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Breast cancer remains a formidable global health challenge, emphasizing the critical importance 
of accurate and early diagnosis for improved patient outcomes. In recent years, machine learning, 
particularly deep learning, has shown substantial promise in assisting medical practitioners with 
breast cancer classification tasks. However, achieving consistently high accuracy and robustness in the 
classification process remains a significant challenge due to the inherent complexity and heterogeneity 
of breast cancer data. This study introduces an innovative approach to optimize breast cancer 
classification using the CS-EENN Model by harnessing the combined power of Cat Swarm Optimization 
(CSO) and an Enhanced Ensemble Neural Network approach. The ensemble approach capitalizes on 
the strengths of EfficientNetB0, ResNet50, and DenseNet121 architectures, known for their superior 
performance in computer vision tasks, to achieve a multifaceted understanding of breast cancer data. 
CSO employed to optimize the architecture and hyperparameters of these neural networks, enhancing 
their performance by facilitating convergence and preventing overfitting. Experimental evaluations 
conducted on the publicly available ‘Breast Histopathology Images’ dataset from Kaggle demonstrate 
the effectiveness of the proposed approach. The CS-EENN model achieved an impressive accuracy of 
98.19%, significantly outperforming conventional methods. These advancements expected to have 
a direct and favourable impact on the accuracy of breast cancer detection and subsequent treatment 
decisions.
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Breast cancer is a global epidemic that poses a substantial danger to the lives of women everywhere. With an 
expected 2.3 million additional cases identified in 2020 alone, it is a worldwide public health problem1,2. The 
impact of breast cancer extends beyond statistics; it touches the lives of countless individuals, families, and 
communities, highlighting the critical need for early detection, accurate diagnosis, and effective treatment. The 
journey to combat breast cancer begins with a fundamental understanding of its complexities. Breast cancer is 
a heterogeneous disease, meaning it can manifest in various forms, exhibiting distinct genetic, molecular, and 
pathological characteristics. These variations in breast cancer’s subtypes necessitate precise classification and 
stratification to tailor treatment plans to individual patients, ensuring the best possible outcomes.

Traditionally, the classification of breast cancer has relied heavily on the expertise of pathologists, who 
examine tissue samples under a microscope to determine the cancer’s subtype and grade3,4. While this approach 
has served as the gold standard for decades, it comes with inherent limitations, including subjectivity, inter-
observer variability, and the time-consuming nature of manual analysis. In response to these challenges, 
there has been a drive to explore ground-breaking solutions, with a particular focus on the realms of artificial 
intelligence (AI) and machine learning. The incorporation of AI and machine learning methodologies into the 
classification of breast cancer marks a transformative shift in this domain. These technologies have the potential 
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to revolutionize the way we diagnose and treat breast cancer, offering new avenues for early detection, precision 
medicine, and improved patient outcomes5–7. The power of AI lies in its ability to analyse vast amounts of data, 
uncover intricate patterns, and make predictions based on objective criteria, transcending the limitations of 
manual analysis.

The journey of breast cancer classification through AI begins with the acquisition of medical imaging data, 
primarily in the form of mammograms, ultrasounds, and histopathological slides. These images serve as the 
foundation for AI-driven analysis, providing crucial information about the size, location, and characteristics 
of breast tumours8,9. Artificial intelligence models, especially deep learning architectures such as AlexNet, 
have exhibited remarkable proficiency in analysing these images10. They frequently surpass human experts in 
tasks like lesion identification and feature extraction. Beyond medical imaging, AI also delves into the realm of 
genomics, analysing the genetic makeup of breast cancer cells. Figure 1 shows the breast cancer. This enables 
the identification of specific mutations and biomarkers associated with different breast cancer subtypes, guiding 
treatment decisions and predicting patient outcomes. Additionally, AI-driven analysis of clinical data, such 
as patient histories and treatment responses, contributes to a holistic understanding of breast cancer, further 
enhancing the accuracy of classification.

One of the key advantages of AI-driven breast cancer classification is its potential for automation and 
standardization. Unlike human pathologists who may exhibit variability in their interpretations, AI models 
provide consistent and reproducible results. This consistency is vital in reducing diagnostic errors, ensuring 
timely interventions, and ultimately saving lives. Moreover, the automation of routine tasks frees up healthcare 

Fig. 1.  Breast Cancer.
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professionals to focus on more complex and patient-centric aspects of care. In recent years, the field of AI-based 
breast cancer classification has witnessed remarkable advancements, driven by the availability of large-scale 
datasets, increased computational power, and breakthroughs in deep learning11,12. These advancements have 
paved the way for the development of sophisticated AI models capable of not only classifying breast cancer 
subtypes but also predicting disease progression, treatment responses, and survival outcomes. AI’s potential 
in breast cancer extends beyond diagnosis to personalized treatment recommendations, risk assessment, and 
early intervention strategies. Computer-aided detection (CAD) technologies have become the subject of much 
study for their potential in spotting and categorising lung cancer. These CAD algorithms outperform human 
radiologists at spotting lung nodules as well as cancer in medical imagery. Image pre-processing, region of 
interest (ROI) mining, feature selection, as well as categorisation are the typical four processes of CAD-based 
lung cancer identification systems. Feature selection as well as categorisation, which rely on image processing to 
collect trustworthy characteristics, play crucial roles in improving the accuracy and sensitivity of CAD systems. 
Still, it’s not easy to tell which nodules are benign and which are cancerous13,14.

To help radiologists make more accurate diagnoses, researchers have resorted to deep learning approaches 
to solve this issue. The speed and precision of medical diagnosis, especially for prevalent diseases like lung and 
breast, have been shown to be greatly improved by the use of deep learning-based CAD systems, according 
to previous research. When opposed to typical CAD systems, deep learning-based systems’ unique network 
architectures allow them to effortlessly extract high-level characteristics from source images15,16. The sensitivity, 
false-positive rate, and processing time of CAD systems trained using deep learning are only a few of its 
weaknesses. As a result, there is a pressing need to create a quick, low-cost, and highly sensitive CAD system 
based on deep learning for detecting lung cancer. Nevertheless, there are obstacles on the road to using AI’s full 
potential in breast cancer categorisation. Ensuring the ethical and responsible use of AI, addressing data privacy 
concerns, and validating AI models in diverse patient populations are essential considerations17,18. In addition, 
AI should be seen as a supplement to, instead of a substitute for, human healthcare workers. Better, more patient-
centred treatment is possible when AI is combined with human knowledge. This comprehensive introduction 
to breast cancer classification through AI sets the stage for a deep exploration of the subject. It underscores 
the urgency of finding innovative solutions to combat breast cancer’s multifaceted challenges and highlights 
the transformative impact that AI can have in achieving this goal. As we delve further into the realm of AI-
driven breast cancer classification, we will uncover the intricacies of the technology, its applications in medical 
imaging and genomics, its role in precision medicine, and the ethical considerations that guide its integration 
into healthcare. The end aim is quite clear: using AI to better diagnose breast cancer earlier, optimise treatment 
techniques, and lessen the impact the disease has on individuals and communities.

Contributions of the work

•	 Integration of Diverse designs: By combining the designs of EfficientNetB0, ResNet50, and DenseNet121, 
breast cancer data may be understood comprehensively improving classification accuracy by collecting a va-
riety of variables.

•	 By combining predictions from several models, the ensemble method lowers the possibility of false positives 
and negatives, increasing the precision of diagnosis.

•	 CSO improves model performance by promoting convergence and avoiding overfitting, resulting in more 
dependable classifications. It does this by optimizing the architecture and hyperparameters.

•	 The suggested CS-EENN model provides a flexible solution that can be adjusted to varied datasets and situa-
tions, making it suitable for a range of tasks including the categorization of breast cancer.

•	 By combining CSO with a group of neural networks, a new method is presented that expands the field and 
pushes the limits of breast cancer classification methods.

•	 The suggested model improves diagnostic capabilities, assisting in more precise and prompt breast cancer 
diagnoses by utilizing the combined strengths of several designs and optimization strategies.

The remainder of this article is organised as follows: The current strategies for categorising breast cancer are 
discussed in Sect.  2. Section  3 discussed about the limitations of current methods. Section  4 introduces the 
novel techniques proposed in this study, with a particular focus on the CS-EENN Model. Section 5 details the 
experimental procedures used to validate the research findings and presents the obtained results. Lastly, Sect. 6 
presents the conclusions drawn from the experiments.

Related studies
Breast carcinoma stands out as the most prevalent global cancer, resulting in nearly nine hundred thousand 
annual fatalities. The potential to mitigate mortality lies in early detection and precise diagnosis, which can 
curtail its dissemination and protect against untimely losses. Researchers grappling with breast cancer (BC) 
confront multiple hurdles in distinguishing between benign and malignant tumours, as well as deciphering 
mild and advanced stages of the disease. Leveraging machine-learning algorithms, we can pinpoint and discern 
patterns across all tumour types. Sadly, each year, a substantial number of breast cancer patients succumb to 
inadequate diagnoses and treatments. Recent years have seen deep learning algorithms making significant strides 
in breast cancer detection19, yet ample room remains for enhancing these methods. Despite notable progress, the 
integration of deep learning methodologies within the machine learning framework offers an avenue to further 
boost efficiency. Their paper delves into a comparison of three distinct models using the openly available Break 
His dataset, showcasing an impressive version 2 of accurate classification. Remarkably, it achieved a training 
accuracy of 99% and a validation accuracy of 98%.
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When it comes to female cancer deaths, breast cancer is by far the most common. That’s why it’s so important 
to catch the illness early on so that treatment can start right away. However, due to complicated artefacts and high 
noise levels in breast ultrasonography pictures, radiologists have substantial difficulties throughout the breast 
cancer diagnosis procedure. As a result, we intend to use technology to categorise breast cancers. In order to 
classify breast cancer, their article uses many different state-of-the-art deep CNNs using well-known designs as 
AlexNet, VGG-16, and ResNet18. Furthermore, we provide a unique CNN model, dubbed BCI-Net, optimised 
for breast cancer classification. Their model is further strengthened by the use of the Mish activation function20, 
which is widely used to improve neural network effectiveness and training dynamics. Breast Ultrasonography 
pictures (BUSI) is a publicly available collection of ultrasound pictures that we use to conduct the investigation. 
In our studies, the suggested model achieves an amazing hold-out validation accuracy of 98.70% on average. 
In addition, after going through a stringent five-fold cross-validation process, it has an average accuracy of 
97.49%, with a standard deviation of only 1.14%. Their study can be an effective adjunct to clinical breast cancer 
screening.

Wireless capsule endoscopy (WCE) has brought astonishing changes to the imaging and diagnosis of the 
gastrointestinal (GI) tract through enabling the use of a non-invasive diagnostic method that does not cause 
any discomfort to the patient. Nonetheless, its widespread applications and modification come up with issues in 
efficacy, tolerance, safety and performance. Automated WCE systems’ role is essential in the timesaving option 
for detecting anomalies, as interpreting WCE imaging data demands specialists and time21. To mitigate each 
of these challenges, different solutions employing computer vision technology have been sought and tried, but 
with results that are still relatively inaccurate, and therefore requiring further improvement. Thus, we developed 
four multi-classification DL models including Vgg-19 + CNN, ResNet152V2, GRU + ResNet152V2, and 
ResNet152V2 + Bi-GRU to diagnose ulcerative colitis, polyps, and dyed-lifted polyps using the accessible WCE 
image databases. More specifically, their study employs a single DL model for differentiating three different GI 
diseases. The performance of these models assessed using parameters like accuracy, loss, MCC, recall, precision, 
NPV, PPV, and F1-score. Out of all the models, Vgg-19 + CNN yielded the highest classification accuracy of 
99.45%; it even surpassed the other models proposed in the current study as well as some of the current state-
of-the-art classifiers. These results demonstrated that the proposed Vgg-19 + CNN model could improve the GI 
disease diagnosis using WCE images.

Skin cancer one form of cancer that is prevalent worldwide and there is a lot of skin cancers detected every 
year it is characterized by the uncontrolled growth of cells within the skin, which also has potential to invade 
and damage other tissues and organs. Through the modern life changes and prolonged exposure to the sun, 
their invasive disease has become rampant. The emphasis of early detection and deg.Cell carcinoma is important 
because skin cancer is generally fatal. Their work presents a novel deep learning architecture known as DVFNet 
for skin cancer detection from dermoscopy image. To improve an image quality, in the first step of the filter 
anisotropic diffusion methods used for noise and artefacts reduction. Their hybrid approach incorporates the 
VGG19 with the Histogram of Oriented Gradients (HOG) since it improves feature extraction and reduces 
implementations with distinction of separating skin cancer features22. Imbalanced class problem in the ISIC 
2019 dataset, a publicly available skin cancer image data set solved by the SMOTE Tomek technique. The study 
also employs the technique of segmentation to enhance exact identification of areas of skin in severe damage. 
A feature vector map, which made from the combination of HOG and VGG19 feature map, used as input for 
multiclass classification using CNN. The DVFNet model scored a comparative significantly high accuracy 
of 0.9832 on the ISIC 2019 dataset. The performance of the proposed model assessed by applying ANOVA 
statistical testing, thus, DVFNet can be useful for healthcare professionals to detect skin cancer at early clinical 
stages for immediate treatment.

Diabetic foot sores (DFS) are a grave threat to those with diabetes, making the skin of the foot vulnerable 
to damage because of neuropathy, leading to amputation. Their study is concerned with the verification and 
implementation process of an automatic classification system using deep learning techniques for AFS and 
DFS. The challenge met by creating a new model with convolutional capability, coupling it with Vgg-19. The 
method employed used two standard datasets to distinguish AFS and ischemic DFS correctly. To increase the 
training accuracy data augmentation strategies used, while for segmenting images, and for a better feature 
extraction UNet + + network was used. Classification performance of the proposed model compared with two 
well-established pre-trained classifiers, Inceptionv3 and MobileNet and proved better23. The model proposed 
has the accuracy of 99.05%, precision of 98.99%, and recall of 99.01%, MCC of 0.9801 and F1 score of 99.04%. 
The performance also confirmed statistically by ANOVA and Friedman tests, further strengthening these 
findings. The unique approach described in their work can be a valuable instrument for clinicians to enhance the 
diagnostic accuracy and timeliness of the identification of diabetic foot ulcers and improve patient management.

Skin cancer is among the most life-threatening cancers, which affects millions of people around the world 
every year. Skin cancer is an illness that is because of the development of epidermal cells that grow and penetrate 
other tissues and can migrate through the lymphatic system to affect the rest of the body. There is a heightened 
occurrence of the disease due to modification of lifestyle, and growth in exposure to the sun. Skin cancer, 
especially if diagnosed at an early stage, if diagnosed and treated on time, is easily curable, and any delayed 
diagnosis is likely to lead to increased morbidity and reduced quality of life. The present work proposes a new 
deep learning model namely Xception-ResNet101 (X_R101), which combines the best, features of two state of 
the art AI frameworks, the Xception and ResNet10124. The model classifies specific skin cancer types, including 
melanoma (Mel), melanocytic nevus (Mn), basal cell carcinoma (bcc), squamous cell carcinoma (Scc), benign 
keratosis (Bk), actinic keratosis (Ak), dermatofibroma (Df), and vascular lesion (Vl). To reduce the classification 
noise, a borderline SMOTE enhancing technique applied to reduce class imbalance. The presented X_R101 model 
is assessed on three datasets that can be easily accessed by the public, namely PH2, DermPK, and HAM10000 
datasets and compared with four benchmark classifiers, namely MobileNetV2, DenseNet201, InceptionV3, and 
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ResNet50 besides other methods. The proposed X_R101 model establishes an exceptional accuracy of about 
98.21%, it makes it easier for dermatologists and other healthcare practitioners to diagnose skin cancer at the 
right time enhancing the quality of patient care.

PCA patients are at high risk of developing metastasis, a terminal stage for the disease and the main reason 
for death. In fact, despite all the recent breakthroughs in medical science, the chances that locally advanced 
PCA can become widespread remain rather difficult to foresee. Their study employs the machine learning 
system prototype to predict potential biomarkers that characterize metastatic PCA from localized PCA using 
DEGs and molecular pathways related to metastasis formation. It also employs two gene expression profiles 
of the GEO database: GSE32269 and GSE6919. These datasets consist of 226 samples of prostate tissue; 69 
metastatic samples, 81 normal prostate samples and 76 localized prostate cancer samples. The Support Vector 
Machine used in a fine-tuned manner to select features, as well as to classify and compare gene activity in 
order to determine essential biomarkers. As the primary outcome, the study identifies DEGs that highlight the 
genomic activities that set metastatic PCA apart from localized cases25. The results are useful in gaining insight 
into the underlying molecular processes that give rise to metastases and for assisting in tool development for 
diagnosis. These biomarkers stand to improve PCA detection and the application of more effective treatment for 
the circumstances, which, in turn, stands to lead to the desired improvement in patient prognosis, and enhanced 
survival rates of metastatic prostate cancer.

The skin acts as the body’s biggest organ which plays an essential protective and regulatory role requiring 
its good health status. The most common cancer called skin cancer exhibited increasing global incidence while 
generating severe medical harms from late diagnoses. Skin lesion detection posed difficulties because of the 
ambiguous characteristics that made physicians observe overlapping patterns thus generating incorrect medical 
diagnoses. Deep learning proved itself as a diagnostic aid that processed intricate dermatology healthcare 
information for enhanced pattern recognition-based medical diagnosis. Their research developed a new mobile-
friendly and efficient hybrid model that joins ConvNeXtV2 building blocks with focal self-attention methods 
to deal with data imbalances together with model complexity issues. The model used ConvNeXtV2 in its first 
two stages to extract superior local features but added subsequent focal self-attention processing which focused 
on dermatologically relevant areas during analysis. The investigated model underwent testing using ISIC 2019 
dataset containing eight skin cancer categories that displayed extreme class variation like the Melanocytic 
Nevus class which posed 51 times more images compared to the Vascular Lesion class26. The model executed its 
diagnostic tasks efficiently throughout all types of classes to reach 93.60% accuracy and 91.69% precision with 
90.05% recall and 90.73% F1-score. The proposed model proved more accurate by 10.8% compared to ResNet50 
and 3.3% superior than Swinv2-Base featured in existing vision transformer research. By creating their design 
the authors set a new standard in skin cancer detection which enabled precise and expandable predictions to 
help medical personnel make early diagnoses and achieve better clinical results.

Cerebral vascular occlusions together with strokes maintained their position as significant worldwide 
healthcare challenges because they produced substantial mortality numbers while also triggering permanent 
disabilities. Medical practitioners needed to establish early diagnosis before the first hours to stop permanent 
damage and achieve positive patient recovery. The advancements in magnetic resonance imaging (MRI) 
techniques did not address the complexities present in brain lesion identification that traditional diagnostic 
methods still struggled to evaluate properly. The medical imaging field received a powerful tool through 
deep learning which demonstrates excellence at identifying and segmenting brain abnormalities. The review 
investigated 61 MRI-based studies within the time period from 2020 to 2024 to assess deep learning applications 
in cerebral vascular occlusion diagnosis. The review critically assessed successful aspects and obstruction points 
in these investigations together with dataset consistency along with a discussion on data protection mechanisms 
and machine learning explanation systems27. Different approaches using convolutional neural networks (CNNs) 
and Vision Transformers (ViTs) showed specific strengths and weaknesses when compared with each other. The 
research highlighted three key aspects for ethical security in frameworks alongside diverse dataset requirements 
and improved model readability. The article promoted U-Net variants and transformer-based models as 
dependable tools for clinical application development. Deep learning enabled advanced diagnostics through 
automation of challenging neuroimaging operations to generate more personal treatment recommendations. 
The review established framework-based integration of technical developments into clinical deployment which 
validated deep learning as a disruptive global solution for neurology treatment management and healthcare 
delivery enhancement.

Global women experienced cervical cancer as their primary health challenge thus requiring accurate 
diagnostic procedures to provide timely solutions. The Papanicolaou smear (Pap smear) test continued as the 
primary method for cervical cancer screening yet required extensive time for analysis along with frequent 
human mistakes. Medical experts identified through their discovery that automated diagnostic solutions 
would boost both speed and precision of medical work. Their paper examined deep learning algorithms for 
cervical cancer diagnosis automation through the analysis of Pap smear images. Analysis relied on a complete 
dataset that combined Mendeley Liquid-Based Cytology (LBC) dataset (963 images) with Malhari dataset (318 
images) to provide a total of 1,281 images for evaluation. Twenty-seven state-of-the-art deep learning models 
composed of both Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs) operated during the 
classification process. The medical image processing model received improvements through data enhancement 
methods alongside transfer learning techniques28. The high classification accuracy measured at 99.48% became 
a common result among the ViT-based models. EfficientNetV2-Small became the sole CNN-based model 
which matched the accuracy level among its 13 evaluated counterparts. The research confirmed that Vision 
Transformers outperformed all other models regarding diagnostic accuracy performance. The application of 
ViT-based deep learning methods demonstrated strong indications toward automatic systems that diagnose 
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cervical cancer. The cervical cancer screening outcomes improved because these models reduced diagnostic 
errors and accelerated the diagnostic process which led to better and more reliable screening practices.

The world experienced severe breast cancer incidence which transformed into a life-threatening disease 
whenever early diagnosis failed to happen. The detection process of cervical cancer along with diagnosis and 
classification required the utilization of computer-aided detection (CAD) systems. The YOLO-based CAD 
algorithms gained popularity because they delivered exceptional results for object detection objectives during 
recent times. The research team carried out different experiments using INbreast data to evaluate detection 
performance between the commonly used YOLO models. For mammography mass detection the study 
established a YOLO model that incorporated a Swin Transformer as its backbone architectural component. The 
INbreast images at different sizes underwent comparative performance evaluation of YOLOv5 models and the 
transformer-based YOLO model with other YOLOv3 and YOLOv4 models29. The YOLOv5 transformer-based 
detection system delivered the finest results when processing images with a 832 × 832 pixel resolution. Before 
training began the YOLOv5 autoanchor function supplied its anchors to the default anchors for assessment and 
it was found that YOLOv5 autoanchor-generated anchors achieved higher success rates. Different experiments 
tested how performance changed when data augmentation techniques were applied. A limited amount of 
study data produced excellent performances by YOLO algorithms and demonstrated their potential for cancer 
detection tasks.

The distribution imbalance between different medical classes and inadequate labeled high-quality images 
were common issues in medical datasets. The deep learning models demanded significant amounts of already 
labeled data to complete successful classifications. The research introduced a few-shot learning method as a 
solution to categorize ultrasound breast cancer images through meta-learning approaches. The research adopted 
both Prototypical networks and model-agnostic meta-learning (MAML) algorithms for its meta-learning 
approaches. The experimental research used the BUSI breast ultrasound images dataset with its three classes 
during meta-testing in conjunction with other datasets for meta-training30. An accuracy between 0.882 and 
0.889 was achieved through the application of ResNet50 backbone with ProtoNet during a 10-shot classification 
session. The model resulted in accuracy increases reaching between 6.27 and 7.10% higher than the baseline level 
of 0.831. All k-shot settings demonstrated ProtoNet produced better results than MAML. The ResNet models 
provided superior results as feature extraction backbones when compared to four-layer convolutional networks. 
Using the proposed method delivered both first-time meta-learning application for BUSI dataset while achieving 
superior accuracy than deep learning techniques when working with minimal medical image datasets featuring 
few classes. Post-study evaluation demonstrates that the applied approach could become applicable for datasets 
with comparable problems.

Meta-analysis of existing studies
The meta-analysis of previous works in medical imaging and classification demonstrates progress and open 
issues in the area. New generation models are generating accuracies in between 88 and 97%, where hybrid and 
ensemble technique models have proven to be more effective than single model frameworks. However, most of 
these methods are based on single datasets, with little variation in terms of demography or geography, and hence 
restrict the generalizability of the outcomes. This is evident in experiments conducted for diseases like breast 
cancer, skin lesions and diabetic foot ulcers, where train data insufficient in coming up with a diverse data set 
hence introducing bias when used in real applications. In addition, although, accuracy is given much attention 
as a measure of performance, other essential aspects such as sensitivity, specificity, and abilities to handle noisy 
or low quality data are rarely examined. For instance, a few health care driven studies that target classification of 
diabetic foot sores or gastrointestinal diseases consider the effects of noisy images or inconsistencies in imaging 
conditions. Also, the management of class imbalances, which is typical for the datasets where malignant cases are 
significantly out compared by benign cases, remains an issue because many models unable to apply rebalancing 
techniques such as oversampling or loss re-weighting. Other common themes are computational efficiency, as 
well as interpretability, as many modern models demand a great amount of computational power and frequently 
are considered ‘black boxes’, which hampers their applicability in real-world settings and adoption by clinicians. 
Thus, the proposed CS-EENN model is based on the strengths of current research, and on gaps, that future 
research could fill. EfficientNetB0, ResNet50, DenseNet121 suits implemented using CSO with an aim to 
alleviate mentioned limitations and provides enhanced accuracy, robustness, and flexibility for BC classification. 
Future studies therefore have to consider other types of data, improve on handling noise and unveiling methods 
in explainable artificial intelligence (XAI) for clinical use.

CS-EENN: enhanced breast cancer classification methodology
In the pursuit of more accurate breast cancer classification, a cutting-edge approach emerges: the fusion of Cat 
Swarm Optimization (CSO) with an ensemble of neural networks31. This innovative strategy, guided by the 
collective intelligence of CSO, aims to enhance diagnosis and treatment decisions in the battle against breast 
cancer. The proposed work addresses the robustness issue in breast cancer classification by integrating Cat 
Swarm Optimization with an Enhanced Ensemble Neural Network approach, optimizing model architecture and 
hyperparameters to prevent overfitting and improve accuracy. This innovative approach enhances classification 
reliability, contributing to more effective medical interventions.

One such approach involves merging Cat Swarm Optimization (CSO) with a powerful ensemble of neural 
networks, including EfficientNetB032, ResNet5033, and DenseNet12134. CSO, inspired by the collective behaviour 
of cat swarms, is utilized to fine-tune these neural networks, enhancing their performance and convergence. 
EfficientNetB0, ResNet50, and DenseNet121 bring their unique capabilities to the table, contributing to a 
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more holistic understanding of breast cancer data. By combining these perspectives within an ensemble, the 
classification accuracy is substantially improved. Figure 2 shows the proposed system framework architecture.

Dataset
Invasive ductal carcinoma (IDC) is the most prevalent type of breast cancer among all diagnoses. Distribution 
of the dataset is presented in Table 1 below. When viewing a whole mount sample pathologist need to pinpoint 
the IDC positive areas in an attempt to assess the level of invasiveness. As aggressiveness is usually graded on 
sampled tissue sections, one common pre-processing step when attempting to automate aggressiveness grading 
is to delineate the IDC zones within a whole mount slide. The set up used in this was derived from the Kaggle 
repository that contains the dataset used35. The Breast cancer (BC) slides were scanned, and considering that 
the previous step was at a 20x lens, here 40x lens was used; 162 images. These photos were used to cut out 
277,524 patches, all of which were 50 by 50 pixels. Of these 198,738 patches, the IDC status was negative whereas, 
in 78,786 patches the IDC status was good. Representative histopathologies of UBOs benign and malignant 
growths are presented in Fig. 3. This data collection would prove beneficial when doing a comparative analysis 
on different machine learning methods on improved breast cancer diagnostic tests and treatment.

Image pre-processing
Breast cancer image pre-processing using Gabor filtering is a valuable technique for enhancing texture features 
within medical images, aiding in the accurate diagnosis and prognosis of this critical disease36. The process 
involves the application of Gabor filters, which are mathematically defined convolution kernels. These filters are 
characterized by several parameters, including filter size (ksize), standard deviation of the Gaussian envelope 
(sigma), orientation (theta), wavelength (lambd), spatial aspect ratio (gamma), and phase offset (psi). The Gabor 
kernel is constructed using these parameters and subsequently applied to the breast cancer image using the `cv2.
filter2D` function. This filtering process accentuates texture patterns in the image, revealing critical information 
that can be instrumental in further medical image analysis and diagnosis. By leveraging Gabor filtering with these 
equations, researchers and healthcare professionals can improve the interpretability and diagnostic accuracy of 
breast cancer images, ultimately leading to better patient care.

The 2D Gabor function is commonly used in image processing and computer vision for texture analysis and 
feature extraction. It can be defined as follows:

	
G (x, y; f, θ , λ , σ , ψ ) = exp

(
−x′ 2 + γ 2y′ 2

2σ 2

)
.cos

(
2π

x′

λ
+ ψ

)
� (1)

Class Train Test

IDC-Negative 158,990 39,748

IDC-Positive 63,029 15,757

Table 1.  Data distribution on datasets.

 

Fig. 2.  Proposed System Architecture.
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Where:

•	 x and y are the spatial coordinates of the image.
•	 f is the frequency of the sinusoidal factor.
•	 θis the orientation of the Gabor filter.
•	 λis the duration of a sinus wave’s period.
•	 σis the Gaussian distribution’s standard deviation.
•	 ψis the phase offset.
•	 γis the spatial aspect ratio (usually set to 1 for isotropic filtering).

Additionally: x′ = x.cos (θ ) + y.sin (θ )and y′ = −x.sin (θ ) + y.cos (θ ) are the rotated spatial coordinates.
The 2D Gabor function is applied as a convolution kernel to an image, and it is used to capture texture and 

edge information in different orientations and scales. The parameters f, θ, λ, σ and ψ can be adjusted to tailor the 
filter’s response to specific features in the image.

The pre-processing operations performed on Breast Histopathology Images dataset have an essential function 
to enhance model performance through structured normalization and noise reduction for deep learning model 
input preparation. Various pre-processing methods used for image optimization specifically affect model 
accuracy and speed of convergence and overall operational strength. The pre-processing procedures have the risk 
of producing biases that harm the CS-EENN model’s ability to generalize so it is crucial to perform a thorough 
assessment of their resulting effects. The deep learning system needs consistent shaped images so professional 
technicians perform image resizing as a mandatory step. The research conducted image resizing at 224 × 224 
pixels for ResNet50 and DenseNet121 and 240 × 240 pixels for EfficientNetB0 because of its compound scaling 
approach. The model and computation run more efficiently because of image resizing. The process of down 
sampling can result in the elimination of vital fine-scale pathological features that medical experts use to identify 
benign and malignant disorders in tissues. Such small lesions together with subtle texture variations that indicate 
cancer progression may be lost during the process which could reduce the accuracy of classification outcomes. 
The model reached better convergence rates by normalizing pixel intensities through scaling operations which 
produced values between [0,1]. The normalization process generates equivalent scaling for all input features 
which helps backpropagation function without instabilities and speeds up learning processes. The normalization 
process enables deep learning models to detect more obvious structural features present in histopathological 
slide images. The normalization operation sometimes reduces the dataset variability therefore the model could 
have excellent performance in one particular dataset while exhibiting poor results when processing images from 
different institutions with varying staining and imaging approaches.

The experimental segment involved Gabor filtering to boost the detectability of histopathological image 
textures. The method strengthens significant structural features which produces better results during feature 
extraction and classification. The application of this technique improves essential features yet creates a potential 
drawback because extensive modification of image textures leads the model to depend excessively on artificial 
patterns instead of authentic biological structures. The model maintains reduced generalization capabilities for 
real-world histopathological features because of the introduced biases while analysing raw unprocessed medical 
images. The positive aspects of pre-processing cannot eliminate the introduction of biases that might undermine 
the model’s practical effectiveness within clinical applications. The resizing process leads to a major concern 
because it eliminates tiny microstructural details that could affect borderline case classification because such 
features often appear faint in histopathological examination. A potential bias occurs because standardization 
processes in dataset preparation cause the elimination of characteristic histopathological image variability. The 

Fig. 3.  Benign and Malignant Images.
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model develops dataset bias that produces optimal performance on one dataset yet demonstrates limited ability 
to handle external datasets which contain different imaging conditions or patient demographic patterns or 
staining protocols.

The pre-processing methods sometimes introduce unwanted class imbalance effects to the dataset. The 
model tends to develop class bias toward the most prevalent data category when pre-processing methods apply 
different changes between benign and malignant case classes. Such classes will produce distorted classification 
outputs because the model shows superior performance for one category while achieving poor accuracy rates 
within the others. The use of Gabor filtering for texture enhancement creates a problem where the model learns 
artificial patterns instead of authentic histopathological structures which decreases its application reliability for 
clinical real-world data. Several strategies exist to reduce performance biases and enhance generalization as 
well as fairness in the model-based results. The combination of multi-resolution training provides a solution 
because it teaches the model to work with images at various scales to achieve appropriate detail preservation 
and operational speed. Testing model robustness requires external datasets from histopathology to assess its 
performance under different imaging conditions in addition to staining variations. The application of adaptive 
augmentation techniques helps maintain balanced transformations between benign and malignant case types 
which stops classification biases from emerging because of class-specific distortion.

Feature extraction
Feature extraction employing ResNet50 is a crucial component when carrying out deep learning for breast cancer 
classification. ResNet50 is a 50-layer residual network that is capable of capturing very sophisticated features 
from complex learned images such as the histopathological images. This structure proposed for addressing the 
vanishing gradient issue affecting the deep neural networks’ ability to perform optimally. This is made possible 
through the implementation of the residual blocks with skip connections, thus making it able to enjoys end-to-
end differentiation and learn complexity patterns efficiently in medical images. It starts with pre-process the 
input images and they have to be of size 224 by 224 because ResNet50 works best on this size. These images 
further go through normalization, which makes pixel values range optimal for the performance of the model. In 
the case of ResNet50, low level features including edges, corners, and textures extracted by its first convolutional 
layers. Thus, as data advances through the subsequent layers of a network, it successively reveals increasingly 
intricate and general characteristics, such as geometric forms and structural arrangements that represent crucial 
information for the separation of normal and tumour tissue in breast cancer histopathology.

For feature extraction, one differentiation made in ResNet50 is the element of its residual connections, which 
enable it to learn features effectively without negative impact to performance, even if the network depth is deep. 
This is particularly useful for medical imaging jobs, where the ranking of variations in the texture and structure 
of the object can contain essential information. When used as a feature extractor, ResNet50’s convolutional 
layers thus serve as a pre-trained backbone, which passes down network knowledge learned from datasets such 
as ImageNet to the breast cancer classification task. During the feature extraction phase, the last fully connected 
and classification layers of ResNet50 are quite often discarded leaving the convolutional layers. These layers 
produce a dense vector of fixed dimensionality, which is the representation of the important features of the 
image. This feature vector is then passed into downstream classification tasks, where one could use ensemble 
neural networks, or support vector machines to classify the image into benign or malignant.

ResNet50 has the capability of automatic extraction of both the slight/large features eliminating the stress and 
cumbersome activity of feature engineering. Further, its capability of extracting hierarchical features adds to its 
flexibility by increasing the ability to capture intricate and non-linear features in the data affordable higher rate 
of classification accuracies. ResNet50 can provide reliable information assisting researchers and clinicians in the 
development of appropriate means to diagnose breast cancer in the early stages.

Ensemble neural network
When EfficientNetB0 and DenseNet121 are fully integrated as an ensemble neural network, their specialized 
characteristics guarantee a foundation for identifying breast cancer. This synergy enables rich features to 
be learnt and classified and helps overcome the issues pertinent to medical image analysis, especially the 
histopathological images. EfficientNetB0 is a serendipitous convolutional neural network with resource 
refinement strategies and compound scaling. Unlike other models in which the dimensions of depth, width and 
resolution can adjusted randomly, EfficientNetB0 adjusts them relatively. This strategy approach the trade-off of 
computational complexity and predictive power to a good extent, and therefore is perfect for tasks where there 
is a less computational prowess. To capture the small details and textures mapped to the breast cancer images, 
EfficientNetB0 offers high feature extraction accuracy within a light model, thus giving better training and usage 
time and low memory usage.

On the other hand, DenseNet 121 uses dense connections between the layers, hence it helps in reusing features 
and also helps passing gradients. This was achieved in a way that each of these layers obtains direct output of all 
other layers, which minimizes utilization of resources and improves learning capabilities. One of DenseNet121’s 
strengths is that it takes input from the previous layer and aggregates low and high level features making it 
highly capable of deciphering details in medical images. In the diagnosis of breast cancer histopathology where 
minimal differences in tissue architecture and texture are crucial, DenseNet121 gives a dense connection 
between layers such that no feature is left out in distinguishing between cancerous tissues and healthy tissues. 
The ensemble approach then combines these two architectures to help take advantage of this modularity. In 
the training process, two models, namely EfficientNetB0 and DenseNet121, take different inputs of images, the 
features of which are different. EfficientNetB0 also assists in this process by also as a global feature extractor and 
enhancer of high-resolution features, while DenseNet121 provides depth due to it Densely Connected layers 
used in analysing fine textures and spatial hierarchies. The outputs of these models then combined in some way 
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via simple means like averaging, weighted averaging or stacking to produce the final prediction. Concatenation 
approach also helps in enhancing the performance besides increasing the model’s strength since weaknesses of 
various architectures are well addressed. When applied to breast cancer classification, this ensemble framework 
can credit for improvements in false positive and false negatives—which are key variables in diagnoses. Using 
both EfficientNetB0 and DenseNet121 guarantees that all data dimensions are captured before making accurate 
predictions as the machine learning models are also highly accurate. Additionally, the ensemble model practically 
operates nicely across different databases, which helps in practical usage of medical imaging since variability is 
always expected in the actual world.

By integrating EfficientNetB0 and DenseNet121 in an ensemble, researchers and clinicians can achieve state-
of-the-art performance in breast cancer classification, enabling earlier detection and accurate diagnoses. This 
approach not only advances the field of medical imaging but also contributes significantly to improving patient 
outcomes through timely and reliable diagnostic insights. Once trained, the ensemble takes the stage during the 
prediction phase. Each individual model generates its own set of predictions for a given breast cancer image. 
These individual predictions then undergo a thoughtful aggregation process to form a final ensemble prediction. 
Various methods can be employed for aggregation, including:

Averaging
A straightforward approach where the predictions of all models are averaged, resulting in a consensus prediction.

In this equation, F represents the final ensemble prediction obtained by averaging the predictions (Pi) from 
individual models (M). 

	
F = 1

M

∑ M

i=1
Pi

Weighted averaging
Assigning different weights to each model’s predictions based on their respective performance on validation 
data. Models demonstrating higher validation accuracy are assigned greater importance in the final prediction.

Weighted averaging assigns different weights (wi) to the predictions of individual models based on their 
performance on the validation set. 

	
F =

∑ M

i=1
(wi.Pi)

Stacking
Training a meta-model (e.g., a neural network or a classifier) that takes the individual model predictions as input 
and learns to make the final prediction based on them. This approach allows for more intricate relationships 
between the models’ outputs.

Stacking involves training a meta-model (e.g., a neural network) to combine the individual model predictions 
(Pi). 

	 F = Meta − Model (P1, P2, . . . , PM )

Voting
Using majority voting to determine the final prediction. The class with the most votes from the individual models 
is selected as the ensemble’s prediction.

Voting selects the class with the majority of votes from individual models as the final prediction. 

	 F = Majority V ote (P1, P2, . . . , PM )

The result of this aggregation process is a robust and refined classification decision. By leveraging the collective 
intelligence of multiple models, the ensemble minimizes the risk of false positives and false negatives, two 
critical factors in breast cancer diagnosis. This enhanced prediction accuracy is pivotal for early diagnosis and 
timely intervention, both of which are essential in breast cancer management.The impact of the ensemble neural 
network using EfficientNetB0 and DenseNet121 for breast cancer image categorization is profound. By combining 
the computational efficiency of EfficientNetB0 and the rich feature learning capabilities of DenseNet121, the 
ensemble excels in capturing a wide spectrum of features from breast histopathology images. These features 
range from subtle textural patterns and cell structures to broader tissue characteristics.

Choosing EfficientNetB0, ResNet50, and DenseNet121 as an ensemble method in this study is due to the 
synergy between their performance and availability of the models for computer vision tasks, specifically in 
medical imaging. EfficientNetB0 chosen due to compound scaling that allow the model to be more accurate 
with less computational power than comparable models. By having both the advantages of high parallelism for 
image processing and lower hardware costs, this balance becomes especially beneficial for applications involving 
medical imaging where a large amount of data needs to be processed within a short time frame, for example 
breast histopathology images. ResNet, especially ResNet50 as covered, is memorable for the inclusion of residual 
connections that minimize the occurrence of the vanishing gradient problem hence making it possible for the 
network to train very deep architectures. This capability is essential to summarization, which is important when 
identifying hierarchical features in histopathological images of tumour tissues. For example, DenseNet121 
has densely connected layers, which helps in reusing the features achieved and in flowing gradients. This 
increases connections between layers of DenseNet121 thereby capturing fine details such as variations in tissue 
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morphology adequately. By using these architectures, and utilizing them to construct an ensemble method, it 
becomes possible to combine all of these approaches into a classification environment that is extremely strong. 
EfficientNetB0 being a lightweight model offers efficiency and scalability, ResNet50 gives efficient feature 
extraction, DenseNet121 is useful in feature reuse. Altogether, these models make a synergy, guarding against 
such mistakes as false positives or false negatives when analysing complex medical images where one model 
can fail the other. This synergy is highly important in the breast cancer diagnosis where any mistake can lead 
to adverse consequences. Though there are other pretrained models like VGG, Inception and MobileNetetc, the 
above-mentioned architecture has given better performance in various medical imaging problems. Its capacity 
to deal with data with a high level of dimensions, non-concentration of learning, and high dependable exactness 
makes them appropriate for the proposed strategy. The separate models effectively augment the ensemble’s 
classification capability, proving that the process of selecting and assigning models carried out sensibly with 
regard to the requirements of this investigation.

The CS-EENN model incorporated EfficientNetB0, ResNet50 and DenseNet121 because these architectures 
demonstrated peak performance results for medical image analysis of breast cancer histopathology classification. 
Each architecture contributes unique advantages for ensemble learning which improves feature extraction 
as well as enhances classification precision and system reliability. The residual learning framework found in 
ResNet50 serves as the main reason for its selection since it removes the common deep network gradient 
vanishing issue. The specific design of this architecture leads to improved gradients throughout the model’s 
structure while permitting it to understand complex hierarchical features which detect breast cancer efficiently. 
Histopathological images benefit from the skill of ResNet50 to capture features in both low-level and high-
level that help distinguish cancerous patterns from normal tissues. DenseNet121 was used as a network system 
because of its dense pattern that enables both feature reuse and consistent gradient propagation throughout 
different network layers. The model’s characteristic enables more advanced pattern detection in breast tissue 
samples which leads to superior classification results. A key advantage of DenseNet121’s high-level feature 
exploitation shines in histopathological examinations since it preservers essential textural properties to separate 
benign from malignant tissues. In this study EfficientNetB0 received selection due to its compound scaling 
function which achieves an optimal ratio between model resolution and depth as well as width parameters. 
This architecture surpasses conventional models by achieving better accuracy levels without losing performance 
speed which makes it perfectly suitable for dealing with large-scale histopathology data in this study. The CS-
EENN model maintains accurate classification results while avoiding substantial computational strain because 
of its light-weight design which makes it adaptable to real-time medical settings.

Cat swarm optimization (CSO)
Cat Swarm Optimization (CSO) is a nature-inspired algorithm that can be harnessed to optimize the hyper 
parameters of an ensemble neural network used in breast cancer classification. In the realm of medical imaging, 
particularly breast cancer diagnosis, the accuracy and reliability of machine learning methods are of paramount 
importance. Ensembles of neural networks, which combine the predictions of multiple base models, have proven 
to be highly effective. However, selecting the optimal hyper parameters for these models can be a formidable task. 
CSO offers a solution by emulating the collaborative behaviour of cats in a swarm. In the context of parameter 
tuning for an ensemble neural network, CSO operates as a search algorithm that efficiently explores the hyper 
parameter space. It does so by evaluating different combinations of hyper parameters and assessing their impact 
on the ensemble’s performance.

During CSO optimization, a population of “cats” represents different sets of hyper parameters. These cats 
collaborate to find the best combination that maximizes the ensemble’s accuracy, F1-score, or another relevant 
performance metric. They do so by iteratively updating their positions based on their individual and group 
experiences, mimicking the way cats adapt to their environment. The fitness function guides the cats’ exploration, 
quantifying how well a particular set of hyper parameters enhances the ensemble’s ability to classify breast cancer 
accurately. CSO continues its search through numerous iterations, gradually converging towards the optimal 
hyper parameters.

Once the CSO algorithm completes its run, it provides the ensemble with a set of hyper parameters that 
have been fine-tuned to achieve the highest classification accuracy. These optimized hyper parameters enhance 
the model’s ability to discern malignant and benign breast cancer cases accurately. This, in turn, aids medical 
professionals in making informed decisions about patient diagnoses and treatment plans. In summary, Cat 
Swarm Optimization for parameter tuning in an ensemble neural network for breast cancer classification 
represents an innovative approach to enhance the performance and reliability of machine learning methods in 
a critical medical application. By automating the hyper parameter optimization process, CSO streamlines the 
development of accurate and robust breast cancer classifiers, ultimately contributing to improved patient care 
and more timely interventions. CSO is a nature-inspired optimization algorithm that operates through iterative 
steps mimicking the collaborative behaviour of cats in a swarm.

Let’s consider optimizing a single hyperparameter θ using CSO:

	1.	 Define N cats (solutions) in the population.
	2.	 Define D as the dimensionality of the search space, typically representing the range of values for the hyper-

parameter θ.
	3.	 Initialize the position Xi (where 1 ≤ i ≤ N) of each cat with a random value within the search space.
	4.	 Define a fitness function f(Xi) that evaluates the performance of the neural network with the hyperparameter 

set θ to Xi.
	5.	 During each iteration:

Scientific Reports |        (2025) 15:33740 11| https://doi.org/10.1038/s41598-025-95481-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


•	 Evaluate the fitness of each cat Xi by computing f(Xi).
•	 Update the position Xi of each cat based on the CSO dynamics.

A simplified equation to represent the update of a cat’s position Xi during a iteration could be:

	 X
(t+1)
i = X

(t)
i + ∆ X

(t+1)
i

Where:

•	 X
(t+1)
i is the updated position of the i-th cat in iteration t + 1.

•	 X
(t)
i is the current position of the i-th cat in iteration t.

•	 ∆ X
(t+1)
i represents the change in position determined by the CSO technique based on the cat’s collaborative 

interactions with other cats and its exploration of the search space.

The specific calculation of ∆ X
(t+1)
i depends on the CSO variant and dynamics being used, which typically 

involves elements of randomness, collaboration, and adaptation based on the fitness values of the cats.
The Cat Swarm Optimization (CSO) algorithm selected due to its efficiency in fine-tuning hyperparameters for 

various types of neural networks. Compared with existing optimization techniques such as Genetic Algorithms 
and Differential Evolution, the results of the present study showed that CSO had better computational speed 
and flexibility, especially in the medical image processing experiments. Concerning Genetic Algorithms and 
Differential Evolution, CSO exposed better computational rates and flexibility that made it a preferred approach 
in medical imaging.

The hyperparameters of the proposed ensemble model was tuned via Cat Swarm Optimization (CSO), which 
is a metaheuristic optimization algorithm that has demonstrated to work exceptionally well for high and large 
dimensional search problems. Other hyperparameters, including learning rate, dropout rate, and the batch 
size that were optimized for every neural network in the ensemble, including EfficientNetB0, ResNet50, and 
DenseNet121. The CSO algorithm then perform a cyclic search on these weights using a fitness function based 
on validation accuracy that allowed for the fine balance of exploration and exploitation. More specifically, for 
ResNet50 and DenseNet121 we obtained the optimal learning rate of 0.001, whereas for EfficientNetB0, we 
had a somewhat lower value of 0.0005. Tuning dropout rates to 0.25, 0.3, and 0.2 for ResNet50, DenseNet121, 
EfficientNetB0 to prevent overfitting while keeping the model capacity. The chosen batch sizes are 64 for ResNet50 
and DenseNet121, and 32 for EfficientNetB0 as they are optimal for providing the best computations per epoch.

Table 2 shows the Cat Swarm Optimization (CSO) Parameter Settings and Fine-Tuned Values. The Cat Swarm 
Optimization (CSO) algorithm performed optimization tasks on CS-EENN model hyperparameters in order to 
boost learning performance and enhance classification precision levels. Each chosen parameter range followed 
previous research and deep learning best practices which ensured high-quality operational performance. Stable 
convergence along with safe weight updating was achieved through the learning rate optimization from 0.0001 
to 0.01 which resulted in choosing 0.0005 for EfficientNetB0 and 0.001 for ResNet50 and DenseNet121. The 
selected dropout rates for EfficientNetB0 amounted to 0.2 but ResNet50 required 0.25 and DenseNet121 needed 
0.3 to prevent overfitting and maintain learning efficiency. A batch size of 32 was selected for EfficientNetB0 to 
run efficiently but ResNet50 and DenseNet121 received a batch size of 64 to achieve stability in training. Xavier 
initialization was used for EfficientNetB0 to achieve smoother gradients but He Normal initialization provided 
better gradient propagation for both ResNet50 and DenseNet121. Adam and RMSprop were evaluated as the 
best choices of optimizers for EfficientNetB0 and ResNet50 but RMSprop proved most suitable for ensuring 
training stability in DenseNet121.

Novelty in proposed work
The proposed work introduces a novel approach to breast cancer classification by synergizing multiple advanced 
techniques. Firstly, Cat Swarm Optimization (CSO) is employed to enhance neural network architecture and 
hyperparameters. Inspired by collective cat behaviour, CSO offers an unconventional yet effective optimization 
method for deep learning in medical image classification. Secondly, the study integrates an Enhanced 
Ensemble Neural Network (EENN) approach, which combines three renowned neural network architectures—
EfficientNetB0, ResNet50, and DenseNet121. These architectures, known for their exceptional performance in 
computer vision tasks, provide a comprehensive perspective on breast cancer data patterns. The integration of 
these diverse architectures into a unified ensemble strategy is a pioneering advancement, resulting in a robust 
classification framework surpassing individual network capabilities. Additionally, the study addresses overfitting, 
a common challenge in deep learning, by applying CSO to optimize network architecture and hyperparameters. 

Hyperparameter Search Range

Learning Rate 0.0001–0.01

Dropout Rate 0.1–0.5

Batch Size 16–128

Weight Initialization He Normal / Xavier

Optimizer Adam / SGD / RMSprop

Table 2.  Cat swarm optimization (CSO) parameter settings and Fine-Tuned values.
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This preventive approach ensures effective convergence without overfitting, particularly crucial in medical 
image classification. Overall, the novelty of the proposed work lies in its holistic approach to breast cancer 
classification, combining unconventional optimization techniques, ensemble strategies, and top-tier neural 
network architectures. By redefining boundaries and improving classification accuracy and reliability, this study 
contributes significantly to advancing healthcare applications of deep learning.

Results and discussion
The dataset utilized in the proposed work consists of 162 breast cancer slides scanned at 40x magnification, 
resulting in 277,524 patches sized 50 × 50 pixels. It includes 198,738 IDC-negative and 78,786 IDC-positive 
patches for training and testing. The proposed model underwent simulation using Python version 3.6.5, utilizing 
various supplementary packages, including TensorFlow with GPU-CUDA support, keras, NumPy, pickle, 
matplotlib, scikit-learn, pillow, and OpenCV-python. The simulation executed on a personal computer equipped 
with the following hardware specifications: an Intel Core i5-8600k processor, 16GB of RAM, a 250GB SSD, and 
a 1 TB HDD. The model’s main variables were set as follows: 64-person batches, 50-epoch training periods, a 
0.05-percent learning rate, a 0.25-percent dropout rate, and the use of rectified linear unit (ReLU) activation.

Evaluation metrics
The evaluation of deep learning algorithms relies on a diverse set of performance metrics, each offering unique 
insights into the model’s effectiveness. These metrics include accuracy, precision, sensitivity, specificity, F1_
score, error, and mean squared error (MSE). Accuracy serves as a fundamental measure, gauging how well the 
model’s predictions align with the actual outcomes, providing a broad overview of its performance. Sensitivity 
and specificity come into play when there are specific concerns about false negatives (FN) or false positives 
(FP). Sensitivity highlights the model’s capacity to correctly identify positive instances, crucial in scenarios 
where missing a positive case has severe consequences. In contrast, specificity measures the model’s accuracy in 
identifying negative instances, significant when minimizing false alarms is vital. Accuracy in positive forecasts 
is measured by comparing the number of actual successes to the total number of successes. When dealing with 
circumstances with unequal class distributions, the F1_score ensures a fair trade-off between accuracy and 
recall. A visual and quantitative tool for optimising the model’s detection sensitivity across thresholds is the 
receiver operating characteristic (ROC) curve and its corresponding area under the curve (AUC). In the real 
world, deep learning algorithms perform better when their accuracy, precision, sensitivity, and specificity scores 
are high and their mistake rates are low. All of these measures work together to help evaluate and improve deep 
learning models so that they may be used effectively in a wide range of contexts.

After gathering the histopathology breast cancer images from the dataset shown in Fig. 4, the next steps 
typically involve pre-processing, analysis, and potentially the development of a machine learning or deep learning 
model for classification or diagnosis. Histopathology breast cancer image pre-processing using Gabor filters 
shown in Fig. 5 is a valuable technique in the field of medical image analysis. Gabor filters are specifically designed 

Fig. 4.  Input Image.
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to capture texture information within images, making them particularly useful for analysing tissue textures and 
patterns in histopathological images. Histopathological images often contain intricate texture patterns that can 
provide important diagnostic information. Gabor filters are employed to extract these textures by analysing 
the variations in pixel intensities at different orientations and scales. Gabor filters are characterized by their 
orientation and frequency parameters. By applying Gabor filters with various orientations and frequencies to 
an image, different texture features can be extracted. Figure 6 shows the feature extracted images of benign and 
malignant. This enables the detection of textures that are indicative of specific tissue structures or abnormalities 
associated with breast cancer. Figure 7 illustrates the predicted outcome.

The size of the images was decided depending on whether it would maintain the necessary diagnostic 
information while keeping the computation moderate given the varying architectures. This is because the 
ResNet50and DenseNet121 achieved better performances with images resized to 224 × 224 pixels thereby 
captured the basic spatial features required for efficient feature extraction. EfficientNetB0, which has developed 
with the compound scaling strategy, had a slightly greater input resolution of 240 × 240 to capture detailed 
features necessary to differentiate benign and malignant tissues. The operations were carried out using different 
image sizes and each model was thus able to perform optimally at the highest possible resolution thereby 
providing a holistic feature map. This made it possible to obtain consistency and robustness of the ensemble 
model across weight architectures. Small learning rates for EfficientNetB0 increased cross-entropy to enhance 
the generalizability of the model while for ResNet50 and DenseNet121, higher learning rates were used to retain 
training convergence. In the same manner, the range of image sizes allowed for extracting sharp features and at 
the same time, retained fast compute times.

Accuracy comparison
Table 3 provides a synopsis of the experiment’s accuracy outcomes of benign class. In comparison to five other 
popular models, such as the AlexNet, Inception, GoogleNet, DenseNet121, and ResNet50 (all shown in Table 3; 
Figs. 8, 9, 10 and 11), the suggested techniques do rather well in terms of classification accuracy.

The AlexNet model achieves classification performance through precision of 0.94 and sensitivity of 
0.93 along with specificity of 0.92 and overall accuracy of 0.92. The AlexNetmodel demonstrates successful 
class discrimination which allows it to predict accurately throughout most situations. High precision values 
demonstrate that the model detects few inaccurate positive results that would lead to serious consequences in 
important applications. The model’s high sensitivity value of 0.93 demonstrates its ability to properly detect most 
real positive cases thus minimizing the number of incorrect negative results. The strong generalization power 
of AlexNetexists despite its challenging ability to identify negative cases correctly because its specificity value 
equals 0.92. The results from AlexNetdemonstrate a competent performance that achieves reliable outcomes. 
The model performance can reach its full potential through adding transfer learning together with optimization 
techniques such as data augmentation and hyperparameter tuning to attain superior classification results.

Fig. 5.  Pre-processing Image.
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Inception model delivers precision and sensitivity performance of 0.92 as well as specificity and accuracy 
measurement of 0.91. The network gained recognition for its efficient feature analysis of fine details and coarse 
details through its Inception modules. Due to its precision rate of 0.92 this model produces limited wrong 
positive classifications while demonstrating strong classification capabilities. The sensitivity rate of 0.91 indicates 
the model will overlook several positive cases which contributes to its higher amount of false negatives when 
compared to AlexNet. The model achieves 0.91 of specificity indicating its ability to identify negative samples 
accurately which minimizes incorrect classifications. Even though Inception achieves higher computational 
efficiency compared with deeper networks it demands substantial training resource requirements. The 
performance of the model can be enhanced through model pruning techniques that combine with efficient 
hyperparameter optimization for reduced computational complexity.

The GoogleNet model based on the Inception architecture produced precision of 0.91 with sensitivity 
of 0.91 along with specificity of 0.93 and accuracy of 0.89. The framework functions as an efficient model 
which combines superior efficiency with decreased computational resource needs thus facilitating large-scale 
classification functions well. With a precision score of 0.91 GoogleNet successfully prevents false positives yet 
it demonstrates minor areas where it fails to correctly classify items when compared to other models. Among 
the Type II models the sensitivity score of 0.91 indicates that the system detects positive cases reliably however 
its accuracy rate of 0.89 stands slightly below that of other models because it produces occasional classification 
errors. The model shows superior ability in accurate negative classification due to its high specificity value of 
0.93. The accuracy of GoogleNet as a classification model remains competitive yet it requires either extra tuning 
or ensemble learning tactics to enhance its precision.

The DenseNet121 model shows precision value at 0.93 while sensitivity reaches 0.92 and specificity reaches 
0.93 and accuracy reaches 0.92. Feature reuse efficiency stands as a hallmark characteristic of DenseNet since 
it passes gradients and features between layers thereby decreasing instances of vanishing gradients. The design 
functionality enables better learning outcomes that occur without using extra parameters which results in 
superior classification results. The model displays high accuracy in preventing false positives because its 
precision reaches 0.93. The 0.92 sensitivity and 0.93 specificity evaluation of the model demonstrates uniform 
capabilities in correct detection of positive cases and accurate dismissal of negatives. The performance level of 
0.92 indicates similar efficiency to AlexNetand ResNet50 which confirms its effectiveness. Extensive network 
connections in the model lead to higher memory usage. The performance of the model could be enhanced 
through two strategies: using compact versions of DenseNet or implementing dropout based layers to maintain 
operational efficiency while increasing generalization capabilities.

ResNet50 demonstrates precision at 0.94 followed by sensitivity at 0.93 and specificity at 0.92 and accuracy 
at 0.93. Residual learning remains a core component of this model because it solves deep learning network 
problems with gradient vanishing. The model demonstrates high reliability due to its 0.94 precision figure which 
means it reduces false positives effectively in critical situations. The model demonstrates excellent performance 

Fig. 6.  Feature Extraction.
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Model Precision Sensitivity Specificity Accuracy

AlexNet 0.94 0.93 0.92 0.92

Inception 0.92 0.91 0.91 0.91

GoogleNet 0.91 0.91 0.93 0.89

DenseNet121 0.93 0.92 0.93 0.92

ResNet50 0.94 0.93 0.92 0.93

CS-EENN 0.97 0.97 0.96 0.98

Table 3.  Performance evaluation of various models.

 

Fig. 7.  Predicted Outcome.

 

Scientific Reports |        (2025) 15:33740 16| https://doi.org/10.1038/s41598-025-95481-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


regarding true positive detection because its sensitivity measure stands at 0.93. The 0.92 specificity value 
indicates that the model experiences moderately challenging precision challenges when determining negative 
cases. ResNet50 maintains a dynamic relationship between its indexing power and computational requirements 
to become a leading model system for identification tasks. Attaining higher performance from the model could 
be achieved through fine-tuning methods that include transfer learning combined with batch normalization and 
data augmentation techniques.

The CS-EENN model surpasses all competing models with precision at 0.97 and sensitivity at 0.97 and 
specificity at 0.96 along with accuracy reaching 0.98. The exceptional results show that CS-EENN demonstrates 
exceptional capability in positive case identification (high sensitivity) and negative case rejection (high 
specificity). With a precision of 0.97 the model identifies few potential false cases leading to enhanced credibility 
for scenarios in practical applications featuring severe effects from inaccurate predictions. With sensitivity 
(0.97) along with specificity (0.96) CS-EENN demonstrates superior robustness that delivers an overall accuracy 
rating of 0.98 which stands as the highest among all tested versions. The generalization capabilities of CS-
EENN improve through ensemble learning strategies that unite several architectural components. While this 
model achieves superior performance in its field its computational costs might be considered too high. Model 
compression methods supported by knowledge distillation combined with quantization methods would enable 
accuracy maintenance together with improved computational performance.

The Fig. 12 compares the accuracy of different optimizers in breast cancer classification. The proposed Cat 
Swarm Optimization (CSO) achieves the highest accuracy of 0.97, outperforming Adam with 0.93 and SGD with 
0.91. CSO demonstrates superior optimization capability, leading to more accurate classification results compared 
to traditional optimizers like Adam37 and SGD38. This highlights the effectiveness of CSO in enhancing the 
performance of machine learning models for breast cancer diagnosis.Altogether, these metrics substantiate that 
not only the accuracy of the proposed model achieved, but also its optimization for SVHS diagnosis that would 
keep sensitivity and specificity levels in an appropriate range crucial for the real-world medical applications. 
However, these evaluations demonstrate the efficacy of the proposed model, other elements, including robustness 
to noisy data, managing with the class imbalance problem, and presenting more information about the model’s 
performance, can further investigated in the future. All such considerations would add further credence to the 
model and its usefulness for deployment in clinician practice.

The Cat Swarm Optimization (CSO) process and its relationship to the CS-EENN model appears in Fig. 13. 
CSO must initialize its process with a set of cats which serve as potential solutions that search the hyperparameter 
domain. Before the CSO iterative process takes over with movement and seeking mechanisms to update 
positions, each cat receives evaluations based on performance from the fitness check.The system terminates 
its operations when optimal hyperparameters emerge. The optimized set of parameters including learning rate 

Fig. 8.  Evaluate the Precision of the Suggested Model.
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Fig. 10.  Evaluation of the Proposed Model’s Specificity.

 

Fig. 9.  Analysing the Model’s Sensitivity.
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dropout rate and batch size which result from this process are afterward used to refine the EfficientNetB0 and 
ResNet50 and DenseNet121 models. The combination of breast histopathology image features from separate 
models through an ensemble system leads to better classification accuracy. The CS-EENN model optimizes 
its performance through CSO-driven optimization for breast cancer classification by achieving robust feature 
learning and improving generalization capabilities as well as minimizing overfitting.

The Table 4; Fig. 14 offers a comprehensive insight into the performance of the proposed CS-EENN model as 
it undergoes training with varying numbers of epochs, spanning from 5 to 50. It is evident from the data that the 

Fig. 12.  Accuracy Comparison of Optimization Methods.

 

Fig. 11.  Evaluation of the Proposed Model’s Accuracy.
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model’s performance, measured through a likely accuracy metric, exhibits a noteworthy trend of improvement 
with increased epochs. The CS-EENN model embarks on its training journey with a modest accuracy of 0.83, 
showcasing that even with minimal training, it demonstrates a reasonable level of accuracy. As the number of 
training epochs doubles to 10, the model’s accuracy significantly improves to 0.87, underscoring the positive 
impact of increased exposure to training data and iterations on model performance. With further progression 
to 15 epochs, the model’s accuracy reaches 0.90, marking a notable stride in its proficiency. This indicates that 
the additional training epochs are indeed beneficial for enhancing its task-specific capabilities. At 20 epochs, 
the model achieves an accuracy of 0.92, signalling a continued and substantial improvement in performance. 
The model is evidently becoming increasingly adept at its designated task, illustrating the value of extended 
training. The upward trajectory in performance persists as the model’s accuracy climbs to 0.94 with 25 epochs. 
This demonstrates that continued training brings clear and tangible benefits to its performance, reinforcing the 
notion that deeper training is advantageous. Upon reaching 30 epochs, the model maintains a stable accuracy 
of 0.94, suggesting that its performance may have plateaued, and further training might yield limited additional 
gains. A remarkable leap in accuracy is observed at 35 epochs, with the model achieving an impressive accuracy 
score of 0.96. This highlights that the model can still derive significant benefits from continued training, and the 
effort invested in training is paying off. With 40 epochs, the model’s accuracy further advances to an outstanding 
0.97, showcasing a high level of proficiency in its designated task, possibly breast cancer classification. By the 
time the model completes 45 epochs, it attains an exceptional accuracy of 0.98, emphasizing the substantial 
benefits of extended training and the model’s remarkable performance in this specific application.

Even with 50 epochs, the model maintains its exceptional accuracy at 0.98, indicating that it has effectively 
converged, and additional training epochs may not significantly impact its performance. This suggests that the 
model has reached a point of diminishing returns in terms of accuracy improvement. In summary, the table 
provides a comprehensive view of the progressive enhancement in the performance of the proposed CS-EENN 
model as the number of training epochs increases. The consistent rise in accuracy underscores the positive 
impact of extended training. This information is instrumental for optimizing the model’s training strategy, 

Epochs Proposed CS-EENN model

5 0.83

10 0.87

15 0.90

20 0.92

25 0.94

30 0.94

35 0.96

40 0.97

45 0.98

50 0.98

Table 4.  Model accuracy vs. Epochs.

 

Fig. 13.  CSO Optimization Process and Integration with CS-EENN Model.
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helping to strike a balance between training time and achieving the desired level of model performance in 
practical applications, especially in critical tasks such as medical diagnosis. Figures 15 and 16 shows the loss in 
train and validation and accuracy in train and validation.

The confusion matrix and the associated performance metrics shown in Fig.  17 are essential tools for 
evaluating the performance of classification models, particularly in critical domains like medical diagnosis such 
as breast cancer classification. These metrics provide a comprehensive understanding of how well a model is 
performing, helping practitioners make informed decisions about model tuning and assessing its suitability for 
real-world applications. Ensuring the reliability and effectiveness of machine learning models in such critical 
tasks is of utmost importance, and the insights gained from these metrics play a pivotal role in achieving that 
goal.

The proposed CS-EENN model is superior in several important diagnostic factors, it gives outstanding results 
by achieving 98.19% accuracy which is higher than many of the contemporary techniques used for breast cancer 
classification. This high accuracy, combined with a further low false positive and false negative performance, as 
confirmed by the confusion matrix and sensitivity-specificity tests. These metrics are very important in medical 
diagnosis, because false negative cases mean that some diseases may go unnoticed and therefore worsened, while 
false positives cause undue stress and consumption of resources by patients without such illnesses. As seen by 

Fig. 15.  Train and Validation Loss.

 

Fig. 14.  Model Accuracy vs. Epochs.
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the results the given model affords outstanding classification results however, the model’s stability in response 
to noisy input data has tested. The evaluation carried out on ‘Breast Histopathology Images’ dataset which has 
fewer noises and better image quality as compared to need may be appeared in real environment due to poor 
staining or imaging artifacts. Furthermore, the management of class imbalance, as seen by distributions between 
benign and malignant cases, has not discussed comprehensively, because the dataset used in the study balanced. 
This might be inconvenient when working with real data as some datasets are naturally unbalanced posing the 
need to either oversample, under sample or use complex rebalancing schemes.

Another advantage of the proposed model is its ability to provide computational efficiency. The proposed 
ensemble model including EfficientNetB0, ResNet50, and DenseNet121 augmented with PSO for the adjustment 
of hyperparameters raises the computational complexity substantially. Although this approach is very efficient, 
it consumes a large amount of memory and processing capacity and, therefore, may not be very viable in low-
bandwidth environments. Nonetheless, the suggested approach is rather general and still has potential for 
generalization based on experiences and additional learning with different datasets. In general, the new CS-
EENN model presented in this paper incorporates the most recent neural network structures to achieve high 
diagnostic performance, thus being a valuable tool for diagnosing breast cancer. However, further work to be 
done was to enhance its stable performance in noisy data environment it can solve the problem of imbalance 
between classes and improve computational efficiency for the wide use of the proposed method in clinical 
practice.

Execution time for model building
Time complexity serves as a pivotal metric in assessing the efficiency of an algorithm by quantifying the 
time required for each instruction to execute. In the context of our analysis, a notable observation was made 
concerning the computation time of the proposed model. Specifically, it was found that there exists a positive 
correlation between the computation time and the number of epochs, a relationship that is visually represented 
in Table 5; Fig. 18. This positive correlation underscores a fundamental aspect of deep learning model training: 
as the number of epoch’s increases, indicating a longer and more thorough training process, the computation 
time also tends to rise. This phenomenon is well-established in the realm of machine learning and deep learning. 
Deeper and more extensive training often necessitates more computational resources and, consequently, 
additional time for model convergence and refinement. The table offers a comprehensive comparative analysis of 
the computational time required by various deep learning models across different numbers of epochs, ranging 
from 5 to 50. These models are likely being employed for a breast cancer classification. The AlexNetmodel’s 
computational time shows an upward trend as the number of epochs increases. Beginning with 15  min for 
5 epochs, it gradually extends to 45  min when trained for 50 epochs. This pattern suggests that AlexNet’s 
computational demands grow with more extensive exposure to training data. Inception, another powerful 
model, follows a similar trajectory. It starts with 12 min for 5 epochs and escalates to 31 min for 50 epochs. This 
indicates that Inception requires increasing computational resources as it undergoes more training iterations. 
GoogleNet exhibits a unique pattern. It begins efficiently with 8 min for 5 epochs but extends to 33 min for 50 
epochs. This suggests that GoogleNet, while initially fast, experiences a substantial increase in computational 
time as it involves in prolonged training.

DenseNet121’s behaviour aligns with the pattern observed in other models. It starts at 6 min for 5 epochs 
and extends to 35 min for 50 epochs. This indicates that Dense Net’s computational demands intensify with 
more data and training cycles. ResNet50, known for its depth and efficiency, demonstrates an increasing trend 
in computational time. It initiates with 9 min for 5 epochs and reaches 31 min for 50 epochs, suggesting that 
even efficient models like ResNet50 require additional computational resources for extended training. The 
proposed CS-EENN model maintains competitive computational efficiency compared to the other models. 
It starts at 9 min for 5 epochs and peaks at 26 min for 50 epochs. These results suggest that CS-EENN is a 
good option for real-world applications because it strikes a good compromise among the model’s effectiveness 

Fig. 16.  Train and Validation Accuracy.
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and computational economy. This chart summarises important information about the dynamics of computing 
time for training different deep learning models across a range of epoch counts. These insights are essential for 
optimizing model training and resource allocation, particularly in real-world applications where computational 
efficiency is a critical consideration. The choice of model and the number of epochs significantly influence the 
time required for training a deep learning model, and this information assists in making informed decisions 
about resource allocation and training strategies to achieve the best possible model performance.

The Breast Histopathology Images dataset contains patch-based histopathological slides which were obtained 
from whole-slide imaging at 40× magnification according to Table 6. The dataset shows high-resolution and 

Fig. 17.  Confusion Matrix of Proposed Model.
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BACH datasets contain multi-magnification images from 10×, 20×, 40×, 100×, 200×, and 400× while the 
dataset lacks this wide range of resolution levels. The ability of CS-EENN model to handle datasets with 
variable resolutions remains limited because the model fails to achieve good generalization. Both the Breast 
Histopathology Images dataset and the INbreast and MIAS and DDSM databases utilize different detection 
methods because INbreast and MIAS and DDSM contain mammograms rather than histopathological slides. 
The CS-EENN model requires domain adaptation techniques to be used for mammogram-based breast cancer 
classification because its training was focused on histopathological images. The combination of various datasets 
containing both mammography images and histopathology data would make results more applicable in real-
world applications.images that deliver fundamental tissue details needed for deep learning classification 
applications. BreakHis.

The 277,524-patch dataset used in this research contains substantially more images than the 7,909 image 
BreakHis collection and the 400 image BACH dataset. The extensive nature of the dataset enhances deep learning 
model training because it decreases overfitting risks and strengthens both feature extraction and classification 
capabilities. The model could exhibit performance limitations when applied to different hospitals because it uses 
histopathological images originating from a single institutional source.

The BreakHis alongside BACH datasets contain an almost equal balance of benign and malignant samples 
but the Breast Histopathology Images dataset mainly consists of IDC (Invasive Ductal Carcinoma) cases. The 

Fig. 17.  (continued)

Epochs

Computation Time (Minutes)

AlexNet Inception GoogleNet DenseNet121 ResNet50 CS-EENN

5 15 12 8 6 9 9

10 17 18 14 12 13 10

15 18 20 15 15 15 12

20 20 22 17 18 18 14

25 23 26 20 22 20 15

30 25 26 23 24 22 17

35 32 27 25 27 24 20

40 38 29 28 30 26 23

45 43 30 31 32 28 24

50 45 31 33 35 31 26

Table 5.  Time required to compute several models.
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model’s training with such dataset distribution produces an analytical error which creates susceptibility toward 
Invasive Ductal Carcinoma classifications while reducing performance for breast cancer type classification. 
Future research must integrate multi-class datasets into the model because this addition will help the model better 
recognize various breast cancer histological subtypes. The key evaluation metrics received a reliability analysis 
through calculation of 95% confidence intervals which appeared in Table 7 along with accuracy, precision, recall 
and F1-score metrics. Multiple randomized test samples were used in bootstrapping calculations to determine 
the possible ranges of metric values.

Discussion
The study employs the ‘Breast Histopathology Images’ dataset from Kaggle, which consist of 277,524 image 
patches of breast cancer tissue that were extracted from 162 WSI acquired at 40x magnification. However, one of 

Dataset Name Image Type No. of Images Magnification Data Source Key Characteristics

Breast Histopathology 
Images Histopathology slides 277,524 patches 40× magnification Kaggle (BreakHis) Contains benign and malignant images at 

high resolution

BreakHis Dataset Histopathology slides 7,909 images 40×, 100×, 200×, 400× Public hospitals Multi-scale resolution dataset, used for 
breast tumor classification

INbreast Dataset Mammograms 410 images Varies Portuguese hospitals Contains full-field digital mammograms, 
used for mass detection

MIAS Dataset Mammograms 322 images 50-micron pixel size UK Research Dataset Early-stage breast cancer detection dataset

BACH Dataset Histopathology slides 400 images 10×, 20×, 40× International dataset Annotated dataset with benign, malignant, 
and normal tissue

DDSM Dataset Mammograms 2,500 images Varies US Clinical Data Digital Database for Screening 
Mammography, widely used in CAD studies

Table 6.  Comparison with other breast Cancer datasets.

 

Fig. 18.  Computational Time of Various Models.
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the main limitations of the dataset is that even though the dataset is huge in terms of the number of patches, it is 
highly biased in terms of geographical, demographic and institutional distribution. The dataset covers one kind 
of histopathological sample and the samples used here are derived from one type of clinical centre. These options 
can result in limited freedom and generalisability of the model, which might affect the model effectiveness when 
introduced to different patients of dissimilar demographics, diverse protocols of imaging or different types of 
tumours. Moreover, the model is trained only on one dataset at the same time, which might lead to over-fitting 
and, therefore, a lower model’s performance on datasets from other clinical or geographic areas. To tackle this 
limitation the combination should validated on various datasets to prove that the proposed model holds good 
in practice situations.

However, the proposed CS-EENN model gains a very high accuracy test result of 98.19% However, there 
exist some challenges or drawbacks that should overcome for the applicability and scalability of the proposed 
model. First, the combination of EffNetB0, ResNet50, DenseNet121 with CSO for tuning the hyperparameters 
enhances the challenges of computational complexity in the model. This makes training as well as deployment of 
the tool very resource demanding hence may not be very applicable in time critical or low resource environment. 
In addition, the model hugely relies on the training dataset provided to incorporate high quality and diversity. 
However, a major drawback of ‘Breast Histopathology Images’ set is that the dataset well annotated; this could 
mean that the models trained from ‘Breast Histopathology Images’ might not generalize well in clinically diverse 
settings. In addition, the final optimization process of CSO works well but it has high computational complexity 
and different parameter settings take more time to converge. Another quirk of the model is its dependence 
on pre-processing workflows like resizing images; normalizing them; and applying other augmentations. 
Independently, any deviation from these processes and routines affects reliability and performance of the model. 
However, current model only applies binomial classification, which would limit the multiclass classification 
like cancer subtypes diagnosis. The interpretability of the model also presents a problem since deep learning 
models are considered to unexplainable. This has the potential of limiting its usage in clinical practice where 
interpretation of results is critical for choosing a course of action. Finally, the heterogeneity of computations 
needed in the different components of the ensemble may result in uneven loading and, therefore, strict time 
limitations in corresponding real-world applications.

The suggested CS-EENN solution effectively tackles important shortcomings which exist in prior breast 
cancer classification research regarding dataset noise management and class distribution balancing and 
interpretability improvement. Gabor filtering serves as a pre-processing technique in the model to improve 
texture features and decrease artifacts in histopathological images before analysis. The ResNet50 extraction 
process helps the model identify detailed patterns and structural modifications in images to produce strong 
features especially when working with substandard image quality. Through ensemble learning the combination 
of EfficientNetB0 and ResNet50 with DenseNet121 procure multiple convolution techniques to enhance result 
accuracy and decrease misdiagnosis threats specifically in less frequent case samples. This combination approach 
produces accurate output predictions by reducing both inaccurate positive and negative results. The learning 
process optimizations provided by Cat Swarm Optimization (CSO) help tune hyperparameters because this 
enables better generalization and overfitting prevention which are common problems in unbalanced datasets. As 
a method to improve understanding the model includes ensemble learning with feature representation diversity 
while utilizing confusion matrices along with detailed performance metrics to create visual explanations for 
classification outcomes. Future studies have the potential to boost interpretability through the integration of 
explainable AI methods including Grad-CAM and SHAP so clinicians can obtain visual explanations of their 
decision-making process. The CS-EENN model provides a new classification standard for breast cancer which 
improves diagnostic precision and clinical potential through its handling of existing limitations.

The CS-EENN model needs to expand its binary benign-malignant classification capability to handle multiple 
cancer type categories for standard clinical practice. To improve the model’s performance the hierarchical 
classification system must be added to separate benign cases from atypical cases and malignant ones while 
moving into further categories of IDC, ILC, Mucinous Carcinoma, and Medullary Carcinoma. The output 
layer needs modification to handle multiple classes while employing softmax instead of sigmoid activation. The 
problem of class imbalance in underrepresented cancer subtypes can be solved through stain normalization 
and contrast enhancement combined with GAN-based synthetic image generation during data augmentation 
techniques. Feature extraction power of the model will improve by merging transformer-based vision models 
like ViTs or Swin Transformers due to their demonstrated ability in medical imaging pattern recognition. 
Multiple institutions can achieve better generalization of tissues from various histopathological databases 
through transfer learning methods. The system requires a XAI framework featuring either Grad-CAM or SHAP 
analysis to show clinicians understandable visualizations of prediction results while maintaining transparent 
multiclass choices. The CS-EENN model’s expansion for exhaustive breast cancer subtype identification will 

Model Accuracy (%) 95% CI (Accuracy) F1-Score (%) 95% CI (F1-Score)

CS-EENN (Proposed) 98.19 [97.88, 98.50] 98.12 [97.80, 98.40]

ResNet50 95.67 [95.20, 96.10] 95.4 [94.95, 95.80]

DenseNet121 96.1 [95.65, 96.55] 95.88 [95.50, 96.30]

EfficientNetB0 94.85 [94.40, 95.30] 94.6 [94.15, 95.00]

Table 7.  Confidence intervals for model performance.
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become possible through direct implementation of these specified steps that support precise oncological care 
along with individualized treatment selection.

Broader implications for clinical practice
The proposed CS-EENN model presents substantial prospects to modify current breast cancer diagnosis 
approaches in medical facilities by creating better diagnostic precision along with reliability and better early 
detection methods. Deep learning networks EfficientNetB0, ResNet50 and DenseNet121 tuned with Cat Swarm 
Optimization (CSO) enable a model to achieve 98.19% classification performance which exceeds numerous 
traditional approaches. Medical diagnostics benefits significantly from this high accuracy because false negatives 
result in delayed critical treatments and false positives can cause avoidable medical anxiety together with 
additional medical procedures. Deep learning capabilities embedded in the CS-EENN model establish its ability 
to serve as a computer-aided diagnosis system which helps pathologists perform histopathological analyses 
more effectively and rapidly. Medical professionals will benefit from automated breast cancer classification 
systems which enable them to handle sophisticated cases while the tool handles less complex analyses. This 
ensemble methodology reduces observer-related inconsistencies and supports the creation of both standardized 
and repeatable medical diagnosis decisions that are crucial for extensive healthcare situations. Proposed 
implementation of the CS-EENN model into clinical practice faces challenges that need solution before full 
integration becomes achievable. Medical organizations face a significant challenge when deploying deep 
learning models because the training process combined with model deployment requires many resources. The 
combination of three large-scale network architectures brings demanding processing needs along with memory 
and GPU demands that healthcare facilities fundamentally need to support without exception including low-
resource settings. Model applications to different patient groups and imaging samples acquired by multiple 
medical centers encounter problems due to dependence on thorough histopathological dataset annotation. Such 
variations in staining methods combined with imaging environments and hospital populations should undergo 
thorough multi-independent data testing before the model reaches clinical readiness.

The main obstacle with deep learning-based medical decisions consists of making medical decisions more 
easily interpretable and understandable for human doctors. A robust classification framework delivered through 
the CS-EENN model needs clinical transparency regarding AI diagnosis to build reliable medical decision 
processes. The AI model does not implement XAI techniques such as Grad-CAM or SHAP visualizations for 
showing users how diagnostic assessments are determined. Future research needs to include interpretability 
procedures that will raise the confidence level of clinicians regarding their use of AI-assisted breast cancer 
diagnostic systems. Administrative authorization along with healthcare data privacy law adherence must be 
established prior to using AI models in clinical healthcare environments. The CS-EENN model offers extensive 
advantages during healthcare operations in a clinical setting despite operational hurdles. High precision 
detection of breast cancer and streamlined pathology workflows together with early detection assistance would 
produce beneficial outcomes that minimize diagnostic mistakes and create optimized treatment strategies. The 
CS-EENN model will create AI-powered diagnostic solutions that assist pathologists and oncologists to make 
improvements in their clinical decision-making capabilities because of ongoing model optimization together 
with hardware efficiency improvements and interpretability advancements. These AI-based models present the 
potential to transform breast cancer diagnosis procedures and care delivery particularly in places with limited 
medical experts by offering scalable healthcare solutions.

Limitations of current evaluation metrics
The CS-EENN model received its evaluation by standard metrics for medical image classification that included 
accuracy, precision, recall, and F1-score. The standard evaluation metrics offer vital information about model 
functioning but at the same time include fundamental weaknesses that could affect clinical assessment of deep 
learning models. Research must integrate extra metrics in future evaluations to achieve results with superior 
robustness and interpretability because these present critical limitations for a comprehensive assessment. 
The main shortcoming of using accuracy for evaluation results occurs when datasets display class imbalance 
problems. The majority of medical imaging datasets for breast cancer classification show an uneven distribution 
of samples because they include more benign cases than malignant ones. The model would reach high accuracy 
by predominantly classifying majority cases although it fails to detect malignant cases thus making the outcome 
unacceptable in clinical practice. Precision and recall, while useful, also present trade-offs. A model with high 
precision ensures less false positive results yet it does not show performance in detecting actual positive cases 
correctly. In cases of increased recall rates medical practitioners might perform unnecessary treatments because 
detecting all cancer cases would result in additional false positive test outcomes.

More comprehensive model evaluation should be performed in future research by implementing 
supplementary metrics which offer a complete understanding of model output. The receiver operating 
characteristic (ROC) curve utilizes AUC metrics for scoring model performance based on its discrimination 
abilities between different probability threshold settings. Model effectiveness in benign and malignant 
case separation is demonstrated by high scores in AUC-ROC evaluations thus making them essential for 
medical diagnostics needing flexible decision thresholds. When dealing with imbalanced datasets the Area 
Under the Precision-Recall Curve (AUC-PR) stands out because it evaluates how precision relates to recall 
without emphasizing absolute classification numbers. Classification performance assessment becomes more 
balanced through use of the Matthews Correlation Coefficient (MCC) when working with datasets that are 
heavily imbalanced. MCC offers superior reliability as a quality measure for models since it evaluates all four 
combinations of positive and negative predictions. Evaluating the correspondence between predicted class 
groupings and actual data distributions becomes possible through using the Fowlkes-Mallows Index (FMI). 
The Brier Score and other calibration metrics need further evaluation as additional research methods. The Brier 
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Score evaluates the level of accuracy which probabilistic predictions reach through measuring the connection 
between model confidence predictions versus real-world results. The calibration score proves highly useful in 
clinical settings because inaccurate confidence measures might trigger false reassurance or false alarms. Analysis 
based on Decision Curve Analysis (DCA) should be used for model evaluation because this method allows users 
to understand the clinical benefits of predictions across various probability thresholds.

Computational complexity and scalability
Due to its high computational requirements and scarce resources of low-resource clinics and edge devices the 
CS-EENN model encounters implementation obstacles to achieve accurate breast cancer classification. Deep 
learning ensemble architectures including EfficientNetB0, ResNet50 and DenseNet121 are difficult to deploy 
in limited computational settings because they need extensive GPU/TPU power together with large memory 
needs and high-power usage. These obstacles must receive attention because it helps assure AI diagnosis 
systems will meet clinical requirements for real-world utilization. Implementing model pruning techniques with 
quantization turns out to be an effective method for decreasing computational complexity. The deep learning 
model benefit from pruning when practitioners remove unnecessary connections and neurons to keep its size 
manageable while maintaining its performance levels. Model quantization transforms elevated floating-point 
operations into reduced-bit numerical values thus both cutting down memory usage and computation needs 
while preserving system performance. The CS-EENN model becomes deployable on low-power edge devices 
and mobile health applications when post-training quantization or the more advanced quantization-aware 
training (QAT) methods are applied to it.

The implementation of knowledge distillation allows for training a student model which operates as a 
smaller network that mimics the performance of an ensemble system using fewer processing resources. One 
trained through knowledge distillation AlexNet student model replaces the three models in the ensemble to 
perform equally while using significantly less power and operating faster. AI device applications benefit highly 
from this technique because they facilitate mobile diagnostics and tele medical systems. Improved scalability 
can be achieved through the combination of edge AI technology and federated learning because the model 
deploys across multiple decentralized edge devices instead of using cloud-based inference. The implementation 
of Edge AI helps healthcare institutions with poor internet access perform local device-based processing so 
they can complete tasks without depending on excessive bandwidth. Federated learning provides institutions 
with the ability to develop models through collaborative training without transmitting raw patient information 
thus establishing privacy-preserving AI systems for medical applications. An effective deep learning optimizer 
can improve network design to achieve better performance. The CS-EENN framework accepts lightweight 
AlexNet architectures including MobileNetV3 and ShuffleNet to increase both inference efficiency and save 
computational power. The adaptive inference approach enables early exit strategies which use lightweight sub-
models to classify simple cases but directs complex cases toward the complete ensemble network.

Conclusion and future scope
Breast cancer remains a significant global health challenge, underlining the need for accurate, efficient, and early 
diagnostic methods. In this study, the proposed CS-EENN model, an ensemble of EfficientNetB0, ResNet50, 
and DenseNet121 optimized using Cat Swarm Optimization (CSO), demonstrated exceptional performance 
with an accuracy of 98.19% on the ‘Breast Histopathology Images’ dataset. The model’s ability to integrate 
complementary strengths of advanced neural network architectures, combined with meticulous hyperparameter 
tuning, highlights its potential as a reliable and robust tool for breast cancer classification. The CS-EENN model’s 
superior performance stems from its tailored approach to feature extraction, leveraging multiple architectures to 
provide a comprehensive understanding of complex histopathological patterns. Furthermore, the incorporation 
of CSO enabled the fine-tuning of critical hyperparameters, striking a balance between computational efficiency 
and diagnostic accuracy. This method not only outperformed conventional single-model approaches but also 
highlighted its adaptability to challenging datasets, setting a benchmark for future ensemble-based classification 
systems. Despite these achievements, the model has limitations, including its computational demands and 
dependency on high-quality datasets, which may restrict its scalability in resource-constrained environments. 
Additionally, the black-box nature of deep learning models poses interpretability challenges, particularly in 
clinical applications where explain ability is paramount. Addressing these challenges presents opportunities for 
further refinement, such as exploring lightweight architectures, enhancing interpretability through visualization 
techniques, and expanding the model to multiclass classification tasks. The findings of this study contribute 
significantly to the growing body of research on deep learning applications in medical imaging. By achieving 
state-of-the-art performance, the CS-EENN model demonstrates its potential to improve breast cancer 
diagnosis, offering a pathway toward more accurate, efficient, and patient-centred care. Future research should 
aim to refine the model’s scalability, broaden its applicability, and ensure its adoption in diverse clinical settings, 
ultimately bridging the gap between technological innovation and real-world impact.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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