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Metabolic syndrome (MetS) and Type-2 diabetes mellitus (T2DM), often termed “glucolipotoxicity”

or insulin resistance syndrome, are complex metabolic disorders typically managed by lifestyle
interventions and oral hypoglycemic agents. While conventional drugs, including metformin,
sulfonylureas, and sodium-glucose cotransporter-2 (SGLT2) inhibitors, show efficacy, they also present
risks such as hypoglycemia and weight gain. Among these, metformin remains the preferred first-line
treatment due to its safety, low cost, and minimal side effects. However, the multifactorial nature

of MetS/T2DM, coupled with increased cardiovascular risk, demands novel therapeutic strategies
targeting broader disease-specific mediators. This study employs network pharmacology to identify
potential gene targets linked to MetS/T2DM. We constructed a protein-protein interaction (PPI)
network of 97 genes involved in the pathophysiology of these disorders, identifying 89 interlinked
genes. The top 10 crucial genes including insulin receptor substrate 1 (IRS1), and interleukin-6 (IL6)
are highlighted as key contributors to disease progression. Gene Ontology (GO) analysis revealed
their involvement in essential biological processes like peptide synthesis, lipid regulation, and
glucose homeostasis. Interestingly, nine of these genes are influenced by metformin, suggesting

its broader mechanism in modulating metabolic pathways. Additionally, scrutiny of transcription
factors for the considered dataset shows that forkhead box protein 01 (FOX01), sirtuin 1 (SIRT1), and
peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGCla) play crucial roles in
insulin signalling, mitochondrial function, and glucose metabolism, further elucidating the molecular
complexity of T2DM. Through a network biology framework, this study attempts to highlight the
potential for prospective multi-targeting therapeutic strategies that may exhibit improved efficacy and
safety, for the management of MetS/T2DM.

Keywords Metabolic syndrome, Type 2 diabetes mellitus, Network Pharmacology, Gene ontology, Multi-
Targeting

The term “metabolic diseases” refers to a class of illnesses marked by aberrant metabolism or the chemical
processes that take place inside cells to transform nutrients into energy and other necessary chemicals. Some
of the prevalent metabolic diseases include obesity, type 2 diabetes mellitus (T2DM), non-alcoholic fatty liver
disease (NAFLD), and metabolic syndrome (MetS). A combination of genetic, lifestyle, and endocrinological
factors play an influential role in these metabolic diseases'>. Indeed, sedentary habits and overnutrition promote
abnormal adiposity culminating in insulin resistance (IR) that is closely associated with MetS>*. Particularly,
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MetS, often known as syndrome X, is not a single entity, but a complex cluster of cardiovascular disease risk
factors. This non-communicable disease has emerged as the leading global health hazard>~”. Though MetS
diagnosing criteria have evolved, the International diabetes federation (IDF) and American Heart Association/
National Heart, lung, and Blood Institute (AHA/ NHLBI) established consensus criteria, which remain applicable
even today®’. Indeed, MetS patients are identified if they exhibit at least three of the following interconnected
cardiometabolic symptoms: raised blood pressure, increased body mass index (BMI) hypertriglyceridemia,
decreased high-density lipoprotein (HDL) cholesterol, and glucose intolerance®!%!2. The World Health
Organization (WHO) proposed the definition of MetS for the first time in 1999, highlighting hyperglycemia and
insulin resistance as the primary diagnostic criteria'’. The global prevalence of MetS ranges from 12.5% (95%Cl:
10.2-15.0) to 31.4% (29.8-33.0), and its incidence is quite like the incidence of its associated risk factors, T2DM,
and obesity. Particularly, T2DM is considered an integral component of MetS**!%. According to numerous
epidemiological studies, MetS is linked to a five-fold greater risk of T2DM, a two- to four-fold risk of stroke, and
a three- to four-fold risk of myocardial infarction®!11°. In addition, visceral obesity is identified as one of the
major and inherent risk factors for MetS'.

An abnormal interplay between environmental (lifestyle changes) and genetic factors alters cellular energy
homeostasis and culminates in inherent metabolic derangements. This concomitantly triggers intracellular
stress and systemic inflammation that contribute to alarming consequences including cardiovascular disease,
progression of NAFLD to hepatocellular carcinoma, (-cell dysfunction, IR, IR-mediated nephropathy,
neuropathy, retinopathy, certain cancers like breast, colorectal, and prostate®!5!8, Indeed, chronic low-
grade inflammation is often driven by obesity, which eventually leads to IR and metabolic dysfunction®.
This complex interaction between immunological processes and metabolic defects rightly deserves the term
“immunometabolism”?*2l. Generally speaking, the adipose tissue acts as a reservoir of energy by supplying
fatty acids during starvation. However, on the other hand, an excess supply of nutrients triggers inflammatory
pathways via significant infiltration of activated M1 macrophages in tissues especially including adipose, skeletal
muscle, liver, and pancreas, that in turn secrete a broad array of pro-inflammatory cytokines and chemokines
leading to inflammation and IR**?>-24, Qver-nutrition also promotes reactive oxygen species (ROS) generation,
hypoxia, endoplasmic reticulum (ER) stress, and unfolded protein response in adipose tissue that stimulates
inflammation?!-2>-2¢,

However, the precise factors that are responsible for over-nutrition or obesity-associated inflammation
are quite incomprehensible?. Interestingly, adipose tissue (AT) also secretes a specialized class of cytokines,
also known as adipocytokines or adipokines, including adiponectin, apelin omentin-1, interleukin-10 (IL-
10), Sfrp5, resistin, angiotensinogen, leptin, omentin, visfatin, tumor necrosis factor-a (TNF-a), interleukin-6
(IL-6), and chemerin. A healthy AT secretes anti-inflammatory adipokines including adiponectin, omentin,
secreted frizzled-related protein 5 (Sfrp5), IL-10, and members of C1q/TNF-related protein family (CTRP)
that are known to orchestrate lipid metabolism, insulin sensitivity, and vascular homeostasis., However, pro-
inflammatory adipokines such as leptin, resistin, TNF-a, and IL-6 are produced by hypertrophic adipocytes,
particularly, in obesity- induced endoplasmic reticulum (ER) stress or oxidative stress’>0-31.

The poorly vascularized, hypoxic, and hypertrophic adipocytes mediate cytokine-induced inflammatory
signalling exclusively through c-Jun, N-terminal kinases/mitogen activated-protein kinases (JNKs/MAPKs),
Janus kinase-signal transducer of activation (JAK-STAT), an inhibitor of nuclear factor-kB kinase/ nuclear
factor kappa light chain enhancer of activated-B cells (IKK/NF-kB), and protein kinases C (PKCs) pathways
in turn contributing to endothelial dysfunction, chronic local and systemic IR, T2DM, and atherogenic
dyslipidemia®®?!-34, JNK and IKK/NF-kB are known to be the two principal signalling pathways that are
linked to the development of IR, and they markedly affect crucial metabolic organs including the liver, skeletal
muscle, adipose tissue, and pancrea321’35‘37. Essentially, IR is a multifaceted pathological state characterized
by a reduced ability to suppress glucose production and promote peripheral glucose utilization. This kick-
starts the overwhelming production of insulin by the pancreatic p-cells as an act of compensation, eventually
causing f- cell dysfunction. This condition primarily culminates in T2DM in addition to dyslipidemia and
cerebrocardiovascular disease. The onset of T2DM is linked to a progressive decline in insulin’s action, impairing
tissue glucose disposal. The resulting hyperglycemia, along with pro-inflammatory cytokines, and free fatty acids
(FFAs), creates an inflammatory milieu, triggering a cascade of destructive events, including p-cell hypertrophy,
apoptosis, and fibrosis, ultimately leading to B-cell death!®37-3%,

T2DM, in a simplified gluco-centric context, is characterized by insulin resistance-induced hyperglycemia
that needs critical glycemic control as a therapeutic strategy. However, the aspect of glycemic control is just
a shallow view, as approximately 90% of T2DM patients are obese and exhibit a combination of micro- and
macro-vascular symptoms, known to account for 50% of deaths, particularly affecting the ocular, renal,
cardiovascular, and nervous systems. In addition, T2DM also increases the incidence and risk for a set of
non-glycemic conditions, including Alzheimer’s disease, dementia, polycystic ovarian syndrome (PCOS), and
various cancers. Hence, realizing this and putting it into a broader context of MetS/glucolipotoxicity seems
rational. Moreover, the standard-of-care (SOC) treatments, that have been primarily intended to manage
hyperglycemia, now attempt to mainly target cardiovascular and other non-glycemic diseases apart from
glycemic control. This clearly indicates the need for a different comprehensive therapeutic approach for targeting
MetS/T2DM*!. Lifestyle modifications, accompanied by regular physical exercise, are considered the first-line,
non-pharmacological approach for effectively managing MetS/T2DM and its co-morbidities. However, most
of the time, lifestyle changes are not enough to improve the multiple risk factors in individuals, necessitating a
multi-drug or polypharmacy strategy, involving the usage of a variety of drug classes, including lipid-lowering,
anti-hypertensive/ heart-failure, anti-diabetic, and anti-obesity medications**. Nevertheless,, a multi-drug
regimen is not always an ideal option due to potential side effects, drug-drug interactions, and poor patient
compliance**42, Since inflammation plays a pivotal role in the progression of MetS and its complications,

Scientific Reports |

(2025) 15:23108 | https://doi.org/10.1038/s41598-025-95439-3 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

targeting it would certainly be a judicious therapeutic approach. Furthermore, several anti-diabetic medications
have demonstrated anti-inflammatory properties and encouraging findings from preclinical studies suggest the
potential effectiveness of anti-inflammatory drugs in treating IR*’.

For more than 70 years, metformin (1,1-dimethylbiguanide) has been routinely prescribed oral hypoglycemic
medication. Despite the emergence of a variety of novel anti-diabetic drug classes, metformin is still the preferred
oral anti-hyperglycemic drug. Also, several clinical guidelines advocate it as the first-line treatment for T2DM,
particularly in those who have recently been diagnosed. Indeed, interest in metformin is continuously rising even
after being used for such a long time and ample research. Apart from gastrointestinal adverse effects, it is known
to increase the risk of lactic acidosis, due to which it is contraindicated in patients with acute kidney failure.
However, metformin-associated lactic acidosis (MALA) may go underreported and seems to be uncommon
with high mortality**~*”. Reports highlight that metformin combats the gluconeogenic pathway by either
directly or indirectly activating AMPK in the liver, leading to the suppression of hepatic glucose production.
Additionally, metformin exerts its hypoglycemic and metabolic effects via other important routes, which include
promoting translocation of skeletal muscle glucose transporter GLUT4, enhancing autophagy in p-cells under
hyperglycemia conditions, inhibiting mitochondrial complex I, and altering the gut microbiome. Moreover, it
has shown effectiveness against multiple cancers, cardiovascular diseases, liver disorders, neurodegenerative
conditions, and renal diseases. Owing to metformin’s multifaceted actions, research is still being pursued to
identify many novel aspects, particularly regarding metabolic regulation®®4849,

Conclusively, the potential therapeutic intervention for MetS/T2DM involves either the administration
of multiple drugs in combination or the development of new pharmaceuticals with a multitude of activities.
There is an escalating interest and dire need for the development of novel drug classes that could effectively
target multiple components in each disease pathway and offer a thorough and holistic therapy*. The present
study attempts to decode the intricate network of selected genes concerning the pathogenesis of MetS/T2DM
and understand whether metformin could influence some or many of these genes that are known to regulate
a broad range of metabolic pathways, through a rational and systematic network biology-based approach. We
hypothesize that this approach could reliably identify potential disease pathways and intrinsically associated
protein regulators, which could be collectively targeted by prospective candidate molecules as part of a multi-
targeting approach to reduce the incidence and effectively manage MetS/T2DM-related morbidities.

Methodology

Building the sequence dataset

To facilitate downstream analysis and increase prediction accuracy, extensive data mining and a thorough
assessment of the literature are conducted using some of the publicly available databases, including PubMed,
String®®, NCBI gene®!, the human protein atlas®?, and Reactome®?. For building a non-redundant and accurate
resource for subsequent analyses, duplicate entries and isoform proteins are carefully screened to derive the final
sequence dataset.

Network Pharmacology studies

For the selected genes, the protein-protein interaction network is constructed primarily to identify potential
disease markers related to MetS/T2DM. Utilizing the search tool for the retrieval of interacting genes/protein
(STRING), the physical and functional interactions of the protein-protein interactions (PPI) are constructed
with a high confidence threshold of 0.9°2. Excluding the non-interacting proteins (nodes), the remaining PPI
data is input into Cytoscape (version 3.10.1) for network topology analysis. Subsequently, the 10 top-ranked
target genes are prioritized using the Cytohubba extension in Cytoscape®. To further elucidate the biological
significance, the gene enrichment analysis of the constructed PPI network is performed using ShinyGO 0.80
(http://bioinformatics.sdstate.edu/go/). The genomic information of the network is subsequently analyzed for
biological processes, molecular functions, and cellular components using gene set enrichment analysis with
a significance threshold of p-value <0.05. This p-value is set to minimize the likelihood of gene enrichment
occurring by chance, based on false discovery rate (FDR)>. Additionally, KEGG pathways are utilized to
explore the underlying metabolic pathways associated with the target genes relevant to MetS /T2DM. For the
identification of genes influenced by metformin, the Genecards (https://www.genecards.org) server is used to
extract reliable genes. Subsequently, common genes, linked to both MetS/T2DM and metformin, are identified
using Venny 2.0.

Gene enrichment analysis of selected genes related to MetS and T2DM

The gene enrichment analysis is performed using DAVID (https://david.ncifcrf.gov/tools.jsp) by preparing a
list of genes formatted with recognized gene identifiers such as gene symbols or ENSEMBL IDs. The list is fed
to the DAVID server, and various annotation categories, including the GO terms such as biological processes,
molecular function, and cellular components, and KEGG pathways are analyzed. Parameters such as P-value and
FDR cutoff and pathway size limits are set to define the enrichment analysis criteria, and the results are filtered
based on statistical significance and fold enrichment, focusing on the key pathways or terms. The visualization
tool Cytoscape 3.10.2 version is utilized to construct the optimal PPI network between the analysed proteins.

Gene expression analysis

To understand the over- or under-expression of gene sets, their heatmap is computed using the g: Profiler tool
(https://biit.cs.ut.ee/gprofiler/gost), a web-based platform for gene list analysis®®. The Benjamini-Hochberg
procedure is applied to adjust p-values, with a significance threshold of 0.05, to filter out statistically insignificant
data. Differentially expressed genes (DEGs) are then analyzed within specific pathways to determine their roles in
key biological processes and regulatory mechanisms. This approach provides insights into pathway interactions
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and the functional consequences of gene expression changes. The major hub genes, functionally associated with
MetS/T2DM and metformin, are screened for their interaction with kinases and transcription factors (TFs)
using the X2K web server™, as their binding would implicate their substantial role in regulating MetS/T2DM
and metformin’s pharmacological or therapeutic activity. Based on Fischer’s t-test, the twenty most significant
kinases based on the enrichment scores and TFs are analyzed, and their functional roles are interpreted.

Results and discussion

Building the sequence dataset

Critically mining the sequence databases, a dataset of 97 proteins is found to play a subtle role in the onset or
culmination of MetS/T2DM. By excluding the two redundant hits, a derived dataset of 97 potential entries is
constructed, as detailed in Supplementary Table S1.

Network Pharmacology studies

The common genes of MetS/T2DM and Metformin

The common genes of MetS/T2DM and metformin are depicted in Fig. 1. Out of the 42 and 1414 genes, orderly
associated with T2DM and Metformin, respectively, the Venn diagram reveals an overlap of 54 genes, indicating
that these genes are commonly linked to both the pathogenesis of MetS/T2DM and the therapeutic mechanism
of Metformin.

Protein-Protein interaction (PPI) analysis

The PPI interactions among the selected 97 genes and their association with metformin is constructed using
STRING, as illustrated in Fig. 2. The STRING-based PPI interactions at high confidence (0.9) reveal the
PPI network consisting of 89 nodes (proteins) and 123 edges (interactions), with an average local clustering
coefficient of 0.502. The expected number of edges is 24; however, we observed a significantly higher number
of 123 interactions, suggesting that the STRING network contains more interactions than anticipated. The PPI
enrichment p-value is observed to be less than 0.05, indicating that the proteins are at least partially biologically
connected, as a group. Further, the top-10 genes associated with MetS/T2DM are found to be insulin receptor
substrate 1 (IRS1), interleukin 6 (IL-6), forkhead box O1 (FOXO1), peroxisome proliferator-activated receptor
y coactivator-1 a (PPARGC1A/ PGC-1a), mammalian target of rapamycin (mTOR), Leptin (LEP), peroxisome

T2DM Metformin

1414

(93.6%)

Fig. 1. The Venn diagram showing the common genes associated with MetS/T2DM and metformin, also
including the genes responsible for MetS.
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Fig. 2. The PPI networks of the selected genes. Figures (A) and (B) orderly represent the PPI networks of
the selected genes and the top 10 genes that are associated with MetS/T2DM. Figures C and D represent the
PPI networks of the selected genes and the top 10 genes that are associated with MetS/T2DM and metformin,
respectively.

proliferator-activated receptor-y(PPARG), adiponectin, C1Q and collagen domain containing (ADIPOQ),
protein kinase AMP-activated catalytic subunit alphal (PRKAA1), and silent mating type information regulation
2homolog 1 (SIRT1). Moreover, metformin is predicted to associate with or possibly influence various key genes,
including, PPARGCIA/PGC-1a, mTOR, PPARG, ADIPOQ, LEP, IL-6, IRS1, FOXO1, and PIK3CA, which affect
the major biological pathways like insulin sensitivity, energy balance, inflammation, glucose metabolism, and
mitochondrial biogenesis, related to MetS/T2DM, indicating their strong connection.

Kyoto encyclopedia of genes and genomes (KEGG) pathway

The KEGG pathway analysis is illustrated in Fig. 3. As per the information retrieved from the KEGG database®®>?,
the pathway for the selected genes shows that several pathways, including the insulin signaling pathway,
adipocytokine pathway, glucose transporters, and apoptosis, are associated with the pathogenesis of MetS/
T2DM. Moreover, it also involves the phosphoinositide 3-kinases, which are involved in a variety of cellular
functions including cell growth, differentiation, motility, and especially insulin-mediated glucose uptake.

Gene enrichment analysis of selected genes related to MetS and T2DM

Gene Ontology is a framework for the standardized representation of gene and gene product attributes across
species and databases. It consists of three main categories: biological process refers to the biological objectives to
which the gene or gene product contributes. This includes pathways or larger processes made up of the ordered
assemblies of molecular functions; molecular function describes the elemental activities of a gene product at the
molecular level, such as binding or catalysis, and cellular component indicates where in the cell the gene product
is active, such as organelles or membrane regions.
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Fig. 3. KEGG pathway illustrating the genes associated with MetS/T2DM, and their biological association
with metformin treatment. It represents the key regulatory mechanisms, connected to MetS/T2DM, providing
insights into the molecular processes underlying these conditions.

The study utilizes the gene ontology server for the required genes, and their associated biological processes
are analyzed. The analysis revealed the biological processes along with the functionally involved genes and
provided an estimated p-value, the lower being the better. Quite interestingly, it is observed that a set of 10
genes: IL-6, IRS1, LEP, ADIPOQ, UCP1, SIRT1, PPARG, PPARGC1A, FOXO1, and FGF21 majorly govern 13
different biological pathways including homeostatic process, cellular response to chemical stimulus, positive
regulation of the metabolic process, response to chemical, regulation of primary metabolic process, regulation
of macromolecule biosynthetic process, regulation of cellular biosynthetic process, regulation of macromolecule
metabolic process, regulation of cellular metabolic process, and cellular response to stimulus (Supplementary
Table S2). Hence, the extracted data clearly illustrates the influence of all the genes on a variety of biological
processes, crucial for the homeostatic state of the human body. The extremely low p-value indicates a strong
association of gene set with glucose homeostasis, a critical process in maintaining stable blood glucose levels.
Genes like IRS1 and PPARG have already been shown to be involved in insulin signalling and glucose and lipid
metabolism.

Further, visualizing the KEGG information of 97-gene and 9-gene datasets using Cytoscape allowed us
to extract the cellular component, molecular function, and biological process information, as represented in
Figs. 4 and 5, respectively. However, it hereby reveals that even the nine most crucial genes of MetS/T2DM
and metformin do not encompass all entities within each specific group, indicating that metformin may not
modulate or influence most of the target proteins, underlying the pathogenesis of MetS/T2DM.
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Fig. 4. Biological processes, cellular components, and molecular functions extracted for the 97-gene dataset.
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Fig. 5. Biological processes, cellular components, and molecular functions extracted for the 9-gene dataset.

The top 10 GO biological, cellular, and molecular processes for the selected genes with respect to the disease
and the drug (metformin) are depicted in Fig. 6. The selected genes are associated with various biological
processes such as hormone and lipid regulation, peptide hormone stimulation, regulation of glucose, and lipid
metabolism (Figs. 6A & B). Cellular components are primarily associated with the phosphatidylinositol-3-kinase
complexes (Figs. 6C & D). Further, molecular functions are particularly related to the signalling events, kinase
activity, and nucleotide binding (Figs. 6E & F). It is apparent from the figure that both disease and metformin
share significant commonalities in terms of biological processes, cellular components, and molecular functions,

respectively.

Gene expression analysis

For the 97- and 9-gene datasets, the g: Profiler resultant heatmap cluster analysis reveals the involvement of these
genes in MetS/T2DM. In the heatmap, rows depict genes, proteins, or biological activities, along with additional
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Fig. 6. Gene enrichment analysis of the selected genes. Figures (A), (C) and E represent the biological process,
molecular functions, and cellular components associated with MetS/T2DM, respectively. In contrast, Figures
(B), (D), and F depict the corresponding biological processes, molecular functions, and cellular components
related to the effects of metformin. The abbreviation “DM” indicates type 2 diabetes mellitus.

details such as identifiers and pathways, while columns represent different experimental conditions, datasets,
and biological annotations, including gene ontology terms, pathways, and diseases.

For the 97-gene dataset, the heatmap (Fig. 7) clusters 22 specific molecular functions: NAD-dependent protein
deacetylase activity, acetyl nucleotide binding, identical protein binding, protein kinase activity, receptor ligand
activity, 1-phosphatidylinositol-4-5-bisphosphate 3-kinase activity, 1-phosphatidylinositol-4-bisphosphate
3-kinase activity, DNA-binding transcription-factor, fatty-acid transmembrane transporter activity, very
long-chain fatty acid CoA-ligase activity, 1-phosphatidylinositol-3-kinase activity, D-glucose transmembrane
transporter activity, NAD-dependent protein demyristoylase activity, monocarboxylic acid binding, long-chain
fatty-acid CoA-ligase activity, long-chain fatty-acid binding, long-chain fatty-acid transporter activity, acetyl-
CoA carboxylase activity, pentosyltransferase activity, insulin-receptor activity, adipokinetic hormone receptor
activity, angiotensin type-II receptor activity in light blue, ranging from the statistical p-value 1.24x107% to
4.993 % 102, clinically proven to have a strong linkage to MetS/T2DM. The involvement of fatty acid metabolism
and DNA-binding transcription factor-based gene-regulatory and signalling activities, highlights the widespread
metabolic disruption caused by T2DM, as evidenced by the association with metabolic disorders related to
insulin and angiotensin-II, demonstrating the clinical relevance.
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Fig. 7. Heatmap of the gene expression and functional annotation for the 97-gene dataset. The color palette
uses a gradient to indicate levels of expression or enrichment, with red showing overexpression, and blue
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representing downregulation.

However, the heatmap of the nine hub genes, associated with MetS/T2DM and metformin, depicts the
expression or activity levels of these genes across various cellular compartments and human tissues (Fig. 8). Here,
while the X-axis shows different compartments, such as the cytosol, endosome, mitochondrion, and nucleus, and
various tissues, comprising blood, liver, brain, muscle, and skin, the Y-axis features the nine genes: IL-6, IRS1,
LEP, mTOR (Mechanistic Target of Rapamycin), FOXO1, PPARG, PPARGCI1A, SIRT1 and ADIPOQ. The color
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Fig. 8. Heatmap of the gene expression and functional annotation for the 9-gene dataset. The color palette uses
a gradient to indicate levels of expression or enrichment, with yellow showing overexpression, and dark purple
representing downregulation.

gradient, ranging from yellow to dark purple, indicates varying levels of gene expression or activity, with yellow
representing higher levels and dark purple indicating lower levels. IL6 shows higher activity in the extracellular
space and certain tissues like blood, indicating its involvement in immune responses and inflammation. LEP
is found to be more active in the liver and the extracellular compartment, reflecting its role in metabolism
and energy regulation. In contrast, genes like SIRT1 and ADIPOQ exhibit moderate to low expression across
many compartments and tissues, with some areas showing distinct levels, suggesting a more specific or context-
dependent role in cellular processes. These initial findings have sparked our interest in identifying these key
genes and their associated proteins as significant prognostic markers to diagnose and target MetS/T2DM.

Robustly analyzing the key 97 genes, potentially associated with MetS and T2DM, this study presents a
comprehensive pathway enrichment analysis. It is observed that molecular functions and the associated biological
pathways of these genes majorly underscore the complex interactions that provide valuable insights into the
genetic underpinnings, contributing to the onset/progression of MetS and T2DM. The study thus offers crucial
pathways and potential targets for a credible therapeutic intervention, necessitating experimental validation, and
highlights the importance of complex genetic contributions behind the disease pathogenesis.

Analysis of all the nine hub genes, associated with the functional roles of MetS/T2DM and metformin, based
on p-value confirms their cruciality in the preliminary diagnostics and prediction of MetS/T2DM, necessitating
experimental validation. As shown in Fig. 9, the survival plot of hub genes, estimated by the KMPlot server,
underscores the results of transcription factor enrichment analysis. Specifically, Fig. 9A reveals that a set of 20
top-ranked transcription factors are intricately associated with MetS/T2DM, as well as the therapeutic effects
of metformin. The PPI interaction network of all these key proteins is shown in Fig. 9B. Here, peroxisome
proliferator-activated receptor- y (PPARG) and peroxisome proliferator-activated receptor-A (PPARD) are
majorly involved in lipid metabolism and insulin sensitivity, with PPARG being the key target for anti-diabetic
drugs like thiazolidinediones®. As the hallmark of MetS/T2DM, androgen receptor (AR) is functionally
associated with insulin resistance, as its disruption leads to dysregulation of glucose uptake and storage in liver
and muscle tissues, resulting in elevated glucose levels®!. Moreover, four transcription factors viz. GATA binding
protein 1 (GATA1), nuclear transcription factor y subunit-a (NFYA), specificity protein 1 (SP1), and SRY-box
transcription factor2 (SOX2) regulate genes associated with pancreatic B-cell function, and glucose homeostasis,
which get impaired in T2DM®. Insulin signalling and glucose metabolism are also influenced by Pre-B-cell
leukemia homeobox 3 (PBX3), and mothers against decapentaplegic homolog 4 (SMAD4)%. As key factors in
MetS/T2DM pathogenesis, interferon regulatory factor-3 (IRF3) and ‘fos’ proto-oncogene (FOS) are associated
with the inflammatory response®. To worsen the condition, BCL2-associated transcription factor-1 (BCLAF1),
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Fig. 9. (A) The predicted transcription factors for the common nine hub genes between MetS/T2DM and
metformin. The horizontal sliding bar highlights the hypergeometric p-value and the scores for the top 20
transcription factors. (B) The network of transcription factors (pink) and their major interaction partners
(grey), are represented as a ball-and-stick diagram, with node size proportional to their degree.

and upstream stimulatory factor-2 (USF2) further dysregulate the apoptotic pathways and cellular stress
responses®. Epidermal growth factor receptor-1 (EGFR1) has been linked to insulin resistance, and its inhibition
may enhance insulin sensitivity, the mechanism potentially targeted by metformin®. Another protein (zinc
finger miz-type containing-1) is also shown to modulate the AR activity, indirectly affecting glucose metabolism
and insulin sensitivity®’. Altogether, these genes highlight the complex molecular interactions underlying T2DM
and suggest the major pathways through which metformin exerts its therapeutic effects. PPI analysis reveals that
PPARG, SMAD4, FOS, PPARD, UBTE CTCF, EGR1, BHLHE40, and PBX3 play central roles in regulating the
intricate interplay of regulatory molecules involved in metabolic syndrome (MetS/T2DM).

Discussion and Conclusion

MetS/T2DM is a complex metabolic abnormality for which lifestyle modifications with concurrent
administration of oral hypoglycaemic agents constitute the conventional treatment strategy to date. The drug
classes act by a variety of mechanisms such as inhibition of hepatic gluconeogenesis (metformin), improving
insulin secretion (sulfonylureas) and insulin sensitivity (glitazones), discouraging glucose absorption (alpha-
glucosidase inhibitors), and promoting glucose excretion (SGLT2 inhibitors). Despite their potency and efficacy,
most of them are associated with adverse complications, including hypoglycemia, pancreatitis, weight gain, and
skin disorders. However, among these, metformin is used as a front-line drug either in mono or combinatorial
therapy for treating T2DM. Moreover, because of its low cost, better efficacy, low risk of hypoglycemia and
above all long-term safety with minimal side effects, it has become a preferable drug for T2DM patients!847:68-70,
However, its risk-to-benefit ratio should be thoroughly ascertained in comparison with the recently emerged
glucose-lowering agents that are known to exhibit protective effects on diabetes complications’!. Furthermore,
MetS/T2DM is characterized by a complex cluster of symptoms with an increased risk for cardiovascular
disorders. Hence, finding agents that could either modulate certain primary mediators/pathways, in turn
influencing the downstream secondary mediators/pathways or concurrently target a broad range of disease-
specific mediators/pathways with better efficacy and safety, would be a feasible futuristic therapeutic approach.

Network pharmacology approach is commonly employed to explore different candidate proteins or genes
that could serve as targets or mediators for the therapeutic actions of drugs or novel chemical entities against
specific diseases’. In the present study, we have developed a PPI network of the selected genes that are known
to be critically involved in the pathophysiology of MetS/T2DM. Among 97 putative genes identified through
extensive data mining, 89 genes are found to be interlinked within the PPI network, forming 123 connections.
Further, this study has predicted 10 genes including — IRS1, IL6, FOXO1, PPARGCIA, MTOR, LEP, PPARG,
ADIPOQ, PRKAALI, and SIRT1— as the most crucial and key contributors to disease pathogenesis. Interestingly,
Notably, these predictions are strongly supported by the existing literature evidence. Further, GO analysis of
our study indicates that several biological, molecular, and cellular events are closely associated with the selected
genes of MetS and T2DM.

Apart from this, interestingly, out of the above ten crucial MetS/T2DM-related genes, nine are predicted to
be associated with metformin as well, except PIK3CA (as evident from the PPI network in Fig. 2). This overlap
suggests that these genes may either have a significant direct or indirect role, especially from the standpoint of
metformin’s therapeutic mechanism, which is also clearly evident from the literature. IL-6, LEP, and ADIPOQ
are well-known adipocytokines or adipokines, with ADIPOQ being a prevalent anti-inflammatory adipokine
secreted by adipocytes. It exhibits a negative correlation with insulin resistance and obesity and is also known
to exhibit cardioprotective effects. In contrast, IL-6 and leptin (LEP), while regulating immune function and
food intake under physiological conditions, are pre-dominantly pro-inflammatory, contributing to adipocyte
hypertrophy, obesity, insulin resistance, and atherogenesis®"’>. Sirtuins constitute a family of NAD + deacetylases
with differential subcellular localization, and regulate a variety of crucial metabolic functions such as
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mitochondrial homeostasis, oxidative stress, autophagy, inflammation, and apoptosis. Among various Sirtuins,
playing a substantial role in aging, obesity, T2DM, cancers, and cardiovascular diseases, SIRT1 and SIRT6 have
gained considerable attention for their protective effects on insulin resistance and oxidative stress. Especially,
through deacetylation, SIRT 1 regulates various non-histone proteins comprising PPARy, PGCla, liver X
receptor (LXR), sterol regulatory element binding protein (SREBP), farnesoid X receptor (FXR), also known to
protect pancreatic beta cells, promote myogenesis, adipogenesis, glucose and lipid utilization”7>.

Activation of adapter proteins, primarily, insulin receptor substrate (IRS) proteins, PI3-kinase (PI3-K), and
Akt, Src-homology2 (SH2), and protein-tyrosine phosphataselB (PTB1B) is the prerequisite for downstream
insulin signalling and eventually glucose homeostasis. However, serine/threonine phosphorylation of IRS
proteins by IRS kinases is found to be implicated in insulin resistance which further propels T2DM and various
other comorbidities. Reports emphasize IRS 1 as a major target for IRS kinases’®””. The forkhead box O1
(FOXOL1) is one of the important transcription factors that, upon phosphorylation by Akt, turns off transcription
factor activity and and activates gluconeogenesis eventually leading to insulin resistance’”’%. Similarly, mTORC1
is also one of the substrates of Akt and regulates cell cycle, mitochondrial biogenesis, adipogenesis, glycolysis,
and autophagy. It is related to the mammalian target of rapamycin (mTOR), which is a serine/ threonine kinase.
Through negative regulations of autophagy, mTORCI favors protein misfolding, organelle impairment, and
aging-associated disorders, including T2DM. In T2DM, hyperactivation of mTORCI is known to contribute to
pancreatic beta cell death®79% AMP-activated protein kinase (AMPK), or PRKA, is a classical cellular energy
sensor that is activated when the intracellular ATP levels are modest to low. It constitutes a catalytic a and two
regulatory B and y subunits. These subunits exist in different tissue specific isoforms, including PRKAA1 and
PRKAA2 (ot1 and a, subunits); PRKAB1 and PRKAB2 ([31 and ﬁzsubunits); PRKAGI1, PRKAG2, and PRKAG3
(v1, y2 and y3 subunits). It chiefly regulates glucose, lipid, protein metabolism, mitochondrial homeostasis, and
autophagy. AMPK facilitates muscle glucose uptake via positive modulation of glucose transporter 4 (GLUT4).
Hence, the AMPK/ GLUT4 axis could be feasibly targeted for the therapeutic intervention of T2DM3!82,
Peroxisome proliferator-activated receptors (PPARs) are affiliated with the nuclear receptor superfamily of
transcription factors and exist as three subtypes (PPARa, PPARP/A, and PPARY) in humans. These are known
to regulate the gene expression of a variety of mediators involved in metabolic homeostasis. Among the three
types, PPARYy is the most frequently researched one which is expressed in both brown and white adipose tissues,
in turn contributing to glucose and lipid metabolism, particularly regulating adipogenesis. PPARYy is one of the
(crucial mediators of adipocyte differentiation and its activation by synthetic agonists, especially, thiazolidine-
2,4-diones (TZDs) such as troglitazone and pioglitazone improves whole-body insulin sensitivity, glucose, and
lipid metabolism>®#384, In addition, peroxisome proliferator-activated receptor y coactivator la (PGCla) is one
of the members of peroxisome proliferator-activated receptor y coactivator- 1 (PGC-1) involved in assisting
the transcriptional regulation of genes related to metabolic homeostasis. It is considered a primary regulator of
mitochondrial physiology and reported to be influenced by many different metabolic mediators such as mTORC,
AMPK, SIRT1, cyclic AMP response element binding protein (CREB), Akt, and glycogen synthase kinase-3(
(GSK-3B). On the other hand, there is a high probability of its association with disorders including obesity,
T2DM, cardiomyopathy, and different cancers. Because of its regulatory role in mitochondrial biogenesis and
function, it promotes fatty acid oxidation, thereby minimizing its intracellular accumulation. It also regulates
glucose metabolism under the influence of hormones and nutrients. Hence, a defective status of PCGla could
act in favour of conditions like obesity and insulin resistance, thus, serving as a desirable pharmacological
target®>87,

Based on the above findings, we believe that our study has fairly succeeded in identifying some valid hub
genes that are predicted to contribute either to the progression or amelioration of the symptoms of MetS/T2DM
In addition, intricate connections of the 10 hub genes with several other genes, indicate a feasible role of these
broad networks at some point in the disease pathogenesis. Finally, we presume that a thorough insight into these
networks supported by a systematic validation in suitable experimental models could certainly help decipher
more reliable avenues for the diagnosis, and in particular, management of MetS/T2DM, thereby providing a new
paradigm for rational and effective multi-targeting therapy.
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