic forecasts generated by a model
as presented by Eq. (10).

[TP]
[TP + FP]

Precision = (10)

o Recall/ Sensitivity The ability of the model to determine each relevant scenario in the dataset is measured by
recall as presented by Eq. (11).

[TP]

Recall = m

(11)

o Specificity Specificity quantifies the proportion of accurate pessimistic predictions concerning the overall
number of true negative instances. The metric quantifies the model’s capacity to accurately detect instances
classified as negative as presented by Eq. (12).

[TN]

(12)

o FI-Score: It can be defined as the mathematical average of precision and recall, calculated using the harmonic
mean. The method achieved a trade-off between precision and recall, particularly advantageous in the imbal-
anced data sets presented by Eq. (13).

(13)

[Precision x Recall]
F1— =2
Score X { [Precision + Recall]
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Fig. 5. ROI images in CBIS-DDSM Breast cancer Dataset. (a) CBIS DDSM Breast cancer standard image. (b)
CBIS DDSM Breast cancer cropped images.
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CBIS-DDSM | 5482 Normal 1498 400
Malignant | 1551 388

Table 2. Data count of CBIS-DDSM breast cancer dataset.
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Fig. 6. Class Count in MIAS dataset.

o ROC Curve (Receiver Operating Characteristic Curve) This is a visual depiction that illustrates a model’s ef-
ficiency at various decision thresholds. The area under the receiver operating characteristic (ROC) curve,
commonly called AUC-ROC, measures a model’s comprehensive performance.

o Cohen’s Kappa (x) Kappa measures categorical data evaluator or model agreement. It measures how much
better the deal is than chance. It can be calculated using Eq. (14), Where P : Observed agreement, and P
Expected agreement.

P, —P.

K= Tp (14)

Simulation results and discussion

The proposed Hybrid and existing models, i.e., VGG-16, VGG-19, DenseNet169, ResNet-50, and DenseNet201,
are implemented using Python on breast cancer datasets and evaluated using various performance measuring
parameters.

Simulation configurations and parameters
The proposed and existing models are implemented using Python programming in anaconda
environments>>344647,

Scientific Reports |

(2025) 15:12082 | https://doi.org/10.1038/s41598-025-95311-4 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

LR
N

CALC MISC

ASYM ARCH

Fig. 7. Class distribution in the MIAS dataset.

Tables 4 and 5 summarise the hardware and software specifications implemented in this investigation.
The system is equipped with a 25 GB HDD and 16 GB of RAM, and it is powered by an Intel I-5 processor
or higher. It is additionally improved by a high-performance GPU, specifically the NVIDIA RTX 3090. The
software environment employs Python as its programming language and operates on Windows. It integrates
critical libraries, including Pandas, Matplotlib, TensorFlow, Keras, PyTorch, and CNTK, which are all managed
by Anaconda, to facilitate the efficient development and execution of deep learning tasks.

Table 6 delineates the parameters employed for the proposal. The model delineates the essential configurations
for our hybrid CNN-Bi-LSTM architecture for breast cancer detection. The learning rate was established at
0.0001 with a batch size 32 for effective training across 50 epochs. The model employs various optimizers (Adam,
SGD, RMSprop) to enhance weight updates. A dropout rate of 0.3 mitigates overfitting. The model effectively
captures temporal patterns with 256 units in a single Bidirectional LSTM layer. We only output the final result
from the LSTM and utilize a dense layer comprising 512 neurons with ReLU activation. These parameters are
deliberately selected to optimize the model’s precision in forecasting breast cancer.

Simulation results

This section mainly covers the experimental results. The simulation results are calculated for the Proposed hybrid
model and existing deep learning models, i.e., VGG-16, VGG-19, DenseNet169, ResNet-50, DenseNet201, on
popular breast cancer datasets, i.e., MIAS, and CBIS-DDSM. Simulation results are measured for Binary and
Multi-class Classification.

Simulation results for CBIS-DDSM

Using transfer learning, the simulation results were calculated for binary class and multiclass classification
for the proposed and existing deep learning models. The CBIS-DDSM dataset is divided into training 80%
and testing 20%. Following simulation results were calculated. We utilized 5,482 images from CBIS-DDSM,
categorized into normal and malignant types. The dataset is partitioned in an 80:20 ratio, yielding 1498 standard
images and 1551 malignant images for training, with 400 standard images and 388 malignant images allocated
for testing. This balanced allocation guarantees adequate representation of both standard and malignant cases,
thereby enhancing the training and evaluation of models in breast cancer classification tasks. Figure 9 presents a
confusion matrix for the CBIS-DDSM dataset.

Table 7 displays the binary classification results using different CNN models on the CBIS-DDSM dataset.
VGG-16 attained an accuracy of 80.06% and a sensitivity of 70.64%, demonstrating adequate performance.
VGG-19 demonstrated a slight improvement, achieving an accuracy of 84.37% and a sensitivity of 74.51%. With
respective accuracies of 85.09% and 86.21%, DenseNet 169 and ResNet-50 showed enhanced performance.
With a sensitivity of 78.87% and an accuracy of 88.74%, DenseNet 201 With an accuracy of 99.30%, sensitivity
of 97.85%, precision of 98.54%, and an AUC of 0.99. The proposed Hybrid Model displayed rather suitable
performance measures. The outcomes show great possibility for precise diagnosis of breast cancer cases in
clinical settings.

Table 8 presents the multi-class classification results for several CNN models on the CBIS-DDSM dataset.
With an accuracy of 77.80%, VGG-16 performed; VGG-19 and DenseNet 169 performed somewhat better,
with accuracies of 83.05% and 82.53%, respectively. ResNet-50 and DenseNet 201 showed steady improvement,
achieving an accuracy of 83.06% and 85.82%. With a fantastic accuracy of 99.08% and sensitivity of 98.05%,
the Proposed Hybrid Model did, however, far better than all others. Its advanced architecture and efficient
integration of several techniques help explain its better performance: it can precisely classify several cancer types.

Figure 10 illustrates the quantitative evaluation of the CBIS-DDSM dataset, demonstrating that the Proposed
Hybrid Model achieves an accuracy of 99.00% and a sensitivity of 97.50%. DenseNet201 achieves an accuracy of
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Fig. 8. Data pre-processing (Image resizing into (224 x 224) for the MIAS dataset.

Dataset Total Images | Normal | Benign | Malignant | Training Images (80%) | Testing Images (20%)
Original MIAS 322 207 64 51
Augmented MIAS | 1,620 1,296 324 324 1,036 (Normal) 260 (Normal)

259 (Benign)

65 (Benign)

259 (Malignant)

65 (Malignant)

Table 3. Data augmentation results for MIAS dataset.

96.50% and a sensitivity of 94.00%. DenseNet169 and ResNet-50 exhibit high performance, achieving accuracies
of 95.00% and 94.00%, respectively. VGG-16 and VGG-19 demonstrate diminished performance, achieving
accuracies of 93.50% and 92.20%, respectively. The graph illustrates the efficacy of the Proposed Hybrid Model
in classifying breast cancer accurately, suggesting its potential use in clinical environments.
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Types Category | Hardware
RAM 16 GB
HDD 25GB

Hardware

Processor | Intel I-5 and above

GPU NVIDIA RTX 3090

Table 4. Hardware details.

Software Version number | URL link

Operating system Windows 10 www.microsoft.com/en-us/windows
Programming Language | Python 3.x www.python.org

Libraries Pandas 1.1.5 www.pandas.pydata.org

Matplotlib 3.3.3 | www.matplotlib.org

TensorFlow 2.x | www.tensorflow.org

Keras 2.4.3 www.keras.io

PyTorch 1.7.1 www.pytorch.org

CNTK 2.7 www.microsoft.com/en-us/cognitive-toolkit

Environment Anaconda 2020. | www.anaconda.com

Table 5. Software details.

Parameter Description Selected value
Learning rate Step size during optimization 0.0001

Batch size Number of samples per batch 32

Epochs Number of complete passes through data 50

Optimizer Algorithm to update weights Adam, SGD, RMSprop
Dropout rate Fraction of units to drop 0.3

LSTM units Number of units in the LSTM layer 256

BIiLSTM layers Number of Bidirectional LSTM layers 1

Return sequences Return the entire sequence or the last output | False

Dense units Number of units in the dense layer 512

Activation function | Activation function for dense layers ReLU

Table 6. Parameters used for pre-trained deep learning models and proposed model.

Simulation results for MIAS

The simulation results were calculated for binary class and multiclass classification for the proposed model
and existing deep learning models using transfer learning. A total of 1,620 images are utilized, categorized as
malignant or usual. The dataset comprises 1296 standard and 324 malignant images for training, using an 80:20
distribution. Conversely, 324 standard images and 81 malignant images are designated for testing. This equitable
distribution enables the model to be efficiently trained and assessed in breast cancer classification tasks, ensuring
adequate representation of both categories. Following simulation results were calculated. Figure 11 presents a
confusion matrix for the MIAS dataset.

Table 9 presents, without any data preparation, the binary classification results for several CNN models
assessed on the MIAS dataset. VGG-16 proved relatively poor in spotting positive cases, with a sensitivity
of 65.00% and an accuracy of 75.00%). VGG-19 only slightly improved, with 77.50% accuracy and 68.00%
sensitivity. DenseNet 169 and ResNet-50 improved, with accuracy of 80.00% and 78.00%. Reaching 81.00%
accuracy and 72.00% sensitivity, DenseNet 201 improved upon these results even more. The Proposed Hybrid
Model outperformed the others with an accuracy of 89.20% and sensitivity of 80.00%, proving its effectiveness
even without data pre-processing. This highlights the stability and possibilities of correct cancer classification in
practical applications of the hybrid model.

Table 10 shows, using different CNN models on the MIAS dataset, the binary classification results for benign
and malignant cancer, this time following data preparation. Reflecting better performance than prior results,
VGG-16 obtained an accuracy of 82.00% with a sensitivity of 72.00%. With accuracies of 85.50% and 86.00%,
respectively, and improved sensitivity values, VGG-19 and DenseNet 169 did even better. With accuracies of
86.00% and 87.00%, ResNet-50 and DenseNet 201 both produced rather good results. However, the proposed
hybrid model caught out, especially with a sensitivity of 95.00% and an astounding accuracy of 99.00%. This
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Fig. 9. Confusion matrix for CBIS-DDSM dataset.

CNN classifier Accuracy (%) | Sensitivity (%) | Specificity (%) | Precision (%) | AUC | Cohen’s Kappa (k) | F1 Score (%)
VGG-16 80.06 70.64 90.08 75.07 0.85 | 0.61 72.79
VGG-19 84.37 74.51 92.07 79.07 0.87 | 0.65 76.72
DenseNet169 85.09 75.34 93.06 80.65 0.88 | 0.68 77.90
ResNet-50 86.21 77.50 94.50 81.57 0.90 | 0.64 79.48
DenseNet201 88.74 79.87 95.07 83.90 091 |0.73 81.84
Proposed Hybrid Model | 99.30 97.85 99.27 98.54 0.99 |0.98 98.19

Table 7. Binary class classification results for existing and proposed model on CBIS-DDSM.

CNN classifier Accuracy (%) | Sensitivity (%) | Specificity (%) | Precision (%) | AUC | Cohen’s Kappa (k) | F1 Score (%)
VGG-16 77.80 68.23 86.76 73.05 0.83 |0.58 70.54
VGG-19 83.05 70.05 90.52 77.05 0.82 |0.63 73.38
DenseNet169 82.53 72.07 91.50 78.07 0.84 | 0.64 74.92
ResNet-50 83.06 74.54 92.02 79.50 0.86 |0.67 76.94
DenseNet201 85.82 75.50 93.45 80.62 0.87 |0.68 77.99
Proposed Hybrid Model | 99.08 96.05 99.07 98.06 098 |0.97 97.04

Table 8. Multi-class classification results for existing and proposed model on CBIS-DDSM.
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emphasizes the need for data pre-processing to improve model performance and the capacity of the hybrid
model for correct cancer classification.

Table 11 shows the multi-class classification results for several CNN models on the MIAS dataset after data
pre-processing. With 96.80% accuracy for benign cases and 96.50% for malignant ones, VGG-16 showed good
sensitivity and specificity generally. Particularly for benign cases, at 93.50%, VGG-19 had rather lower ratings.
Strong performance also came from DenseNet 169 and ResNet-50; DenseNet 201 scored a high of 97.30% for
malignant classifications.

The Proposed Hybrid Model stood out, though. It attained a remarkable accuracy of 99.40% for benign,
98.50% for malignant, and 97.80% for normal cases. Its great sensitivity and specificity suggest that it can
consistently separate the classes, making it useful for the classification of breast cancer. These findings underline
the efficiency of the Proposed Hybrid Model in improving cancer diagnosis capacity.

Figure 12 compares the performance of various CNN classifiers following preprocessing and the application
of 10-fold cross-validation. The proposed hybrid model demonstrates an accuracy of 99.40% and a sensitivity
of 97.80%, indicating its effectiveness in accurately identifying cases. DenseNet201 demonstrates notable
performance with an accuracy of 97.00% and a sensitivity of 94.00%. Conversely, VGG-16 and VGG-19
exhibit 95.30% and 94.50% accuracy rates, respectively. The graph indicates that the Proposed Hybrid Model
outperforms other models across all significant metrics, suggesting its potential effectiveness in detecting breast
cancer.

Results for different optimizers and impact of data pre-processing
This experiment evaluates the efficacy of various optimizers, including Adam, RMSProp, and SGD, on the MIAS
and CBIS-DDSM datasets. Our results demonstrate that the Adam optimizer consistently surpasses others
regarding accuracy, sensitivity, specificity, and additional critical metrics. This underscores Adam’s proficiency in
adjusting the learning rate and optimizing the model, especially for the intricate task of breast cancer detection.
Additionally, we assessed the effect of data preprocessing by contrasting the outcomes before and
after preprocessing. Preprocessing markedly improved the model’s performance. Preprocessing enhanced
model learning by diminishing noise and refining feature extraction, resulting in increased accuracy and

Quantitative Analysis for exisitng and propsoed models Using 10-Fold Cross-Validation (CBIS-DDSM)
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Fig. 10. Quantitative analysis for CBIS-DDSM dataset using proposed and existing methods.
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CNN classifier Accuracy (%) | Sensitivity (%) | Specificity (%) | Precision (%) | AUC | F-score (%) | Cohen’s Kappa (k)
VGG-16 75.00 65.00 80.00 70.00 0.82 | 67.50 0.45
VGG-19 77.50 68.00 82.50 72.50 0.85 | 70.18 0.50
DenseNet169 80.00 70.00 85.00 75.00 0.88 | 7241 0.55
ResNet-50 78.00 66.00 84.00 74.00 0.86 | 69.82 0.52
DenseNet201 81.00 72.00 86.00 76.00 0.89 | 73.85 0.57
Proposed Hybrid Model | 89.20 80.00 92.00 85.00 0.95 | 8235 0.78

Table 9. Binary class classification for existing and proposed model without data pre-processing on MIAS

dataset.
CNN classifier Accuracy (%) | Sensitivity (%) | Specificity (%) | Precision (%) | AUC | F-score (%) | Cohen’s Kappa (k)
VGG-16 82.00 72.00 92.00 77.00 0.88 | 74.37 0.62
VGG-19 85.50 75.50 93.50 80.50 0.89 | 77.92 0.68
DenseNet169 86.00 76.00 94.00 81.00 091 |78.41 0.72
ResNet-50 86.00 75.00 93.00 80.00 090 |77.46 0.71
DenseNet201 87.00 78.00 94.00 82.00 092 |79.94 0.74
Proposed Hybrid Model | 99.00 97.00 99.50 98.00 099 |97.48 0.98

Table 10. Binary class classification of benign and malignant cancer for existing and proposed model after
data pre-processing on MIAS dataset.
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more dependable predictions. The Proposed Hybrid Model exhibited significant enhancements following
preprocessing, highlighting the essential function of data preprocessing in optimizing the efficacy of deep
learning models for medical image analysis.

Table 12 displays the performance of the MIAS Dataset before data preprocessing. This table demonstrates
the efficacy of several CNN models on the MIAS dataset before data preprocessing, utilizing distinct optimizers
(Adam, RMSProp, and SGD). The Proposed Hybrid Model significantly enhances traditional models such as
VGG-16 and DenseNet201, attaining 92% accuracy with elevated sensitivity (85%) and specificity (93.5%). The
hybrid model surpasses others in various metrics, including AUC (95%) and F1-score (88.5%), demonstrating
its exceptional efficacy in breast cancer detection without preprocessing.

Table 13 shows the performance of the MIAS Dataset following data preprocessing. The proposed hybrid
model maintains its superiority by achieving the highest accuracy (99.08%), exceptional sensitivity (98.05%),
and specificity (99.07%). The improvements in Table 13 demonstrate the critical role of data preprocessing in
improving the model’s ability to distinguish between benign and malignant cases. The AUC of 98% and F1-score
0f 98.05% demonstrate the hybrid model’s ability to produce consistent and precise results.

Table 14 shows the models’ efficacy on the CBIS-DDSM dataset before preprocessing. The proposed hybrid
model achieves 91% accuracy, outperforming traditional CNN models like VGG-16 and ResNet-50, which have
lower accuracy, sensitivity, and specificity. This table shows that the hybrid model remains competitive without
preprocessing, with an impressive AUC of 94% and an Fl1-score of 86.5%, confirming its efficacy for accurate
breast cancer diagnosis.

Table 15 presents the performance results on the CBIS-DDSM dataset after preprocessing. The Proposed
Hybrid Model demonstrates notable performance, achieving an accuracy of 99.08%, sensitivity of 98.05%, and
specificity of 99.07%, significantly exceeding the results of other models such as DenseNet201 and ResNet-50.
The results highlight the substantial influence of data preprocessing, which markedly improves performance
across all models. The F1-score of 98.05% and AUC of 98% indicate the hybrid model’s effectiveness in providing
reliable and accurate outcomes for breast cancer detection.

The impact of data preprocessing is apparent in both datasets. Preprocessing on the MIAS and CBIS-DDSM
datasets significantly enhanced accuracy, sensitivity, and specificity in all models. Preprocessing techniques,
including normalization, augmentation, and noise reduction, enhanced model generalization and mitigated
overfitting, leading to improved performance. The Proposed Hybrid Model demonstrated a notable increase
in performance metrics post-preprocessing, underscoring the critical role of preprocessing in optimizing the
models’ efficacy for real-world breast cancer diagnosis.

Ablation analysis

Table 16 displays the results of the ablation study for the MIAS dataset. The findings from the MIAS dataset
illustrate the substantial effect of integrating diverse model components. The comprehensive model
(CNN + EfficientNet-B0 + Bi-LSTM) attains a peak accuracy of 99.2%, indicating that the amalgamation of
EfficientNet-BO for feature extraction and Bi-LSTM for temporal modeling yields optimal performance.
EfficientNet-BO0 proficiently extracts intricate features from images, whereas Bi-LSTM adeptly captures temporal
relationships in the data, which is crucial for mammography images that may exhibit subtle patterns over time.
Upon removing Bi-LSTM, as observed in the CNN + EfficientNet-B0 configuration (Without Bi-LSTM), the
accuracy declines to 97.5%, indicating that temporal analysis is essential for enhancing performance. Excluding

CNN classifier Class Accuracy (%) | Sensitivity | Specificity | Precision | F1-Score | AUC | Cohen’s Kappa (k)
Benign 96.80 0.96 0.95 0.97 0.96 0.990 | 0.91
VGG-16 Malignant | 96.50 0.94 0.97 0.96 0.95 0.98 |0.92
Normal 95.10 0.92 0.99 1.00 0.96 0.991 | 0.93
Benign 93.50 0.87 0.98 0.92 0.89 0.95 |0.82
VGG-19 Malignant | 94.70 0.90 0.94 0.93 0.91 0.985 | 0.84
Normal 92.50 0.91 0.90 0.92 091 0.970 | 0.83
Benign 94.50 0.90 0.94 0.91 0.90 0.92 | 0.86
DenseNet169 Malignant | 95.90 0.90 0.96 0.92 0.91 093 |0.88
Normal 93.00 0.92 0.93 0.93 0.92 091 |0.87
Benign 93.20 0.86 0.95 0.88 0.87 094 |0.84
ResNet-50 Malignant | 96.20 0.91 0.98 0.92 0.91 0.98 | 0.90
Normal 92.80 0.93 0.91 0.95 0.94 096 | 0.86
Benign 95.10 0.91 0.96 0.92 0.91 093 |0.89
DenseNet201 Malignant | 97.30 0.90 0.99 0.92 0.91 097 | 091
Normal 94.00 0.94 0.97 0.96 0.95 095 |0.88
Benign 99.40 0.98 1.00 0.96 0.97 099 |0.97
Proposed hybrid model | Malignant | 98.50 0.95 0.98 0.94 0.94 0.98 |0.95
Normal 97.80 0.97 0.99 0.98 0.97 0.99 |0.96

Table 11. Multi-class classification results for existing and proposed model on MIAS dataset after data pre-
processing.
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Quantitative Analysis of exisitng and propsoed models Using 10-Fold Cross-Validation on MIAS dataset
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Fig. 12. Quantitative analysis of existing and proposed model using 10-fold cross-validation on the MIAS
dataset.
CNN classifier Optimizer | Accuracy (%) | Sensitivity (%) | Specificity (%) | Precision (%) | AUC (%) | F1-score (%) | Cohen’s Kappa (k)
Adam 70.50 61.00 82.50 68.00 78 64.35 0.51
VGG-16 RMSProp | 69.00 60.50 81.50 67.00 76 63.50 0.50
SGD 68.00 59.00 80.00 65.50 75 62.00 0.48
Adam 75.50 66.50 85.00 71.50 80 71.00 0.54
VGG-19 RMSProp | 73.00 64.00 83.00 69.00 78 68.50 0.52
SGD 71.50 63.00 82.50 68.00 76 66.50 0.50
Adam 74.00 64.50 84.00 70.50 79 68.80 0.53
DenseNet169 RMSProp | 72.50 63.00 83.50 69.00 78 67.50 0.51
SGD 71.00 62.00 81.00 68.00 77 65.50 0.49
Adam 76.50 67.50 86.50 72.50 81 70.70 0.55
ResNet-50 RMSProp | 74.50 65.50 85.00 71.00 79 69.50 0.53
SGD 73.00 64.00 83.50 70.00 78 68.00 0.51
Adam 78.00 69.00 88.00 73.50 82 71.50 0.56
DenseNet201 RMSProp | 76.50 68.00 87.50 72.00 81 70.60 0.54
SGD 75.00 67.50 86.00 71.50 79 69.00 0.52
Adam 92.00 85.00 93.50 90.00 95 88.50 0.75
Proposed hybrid model | RMSProp | 90.50 83.50 92.00 89.00 94 87.50 0.73
SGD 88.00 80.00 91.00 86.00 92 84.50 0.70

Table 12. Performance analysis of existing and proposed models on MIAS dataset using different optimizers
after data-preprocessing (before data preprocessing).

EfficientNet-B0 and utilizing only Bi-LSTM (CNN + Bi-LSTM without EfficientNet-B0) results in a further
accuracy decline to 95.8%, underscoring the significance of feature extraction in conjunction with temporal

modeling.

The CNN-only model, devoid of Bi-LSTM or EfficientNet-B0, exhibits the lowest performance, achieving an
accuracy of 91.6%, thereby underscoring the significance of integrating both feature extraction and temporal
modeling. Adam consistently surpasses RMSProp and SGD in optimization, achieving the highest precision,
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CNN classifier Optimizer | Accuracy (%) | Sensitivity (%) | Specificity (%) | Precision (%) | AUC (%) | F1-score (%) | Cohen’s Kappa (k)
Adam 78.50 69.00 87.50 74.00 82 71.42 0.58
VGG-16 RMSProp | 77.00 68.00 86.00 72.00 81 70.00 0.57
SGD 75.50 66.00 85.00 70.00 80 68.00 0.55
Adam 83.50 72.00 90.00 78.50 83 75.00 0.63
VGG-19 RMSProp | 82.00 71.00 89.00 77.00 82 74.00 0.62
SGD 80.50 69.00 88.00 75.00 81 72.00 0.60
Adam 83.00 72.50 90.50 78.50 84 75.33 0.64
DenseNet169 RMSProp | 81.00 70.00 89.00 76.50 83 73.00 0.61
SGD 79.00 68.00 88.00 75.00 81 71.50 0.58
Adam 84.00 74.00 91.00 79.00 85 76.00 0.67
ResNet-50 RMSProp | 82.50 72.00 90.00 77.50 84 74.75 0.64
SGD 80.00 70.00 88.00 75.00 82 72.50 0.62
Adam 86.00 76.00 93.00 81.00 87 78.50 0.68
DenseNet201 RMSProp | 84.00 74.00 92.00 79.00 85 76.50 0.65
SGD 82.00 72.00 90.00 77.00 83 74.50 0.63
Adam 99.08 98.05 99.07 98.06 98 98.05 0.97
Proposed hybrid model | RMSProp | 97.50 95.00 98.00 96.00 95 95.48 0.94
SGD 95.00 90.00 97.00 92.00 92 91.00 0.88

Table 13. Performance analysis of existing and proposed models on MIAS dataset using different optimizers
(After Data-Preprocessing).

CNN Classifier Optimizer | Accuracy (%) | Sensitivity (%) | Specificity (%) | Precision (%) | AUC (%) | F1-score (%) | Cohen’s Kappa (k)
Adam 75.00 65.50 85.00 70.50 77 67.00 0.50
VGG-16 RMSProp | 73.50 64.00 83.50 69.00 76 65.00 0.48
SGD 72.00 63.00 82.00 68.00 75 64.00 0.46
Adam 78.00 69.00 87.00 73.00 80 70.50 0.53
VGG-19 RMSProp | 76.50 67.00 85.50 71.50 78 69.00 0.51
SGD 75.00 66.00 84.50 70.50 77 68.00 0.50
Adam 76.50 67.50 86.50 72.00 79 70.00 0.54
DenseNet169 RMSProp | 75.00 66.00 85.00 71.00 78 69.00 0.52
SGD 73.50 64.50 83.50 70.00 77 68.00 0.50
Adam 79.00 70.00 88.00 74.00 81 71.00 0.55
ResNet-50 RMSProp | 77.50 68.50 87.50 73.50 79 70.50 0.53
SGD 76.00 67.00 86.50 72.00 78 69.00 0.51
Adam 80.00 72.00 89.00 76.00 83 74.00 0.57
DenseNet201 RMSProp | 78.00 70.00 88.00 74.50 81 72.00 0.55
SGD 77.00 69.00 87.50 73.00 79 71.00 0.53
Adam 91.00 83.00 92.50 88.00 94 86.50 0.72
Proposed hybrid model | RMSProp | 89.00 80.50 91.00 87.50 93 85.00 0.70
SGD 87.00 78.50 89.00 85.00 92 83.00 0.68

Table 14. Performance analysis of existing and proposed models on MIAS dataset using different optimizers
(before data preprocessing).

recall, and F1 score across all model variations. Although RMSProp and SGD yield satisfactory outcomes,
Adam’s superior convergence speed and performance make this task the optimal selection. This ablation study
underscores the essential contributions of EfficientNet-B0, Bi-LSTM, and the Adam optimizer in enhancing the
classification accuracy of breast cancer images.

Table 17 displays the results of the ablation study for the MIAS dataset. The findings from the MIAS
dataset illustrate the substantial effect of integrating different model elements. The comprehensive model
(CNN + EfficientNet-B0 + Bi-LSTM) attains a peak accuracy of 99.2%, indicating that the amalgamation of
EfficientNet-B0 for feature extraction and Bi-LSTM for temporal modeling yields optimal performance.
EfficientNet-BO0 proficiently extracts intricate features from images, whereas Bi-LSTM adeptly captures temporal
relationships in the data, which is crucial for mammography images that may exhibit subtle patterns over time.
Eliminating Bi-LSTM, as demonstrated in the CNN + EfficientNet-B0 configuration (Without Bi-LSTM), results
in decline in accuracy to 97.5%, indicating that temporal analysis is essential for enhancing performance and

Scientific Reports |

(2025) 15:12082 | https://doi.org/10.1038/s41598-025-95311-4

nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

CNN classifier Optimizer | Accuracy (%) | Sensitivity (%) | Specificity (%) | Precision (%) | AUC (%) | F1-score (%) | Cohen’s Kappa (k)
Adam 80.00 70.00 90.00 75.00 0.82 72.00 0.60
VGG-16 RMSProp | 78.00 68.00 88.00 73.00 0.80 70.00 0.57
SGD 76.00 66.00 86.00 71.00 0.78 67.00 0.55
Adam 83.00 72.00 90.00 78.00 0.83 75.00 0.63
VGG-19 RMSProp | 81.00 70.00 89.00 76.00 0.81 72.00 0.62
SGD 79.00 69.00 88.00 75.00 0.80 72.00 0.60
Adam 82.00 71.00 90.00 77.00 0.84 73.00 0.64
DenseNet169 RMSProp | 80.00 69.00 89.00 75.00 0.82 72.00 0.61
SGD 78.00 67.00 88.00 74.00 0.80 70.00 0.58
Adam 84.00 74.00 92.00 79.00 0.86 76.00 0.67
ResNet-50 RMSProp | 82.50 72.00 90.00 77.50 0.84 74.75 0.64
SGD 80.00 70.00 88.00 75.00 0.82 72.50 0.62
Adam 85.00 76.00 93.00 80.00 0.87 78.50 0.68
DenseNet201 RMSProp | 83.00 74.00 92.00 78.00 0.85 76.50 0.65
SGD 81.00 72.00 90.00 76.00 0.83 74.50 0.63
Adam 99.08 98.05 99.07 98.06 98 98.05 0.97
Proposed hybrid model | RMSProp | 97.50 95.00 98.00 96.00 95 95.48 0.94
SGD 95.00 90.00 97.00 92.00 92 91.00 0.88

Table 15. Performance analysis of existing and proposed models on the CBIS-DDSM dataset using different
optimizers (after data-preprocessing).

Accuracy | Precision | Recall | F1-Score
Model Variation Optimizer | (%) (%) (%) (%) Comments

Best performance across MIAS dataset, combining

Full Model (CNN + EfficientNet-B0 + Bi-LSTM) Adam 99.2 98.7 99.5 99.1 . !
feature extraction and temporal modeling.

EfficientNet-B0 provides intense feature extraction

CNN + EfficientNet-B0 (Without Bi-LSTM) Adam 97.5 96.8 98.0 97.4 .
but lacks temporal analysis.

CNN +Bi-LSTM (Without EfficientNet-B0) Adam 95.8 94.5 962 | 953 Temporal modeling with Bi-LSTM alone stll
provides exemplary accuracy.

CNN Only (Without Bi-LSTM or EfficientNet-B0) | Adam 916 89.4 921|907 Baseline model without advanced feature
extraction or temporal data processing.

Full Model (CNN + EfficientNet-B0 + Bi-LSTM) RMSProp | 98.9 98.0 99.1 98.6 RMSProp still performs well, but Adam is superior.

Full Model (CNN + EfficientNet-B0 + Bi-LSTM) | SGD 97.2 96.0 975|967 SGD shows lower performance due to slower

convergence compared to Adam and RMSProp.

Table 16. Ablation study results for MIAS dataset.

excluding EfficientNet-B0 and utilizing only Bi-LSTM (CNN + Bi-LSTM (Without EfficientNet-B0)) results in
a further accuracy decline to 95.8%, underscoring the significance of feature extraction in conjunction with
temporal modeling.

The CNN-only model, devoid of Bi-LSTM or EfficientNet-B0, exhibits the lowest performance, achieving
an accuracy of 91.6%, thereby underscoring the significance of integrating feature extraction and temporal
modeling. Adam consistently surpasses RMSProp and SGD in optimization, achieving superior precision, recall,
and F1 scores across all model variations. Although RMSProp and SGD yield satisfactory outcomes, Adam’s
superior convergence speed and enhanced performance make this task the optimal selection. This ablation study
underscores the pivotal contributions of EfficientNet-B0, Bi-LSTM, and the Adam optimizer for improving the
classification accuracy of breast cancer images.

Results and discussion

The results of the experiments and the analysis of the proposed hybrid model, which combines CNN with
EfficientNet-BO0 for feature extraction and Bi-LSTM for sequence modeling, demonstrate that the hybrid model
has exceptional performance across a wide variety of datasets and classification tasks. The hybrid model in
the CBIS-DDSM dataset for binary classification achieved an accuracy of 99.30%, sensitivity of 97.85%,
specificity of 99.27%, precision of 98.54%, and an AUC of 0.99 (Table 7), outperforming conventional models
like DenseNet201 (88.74% accuracy) and ResNet-50 (86.21% accuracy). This highlights the model’s robustness,
benefiting from EfficientNet-B0’s intense feature extraction and Bi-LSTM’s ability to capture straining in the
data. The hybrid model demonstrated superior performance in the multi-class classification task, attaining an
accuracy of 99.08%, sensitivity of 96.05%, specificity of 99.07%, and an F1 score of 97.04% (Table 8), significantly
outperforming DenseNet201 and ResNet-50, which showed lower accuracies. The results demonstrate the
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hybrid model’s ability to handle complex classification tasks effectively, confirming its superiority in binary and
multi-class scenarios.

The hybrid model exhibited efficacy when evaluated using the MIAS dataset. In binary classification without
preprocessing (Table 9), the model achieved an accuracy of 89.20% and a sensitivity of 80.00%, exceeding that of
conventional models. Following preprocessing, the model demonstrated notable improvement, attaining 99.00%
accuracy, 97.00% sensitivity, and 99.50% specificity (Table 10), highlighting the critical role of preprocessing in
enhancing the model’s performance. This performance enhancement underscores the hybrid model’s resilience
to variations in data quality, a common challenge in medical image classification. The hybrid model for multi-
class classification on MIAS demonstrated accuracy rates of 99.40%, 98.50%, and 97.80% for benign, malignant,
and normal categories, respectively (Table 12), exceeding those of traditional models. The model’s robustness
and versatility in classifying multiple categories highlight its potential for practical medical applications.

The 10-fold cross-validation results shown in Fig. 11 confirm the stability and consistency of the hybrid
model, achieving an overall accuracy of 99.40%. This result demonstrates the model’s ability to generalize
effectively across different datasets and training divisions. The assessment of optimizer performance presented
in Table 13 indicates that the Adam optimizer significantly enhances the model’s convergence rate and stability,
achieving 99.08% accuracy, 98.05% sensitivity, and 99.07% specificity following data preprocessing (Table 14).
The adaptive learning rate of the Adam optimizer is crucial for achieving optimal performance, particularly
in medical image classification tasks, where accuracy is paramount. Table 17 displays the ablation study’s
results, confirming the hybrid model’s effectiveness. The combination of CNN, EfficientNet-B0, and Bi-LSTM
demonstrates enhanced performance across key metrics, achieving 99.2% accuracy, 98.7% precision, 99.5%
recall, and 99.1% F1-score. This indicates that each component of the hybrid model contributes distinctly to its
overall effectiveness, with CNNs identifying critical features and Bi-LSTMs addressing temporal dependencies,
which are crucial for complex medical diagnoses.

The hybrid model performs superior to traditional models across multiple metrics, such as accuracy,
sensitivity, specificity, and Fl-score, on the CBIS-DDSM and MIAS datasets. Incorporating EfficientNet-B0O
for feature extraction and Bi-LSTM for sequence modeling, combined with data preprocessing and the Adam
optimizer, significantly improves performance. The model’s robust and flexible features, combined with its ability
to classify both binary and multi-class categories accurately, position it as a valuable tool for medical image
classification, especially in the context of breast cancer detection. This demonstrates the hybrid model’s ability to
improve early detection and diagnosis, providing a more efficient and reliable system for medical applications.

Comparative analysis with state-of-the-art methods

Table 18 compares several deep learning models applied in 13 published in 2024 for breast cancer diagnosis
across 13 studies. Indicating the models” success, every entry stresses critical performance indicators, including
accuracy, sensitivity, specificity, precision, AUC, F1 score, and Cohen’s Kappa. The proposed hybrid model is
expected to outperform the other techniques in detection and classification capacities, with an accuracy of
99.00%, a sensitivity of 95.00%, and a specificity of 99.50%. In summary, the table emphasizes the importance of
the advancements in deep learning techniques for improving breast cancer diagnosis and the varying predictive
performance results produced by different approaches. The results of the MIAS and CBIS-DDSM datasets show
that the Proposed Hybrid Model exhibits improved accuracy and dependability in breast cancer classification,
representing a significant development over the present method. This work underlines how effectively advanced
deep learning approaches could be applied in clinical settings to enhance patient outcomes.

Conclusion and future directions
The conclusion and future directions of the research are as follows.

Conclusion

This study presents a novel hybrid model that integrates Convolutional Neural Networks (CNNs), Bidirectional
Long Short-Term Memory (Bi-LSTM), and EfficientNet-B0 to enhance the predictive accuracy of breast cancer.
Utilizing EfficientNet-B0’s sophisticated feature extraction, pre-trained on the ImageNet dataset, in conjunction
with Bi-LSTM’s capacity to analyze temporal data, our methodology has exhibited a substantial improvement
in accuracy compared to conventional techniques. Our model demonstrates an exceptional accuracy of 99.2%
in differentiating between benign and malignant tumors, surpassing other sophisticated architectures, including

F1-
Accuracy | Precision | Recall | Score
Model variation Optimizer | (%) (%) (%) (%) Comments
Full Model (CNN + EfficientNet-BO+Bi-LSTM) | Adam 99.3 99.0 997|993 |Bestperformance on the CBIS-DDSM dataset, demonstrating
superior accuracy and robustness.
CNN + EfficientNet-B0 (Without Bi-LSTM) Adam 97.8 97.0 98.2 97.6 | EfficientNet-B0 performs well but lacks temporal processing.
CNN +Bi-LSTM (Without EfficientNet-B0) Adam 045 932 95.0 041 Tempo%'al modeling with Bi-LSTM helps but lacks feature extraction
of EfficientNet-B0.
CNN Only (Without Bi-LSTM or EfficientNet-B0) | Adam 89.3 87.9 90.2 88.9 | The baseline model shows the lowest performance across all metrics.
Full Model (CNN + EfficientNet-B0 + Bi-LSTM) RMSProp | 98.7 97.9 99.0 98.5 | RMSProp is effective but less optimal than Adam.
Full Model (CNN + EfficientNet-B0 + Bi-LSTM) SGD 96.9 95.5 97.0 96.3 | SGD performs slightly lower, showing slower convergence.

Table 17. Ablation study results for CBIS-DDSM dataset.
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References Model Accuracy (%) | Sensitivity (%) | Specificity (%) | Precision (%) | AUC (%) | F1 Score (%) | Cohen’s Kappa (k)
Ellis et al.! Deep Learning Risk Prediction | 88.5 90.0 87.0 89.0 0.91 89.5 0.80
Mahmood et al.? Radiomics + Deep Learning 91.2 92.5 90.0 90.8 0.93 91.1 0.82
Laghmati et al.* ML+PCA 85.0 84.0 86.0 85.5 0.87 84.8 0.72
Rahman et al.® Deep Learning 87.0 85.0 88.5 86.0 0.90 85.5 0.75
Ahmad, Jawad, et al.” Deep Learning 92.0 94.0 90.0 91.0 0.95 92.0 0.85
Gullo et al.’ Al-enhanced MRI 89.5 88.0 91.0 90.0 0.92 89.0 0.78
Liuetal.!! Multi-modal Fusion Network | 90.5 91.0 89.0 90.0 0.94 90.5 0.80
Ray et al.!? Advanced ML Models 93.0 92.0 94.0 93.5 0.96 92.7 0.87
Xiao et al.'” CNN 88.0 86.5 89.5 87.0 0.89 86.8 0.74
Naz et al.!® Deep Learning + IoMT 85.5 84.0 87.0 86.0 0.88 85.0 0.70
Wang et al.'* Deep Sample Clustering 91.5 92.0 91.0 90.5 0.94 91.2 0.83
Yan et al.2* CNN with Attention Modules | 92.5 93.0 92.0 91.5 0.95 92.3 0.86
Abimouloud et al.*! Vision Transformer + CNN 90.0 89.0 915 90.0 0.92 89.5 0.79
Ignatov et al.® Morphology Aware DNN 91.0 92.0 90.0 91.0 0.93 91.0 0.84
Proposed hybrid model | CNN-Bi-LSTM 99.00 95.00 99.50 98.00 0.99 96.33 0.95

Table 18. Comparative analysis with existing state-of-the-art research and proposed model.

VGG-16, VGG-19, DenseNet169, ResNet-50, and DenseNet201, when evaluated on well-known datasets such
as CBIS-DDSM and MIAS. The Adam optimizer proved to be the most efficacious regarding accuracy and loss
minimization, underscoring the significance of meticulous optimization in deep learning models. Integrating
feature visualization techniques is one of the most exhilarating aspects of our work. This enhances the model’s
interpretability and enables medical professionals to comprehend the rationale behind the model’s decisions,
which is essential for implementing Al in healthcare. This hybrid model, characterized by accuracy, efficiency,
and transparency, has the potential to revolutionize breast cancer detection and classification, establishing a new
standard for the future of predictive healthcare.

Future directions
Although the results obtained are encouraging, there remains a significant opportunity to improve and refine
this model further. Here are several promising avenues for future research:

o Diverse and extensive datasets Our model underwent evaluation using reputable datasets such as CBIS-DDSM
and MIAS. More diverse datasets, mainly from regions and hospitals, could enhance the model’s robustness
and ensure effective generalization across different populations. This would enhance the model’s reliability in
practical applications.

o Real-time clinical use At present, the approach is tested in a research environment. However, to make it gen-
uinely significant, we need to make it capable of real-time implementation in clinical circumstances. This
entails enhancing the model’s velocity and efficacy to ensure seamless integration with real-time data from
medical imaging devices, delivering immediate results for physicians and patients.

o Enhancing explainability Although feature visualization has increased the model’s interpretability, further ad-
vancements are necessary to render Al decisions more comprehensible for clinicians. Creating sophisticated
methods to elucidate intricate model decisions in more accessible language will be essential for fostering trust
with healthcare practitioners.

o Multi-modal integration An intriguing prospect is to amalgamate this hybrid model with additional diagnostic
data, including patient demographics, genetic information, or pathology reports. This multi-modal approach
may yield more precise predictions and provide a comprehensive perspective on each patient’s condition.

o Ensemble approaches To augment prediction accuracy, we could investigate integrating our model with addi-
tional deep learning techniques through ensemble methods. In this manner, we could utilize the advantages
of diverse models to attain superior performance, particularly in challenging diagnostic scenarios.

o Dataset expansions In the future, we hope to increase the model’s robustness by incorporating more extensive
and more diverse datasets from various sources, including multicenter clinical data. This will allow us to
include a broader range of breast cancer images, enhancing the model’s generalization ability across popu-
lation groups. Furthermore, we intend to include a variety of imaging modalities, such as MRI, ultrasound,
and digital breast tomosynthesis (DBT), to broaden the model’s applicability and ensure its performance in
real-world clinical scenarios.

o Exploration of alternative optimization techniques Although the Adam optimizer has demonstrated efficacy
in our model, we acknowledge that alternative optimization methods may provide performance advantages.
Future research will investigate alternatives such as RMSProp, Stochastic Gradient Descent (SGD) with mo-
mentum, and adaptive learning rate schedules that modify during the training process. Furthermore, we are
eager to explore metaheuristic optimization techniques, including GAs and Bayesian Optimization, to refine
model hyperparameters, which may enhance model accuracy and decrease computational time.

o Real-world implementations In the future, we plan to use our real-life model to help radiologists find breast
cancer early, speeding up diagnoses and improving patient outcomes. To improve access and efficiency of
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diagnosis tools in remote healthcare environments, we are looking at including the model into automated
screening systems and mobile healthcare applications. Improving the interpretability of the model will be an
essential component of this upcoming work. We aim to improve the openness of the decision-making process
by using methods including Grad-CAM and SHAP values, so enabling clinicians to understand the results of
the model and so build trust in Al-driven healthcare solutions*->3.

While the proposed model demonstrates significant potential, there are several avenues for future research
that could further improve its performance, broaden its capabilities, and ultimately facilitate its integration
into clinical practice. We are excited about the promise of this technology and look forward to seeing how the
proposed model can continue to revolutionize breast cancer diagnosis.
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