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Breast cancer detection remains one of the most challenging problems in medical imaging. We propose 
a novel hybrid model that integrates Convolutional Neural Networks (CNNs), Bidirectional Long 
Short-Term Memory (Bi-LSTM) networks, and EfficientNet-B0, a pre-trained model. By leveraging 
EfficientNet-B0, which has been trained on the large and diverse ImageNet dataset, our approach 
benefits from transfer learning, enabling more efficient feature extraction from mammographic images 
compared to traditional methods that require CNNs to be trained from scratch. The model further 
enhances performance by incorporating Bi-LSTM, which allows for processing temporal dependencies 
in the data, which is crucial for accurately detecting complex patterns in breast cancer images. We fine-
tuned the model using the Adam optimizer to optimize performance, significantly improving accuracy 
and processing speed. Extensive evaluation of well-established datasets such as CBIS-DDSM and MIAS 
resulted in an outstanding 99.2% accuracy in distinguishing between benign and malignant tumors. We 
also compared our hybrid model to other well-known architectures, including VGG-16, ResNet-50, and 
DenseNet169, using three optimizers: Adam, RMSProp, and SGD. The Adam optimizer consistently 
achieved the highest accuracy and lowest loss across the training and validation phases. Additionally, 
feature visualization techniques were applied to enhance the model’s interpretability, providing deeper 
insight into the decision-making process. The Proposed hybrid model sets a new standard in breast 
cancer detection, offering exceptional accuracy and improved transparency, making it a valuable tool 
for clinicians in the fight against breast cancer.
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Breast cancer is still one of the most common and deadly diseases in the world, accounting for a significant 
proportion of cancer-related deaths in women. Breast cancer kills over 670,000 people worldwide each year, 
according to current statistics, and the number of new cases increases year after year1. Early detection of 
breast cancer is critical for lowering mortality rates because it allows for more effective treatment options and 
improves survival. Early detection of tumors enables healthcare professionals to provide more targeted and 
personalized treatment, significantly improving prognosis. Breast cancer often appears asymptomatic in its early 
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stages, necessitating the development of dependable and accurate predictive models to detect subtle signs of 
malignancy2,3.

A variety of traditional methods have been used over the years to analyze and classify breast cancer, with 
a focus on imaging techniques such as mammography, ultrasound, and biopsy4. Mammography is the most 
reliable method for detecting early breast cancer; however, it has limitations, particularly in patients with 
dense breast tissue, where tumors may be concealed. Ultrasound and magnetic resonance imaging (MRI) are 
frequently used as adjuncts to mammography; however, these techniques necessitate specialized evaluation and 
can result in subjective interpretations5,6.

Recent years have demonstrated the ability of statistical and machine learning models to improve the accuracy 
of breast cancer diagnosis. Support Vector Machines (SVM), Random Forests, and k-nearest Neighbours (k-NN) 
algorithms have been used to predict the likelihood of malignancy in various datasets, including mammography 
images and clinical information. However, these models frequently fail to capture the complex relationships in 
breast cancer data, especially in large and multidimensional datasets. Traditional machine learning methods 
may not fully exploit the spatial and temporal patterns inherent in medical imaging data7,8.

Role of machine learning and deep learning in breast cancer diagnosis
Machine learning (ML) and deep learning (DL) are crucial in breast cancer detection, offering significant 
improvements over traditional methods. Machine learning algorithms, such as decision trees, support vector 
machines, and logistic regression, have effectively classified breast cancer from mammographic images 
and diverse clinical data. Nevertheless, their capacity to derive significant patterns from intricate and high-
dimensional data is frequently constrained9,10.

Deep learning models, particularly CNNs, have revolutionized the approach to medical image analysis. 
CNNs can independently learn features from raw medical images, significantly reducing the need for manual 
feature extraction. These models have exhibited significant effectiveness in breast cancer diagnosis, especially 
in mammogram analysis, where CNNs can detect anomalies that may be overlooked by human specialists11. 
Despite their proficiency in recognizing spatial features, CNNs are not particularly adept at capturing temporal 
patterns, such as tumor growth or morphological changes over time, which are crucial for accurate predictions.

The amalgamation of spatial and temporal data has improved the effectiveness of deep learning models 
in breast cancer diagnosis. Models like Recurrent Neural Networks (RNNs) and, more recently, Bi-LSTM 
networks have demonstrated remarkable efficacy in tasks requiring temporal data processing. These models 
are particularly beneficial in situations where the progression of the disease is monitored over time12,13. Despite 
these advancements, existing models still face challenges, including the requirement for large labeled datasets, 
hyperparameter optimization difficulties, and overfitting issues.

Challenges in existing research
ML and DL are essential in breast cancer detection, providing substantial advancements compared to 
conventional techniques. Machine learning algorithms, including decision trees, support vector machines, 
and logistic regression, have effectively classified breast cancer using mammographic images and clinical 
data. Nonetheless, their ability to extract meaningful patterns from complex and high-dimensional data is 
often limited10. Deep learning models, especially CNNs, have transformed the methodology of medical image 
analysis. CNNs can autonomously extract features from unprocessed medical images, greatly diminishing the 
necessity for manual feature extraction. These models have demonstrated considerable efficacy in breast cancer 
diagnosis, particularly in mammogram analysis, where CNNs can identify anomalies that may be missed by 
human experts8,14. Although CNNs excel at identifying spatial features, they are not exceptionally skilled at 
capturing temporal patterns, such as tumor growth or morphological changes over time, which are essential for 
precise predictions.

Integrating temporal and spatial information has enhanced the efficacy of deep learning models in breast 
cancer diagnosis. Models such as RNNs and, more recently, Bi-LSTM networks have exhibited exceptional 
efficacy in tasks necessitating temporal data processing. These models are especially advantageous when the 
disease’s progression is tracked over time15. Notwithstanding these advancements, current models continue 
to encounter challenges, such as the necessity for extensive labeled datasets, hyperparameter optimization 
complications, and overfitting problems.

Motivation for the research
The detection and classification of breast cancer through mammographic images is a critical but challenging 
task, mainly due to the limitations of existing deep-learning models. While state-of-the-art models, such as 
CNNs, VGG-16, and ResNet, have succeeded in image classification, they often struggle with complex features in 
mammogram images, such as subtle differences between benign and malignant tumors. Moreover, these models 
typically do not capture the temporal or contextual dependencies in medical imaging, which are essential for 
accurate diagnosis. Additionally, the performance of these models can be limited by the need for large amounts 
of labeled data and the computational cost of training deep networks from scratch.

Our proposed hybrid model addresses these deficiencies by effectively combining advanced CNNs with Bi-
LSTM and EfficientNet-B016, using transfer learning to extract features from the pre-trained EfficientNet-B0 
model. This allows us to overcome the need for large labeled datasets while improving accuracy. The Bi-LSTM 
component enhances the model’s ability to capture temporal dependencies in the images, further improving 
classification performance. By fine-tuning the model’s hyperparameters and leveraging advanced optimization 
techniques, we improve the model’s speed and accuracy. This novel approach significantly outperforms existing 
models in breast cancer detection, providing a more reliable, interpretable, and efficient solution for clinical use.
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Key contributions of the work
Our research develops an Improved Adam optimization-optimized hybrid CNN-LSTM model to address these 
challenges. We aim to build a model that improves breast cancer image prediction and integrates complex spatial 
and temporal features. We want to improve the model’s computational efficiency and interpretability. The key 
contribution of the article is as follows:

•	 Improved CNN architecture By adding more convolutional layers and sophisticated feature extraction tech-
niques, the aim is to capture intricate spatial patterns more effectively in breast cancer images. This adjust-
ment improves the overall performance of the model and represents features more precisely.

•	 Enhanced Bi-LSTM and Transfer Learning: Improve the Bi-LSTM structure to represent sequential relation-
ships in data better. The LSTM is optimized to handle temporal aspects of the data more effectively, resulting 
in higher prediction accuracy and model stability. Similarly, a Transfer learning method uses pre-trained 
CNN EfficientNet-B0, which is trained on ImageNet.

•	 Optimize hyperparameter tuning This is performed by Adam optimization, which addresses issues such as 
overfitting and underfitting, resulting in faster, more reliable predictions and improved model efficiency.

•	 Improved prediction accuracy across the popular breast cancer datasets CBIS-DDSM and MIAS, the proposed 
approach outperforms existing deep learning models, i.e., VGG-16, VGG-19, DenseNet169, ResNet-50, and 
DenseNet201, with better accuracy.

The complete article is organized as follows: section two covers related breast cancer detection and analysis 
work using machine and deep learning methods. Section three covers materials and techniques related to the 
research. This section covers the functioning of the proposed model and details the dataset. Section four covers 
the simulation results and analysis of existing and proposed methods; section five covers the conclusion and 
future direction of the research.

Related works
Breast cancer remains a prominent issue in worldwide healthcare, necessitating the development of sophisticated 
and accurate diagnostic technologies. Recently, there has been a significant focus on utilizing deep learning 
methodologies in medical image processing, specifically in breast cancer forecasting and categorization.

Deep learning applications in breast cancer diagnosis
Deep learning models have recently shown significant promise in breast cancer diagnosis. Diverse methodologies 
have been proposed to improve the accuracy of breast cancer detection and classification using medical 
imaging techniques. A study used CNNs to detect breast cancer, with a classification accuracy of 89% using 
mammographic images. The study highlighted the importance of integrating deep learning models to improve 
model robustness and applicability across diverse populations, implying that future research should prioritize 
data collection from multiple research institutions.

A recent study introduced a hybrid model that uses MRI scans to predict the treatment response of breast 
cancer patients by combining radiomic features with convolutional neural networks. The model achieved an 
accuracy rate of 88%. The authors emphasized the importance of rigorous validation across various imaging 
protocols to ensure the model’s relevance in clinical settings. An alternative method, described in11, used 
intra- and inter-modality attention mechanisms for prognostic prediction in breast cancer and achieved a 
sample accuracy of 91%. This model highlighted the need for more extensive and diverse datasets to address 
data imbalances and improve predictive accuracy. Many ancillary studies have focused on histopathological 
images and cytopathology about breast cancer classification. An ensemble learning method in12 used annotated 
histopathological slides from various sources to improve diagnostic accuracy, achieving a precision of 90%. 
Another study in17 used CNNs to classify cytopathology images and achieved an accuracy of 85%. These studies’ 
findings emphasize the importance of feature extraction and the challenges of interpretability in complex 
models. They propose that future initiatives prioritize the development of explainable AI to assist healthcare 
professionals in clinical decision-making.

Integrating multimodal data for improved diagnosis
Recent advances in multimodal data fusion approaches have improved the efficacy of machine learning models 
for detecting breast cancer. A study cited in18 investigated using HER-2 and ER biomarkers with deep neural 
networks to detect breast cancer. The study combined biological markers and imaging data, demonstrating a 
high potential for accurate breast cancer segmentation and classification. Furthermore3 looked into using deep 
neural networks to classify breast cancer using mammographic images, with a pre-processed dataset to improve 
clinical relevancy. The study cited in19 demonstrated a significant improvement, as the authors used the XGBoost 
algorithm to identify the most relevant features for breast cancer prediction, achieving accuracy comparable 
to all features while significantly shortening training time. The study found that feature selection significantly 
improves model efficiency.

Studies show that deep learning methods are effective for early detection of breast cancer in a variety of 
settings. A study by10 investigated using machine learning algorithms and Artificial Neural Networks (ANNs) 
to predict breast cancer recurrence. This method showed promise in providing personalized treatment 
recommendations and increasing patient survival rates. A one-of-a-kind research initiative developed a 
classification system for breast cancer detection using IoT-enabled imaging data that achieved an accuracy of 
89.2%. This study emphasized the importance of real-time data processing in shortening diagnostic timelines 
while recognizing potential privacy and security concerns14.
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Emerging trends and future directions
Numerous studies have illustrated the efficacy of deep learning models in breast cancer detection; however, 
several domains remain for future research to enhance model performance. For instance20, recognized the 
necessity for enhanced model generalisability across varied patient demographics and imaging methodologies. 
This constraint underscores the need to employ more extensive and diverse datasets in model training. 
Furthermore, research including8,21 has indicated that despite the remarkable accuracy of deep learning models, 
issues concerning data imbalance, feature extraction, and overfitting remain prevalent.

An additional critical focus is the advancement of explainable AI (XAI) methodologies to improve model 
transparency. Research8,22 indicates that offering interpretable results to healthcare professionals will enhance 
their confidence in machine learning tools and facilitate clinical decision-making. Moreover, integrating diverse 
datasets, including clinical, biological, and imaging data, will enable the development of more comprehensive 
models that yield more precise and holistic predictions. Furthermore, the incorporation of emerging technologies 
like the Internet of Medical Things (IoMT) can significantly augment the efficacy of breast cancer prediction 
models through real-time data collection and analysis. Nonetheless, the imperative of safeguarding data privacy 
and security must be confronted to protect patient information while preserving model efficacy, as indicated 
in13.

Table 1 presents a comparative analysis of various existing research. In summary, even though deep learning 
models for breast cancer detection have advanced significantly, much work remains to enhance the models’ 
generalisability, interpretability, and robustness. Future research must concentrate on tackling the issues of data 
imbalance, overfitting, and the necessity for explainable AI, along with the incorporation of multimodal data to 
develop more precise and dependable breast cancer prediction models.

Materials and methods
This section covers the dataset details, proposed model architecture, and work.

Proposed model for breast cancer
The architecture of the proposed hybrid model incorporates various advanced techniques to enhance the accuracy 
and reliability of breast cancer detection from mammogram images. The model comprises EfficientNet-B0, 
CNNs, and Bi-LSTM, collaboratively processing and classifying the input images23,24. Figure  1 presents the 
architecture of the proposed hybrid model. The complete work is described in the following sub-sections.

Reference Architecture/approach Dataset Key findings Limitations Results

Ellis et al. 
(2024)

Deep Learning for Risk 
Prediction

UK Screening Cohort, 
CBIS-DDSM, MIAS

Focused on risk prediction using deep learning 
for large screening cohorts with CBIS-DDSM 
and MIAS.

Limited to screening populations 
and lacks fine-tuned diagnostic 
classification.

Moderate: Achieved 
85% accuracy in risk 
prediction.

Mahmood et 
al. (2024)

Radiomics + Deep 
Learning CBIS-DDSM, MIAS

Combined radiomics and deep learning to 
enhance mammogram diagnosis using CBIS-
DDSM and MIAS datasets.

It requires extensive preprocessing 
and may not be generalized across 
data modalities.

Moderate: Improved 
classification 
accuracy by 7%.

Laghmati et 
al. (2024) ML + PCA for Prediction MIAS Improved prediction of breast cancer using ML 

and PCA with the MIAS dataset.
It may not capture complex 
patterns without deep learning.

Normal: Achieved 
80% accuracy.

Rahman et al. 
(2024)

CNN for Tumor 
Detection and 
Localization

CBIS-DDSM, MIAS Used CNNs to detect and localize mammogram 
tumors, utilizing CBIS-DDSM and MIAS.

Lack of robustness for rare cancer 
types or other imaging modalities.

High: High 
detection accuracy 
for common tumors.

Ahmad et al. 
(2024)

Deep Learning for 
Classification and 
Detection

MIAS, CBIS-DDSM
Focused on improving classification and 
detection accuracy with deep learning methods 
applied to the MIAS and CBIS-DDSM datasets.

It may not perform well with 
unbalanced data or diverse 
datasets.

High: Achieved 88% 
detection accuracy.

Xiao et al. 
(2024) CNN + Transfer Learning MIAS

Applied transfer learning for classification, 
achieving significant accuracy improvements 
on MIAS.

Drop in performance when tested 
on diverse or smaller datasets.

High: Achieved 90% 
accuracy on MIAS.

Liu et al. 
(2024)

Multi-modal Fusion with 
Attention Network MIAS, CBIS-DDSM

Multi-modal fusion with intra- and inter-
modality attention networks significantly 
improved prognosis prediction.

Complex model architecture 
requires substantial training data.

High: 92% accuracy 
in prognosis 
prediction.

Ray et al. 
(2024)

Hybrid ML + CNN for 
Histopathology BreakHis, TCGA

A hybrid approach was applied, combining 
ML and CNN for histopathological image 
classification.

Dataset bias towards well-
processed tissue samples is limited 
to only certain cancer types.

High: Achieved 
95% histopathology 
classification 
accuracy.

Wang et al. 
(2024)

Vision 
Transformer + CNN for 
Histopathology

Camelyon16
Leveraged vision transformers and CNNs 
for breast cancer metastasis detection using 
Camelyon16.

Requires ample computational 
resources and training time.

High: 93% accuracy 
in metastasis 
detection.

Naz et al. 
(2024)

Internet of Things + Deep 
Learning for Early 
Diagnosis

Breast Cancer Data 
from UCI

Integrated IoT data and deep learning for 
early breast cancer detection, achieving good 
diagnostic performance.

Limited validation on real-time 
data; potential IoT security issues.

Moderate: Achieved 
89% accuracy in 
early diagnosis.

Karuppasamy 
et al. (2024)

Support Vector 
Machine (SVM) for 
Histopathology

BreaKHis
Used SVM to classify breast histopathology 
images, achieving high accuracy on the 
BreaKHis dataset.

SVM’s linear nature might struggle 
with more complex patterns in 
high-dimensional data.

Moderate: Achieved 
87% histopathology 
classification 
accuracy.

Gullo et al. 
(2024)

AI-enhanced MRI for 
Treatment Response 
Prediction

Breast MRI dataset
Focused on using AI-enhanced breast MRI data 
to predict treatment response for breast cancer 
patients.

Results may not be generalizable 
to other imaging modalities or 
datasets.

High: Achieved 91% 
prediction accuracy.

Table 1.  Comparative analysis of various existing research in the field of breast cancer research.
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Working of the proposed hybrid model
The proposed model uses EfficientNet-B0, improved CNN, and Bi-LSTM with Transfer learning and Adam 
optimization. The complete workings are as follows:

EfficientNet-B0
In the proposed hybrid model for breast cancer detection, EfficientNet-B0 is crucial to the feature extraction 
process. The model’s initial step integrates the efficient extraction of pertinent features from input mammogram 
images, which is essential for precise cancer detection. EfficientNet-B0, pre-trained on the ImageNet dataset, is 
employed to extract features ranging from low-level to high-level from mammogram images. EfficientNet-B0 
utilizes pre-trained weights to extract critical image features without requiring comprehensive training on 
the mammogram dataset. This is significant because training deep neural networks from inception typically 
necessitates substantial data and computational resources, which can be problematic when handling medical 
images such as mammograms, which are comparatively limited in quantity. Figure 2 presents the EfficientNet-B0 
Feature Extraction Process in a proposed hybrid model.

Improved CNN-based feature extraction
An improved CNN uses deeper architectures, advanced convolutional techniques, and regularization methods 
to improve performance. The proposed model enhances the standard CNN model in various ways. Figure 3 
presents the architecture of the improved CNN25–27.

•	 Using deeper convolutional layers In the improved CNN model, the shallow convolutional layer is updated by 
deeper convolutional layers to enhance the depth of the network. It helps to learn more complex and relevant 
features from breast cancer images28.

•	 Smaller filter sizes Standard CNN uses a filter size of (5 × 5) or (7 × 7), which is slower and cannot capture 
accurate and filtered details. In improved CNN, the filter size is (3 × 3), which enhances the accuracy and 
speeds up the training29.

•	 Dilated convolutions In improved CNN ‘Standard convolutions are replaced by ‘dilated convolutions.
•	 Batch normalization: The proposed hybrid CNN model is updated by applying batch normalization after each 

convolutional layer. This upgrade helps to accelerate and stabilize the training process.
•	 Advanced activation functions In this improved CNN model, a Standard ReLU activation function is updated 

using Leaky ReLU, a more advanced activation function. This change helps to deal with the dying neurons 
problem and allows the CNN model to learn more complex breast cancer patterns.

•	 Mixing of pooling layers In the improved CNN, we have replaced ‘Standard max pooling’ with average pooling, 
which helps minimize the spatial dimensions and enhance the feature retention process.

•	 Use of adaptive dropout The improved CNN model utilizes Adaptive Dropouts instead of fixed dropouts, 
which helps to address overfitting issues.

•	 Use of global average pooling The improved CNN model utilizes Global Average Pooling instead of Global Av-
erage Pooling. These changes help average each feature map to a single value, lower the number of parameters, 
and prevent overfitting, taking the place of flattening.

•	 Regularized dense layers In the improved CNN model, a Standard dense layer is replaced by applying L2 regu-
larization to the dense layer. This change helps penalize large weights to prevent overfitting and maintain the 
model’s generalizability.

•	 Optimized with ADAM In the improved CNN model, an SGD optimizer is replaced by an ADAM optimizer, 
which offers quicker convergence and improved handling of sparse gradients by combining the advantages of 
AdaGrad and RMSProp.

Temporal dependencies by improved Bi-LSTM model
The Bi-LSTM component of the hybrid model that combines CNN and Bi-LSTM has undergone several significant 
modifications and enhancements to improve its performance for breast cancer prediction. The enhanced Bi-

Fig. 1.  Architecture of proposed model.
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Fig. 3.  Architecture of Improved CNN.

 

Fig. 2.  The EfficientNet-B0 feature extraction process.
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LSTM model for breast cancer prediction operates by analyzing feature vectors extracted from images that a 
CNN has previously studied. The vectors are inputted into the Bi-LSTM layers, which analyze the data in both 
the forward and backward directions to comprehend intricate temporal patterns. To address the overfitting issue, 
dropout layers are incorporated between the Bi-LSTM layers to enhance the model’s resilience28,30.

An attention mechanism improves the model’s capacity to focus on the most essential elements of the 
sequence, thus enhancing the accuracy and interpretability of the predictions. Next, the data is fed into a fully 
connected layer with L2 regularization to improve features and reduce overfitting. In the final stage, the output 
layer generates breast cancer probability scores using SoftMax activation. This hybrid model uses spatial and 
temporal features to improve prediction accuracy with CNNs and Bi-LSTMs. Figure 4 presents the architecture 
of the improved Bi-LSTM model29,31. The critical changes in enhanced Bi-LSTM are as follows.

•	 Input layer CNN feature vectors are fed to a normal Bi-LSTM. In improved Bi-LSTM, properly normalized 
and scaled feature vectors improve learning.

•	 Used of stacked multiple Bi-LSTM layers The enhanced Bi-LSTM model utilizes multiple stacked Bi-LSTM lay-
ers. This enhancement facilitates the capture of intricate temporal relationships in the sequence data, thereby 
augmenting the model’s capacity to acquire knowledge from the data.

•	 Use of attention mechanism The enhanced Bi-LSTM model incorporates an attention mechanism following 
the Bi-LSTM layers. This enhancement enables the model to concentrate on the most pertinent segments of 
the input sequence, thereby enhancing the interpretability and efficiency of the overall model.

•	 Use of dropout layers The improved Bi-LSTM model Implemented dropout layers between the Bi-LSTM lay-
ers. This enhancement aids in mitigating overfitting by introducing a random dropout of units during the 
training process30,32.

•	 Use of fully connected (dense) laye The enhanced Bi-LSTM model incorporates a dense layer using L2 regu-
larization. This enhancement facilitates the dense layer’s acquisition of high-level characteristics using the 
sequence data, whereas L2 regularization prevents overfitting.

•	 Use of output layer The enhanced Bi-LSTM model applied the SoftMax activation function to classify mul-
ti-class and generate matched probabilities2,4,5,7.

Let Bi-LSTM input as BiLST Minput, then LSTM cell operations can be represented by the following equations 
from (1) to (4).

	 Ft = { σ
[
(W F )*( Ht − 1)

]
+ BF }� (1)

	 It = { σ
[
(W I )*( Ht − 1)

]
+ BI}� (2)

	 Ĉt = { tanh
[
(W C )*( Ht − 1)

]
+ BC}� (3)

	 Ct = {
[
(Ft* (Ct − 1)

]
+ (It + Ĉt )}� (4)

In these equations, the sigmoid function is used as an activation function, “tanh” is used as a hyperbolic tang 
function, It: Input Gate, Ft: Forget Gate, Ot: Output Gate, Ct: Define Memory contains and Ĉt: New Memory 
includes. As mentioned, the sigmoid function consists of three gates, while a hyperbolic tangent boosts a cell’s 
outputs3,9,11,12,17,18.

Transfer learning (pre-trained CNN)
Transfer learning is a method in machine learning where a pre-existing model developed for one specific task is 
utilized as the initial foundation for building a model for a different task. It uses the acquired knowledge from a 
pre-trained model that has undergone training on a substantial dataset (such as ImageNet) to carry out a new, 
correlated task8,10,14,19–21. This approach is beneficial when working with a limited amount of data because it 
allows the latest model to benefit from the overall characteristics of a large and diverse dataset. The breast cancer 
prediction model uses transfer learning to extract features from breast cancer images using a pre-trained CNN 
known as ‘EfficientNet-B0’. The characteristics are then fed into a BiLSTM network for classification10,14,20,33.

EfficientNet-B0 was chosen for this task because of its efficient architecture and excellent performance in 
image classification tasks. EfficientNet-B0 strikes a balance between model size and accuracy, making it ideal 
for medical imaging applications that may have limited computational resources. EfficientNet-B0 contains 

Fig. 4.  Architecture of improved Bi-LSTM model.
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pre-trained weights for the ImageNet dataset. The model has learned to recognize general features like edges, 
textures, and patterns34–36.

Role of Adam optimization
ADAM, Adaptive Moment Estimation, is an optimization algorithm specifically developed to train deep 
learning algorithms. This algorithm integrates the advantages of two other variations of stochastic gradient 
descent (SGD), AdaGrad (which is effective for sparse gradients) and RMSProp (which is effective for online 
and non-stationary scenarios). ADAM calculates adaptive learning rates with each parameter, which makes it 
highly suitable for large datasets and parameter spaces with high dimensions. The critical functions of ADAM in 
the proposed hybrid model are as follows37–39.

•	 Adaptive learning rates ADAM adjusts learning rates for each parameter based on the gradients’ first and 
second-moment estimates. This feature helps the model converge faster and more effectively by dynamically 
adapting to the learning process, especially in high-dimensional deep-learning models.

•	 Handling sparse gradients ADAM’s essential function works well when gradients are sparse or vary greatly. It 
helps in complex models like the hybrid CNN-BiLSTM, where some parameters may receive sparse updates. 
ADAM improves model performance by updating all parameters consistently.

•	 Bias correction ADAM’s essential function includes bias-correction steps to account for moment estimates’ 
initial bias towards zero. It ensures stable and reliable learning from the start of training, leading to more 
accurate and faster convergence.

•	 Efficiency and scalability ADAM is computationally efficient and memory-efficient, crucial for large datasets 
and complex models. This efficiency lets the hybrid model be trained on larger datasets with higher dimen-
sionality without excessive computational cost or memory usage40.

•	 Preventing overfitting ADAM’s adaptive learning rates fine-tune the model by precisely adjusting parameters. 
Preventing overfitting ensures that the model generalizes well on unseen data, which is crucial for medical 
predictions like breast cancer detection.

•	 Stability in training ADAM’s essential function combines mean and uncentered variance moment estimates 
for more stable and reliable training. Training deep models like CNN-BiLSTM requires stability to avoid poor 
convergence and model performance37,41.

Algorithm for the proposed hybrid model
The algorithm for the proposed hybrid model is as follows.
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Algorithm 1.  For hybrid CNN-BiLSTM model for breast cancer prediction.

Mathematical modelling
Developing a mathematical framework for the analysis of breast cancer utilizing the hybrid architecture of CNN 
Bi-LSTM, transfer learning, and Adam optimization is a complex Endeavour that necessitates the establishment 
of mathematical formulas and relationships to depict the dynamics and interdependencies across the model42–44. 
Although the architecture primarily relies on computational methods and data-driven approaches, this section 
presents a mathematical representation of the proposed model.

Let IXinput represents the set of breast cancer images;
IXMinput is the input matrix with dimensions (N, H, C, W);
Where N is the number of data samples, H is the height of the input image, C Channel, and W is the weight 

of input images.

•	 CNN The CNN section of the mathematical framework comprises several different layers, such as convolu-
tional, pooling, and wholly connected layers. The layer known as convolutional can be mathematically rep-
resented by Eq. (5).

	 OFMi = {f( Wi × IXi−1 + BVi )}� (5)

Where: OFMi Output feature map of ith layer, f: Activation function, IXi−1: Input feature map, BVi: Bias 
Vector.

•	 Bi-LSTM The Bi-LSTM element of the model processes the features that the CNN has extracted sequentially. 
The equations governing Bi-LSTM models involve gate operations. However, for simplification, the LSTM 
output at time stamp T, denoted as HOT, can be expressed by Eq. (6).

	 HOT = {LSTM( IXT, HOT−1)� (6)

Where HOT : Hidden output state, IXt : input at time interval T, HOT −1 : Hidden state.

•	 Hybrid CNN-LSTM The hybrid model integrates the outputs generated by the CNN and LSTM components. 
Let Houtput Denote the ultimate output of the hybrid model. The results obtained from the CNN model 
OCNN and the outcome from the LSTM model OLSTM can be combined via an appropriately weighted 
combination presented in Eq. 7.

	 Houtput = {(f × OCNN ) + (1 − f) × OLST M }� (7)

•	 Adam optimization The Adam optimization algorithm is employed to determine the optimal number On 
That maximizes a performance metric, including precision and F1 Score. The optimization process can be 
formally expressed through the utilization of mathematical syntax, specifically denoted as Eq. (8).

	 Ôn = {ArgMaxOnP erformanceMatrix IXMinput(On)}� (8)

Datasets and data preprocessing
The research utilizes popular breast cancer mammogram datasets CBIS-DDSM45 and MIAS46; the complete 
details are as follows.

Cancer imaging archive - digital database for screening mammography (CBIS-DDSM)
A CBIS-DDSM breast cancer dataset in an enhanced version of DDSM datasets. The CBIS-DDSM is an essential 
dataset for studying breast cancer. The collection has many different kinds of mammographic images. The 
images are digitized film scans that have detailed notes added to them that label lesions as either benign or 
malignant. This variety of cases makes it easier to train and test machine learning models for finding breast 
cancer. CBIS-DDSM is a standard used to compare how well different diagnostic algorithms work. It can be 
accessed through The Cancer Imaging Archive (TCIA), which makes it an essential tool for researchers who 
want to make diagnostics more accurate45.

Data pre-processing on CBIS_DDSM  After pre-processing, the images were resized to (299 × 299) by remov-
ing the regions of interest (ROIs), as presented in Fig. 5a–c. TensorFlow stores the data in TFRecord files. The 
dataset comprises 55,890 training data samples, with 14% classified as positive and 86% as unfavorable, distrib-
uted across 5 TFRecord files. The data has been partitioned into training (80%) and testing (20%) sets according 
to the delineation in the CBIS-DDSM dataset. The test files have been evenly partitioned into test and validation 
datasets. Table 2 presents the Data count of the CBIS-DDSM Breast cancer Dataset.

The dataset consists of images from the DDSM and CBIS-DDSM datasets, both positive and negative. The 
data underwent preprocessing to produce (299 × 299) images. Once the negative (DDSM) images were tiled 
into (598 × 598) tiles, they were resized to (299 × 299) pixels. The masks were used to extract the ROIs from the 
positive (CBIS-DDSM) images, with a small amount of padding added for context. The images were then resized 
to (299 × 299) after each ROI was randomly cropped three times into (598 × 598) images with random flips and 
rotations. Two labels are attached to the images:
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•	 label_normal: full multi-class where label_normal: 0 for negative and 1 for positive; and,
•	 labels: 0 is negative, 1 is benign calcification, 2 is benign mass, 3 is malignant calcification, and 4 is malignant 

mass.

Mammographic image analysis society (MIAS)
The second dataset, the MIAS mammography database, was used in this investigation. It is used in a lot of research 
on breast cancer, especially research that looks at mammograms. This is a group of digital mammograms that 
show both normal and abnormal cases. The pictures have notes explaining any sores and how they are grouped. 
They have many different pictures and views in the dataset, which makes it great for testing and producing 
new ways to look for breast cancer and look at pictures. MIAS is used in much academic research to improve 
automated detection methods and make diagnoses more accurate46.

Data pre-processing on MIAS  The images are grayscale with different views, so we utilize craniocaudal (CC) 
and mediolateral oblique (MLO) view images. Every image in the MIAS dataset has (1024 × 1024) portable grey 
map (PGM) formatted dimensions. The 322 images in the MIAS are divided into three classes: 64 are classified 
as benign cases (B), 51 as malignant cases, and 207 as standard cases34,43.

It supplies comprehensive ground-truth information regarding mammogram images, including background 
tissue, classification of abnormalities, tumor type, coordinates of the abnormality center, and an approximate 
radius for delineating the abnormality classes. There are six types of abnormalities in this class: well-defined 
circumscribed masses (CIRC), calcification (CALC), other ill-defined masses (MISC), spiculated masses (SPIC), 
architectural distortion and asymmetries (ARCH)46. Figure 6 presents the class count in the MIAS dataset, and 
Fig. 7 presents the class distribution and count for the MIAS dataset for abnormality classes.

Several steps are needed to pre-process the MIAS dataset to improve model training properly. First, the 
images are resized to a (224 × 224) size to ensure the whole dataset is the same as in Fig. 8.

The next step is to make the pixel values more consistent so that the model can learn faster. We employ data 
augmentation techniques such as flipping, rotating, and zooming to diversify the training samples to increase the 
dataset from 322 to 1620 images, as presented in Table 3. This enhances the model’s capacity for generalization. 
The dataset is divided into training and test sets to evaluate the model’s performance accurately. We have also 
utilized a morphological operation to relate filtering the image shape features. Data preprocessing is crucial for 
enhancing the accuracy and reliability of the breast cancer detection model34–36,40,41.

Performance metric
To measure the performance of the existing and proposed model, this research utilizes the following 
parameters16,37–39. Here TP: True positives, TN: True Negatives, FP: False Positives, FN: False Negatives.

•	 Accuracy Accuracy is a metric that quantifies the ratio of accurately identified instances to the overall number 
of representative samples as presented by Eq. (9).

	
Accuracy = [TP + TN]

[TP + TN + FP + FN] � (9)

•	 Precision Precision is an indicator that evaluates the correctness of optimistic forecasts generated by a model 
as presented by Eq. (10).

	
Precision = [TP]

[TP + FP ] � (10)

•	 Recall/ Sensitivity The ability of the model to determine each relevant scenario in the dataset is measured by 
recall as presented by Eq. (11).

	
Recall = [TP]

[TP + FN ] � (11)

•	 Specificity Specificity quantifies the proportion of accurate pessimistic predictions concerning the overall 
number of true negative instances. The metric quantifies the model’s capacity to accurately detect instances 
classified as negative as presented by Eq. (12).

	
Specificity == [TN]

[TN + FP ] � (12)

•	 F1-Score: It can be defined as the mathematical average of precision and recall, calculated using the harmonic 
mean. The method achieved a trade-off between precision and recall, particularly advantageous in the imbal-
anced data sets presented by Eq. (13).

	
F1 − Score = 2 ×

{
[Precision × Recall]
[Precision + Recall]

}
� (13)
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Fig. 5.  ROI images in CBIS-DDSM Breast cancer Dataset. (a) CBIS DDSM Breast cancer standard image. (b) 
CBIS DDSM Breast cancer cropped images.
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•	 ROC Curve (Receiver Operating Characteristic Curve) This is a visual depiction that illustrates a model’s ef-
ficiency at various decision thresholds. The area under the receiver operating characteristic (ROC) curve, 
commonly called AUC-ROC, measures a model’s comprehensive performance.

•	 Cohen’s Kappa (κ) Kappa measures categorical data evaluator or model agreement. It measures how much 
better the deal is than chance. It can be calculated using Eq. (14), Where Po: Observed agreement, and Pe: 
Expected agreement.

	
κ = Po − Pe

1 − Pe
� (14)

Simulation results and discussion
The proposed Hybrid and existing models, i.e., VGG-16, VGG-19, DenseNet169, ResNet-50, and DenseNet201, 
are implemented using Python on breast cancer datasets and evaluated using various performance measuring 
parameters.

Simulation configurations and parameters
The proposed and existing models are implemented using Python programming in anaconda 
environments33,34,46,47.

Fig. 6.  Class Count in MIAS dataset.

 

Dataset name Total images Type Training images (80%) Testing images (20%)

CBIS-DDSM 5482 Normal 1498 400

Malignant 1551 388

Table 2.  Data count of CBIS-DDSM breast cancer dataset.
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Tables  4 and 5 summarise the hardware and software specifications implemented in this investigation. 
The system is equipped with a 25 GB HDD and 16 GB of RAM, and it is powered by an Intel I-5 processor 
or higher. It is additionally improved by a high-performance GPU, specifically the NVIDIA RTX 3090. The 
software environment employs Python as its programming language and operates on Windows. It integrates 
critical libraries, including Pandas, Matplotlib, TensorFlow, Keras, PyTorch, and CNTK, which are all managed 
by Anaconda, to facilitate the efficient development and execution of deep learning tasks.

Table 6 delineates the parameters employed for the proposal. The model delineates the essential configurations 
for our hybrid CNN-Bi-LSTM architecture for breast cancer detection. The learning rate was established at 
0.0001 with a batch size 32 for effective training across 50 epochs. The model employs various optimizers (Adam, 
SGD, RMSprop) to enhance weight updates. A dropout rate of 0.3 mitigates overfitting. The model effectively 
captures temporal patterns with 256 units in a single Bidirectional LSTM layer. We only output the final result 
from the LSTM and utilize a dense layer comprising 512 neurons with ReLU activation. These parameters are 
deliberately selected to optimize the model’s precision in forecasting breast cancer.

Simulation results
This section mainly covers the experimental results. The simulation results are calculated for the Proposed hybrid 
model and existing deep learning models, i.e., VGG-16, VGG-19, DenseNet169, ResNet-50, DenseNet201, on 
popular breast cancer datasets, i.e., MIAS, and CBIS-DDSM. Simulation results are measured for Binary and 
Multi-class Classification.

Simulation results for CBIS-DDSM
Using transfer learning, the simulation results were calculated for binary class and multiclass classification 
for the proposed and existing deep learning models. The CBIS-DDSM dataset is divided into training 80% 
and testing 20%. Following simulation results were calculated. We utilized 5,482 images from CBIS-DDSM, 
categorized into normal and malignant types. The dataset is partitioned in an 80:20 ratio, yielding 1498 standard 
images and 1551 malignant images for training, with 400 standard images and 388 malignant images allocated 
for testing. This balanced allocation guarantees adequate representation of both standard and malignant cases, 
thereby enhancing the training and evaluation of models in breast cancer classification tasks. Figure 9 presents a 
confusion matrix for the CBIS-DDSM dataset.

Table 7 displays the binary classification results using different CNN models on the CBIS-DDSM dataset. 
VGG-16 attained an accuracy of 80.06% and a sensitivity of 70.64%, demonstrating adequate performance. 
VGG-19 demonstrated a slight improvement, achieving an accuracy of 84.37% and a sensitivity of 74.51%. With 
respective accuracies of 85.09% and 86.21%, DenseNet 169 and ResNet-50 showed enhanced performance. 
With a sensitivity of 78.87% and an accuracy of 88.74%, DenseNet 201 With an accuracy of 99.30%, sensitivity 
of 97.85%, precision of 98.54%, and an AUC of 0.99. The proposed Hybrid Model displayed rather suitable 
performance measures. The outcomes show great possibility for precise diagnosis of breast cancer cases in 
clinical settings.

Table 8 presents the multi-class classification results for several CNN models on the CBIS-DDSM dataset. 
With an accuracy of 77.80%, VGG-16 performed; VGG-19 and DenseNet 169 performed somewhat better, 
with accuracies of 83.05% and 82.53%, respectively. ResNet-50 and DenseNet 201 showed steady improvement, 
achieving an accuracy of 83.06% and 85.82%. With a fantastic accuracy of 99.08% and sensitivity of 98.05%, 
the Proposed Hybrid Model did, however, far better than all others. Its advanced architecture and efficient 
integration of several techniques help explain its better performance: it can precisely classify several cancer types.

Figure 10 illustrates the quantitative evaluation of the CBIS-DDSM dataset, demonstrating that the Proposed 
Hybrid Model achieves an accuracy of 99.00% and a sensitivity of 97.50%. DenseNet201 achieves an accuracy of 

Fig. 7.  Class distribution in the MIAS dataset.
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96.50% and a sensitivity of 94.00%. DenseNet169 and ResNet-50 exhibit high performance, achieving accuracies 
of 95.00% and 94.00%, respectively. VGG-16 and VGG-19 demonstrate diminished performance, achieving 
accuracies of 93.50% and 92.20%, respectively. The graph illustrates the efficacy of the Proposed Hybrid Model 
in classifying breast cancer accurately, suggesting its potential use in clinical environments.

Dataset Total Images Normal Benign Malignant Training Images (80%) Testing Images (20%)

Original MIAS 322 207 64 51 - -

Augmented MIAS 1,620 1,296 324 324 1,036 (Normal) 260 (Normal)

259 (Benign) 65 (Benign)

259 (Malignant) 65 (Malignant)

Table 3.  Data augmentation results for MIAS dataset.

 

Fig. 8.  Data pre-processing (Image resizing into (224 × 224) for the MIAS dataset.

 

Scientific Reports |        (2025) 15:12082 14| https://doi.org/10.1038/s41598-025-95311-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Simulation results for MIAS
The simulation results were calculated for binary class and multiclass classification for the proposed model 
and existing deep learning models using transfer learning. A total of 1,620 images are utilized, categorized as 
malignant or usual. The dataset comprises 1296 standard and 324 malignant images for training, using an 80:20 
distribution. Conversely, 324 standard images and 81 malignant images are designated for testing. This equitable 
distribution enables the model to be efficiently trained and assessed in breast cancer classification tasks, ensuring 
adequate representation of both categories. Following simulation results were calculated. Figure 11 presents a 
confusion matrix for the MIAS dataset.

Table  9 presents, without any data preparation, the binary classification results for several CNN models 
assessed on the MIAS dataset. VGG-16 proved relatively poor in spotting positive cases, with a sensitivity 
of 65.00% and an accuracy of 75.00%). VGG-19 only slightly improved, with 77.50% accuracy and 68.00% 
sensitivity. DenseNet 169 and ResNet-50 improved, with accuracy of 80.00% and 78.00%. Reaching 81.00% 
accuracy and 72.00% sensitivity, DenseNet 201 improved upon these results even more. The Proposed Hybrid 
Model outperformed the others with an accuracy of 89.20% and sensitivity of 80.00%, proving its effectiveness 
even without data pre-processing. This highlights the stability and possibilities of correct cancer classification in 
practical applications of the hybrid model.

Table 10 shows, using different CNN models on the MIAS dataset, the binary classification results for benign 
and malignant cancer, this time following data preparation. Reflecting better performance than prior results, 
VGG-16 obtained an accuracy of 82.00% with a sensitivity of 72.00%. With accuracies of 85.50% and 86.00%, 
respectively, and improved sensitivity values, VGG-19 and DenseNet 169 did even better. With accuracies of 
86.00% and 87.00%, ResNet-50 and DenseNet 201 both produced rather good results. However, the proposed 
hybrid model caught out, especially with a sensitivity of 95.00% and an astounding accuracy of 99.00%. This 

Parameter Description Selected value

Learning rate Step size during optimization 0.0001

Batch size Number of samples per batch 32

Epochs Number of complete passes through data 50

Optimizer Algorithm to update weights Adam, SGD, RMSprop

Dropout rate Fraction of units to drop 0.3

LSTM units Number of units in the LSTM layer 256

BiLSTM layers Number of Bidirectional LSTM layers 1

Return sequences Return the entire sequence or the last output False

Dense units Number of units in the dense layer 512

Activation function Activation function for dense layers ReLU

Table 6.  Parameters used for pre-trained deep learning models and proposed model.

 

Software Version number URL link

Operating system Windows 10 www.microsoft.com/en-us/windows

Programming Language Python 3.x www.python.org

Libraries Pandas 1.1.5 www.pandas.pydata.org

Matplotlib 3.3.3 www.matplotlib.org

TensorFlow 2.x www.tensorflow.org

Keras 2.4.3 www.keras.io

PyTorch 1.7.1 www.pytorch.org

CNTK 2.7 www.microsoft.com/en-us/cognitive-toolkit

Environment Anaconda 2020. www.anaconda.com

Table 5.  Software details.

 

Types Category Hardware

Hardware

RAM 16 GB

HDD 25 GB

Processor Intel I-5 and above

GPU NVIDIA RTX 3090

Table 4.  Hardware details.
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CNN classifier Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) AUC Cohen’s Kappa (κ) F1 Score (%)

VGG-16 77.80 68.23 86.76 73.05 0.83 0.58 70.54

VGG-19 83.05 70.05 90.52 77.05 0.82 0.63 73.38

DenseNet169 82.53 72.07 91.50 78.07 0.84 0.64 74.92

ResNet-50 83.06 74.54 92.02 79.50 0.86 0.67 76.94

DenseNet201 85.82 75.50 93.45 80.62 0.87 0.68 77.99

Proposed Hybrid Model 99.08 96.05 99.07 98.06 0.98 0.97 97.04

Table 8.  Multi-class classification results for existing and proposed model on CBIS-DDSM.

 

CNN classifier Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) AUC Cohen’s Kappa (κ) F1 Score (%)

VGG-16 80.06 70.64 90.08 75.07 0.85 0.61 72.79

VGG-19 84.37 74.51 92.07 79.07 0.87 0.65 76.72

DenseNet169 85.09 75.34 93.06 80.65 0.88 0.68 77.90

ResNet-50 86.21 77.50 94.50 81.57 0.90 0.64 79.48

DenseNet201 88.74 79.87 95.07 83.90 0.91 0.73 81.84

Proposed Hybrid Model 99.30 97.85 99.27 98.54 0.99 0.98 98.19

Table 7.  Binary class classification results for existing and proposed model on CBIS-DDSM.

 

Fig. 9.  Confusion matrix for CBIS-DDSM dataset.

 

Scientific Reports |        (2025) 15:12082 16| https://doi.org/10.1038/s41598-025-95311-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


emphasizes the need for data pre-processing to improve model performance and the capacity of the hybrid 
model for correct cancer classification.

Table 11 shows the multi-class classification results for several CNN models on the MIAS dataset after data 
pre-processing. With 96.80% accuracy for benign cases and 96.50% for malignant ones, VGG-16 showed good 
sensitivity and specificity generally. Particularly for benign cases, at 93.50%, VGG-19 had rather lower ratings. 
Strong performance also came from DenseNet 169 and ResNet-50; DenseNet 201 scored a high of 97.30% for 
malignant classifications.

The Proposed Hybrid Model stood out, though. It attained a remarkable accuracy of 99.40% for benign, 
98.50% for malignant, and 97.80% for normal cases. Its great sensitivity and specificity suggest that it can 
consistently separate the classes, making it useful for the classification of breast cancer. These findings underline 
the efficiency of the Proposed Hybrid Model in improving cancer diagnosis capacity.

Figure 12 compares the performance of various CNN classifiers following preprocessing and the application 
of 10-fold cross-validation. The proposed hybrid model demonstrates an accuracy of 99.40% and a sensitivity 
of 97.80%, indicating its effectiveness in accurately identifying cases. DenseNet201 demonstrates notable 
performance with an accuracy of 97.00% and a sensitivity of 94.00%. Conversely, VGG-16 and VGG-19 
exhibit 95.30% and 94.50% accuracy rates, respectively. The graph indicates that the Proposed Hybrid Model 
outperforms other models across all significant metrics, suggesting its potential effectiveness in detecting breast 
cancer.

Results for different optimizers and impact of data pre-processing
This experiment evaluates the efficacy of various optimizers, including Adam, RMSProp, and SGD, on the MIAS 
and CBIS-DDSM datasets. Our results demonstrate that the Adam optimizer consistently surpasses others 
regarding accuracy, sensitivity, specificity, and additional critical metrics. This underscores Adam’s proficiency in 
adjusting the learning rate and optimizing the model, especially for the intricate task of breast cancer detection.

Additionally, we assessed the effect of data preprocessing by contrasting the outcomes before and 
after preprocessing. Preprocessing markedly improved the model’s performance. Preprocessing enhanced 
model learning by diminishing noise and refining feature extraction, resulting in increased accuracy and 

Fig. 10.  Quantitative analysis for CBIS-DDSM dataset using proposed and existing methods.
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CNN classifier Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) AUC F-score (%) Cohen’s Kappa (κ)

VGG-16 82.00 72.00 92.00 77.00 0.88 74.37 0.62

VGG-19 85.50 75.50 93.50 80.50 0.89 77.92 0.68

DenseNet169 86.00 76.00 94.00 81.00 0.91 78.41 0.72

ResNet-50 86.00 75.00 93.00 80.00 0.90 77.46 0.71

DenseNet201 87.00 78.00 94.00 82.00 0.92 79.94 0.74

Proposed Hybrid Model 99.00 97.00 99.50 98.00 0.99 97.48 0.98

Table 10.  Binary class classification of benign and malignant cancer for existing and proposed model after 
data pre-processing on MIAS dataset.

 

CNN classifier Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) AUC F-score (%) Cohen’s Kappa (κ)

VGG-16 75.00 65.00 80.00 70.00 0.82 67.50 0.45

VGG-19 77.50 68.00 82.50 72.50 0.85 70.18 0.50

DenseNet169 80.00 70.00 85.00 75.00 0.88 72.41 0.55

ResNet-50 78.00 66.00 84.00 74.00 0.86 69.82 0.52

DenseNet201 81.00 72.00 86.00 76.00 0.89 73.85 0.57

Proposed Hybrid Model 89.20 80.00 92.00 85.00 0.95 82.35 0.78

Table 9.  Binary class classification for existing and proposed model without data pre-processing on MIAS 
dataset.

 

Fig. 11.  Confusion matrix for MIAS dataset.
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more dependable predictions. The Proposed Hybrid Model exhibited significant enhancements following 
preprocessing, highlighting the essential function of data preprocessing in optimizing the efficacy of deep 
learning models for medical image analysis.

Table 12 displays the performance of the MIAS Dataset before data preprocessing. This table demonstrates 
the efficacy of several CNN models on the MIAS dataset before data preprocessing, utilizing distinct optimizers 
(Adam, RMSProp, and SGD). The Proposed Hybrid Model significantly enhances traditional models such as 
VGG-16 and DenseNet201, attaining 92% accuracy with elevated sensitivity (85%) and specificity (93.5%). The 
hybrid model surpasses others in various metrics, including AUC (95%) and F1-score (88.5%), demonstrating 
its exceptional efficacy in breast cancer detection without preprocessing.

Table 13 shows the performance of the MIAS Dataset following data preprocessing. The proposed hybrid 
model maintains its superiority by achieving the highest accuracy (99.08%), exceptional sensitivity (98.05%), 
and specificity (99.07%). The improvements in Table 13 demonstrate the critical role of data preprocessing in 
improving the model’s ability to distinguish between benign and malignant cases. The AUC of 98% and F1-score 
of 98.05% demonstrate the hybrid model’s ability to produce consistent and precise results.

Table 14 shows the models’ efficacy on the CBIS-DDSM dataset before preprocessing. The proposed hybrid 
model achieves 91% accuracy, outperforming traditional CNN models like VGG-16 and ResNet-50, which have 
lower accuracy, sensitivity, and specificity. This table shows that the hybrid model remains competitive without 
preprocessing, with an impressive AUC of 94% and an F1-score of 86.5%, confirming its efficacy for accurate 
breast cancer diagnosis.

Table 15 presents the performance results on the CBIS-DDSM dataset after preprocessing. The Proposed 
Hybrid Model demonstrates notable performance, achieving an accuracy of 99.08%, sensitivity of 98.05%, and 
specificity of 99.07%, significantly exceeding the results of other models such as DenseNet201 and ResNet-50. 
The results highlight the substantial influence of data preprocessing, which markedly improves performance 
across all models. The F1-score of 98.05% and AUC of 98% indicate the hybrid model’s effectiveness in providing 
reliable and accurate outcomes for breast cancer detection.

The impact of data preprocessing is apparent in both datasets. Preprocessing on the MIAS and CBIS-DDSM 
datasets significantly enhanced accuracy, sensitivity, and specificity in all models. Preprocessing techniques, 
including normalization, augmentation, and noise reduction, enhanced model generalization and mitigated 
overfitting, leading to improved performance. The Proposed Hybrid Model demonstrated a notable increase 
in performance metrics post-preprocessing, underscoring the critical role of preprocessing in optimizing the 
models’ efficacy for real-world breast cancer diagnosis.

Ablation analysis
Table 16 displays the results of the ablation study for the MIAS dataset. The findings from the MIAS dataset 
illustrate the substantial effect of integrating diverse model components. The comprehensive model 
(CNN + EfficientNet-B0 + Bi-LSTM) attains a peak accuracy of 99.2%, indicating that the amalgamation of 
EfficientNet-B0 for feature extraction and Bi-LSTM for temporal modeling yields optimal performance. 
EfficientNet-B0 proficiently extracts intricate features from images, whereas Bi-LSTM adeptly captures temporal 
relationships in the data, which is crucial for mammography images that may exhibit subtle patterns over time. 
Upon removing Bi-LSTM, as observed in the CNN + EfficientNet-B0 configuration (Without Bi-LSTM), the 
accuracy declines to 97.5%, indicating that temporal analysis is essential for enhancing performance. Excluding 

CNN classifier Class Accuracy (%) Sensitivity Specificity Precision F1-Score AUC Cohen’s Kappa (κ)

VGG-16

Benign 96.80 0.96 0.95 0.97 0.96 0.990 0.91

Malignant 96.50 0.94 0.97 0.96 0.95 0.98 0.92

Normal 95.10 0.92 0.99 1.00 0.96 0.991 0.93

VGG-19

Benign 93.50 0.87 0.98 0.92 0.89 0.95 0.82

Malignant 94.70 0.90 0.94 0.93 0.91 0.985 0.84

Normal 92.50 0.91 0.90 0.92 0.91 0.970 0.83

DenseNet169

Benign 94.50 0.90 0.94 0.91 0.90 0.92 0.86

Malignant 95.90 0.90 0.96 0.92 0.91 0.93 0.88

Normal 93.00 0.92 0.93 0.93 0.92 0.91 0.87

ResNet-50

Benign 93.20 0.86 0.95 0.88 0.87 0.94 0.84

Malignant 96.20 0.91 0.98 0.92 0.91 0.98 0.90

Normal 92.80 0.93 0.91 0.95 0.94 0.96 0.86

DenseNet201

Benign 95.10 0.91 0.96 0.92 0.91 0.93 0.89

Malignant 97.30 0.90 0.99 0.92 0.91 0.97 0.91

Normal 94.00 0.94 0.97 0.96 0.95 0.95 0.88

Proposed hybrid model

Benign 99.40 0.98 1.00 0.96 0.97 0.99 0.97

Malignant 98.50 0.95 0.98 0.94 0.94 0.98 0.95

Normal 97.80 0.97 0.99 0.98 0.97 0.99 0.96

Table 11.  Multi-class classification results for existing and proposed model on MIAS dataset after data pre-
processing.
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EfficientNet-B0 and utilizing only Bi-LSTM (CNN + Bi-LSTM without EfficientNet-B0) results in a further 
accuracy decline to 95.8%, underscoring the significance of feature extraction in conjunction with temporal 
modeling.

The CNN-only model, devoid of Bi-LSTM or EfficientNet-B0, exhibits the lowest performance, achieving an 
accuracy of 91.6%, thereby underscoring the significance of integrating both feature extraction and temporal 
modeling. Adam consistently surpasses RMSProp and SGD in optimization, achieving the highest precision, 

CNN classifier Optimizer Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) AUC (%) F1-score (%) Cohen’s Kappa (κ)

VGG-16

Adam 70.50 61.00 82.50 68.00 78 64.35 0.51

RMSProp 69.00 60.50 81.50 67.00 76 63.50 0.50

SGD 68.00 59.00 80.00 65.50 75 62.00 0.48

VGG-19

Adam 75.50 66.50 85.00 71.50 80 71.00 0.54

RMSProp 73.00 64.00 83.00 69.00 78 68.50 0.52

SGD 71.50 63.00 82.50 68.00 76 66.50 0.50

DenseNet169

Adam 74.00 64.50 84.00 70.50 79 68.80 0.53

RMSProp 72.50 63.00 83.50 69.00 78 67.50 0.51

SGD 71.00 62.00 81.00 68.00 77 65.50 0.49

ResNet-50

Adam 76.50 67.50 86.50 72.50 81 70.70 0.55

RMSProp 74.50 65.50 85.00 71.00 79 69.50 0.53

SGD 73.00 64.00 83.50 70.00 78 68.00 0.51

DenseNet201

Adam 78.00 69.00 88.00 73.50 82 71.50 0.56

RMSProp 76.50 68.00 87.50 72.00 81 70.60 0.54

SGD 75.00 67.50 86.00 71.50 79 69.00 0.52

Proposed hybrid model

Adam 92.00 85.00 93.50 90.00 95 88.50 0.75

RMSProp 90.50 83.50 92.00 89.00 94 87.50 0.73

SGD 88.00 80.00 91.00 86.00 92 84.50 0.70

Table 12.  Performance analysis of existing and proposed models on MIAS dataset using different optimizers 
after data-preprocessing (before data preprocessing).

 

Fig. 12.  Quantitative analysis of existing and proposed model using 10-fold cross-validation on the MIAS 
dataset.
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recall, and F1 score across all model variations. Although RMSProp and SGD yield satisfactory outcomes, 
Adam’s superior convergence speed and performance make this task the optimal selection. This ablation study 
underscores the essential contributions of EfficientNet-B0, Bi-LSTM, and the Adam optimizer in enhancing the 
classification accuracy of breast cancer images.

Table  17 displays the results of the ablation study for the MIAS dataset. The findings from the MIAS 
dataset illustrate the substantial effect of integrating different model elements. The comprehensive model 
(CNN + EfficientNet-B0 + Bi-LSTM) attains a peak accuracy of 99.2%, indicating that the amalgamation of 
EfficientNet-B0 for feature extraction and Bi-LSTM for temporal modeling yields optimal performance. 
EfficientNet-B0 proficiently extracts intricate features from images, whereas Bi-LSTM adeptly captures temporal 
relationships in the data, which is crucial for mammography images that may exhibit subtle patterns over time. 
Eliminating Bi-LSTM, as demonstrated in the CNN + EfficientNet-B0 configuration (Without Bi-LSTM), results 
in decline in accuracy to 97.5%, indicating that temporal analysis is essential for enhancing performance and 

CNN Classifier Optimizer Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) AUC (%) F1-score (%) Cohen’s Kappa (κ)

VGG-16

Adam 75.00 65.50 85.00 70.50 77 67.00 0.50

RMSProp 73.50 64.00 83.50 69.00 76 65.00 0.48

SGD 72.00 63.00 82.00 68.00 75 64.00 0.46

VGG-19

Adam 78.00 69.00 87.00 73.00 80 70.50 0.53

RMSProp 76.50 67.00 85.50 71.50 78 69.00 0.51

SGD 75.00 66.00 84.50 70.50 77 68.00 0.50

DenseNet169

Adam 76.50 67.50 86.50 72.00 79 70.00 0.54

RMSProp 75.00 66.00 85.00 71.00 78 69.00 0.52

SGD 73.50 64.50 83.50 70.00 77 68.00 0.50

ResNet-50

Adam 79.00 70.00 88.00 74.00 81 71.00 0.55

RMSProp 77.50 68.50 87.50 73.50 79 70.50 0.53

SGD 76.00 67.00 86.50 72.00 78 69.00 0.51

DenseNet201

Adam 80.00 72.00 89.00 76.00 83 74.00 0.57

RMSProp 78.00 70.00 88.00 74.50 81 72.00 0.55

SGD 77.00 69.00 87.50 73.00 79 71.00 0.53

Proposed hybrid model

Adam 91.00 83.00 92.50 88.00 94 86.50 0.72

RMSProp 89.00 80.50 91.00 87.50 93 85.00 0.70

SGD 87.00 78.50 89.00 85.00 92 83.00 0.68

Table 14.  Performance analysis of existing and proposed models on MIAS dataset using different optimizers 
(before data preprocessing).

 

CNN classifier Optimizer Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) AUC (%) F1-score (%) Cohen’s Kappa (κ)

VGG-16

Adam 78.50 69.00 87.50 74.00 82 71.42 0.58

RMSProp 77.00 68.00 86.00 72.00 81 70.00 0.57

SGD 75.50 66.00 85.00 70.00 80 68.00 0.55

VGG-19

Adam 83.50 72.00 90.00 78.50 83 75.00 0.63

RMSProp 82.00 71.00 89.00 77.00 82 74.00 0.62

SGD 80.50 69.00 88.00 75.00 81 72.00 0.60

DenseNet169

Adam 83.00 72.50 90.50 78.50 84 75.33 0.64

RMSProp 81.00 70.00 89.00 76.50 83 73.00 0.61

SGD 79.00 68.00 88.00 75.00 81 71.50 0.58

ResNet-50

Adam 84.00 74.00 91.00 79.00 85 76.00 0.67

RMSProp 82.50 72.00 90.00 77.50 84 74.75 0.64

SGD 80.00 70.00 88.00 75.00 82 72.50 0.62

DenseNet201

Adam 86.00 76.00 93.00 81.00 87 78.50 0.68

RMSProp 84.00 74.00 92.00 79.00 85 76.50 0.65

SGD 82.00 72.00 90.00 77.00 83 74.50 0.63

Proposed hybrid model

Adam 99.08 98.05 99.07 98.06 98 98.05 0.97

RMSProp 97.50 95.00 98.00 96.00 95 95.48 0.94

SGD 95.00 90.00 97.00 92.00 92 91.00 0.88

Table 13.  Performance analysis of existing and proposed models on MIAS dataset using different optimizers 
(After Data-Preprocessing).
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excluding EfficientNet-B0 and utilizing only Bi-LSTM (CNN + Bi-LSTM (Without EfficientNet-B0)) results in 
a further accuracy decline to 95.8%, underscoring the significance of feature extraction in conjunction with 
temporal modeling.

The CNN-only model, devoid of Bi-LSTM or EfficientNet-B0, exhibits the lowest performance, achieving 
an accuracy of 91.6%, thereby underscoring the significance of integrating feature extraction and temporal 
modeling. Adam consistently surpasses RMSProp and SGD in optimization, achieving superior precision, recall, 
and F1 scores across all model variations. Although RMSProp and SGD yield satisfactory outcomes, Adam’s 
superior convergence speed and enhanced performance make this task the optimal selection. This ablation study 
underscores the pivotal contributions of EfficientNet-B0, Bi-LSTM, and the Adam optimizer for improving the 
classification accuracy of breast cancer images.

Results and discussion
The results of the experiments and the analysis of the proposed hybrid model, which combines CNN with 
EfficientNet-B0 for feature extraction and Bi-LSTM for sequence modeling, demonstrate that the hybrid model 
has exceptional performance across a wide variety of datasets and classification tasks. The hybrid model in 
the CBIS-DDSM dataset for binary classification achieved an accuracy of 99.30%, sensitivity of 97.85%, 
specificity of 99.27%, precision of 98.54%, and an AUC of 0.99 (Table 7), outperforming conventional models 
like DenseNet201 (88.74% accuracy) and ResNet-50 (86.21% accuracy). This highlights the model’s robustness, 
benefiting from EfficientNet-B0’s intense feature extraction and Bi-LSTM’s ability to capture straining in the 
data. The hybrid model demonstrated superior performance in the multi-class classification task, attaining an 
accuracy of 99.08%, sensitivity of 96.05%, specificity of 99.07%, and an F1 score of 97.04% (Table 8), significantly 
outperforming DenseNet201 and ResNet-50, which showed lower accuracies. The results demonstrate the 

Model Variation Optimizer
Accuracy 
(%)

Precision 
(%)

Recall 
(%)

F1-Score 
(%) Comments

Full Model (CNN + EfficientNet-B0 + Bi-LSTM) Adam 99.2 98.7 99.5 99.1 Best performance across MIAS dataset, combining 
feature extraction and temporal modeling.

CNN + EfficientNet-B0 (Without Bi-LSTM) Adam 97.5 96.8 98.0 97.4 EfficientNet-B0 provides intense feature extraction 
but lacks temporal analysis.

CNN + Bi-LSTM (Without EfficientNet-B0) Adam 95.8 94.5 96.2 95.3 Temporal modeling with Bi-LSTM alone still 
provides exemplary accuracy.

CNN Only (Without Bi-LSTM or EfficientNet-B0) Adam 91.6 89.4 92.1 90.7 Baseline model without advanced feature 
extraction or temporal data processing.

Full Model (CNN + EfficientNet-B0 + Bi-LSTM) RMSProp 98.9 98.0 99.1 98.6 RMSProp still performs well, but Adam is superior.

Full Model (CNN + EfficientNet-B0 + Bi-LSTM) SGD 97.2 96.0 97.5 96.7 SGD shows lower performance due to slower 
convergence compared to Adam and RMSProp.

Table 16.  Ablation study results for MIAS dataset.

 

CNN classifier Optimizer Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) AUC (%) F1-score (%) Cohen’s Kappa (κ)

VGG-16

Adam 80.00 70.00 90.00 75.00 0.82 72.00 0.60

RMSProp 78.00 68.00 88.00 73.00 0.80 70.00 0.57

SGD 76.00 66.00 86.00 71.00 0.78 67.00 0.55

VGG-19

Adam 83.00 72.00 90.00 78.00 0.83 75.00 0.63

RMSProp 81.00 70.00 89.00 76.00 0.81 72.00 0.62

SGD 79.00 69.00 88.00 75.00 0.80 72.00 0.60

DenseNet169

Adam 82.00 71.00 90.00 77.00 0.84 73.00 0.64

RMSProp 80.00 69.00 89.00 75.00 0.82 72.00 0.61

SGD 78.00 67.00 88.00 74.00 0.80 70.00 0.58

ResNet-50

Adam 84.00 74.00 92.00 79.00 0.86 76.00 0.67

RMSProp 82.50 72.00 90.00 77.50 0.84 74.75 0.64

SGD 80.00 70.00 88.00 75.00 0.82 72.50 0.62

DenseNet201

Adam 85.00 76.00 93.00 80.00 0.87 78.50 0.68

RMSProp 83.00 74.00 92.00 78.00 0.85 76.50 0.65

SGD 81.00 72.00 90.00 76.00 0.83 74.50 0.63

Proposed hybrid model

Adam 99.08 98.05 99.07 98.06 98 98.05 0.97

RMSProp 97.50 95.00 98.00 96.00 95 95.48 0.94

SGD 95.00 90.00 97.00 92.00 92 91.00 0.88

Table 15.  Performance analysis of existing and proposed models on the CBIS-DDSM dataset using different 
optimizers (after data-preprocessing).

 

Scientific Reports |        (2025) 15:12082 22| https://doi.org/10.1038/s41598-025-95311-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


hybrid model’s ability to handle complex classification tasks effectively, confirming its superiority in binary and 
multi-class scenarios.

The hybrid model exhibited efficacy when evaluated using the MIAS dataset. In binary classification without 
preprocessing (Table 9), the model achieved an accuracy of 89.20% and a sensitivity of 80.00%, exceeding that of 
conventional models. Following preprocessing, the model demonstrated notable improvement, attaining 99.00% 
accuracy, 97.00% sensitivity, and 99.50% specificity (Table 10), highlighting the critical role of preprocessing in 
enhancing the model’s performance. This performance enhancement underscores the hybrid model’s resilience 
to variations in data quality, a common challenge in medical image classification. The hybrid model for multi-
class classification on MIAS demonstrated accuracy rates of 99.40%, 98.50%, and 97.80% for benign, malignant, 
and normal categories, respectively (Table 12), exceeding those of traditional models. The model’s robustness 
and versatility in classifying multiple categories highlight its potential for practical medical applications.

The 10-fold cross-validation results shown in Fig.  11 confirm the stability and consistency of the hybrid 
model, achieving an overall accuracy of 99.40%. This result demonstrates the model’s ability to generalize 
effectively across different datasets and training divisions. The assessment of optimizer performance presented 
in Table 13 indicates that the Adam optimizer significantly enhances the model’s convergence rate and stability, 
achieving 99.08% accuracy, 98.05% sensitivity, and 99.07% specificity following data preprocessing (Table 14). 
The adaptive learning rate of the Adam optimizer is crucial for achieving optimal performance, particularly 
in medical image classification tasks, where accuracy is paramount. Table  17 displays the ablation study’s 
results, confirming the hybrid model’s effectiveness. The combination of CNN, EfficientNet-B0, and Bi-LSTM 
demonstrates enhanced performance across key metrics, achieving 99.2% accuracy, 98.7% precision, 99.5% 
recall, and 99.1% F1-score. This indicates that each component of the hybrid model contributes distinctly to its 
overall effectiveness, with CNNs identifying critical features and Bi-LSTMs addressing temporal dependencies, 
which are crucial for complex medical diagnoses.

The hybrid model performs superior to traditional models across multiple metrics, such as accuracy, 
sensitivity, specificity, and F1-score, on the CBIS-DDSM and MIAS datasets. Incorporating EfficientNet-B0 
for feature extraction and Bi-LSTM for sequence modeling, combined with data preprocessing and the Adam 
optimizer, significantly improves performance. The model’s robust and flexible features, combined with its ability 
to classify both binary and multi-class categories accurately, position it as a valuable tool for medical image 
classification, especially in the context of breast cancer detection. This demonstrates the hybrid model’s ability to 
improve early detection and diagnosis, providing a more efficient and reliable system for medical applications.

Comparative analysis with state-of-the-art methods
Table 18 compares several deep learning models applied in 13 published in 2024 for breast cancer diagnosis 
across 13 studies. Indicating the models’ success, every entry stresses critical performance indicators, including 
accuracy, sensitivity, specificity, precision, AUC, F1 score, and Cohen’s Kappa. The proposed hybrid model is 
expected to outperform the other techniques in detection and classification capacities, with an accuracy of 
99.00%, a sensitivity of 95.00%, and a specificity of 99.50%. In summary, the table emphasizes the importance of 
the advancements in deep learning techniques for improving breast cancer diagnosis and the varying predictive 
performance results produced by different approaches. The results of the MIAS and CBIS-DDSM datasets show 
that the Proposed Hybrid Model exhibits improved accuracy and dependability in breast cancer classification, 
representing a significant development over the present method. This work underlines how effectively advanced 
deep learning approaches could be applied in clinical settings to enhance patient outcomes.

Conclusion and future directions
The conclusion and future directions of the research are as follows.

Conclusion
This study presents a novel hybrid model that integrates Convolutional Neural Networks (CNNs), Bidirectional 
Long Short-Term Memory (Bi-LSTM), and EfficientNet-B0 to enhance the predictive accuracy of breast cancer. 
Utilizing EfficientNet-B0’s sophisticated feature extraction, pre-trained on the ImageNet dataset, in conjunction 
with Bi-LSTM’s capacity to analyze temporal data, our methodology has exhibited a substantial improvement 
in accuracy compared to conventional techniques. Our model demonstrates an exceptional accuracy of 99.2% 
in differentiating between benign and malignant tumors, surpassing other sophisticated architectures, including 

Model variation Optimizer
Accuracy 
(%)

Precision 
(%)

Recall 
(%)

F1-
Score 
(%) Comments

Full Model (CNN + EfficientNet-B0 + Bi-LSTM) Adam 99.3 99.0 99.7 99.3 Best performance on the CBIS-DDSM dataset, demonstrating 
superior accuracy and robustness.

CNN + EfficientNet-B0 (Without Bi-LSTM) Adam 97.8 97.0 98.2 97.6 EfficientNet-B0 performs well but lacks temporal processing.

CNN + Bi-LSTM (Without EfficientNet-B0) Adam 94.5 93.2 95.0 94.1 Temporal modeling with Bi-LSTM helps but lacks feature extraction 
of EfficientNet-B0.

CNN Only (Without Bi-LSTM or EfficientNet-B0) Adam 89.3 87.9 90.2 88.9 The baseline model shows the lowest performance across all metrics.

Full Model (CNN + EfficientNet-B0 + Bi-LSTM) RMSProp 98.7 97.9 99.0 98.5 RMSProp is effective but less optimal than Adam.

Full Model (CNN + EfficientNet-B0 + Bi-LSTM) SGD 96.9 95.5 97.0 96.3 SGD performs slightly lower, showing slower convergence.

Table 17.  Ablation study results for CBIS-DDSM dataset.
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VGG-16, VGG-19, DenseNet169, ResNet-50, and DenseNet201, when evaluated on well-known datasets such 
as CBIS-DDSM and MIAS. The Adam optimizer proved to be the most efficacious regarding accuracy and loss 
minimization, underscoring the significance of meticulous optimization in deep learning models. Integrating 
feature visualization techniques is one of the most exhilarating aspects of our work. This enhances the model’s 
interpretability and enables medical professionals to comprehend the rationale behind the model’s decisions, 
which is essential for implementing AI in healthcare. This hybrid model, characterized by accuracy, efficiency, 
and transparency, has the potential to revolutionize breast cancer detection and classification, establishing a new 
standard for the future of predictive healthcare.

Future directions
Although the results obtained are encouraging, there remains a significant opportunity to improve and refine 
this model further. Here are several promising avenues for future research:

•	 Diverse and extensive datasets Our model underwent evaluation using reputable datasets such as CBIS-DDSM 
and MIAS. More diverse datasets, mainly from regions and hospitals, could enhance the model’s robustness 
and ensure effective generalization across different populations. This would enhance the model’s reliability in 
practical applications.

•	 Real-time clinical use At present, the approach is tested in a research environment. However, to make it gen-
uinely significant, we need to make it capable of real-time implementation in clinical circumstances. This 
entails enhancing the model’s velocity and efficacy to ensure seamless integration with real-time data from 
medical imaging devices, delivering immediate results for physicians and patients.

•	 Enhancing explainability Although feature visualization has increased the model’s interpretability, further ad-
vancements are necessary to render AI decisions more comprehensible for clinicians. Creating sophisticated 
methods to elucidate intricate model decisions in more accessible language will be essential for fostering trust 
with healthcare practitioners.

•	 Multi-modal integration An intriguing prospect is to amalgamate this hybrid model with additional diagnostic 
data, including patient demographics, genetic information, or pathology reports. This multi-modal approach 
may yield more precise predictions and provide a comprehensive perspective on each patient’s condition.

•	 Ensemble approaches To augment prediction accuracy, we could investigate integrating our model with addi-
tional deep learning techniques through ensemble methods. In this manner, we could utilize the advantages 
of diverse models to attain superior performance, particularly in challenging diagnostic scenarios.

•	 Dataset expansions In the future, we hope to increase the model’s robustness by incorporating more extensive 
and more diverse datasets from various sources, including multicenter clinical data. This will allow us to 
include a broader range of breast cancer images, enhancing the model’s generalization ability across popu-
lation groups. Furthermore, we intend to include a variety of imaging modalities, such as MRI, ultrasound, 
and digital breast tomosynthesis (DBT), to broaden the model’s applicability and ensure its performance in 
real-world clinical scenarios.

•	 Exploration of alternative optimization techniques Although the Adam optimizer has demonstrated efficacy 
in our model, we acknowledge that alternative optimization methods may provide performance advantages. 
Future research will investigate alternatives such as RMSProp, Stochastic Gradient Descent (SGD) with mo-
mentum, and adaptive learning rate schedules that modify during the training process. Furthermore, we are 
eager to explore metaheuristic optimization techniques, including GAs and Bayesian Optimization, to refine 
model hyperparameters, which may enhance model accuracy and decrease computational time.

•	 Real-world implementations In the future, we plan to use our real-life model to help radiologists find breast 
cancer early, speeding up diagnoses and improving patient outcomes. To improve access and efficiency of 

References Model Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) AUC (%) F1 Score (%) Cohen’s Kappa (κ)

Ellis et al.1 Deep Learning Risk Prediction 88.5 90.0 87.0 89.0 0.91 89.5 0.80

Mahmood et al.2 Radiomics + Deep Learning 91.2 92.5 90.0 90.8 0.93 91.1 0.82

Laghmati et al.4 ML + PCA 85.0 84.0 86.0 85.5 0.87 84.8 0.72

Rahman et al.5 Deep Learning 87.0 85.0 88.5 86.0 0.90 85.5 0.75

Ahmad, Jawad, et al.7 Deep Learning 92.0 94.0 90.0 91.0 0.95 92.0 0.85

Gullo et al.9 AI-enhanced MRI 89.5 88.0 91.0 90.0 0.92 89.0 0.78

Liu et al.11 Multi-modal Fusion Network 90.5 91.0 89.0 90.0 0.94 90.5 0.80

Ray et al.12 Advanced ML Models 93.0 92.0 94.0 93.5 0.96 92.7 0.87

Xiao et al.17 CNN 88.0 86.5 89.5 87.0 0.89 86.8 0.74

Naz et al.18 Deep Learning + IoMT 85.5 84.0 87.0 86.0 0.88 85.0 0.70

Wang et al.14 Deep Sample Clustering 91.5 92.0 91.0 90.5 0.94 91.2 0.83

Yan et al.20 CNN with Attention Modules 92.5 93.0 92.0 91.5 0.95 92.3 0.86

Abimouloud et al.21 Vision Transformer + CNN 90.0 89.0 91.5 90.0 0.92 89.5 0.79

Ignatov et al.8 Morphology Aware DNN 91.0 92.0 90.0 91.0 0.93 91.0 0.84

Proposed hybrid model CNN-Bi-LSTM 99.00 95.00 99.50 98.00 0.99 96.33 0.95

Table 18.  Comparative analysis with existing state-of-the-art research and proposed model.
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diagnosis tools in remote healthcare environments, we are looking at including the model into automated 
screening systems and mobile healthcare applications. Improving the interpretability of the model will be an 
essential component of this upcoming work. We aim to improve the openness of the decision-making process 
by using methods including Grad-CAM and SHAP values, so enabling clinicians to understand the results of 
the model and so build trust in AI-driven healthcare solutions48–53.

While the proposed model demonstrates significant potential, there are several avenues for future research 
that could further improve its performance, broaden its capabilities, and ultimately facilitate its integration 
into clinical practice. We are excited about the promise of this technology and look forward to seeing how the 
proposed model can continue to revolutionize breast cancer diagnosis.

Data availability
The datasets used in the current research are available from the corresponding author upon individual request.
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