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This paper proposes an adaptive prescribed-time periodic sliding mode control method to address the 
issue of singular disturbances in the rapid convergence of unmanned surface vehicle (USV) formation 
control. Firstly, preset performance ensures that the formation error of the closed-loop control system 
converges within a predefined allowable range. An adaptive control gain function is introduced to 
adjust the control gain in real-time according to the system state. Secondly, considering the unknown 
control direction, a periodic sliding mode method is proposed to maintain the robustness of the 
tracking project, and virtual signals and actual control laws are defined. Furthermore, this method 
ensures that the tracking error converges to zero within a user-defined time frame, regardless of the 
initial conditions. Simulation results demonstrate the effectiveness of this method, providing a new 
solution for the rapid convergence and stable control of unmanned surface vehicle formations.
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With the rapid development of unmanned surface vehicle technology, unmanned surface vehicle formation 
plays an increasingly important role in the marine field1–3. The rapid development of this technology not only 
makes the tasks in the fields of marine survey4, resource exploration5, and maritime rescue6 more efficient 
and safe, but also provides a new means of marine scientific research and marine environmental monitoring. 
Some outstanding advantages of the unmanned surface vehicle formation system such as improving efficiency, 
reducing cost, enhancing mission flexibility7, etc. have attracted much attention. However, it is accompanied 
by many challenges in practical applications, such as the non-linear characteristics of the system, unknown 
environmental factors, and the design of control strategy. Nonlinearity is the inherent characteristic of USV 
cluster control system, which increases the complexity of controller design.

In the field of unmanned surface vehicle cluster control method, many scholars have made a lot of research. 
There are many methods and algorithms used to study the group control problem of USV, such as behavior-based 
formation control methods8, artificial potential field methods9, limited field of view10 and others. Considering 
the environment and control delays of USVs, Wu et al.11 proposed a new reward function that optimizes 
waiting time at path corners, thereby reducing coordination time among USVs; Wang et al.12 introduced a 
time-synchronized formation control method, enabling all state components to converge to the equilibrium 
point simultaneously with a time constant; Sun et al.13 investigated the autonomous navigation system for USV 
formations, where individuals within the formation possess a certain degree of autonomy to adjust the safety and 
length of the planned paths; Jin et al.14 proposed a distributed soft formation obstacle avoidance strategy, solving 
the problem of formation obstacle avoidance for USVs with limited observation capabilities and under complex 
environmental disturbances, contributing to USV swarm control; Mu et al.15 adopted a leader-follower approach 
and minimum learning parameter techniques to study formation tracking control for multiple underactuated 
USVs, enhancing the robustness of the control system.

In the complex marine environment, the unmanned ship cluster may be affected by wind and waves and other 
factors, resulting in the deviation of navigation trajectory and speed, which brings challenges to the controller 
design. At this point, a rapidly converging control system can quickly adjust the state of the USVs, restoring 
them to the expected trajectories and speeds, thereby enhancing the anti-interference capability and stability of 
the USV swarm. Meanwhile, a rapidly converging control system can more effectively achieve coordination and 
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collaboration among USVs, thus improving the cooperative performance of the swarm. To optimize convergence 
speed, Liu et al.16 studied event-triggered finite-time tracking control for USV swarms; Jiang et al.17 designed 
a fully distributed adaptive containment controller with the help of finite-time differentiators, etc.; Shen et al.18 
proposed a fixed-time formation control strategy based on an accurate disturbance observer (ADO), which 
has advantages for USV formation control; Liu et al.19 integrated a non-singular fast terminal sliding mode 
into a fixed-time control framework, improving the robustness and convergence speed of the USV system. The 
aforementioned research has made academic contributions to increasing the convergence speed of USV swarms. 
However, it can be observed that there is little research on preset-time convergence control for USV swarms.

Furthermore, the impact of external disturbances on USV formation systems is also an issue that needs to 
be considered. Mu et al.20 treated unknown dynamics and external disturbances as a whole and used minimum 
learning parameter techniques to compensate for them; Li et al.21 adopted an improved state observer based on 
the fal function to deal with unknown disturbances caused by the unknown environment during formation; 
Mu et al.22 studied the impact of disturbances such as water currents on the paths of USV swarms and proposed 
a path planning compensation strategy. To address the problem of formation obstacle avoidance for USVs 
with limited observation capabilities and under complex environmental disturbances, Jin et al.23 proposed a 
distributed formation obstacle avoidance strategy to improve robustness against unknown environmental 
disturbances. However, the aforementioned research did not take into account the phenomenon of unknown 
signal switching control directions that may occur in practical applications. Unknown disturbances can lead to 
abnormal directional changes in USV swarm control, resulting in an abnormal jump in control and degrading 
the system’s control performance.

In response to the aforementioned research, a preset-time adaptive periodic sliding mode control method 
is proposed, which can address the issue of singular disturbances in the rapid convergence of USV swarm 
control. It is necessary to consider the robustness to singular disturbances and the need to adapt to multi USV 
cooperative control while ensuring the stability and rapid convergence of the system. An adaptive preset-time 
control approach is designed to ensure that the USV formation rapidly reaches a stable state within a preset time, 
enhancing the overall system performance. Considering the switching of control directions caused by external 
unknown disturbance signals that deviate the control system from its intended stable state, we develop a periodic 
sliding mode control technique to maintain the inherent effectiveness of the USV tracking scheme even when 
the sign of control direction switching is unknown. Furthermore, the design of the adaptive controller employs 
adaptive techniques to acquire system state information in real-time and update control parameters, a process 
involving continuous time variation. To reduce computational burden, rather than using time-varying functions 
for state transformation, we appropriately apply this process to the design of the adaptive controller, avoiding the 
uncertainties introduced by time variation and improving system adaptability.

In the penultimate paragraph of the introduction, we changed.

	1.	 An adaptive scheduled time periodic sliding mode control method is proposed by this paper. Compared 
with24,25, this method combines the advantages of scheduled time control and periodic sliding mode method, 
and realizes the rapid convergence and robust tracking of USV cluster under singular disturbance.

	2.	 Compared with23, this paper considers the sensitivity of the system to unknown interference signals. By in-
troducing the virtual signal and the actual control law, this paper designs a periodic sliding mode controller, 
which can maintain the tracking effectiveness and improve the robustness of the system when the control 
direction switching symbol is unknown.

The remainder of this paper is organized as follows. In section “Problem description”, the dynamic model of the 
unmanned surface vehicle (USV) is described, and its main control objectives are introduced. In section “Design 
of formation controller”, the stability proof of the proposed control scheme is presented. Section “Simulation” 
validates the effectiveness of the control scheme proposed in this paper through simulation experiments. Finally, 
section “Conclusion” presents the conclusions of this paper.

Problem description
The digital model for USVs is described as follows:

The water surface coordinate system is denoted as OeXeY , and the system coordinate system is represented 
by obxbyb. The formation system comprises N USVs. Let the model26 of ith USV be:

	




ẋi = ui cos (φi) − vi sin (φi)
ẏi = ui sin (φi) + vi cos (φi)
φ̇i = ri

MiV̇i = −Ci (vi) Vi − Di (vi) Vi + τi

� (1)

In the formula, the coordinates of the ith USV under OeXeY  are represented as (xi, yi), the course angle 
is denoted as φi, the speed of disembarking the ith USV under obxbyb is given by ui, vi and ri represent 
the yaw velocity and the angular velocity, respectively, satisfying ηi = [xi, yi, φi]T , Vi = [ui, vi, ri]T , 
i = 1, 2..., n. The control input of the ith USV is τi = [ τiu 0 τir ]T . The Coriolis force and centripetal 

acceleration matrix of the USV are Ci (vi), Ci (vi) =

[
0 0 −m22vi

0 0 m11ui

m22vi −m11ui 0

]
. The damping matrix 
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of the USV is Di (vi),Di (vi) =

[
d11 0 0
0 d22 0
0 0 d33

]
; Mi is the inertia matrix in the inertial coordinate 

system,Mi =

[
m11 0 0

0 m22 0
0 0 m33

]
.

Formation model of USVs
In this study, the leader-follower approach is employed to regulate the formation of USVs. As shown in Fig. 1, 
designating one USV as the leader. The entire formation assumes a leader-follower structure based on the 
movement trajectory of the leader. Positions (xil, yil) and (xif , yif ) (i = 1, 2, 3...n) represent the leader 
and the follower USV, respectively. The distance between the two USVs is denoted as L , with transverse and 
longitudinal distances labeled as Lx and Ly .  The heading of the leader USV and the follower USV are designated 
as φil and φif ,  respectively. To maintain a constant distance between the USVs, we control both the expected 
distance Ld and the true distance L between the leader USV and the follower USV.

In Fig. 2, the relative position relation between the leader USV and the follower USV is:

	




Lxi = −(xil − xif ) cos φil − (yil − yif ) sin φil

Lyi = (xil − xif ) sin φil − (yil − yif ) cos φil

eφi = ril − rif

� (2)

Fig. 2.  Leader-follower model.

 

Fig. 1.  Motion model of USV.
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Taking the derivative on both sides yields:

	

{
L̇x = uil + uif cos eφ + vif sin eφ + Lyril

L̇y = −vil − uif sin eφ + vif cos eφ − Lxril

Assuming the transverse expected distance between two unmanned ships is denoted as Ldx , and the longitudinal 
expected distance is denoted as Ldy ,  then:

	

{
Ldx

= Ld cos θd

Ldy
= Ld sin θd

� (3)

where, θd expresses the expected relative angle between the leading ship and following ship, and Ld expresses 
the expected relative distance between the leading ship and following ship. At this juncture, the errors in the x 
and y directions are:

	

{
ex = Lx − Ldx

ey = Ly − Ldy
� (4)

In summary, the USV formation model is as follows:

	





ėxi = uif cos eφ + vif sin eφ + eyril + f1

ėyi = −uif sin eφ + vif cos eφ − exril + f2

ėφi = ril − rif

u̇if = m2f

m1f
vif rif − d1f

m1f
uif + 1

m1f
τiuf

v̇if = m1f

m2f
uif rif − d2f

m2f
vif

ṙif = m1f − m2f

m3f
uif vif − d3f

m3f
rif + 1

m3f
τirf

� (5)

Where τiuf  and τirf  represent the forward thrust and bow rol moment of the following ship, respectively. In 
the formula:

	

{
f1 = −uil − L̇dx + Ldy ril

f2 = −vil − L̇dy − Ldx ril
� (6)

Formation control objectives
In this section, we provide a detailed exposition of the specific goals of formation control, integrating key concepts 
from sliding mode control (SMC) and equivalent control. Additionally, we introduce pertinent assumptions 
guiding our control design.

Formation control objectives
In this section, The specific objectives of formation control and the associated fundamental assumptions are 
elaborated upon.

Given the non-linear system below with unknown control coefficients:

	

v̇f = m11
m22

uf rf − d22
m22

vf

ṙf = m11−m22
m33

uf rf − d33
m33

vf + b1
m22

τf
� (7)

Our primary aim is to achieve these control objectives through the design of a state feedback control law τf :

	1.	 Signal Boundedness: Ensure the boundedness of all signals within the closed loop system.
	2.	 Precise Tracking: On the premise of ensuring performance,attain precise tracking of the output y(t) to a 

desired command yr(t). The tracking error |e(t) = y(t) − yr(t)| < ρ(t) is constrained for t > 0 in which 
the ρ(t) is a performance bound function and it is differentiable, bounded, positive, and exhibits a decreasing 
behavior over time.

	3.	 Asymptotic Precise Tracking: Expect the system to achieve asymptotic exact tracking, emphasizing conver-
gence towards precise long-term formation.

Additionally, we introduce the following fundamental assumptions to guide the control design:

Assumption 1  27The required command yr(t) is bounded, continuous, and smooth. The derivative ẏr(t) is also 
bounded.

Assumption 2   Positive constants b̄1 and b1 are defined such that 0 < b1 ≤ |b1 (x1, ..., xi)| ≤ b̄1 for 
i = 1, ..., n.
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Integration with sliding mode control concepts
Consider a dynamical system described by the equation:

	
ṙf = Π(t) + 1

m3f
τirf � (8)

Here, x(t) ∈ R represents the system state, and Π(t) ∈ R is an unknown bounded disturbance. The control 
input τ(t) is designed using SMC:

	 τ(t) = −k(t)sgn(x(t))� (9)

In SMC, the gain function k(t) > |Π (t)| ensures sliding mode motion, leading to x(t) = 0 in limited time. 
Equivalent control refers to the average control value required to remain ideal sliding motion, which can be 
expressed as:

Definition 1  28,29Equivalent control can be used as a control action required to hold ideal sliding motion. Ac-
cording to the non-linear system (7), the equivalent control τeq(t) is received by τeq(t) = −Π(t) because of 
ẋ(t) = 0 during sliding motion.

In this context, τeq(t) encapsulates the unknown disturbance information, facilitating the construction of an 
adaptive algorithm for chattering suppression30,31.

While the theoretical equivalent control τeq(t) is inaccessible, a close approximation τ̄eq(t) is obtained 
through low-pass filtering the actual control τ(t).  This process is theoretically demonstrated by the part below:

Lemma 1  28,30Filtering a discontinuous signal τ(t) with a low pass filter

	 a ˙̄τeq(t) + τ̄eq(t) = τ(t), τ̄eq(0) = 0� (10)

yields a bounded output τ̄eq(t) and its derivative ˙̄τeq(t).  Furthermore, the output τ̄eq(t) satisfies 
|τ̄eq (t) − τeq

∣∣ ≤ O(τ) → 0 as τ → 0 during sliding motion.

System stability and controller design
According to (5), we can get:

	

ėu = f1 (V, τ, t, Θ1)
ėr = f2 (V, τ, t, Θ2)
V = [u, v, r]T

Definition 2  According to the above system, if the controller has adaptive law

	 u(t) = u(t, x, β), u(t, 0, β) = 0 � (11)

	 θ(t) = ψ(t, x, β), ψ(t, 0, β) = 0 � (12)

Under the controller (2), the trajectories of Θ(t) and the state variables are bounded. Under the condition 
V(t) = 0 ∀t ≥ Tp and for a positive constant Tp the equilibrium points of above system are referred to as the 
locally defined time stable point, and the prescribed time Tp( expressed as local Tp−tps)  has nothing to do with 
the initial conditions of the system. Particularly, if V(0) ∈ R,  the balance point of system (1) is referred to as the 
globally defined time stable point (expressed as global Tp−pts) .

Lemma 2  32Considering a continuous function g(y) ≥ 0 defined on the interval y ∈ [a, b) with a discontinuity at 
y = b, if it meets the following condition:

	
lim

y→b−
(b − y)g(y) = d

The improper integral 
∫ b

a
g(y)dy = +∞ diverges when d is a finite constant or tends to positive infinity.

Definition 3  If a continuous function meets the following condition:

	

µ(t) > 0, ∀t ∈ [0, Tp)
lim

t→Tp

(Tp − t)µ(t) = ρ

In which, ρ is a positive constant or positive infinity, and µ(t) is referred to as the regulated time adjustment 
function (Tp−PTA).
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Remark 1  Given that the Definition 3, it can be demonstrated that lim
t→T −

p

µ(t) = +∞.  Furthermore, Lem-

ma 3 facilitates an easy observation of 
∫ Tp

0 µ(t)dt = +∞. It follows naturally that the Tp − P T A function 
satisfies all conditions defined for T-finite-time stable (T-FTS) functions in reference33, thereby being consid-
ered a T-FTS function as well. Various functions meet the definition of the function Tp − P T A, including 

1
(Tp−t)k (k ≥ 1),  etc.

Theorem 1  Considering system (1) equipped with a controller (2), if there have two positive continuous and differ-
entiable functions V1(x(t)) and V2(θ̃(t)),  along with a class K∞ function aw(w = 1, 2, 3, 4),  meeting conditions

	 V (t) = V1 + V2 � (13)

	 α1 ≤ V1 ≤ α2 � (14)

	 α3 ≤ V2 ≤ α4 � (15)

	 V̇ (t) ≤ −cµ(t)V1 � (16)

where u(t) has been defined in Definition 2 mentioned earlier, and c is a normal number, after that the equilibrium 
point of system (1) is globally defined as time steady.

Proof  The proof can be elaborated from the following two parts. Part A: Under the controller (2), the tracks 
of x(t) and θ(t) are bounded. Part B: The solution x(t) of system (1) converges to zero at the specified time Tp.

Part A: Form (17), we can get

	 V̇ (t) ≤ 0, ∀t ∈ [0, Tp)

Therefore, V(t) is monotonically decreasing for t ∈ [0, Tp). Next, from (14), we can get

	
V1 ≤ V ≤ V (0)
V2 ≤ V ≤ V (0) � (17)

Then, according to (15), (16), and (18), we can get

	
∥x∥ ≤ α1

−1(V1) ≤ α1
−1(V0)

∥θ∥ ≤ α3
−1(V2) ≤ α3

−1(V0)

ensuring that both x(t) and θ̃(t) are bounded. Due to θ̂(t) = θ − θ̃(t), We can draw a conclusion that 
⌢

θ (t) is 
bounded for any t ∈ [0, Tp) .

Part B: To begin with, integrating both sides of equation (17), we obtain

	

∫ Tp

0

˙V dt ≤
∫ Tp

0
cµV1dt� (18)

Subsequently, it can be transformed into 
∫ Tp

0 cµV1dt ≤ C , where C = V (0) − V (T −
p ) is a constant. Thus, we 

can conclude that 
∫ Tp

0 cµV1dt is bounded.
In the following, we will employ a contradiction method to prove the convergence of x(t) to zero at the 

prescribed time TP .
Firstly, we are working on the assumption that

	
lim

t→Tp
−

V1 = ε ̸= 0� (19)

Here, β is a positive constant. Due to lim
t→T −

p

µ(t) = +∞,  it causes 
∫ Tp

0 cµV1dt becoming an inappropriate 

point of an unbounded function with TP  singularity.
For one thing, due to the monotonic increasing nature of cµV1 ≥ 0 over the interval [0, TP ) and F (τ) ≤ C,  ∫ Tp

0 cµV1dt is convergent. On the other hand, since lim
t→Tp

−
(Tp − t)σµV1 = cρε > 0,  we can deduce that the 

improper integral 
∫ Tp

0 cµV1dt diverges in accordance with Lemma 3.
Upon comparison, we observe that the contents of these two fields are contradictory. Thus, assuming Eq. 

(20) cannot be satisfied, which shows 
lim

t→Tp
−

V1 = ε = 0
.  Additionally, according to Eq. (15), it can be inferred 

that lim
t→Tp

−
x = 0.  Firstly, by leveraging the existence and continuity of solutions x(t), we obtain x(Tp) = 0 and 
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u(Tp) = 0.  Subsequently, due to f(t, x(t), u(t), θ) being zero at the origin, and for ∀t ≥ Tp,  u(t) = 0,  we 
have x(t) = 0,  θ(t) = θ(Tp).  Based on Definition 1, two parts of proof, we conclude that the equilibrium point 
of system (1) is globally defined and time steady. Prove that it has been completed. � □

Remark 2  Through the proof of Theorem 1, we observe that as t → Tp, V monotonically decreases and skews 
toward to be constant, V1 converges to zero, and V2 remains bounded. Additionally, for t > Tp, V (t) = V2(t), 
and V1(t) = 0.

Remark 3  For system (1), if the parameters θ is known and Theorem 1 holds, setting V2 = 0, (17) reduces to

	 V̇ (t) ≤ −cµ(t)V, ∀t ∈ [0, Tp)� (20)

Considering Remark 2, we can ascertain that u(t) is considered as the T-FTS function in reference34. Hence, (21) 
is equivalent to Eq. (7). In general, for some systems, Theorem 1 in this article can be converted to Theorem 1 
in reference35.

Remark 4  In actual control systems, due to the limited energy that actuators can release, the control signal u(t) 
cannot be infinitely large34. Therefore, it is essential to choose an appropriate Tp − P T A function to ensure the 
bounteousness of the controller u(t).

Design of formation controller
Virtual quantity design
Base on the Sliding Mode Control, define the state vectors of the system z1 and z2 as:

	

{
z1 = ex cos eφ − ey sin eφ

z2 = ex sin eφ + ey cos eφ
� (21)

Derive from z1 and z2, we can obtain:

	

{
ż1 = uf + f1 cos eφ − f2 sin eφ + z2rf

ż2 = vf + f1 sin eφ + f2 cos eφ − z1rf
� (22)

Assuming uf  and vf  are the inputs of (z1, z2) system, then ufα  and vfα  are separately the virtual quantities of 
uf  and vf . We consider the Lyapunov function as V1 = 1

2 z1
2 + 1

2 z2
2. Then ufα  and vfα  are obtained:

	

{
ufα = −k1z1 − f1 cos eφ + f2 sin eφ

vfα = −k2z2 − f1 sin eφ − f2 cos eφ
� (23)

Where k1, k2 are the design parameters. The velocity error is ev = vf − vfα , its derivative is ėv = v̇f − v̇fa, 
which is:

	

ėv = m11

m22
uf rf − d22

m22
vf

+ k2 (vf + f1 sin eφ + f2 cos eφ − z1rf )
+ f1 cos eφ(rl − rf )
− f2 sin eφ(rl − rf )

� (24)

rl and rf  represent the roll speed of the leading USV and the following USV respectively. uf  and vf  represent 
the longitudinal and lateral speeds following the USV, respectively.

Due to simplified control design, the back-stepping method is introduced. Therefore, we define the tracking 
error as:

	

{
p1 = vf − vfa

p2 = rf − ᾱ1
� (25)

Among (25), vf  and vfα  are system input and corresponding virtual quantity respectively. ᾱ1 (t) represents the 
outputs of the following first-order filters:

	 τ1 ˙̄α(t) + ᾱ(t) = α(t)� (26)

where the constant τ1 > 0 and α(t) is virtual control signal. By introducing periodic sliding mode method, we 
can solve the problem with unknown control direction. Therefore, define the virtual signal α1 and the actual 
control law τirf  as:

	
α1 = R1(t) sgn

(
sin

(
π

ε1
σ1(t)

))
� (27)
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τirf = R2(t) sgn

(
sin

(
π

ε2
σ2(t)

))
� (28)

where R is the adaptive gain function, sgn is the sign function, and ε1 > 0, ε2 > 0 are the normal number. σi 
indicate the sliding mode surfaces represented by the equation below:

	
σi(t) = ξi(t) + ci

∫ t

0

ξi(κ)
ρi(κ)(1 − ηi

2(κ))dκ, i = 1, 2� (29)

where ξi > 0 and ci > 0 are positive constants. And

	
ξi(t) = ln

(
1 + ηi(t)
1 − ηi(t)

)
� (30)

	
ηi(t) = zi(t)

ρi(t)
� (31)

where ρi(t) is the pre selection bound performance function. From (2) of part B in Section II, ρi(t) is a 
differentiable, bounded, positive, and decreasing function over time, typically chosen in the form of the following 
index:

	 ρi(t) = (ρi,0 − ρi,∞)e−lit + ρi,∞� (32)

where constants ρi,0 > ρi,∞ > 0 and li > 0. It should be noted that the function ρi(t) should meet with 
ρ1(0) > |vf (0) − vfa(0)| and ρ2(0) > |rf (0) − α1(0)|. In (28), the expression of adaptive control gain 
function is as shown below:

	 Ri(t) = ri(t) + ri,0� (33)

where ri,0 is Positive scalar. And the adaptive term ri(t) can be derived from the following equation:

	
ṙi(t) = −

(∫ t

0
µi |Xi(τ)| dτ + si,0

)
sgn (Xi(t))� (34)

and:

	
Xi(t) = Ri(t) − b̄i

hibi

|ᾱ1,eq(t)| − Ei� (35)

where si,0, µi are normal numbers, Ei are small positive scalars. The normal numbers hi meets with 0 < hi < 1. 
In (25), taking the derivative of velocity error p yields:

	

ṗ1 = η̇1ρ1 + η1ρ̇1

= m1f

m2f
uf rf − d2f

m2f
vf − v̇fa

= (p2 + R1(t)sgn
(

sin
(

π

ε1
σ1(t)

))

− τ1 ˙̄α1
) m1f

m2f
uf − d2f

m2f
vf − v̇fa

� (36)

where

	

η̇1 = 1
ρ1

( (
p2 + R1(t) sgn

(
sin

(
π

ε1
σ1(t)

))
− τ1 ˙̄α1

)
m1f

m2f
uf

− d2f

m2f
vf − v̇fa − η1ρ̇1

)

= h1(t, η1, η2)

� (37)

From (23), the derivative of vfa is:

	

v̇fa = k2 (vf + f1 sin eφ + f2 cos eφ − z1rf )
+ f1 cos eφ(rl − rf )
− f2 sin eφ(rl − rf )

� (38)
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Because of ξ̇1 = 2η̇1(t)
1−η12(t) , and from (29) and (37), we can obtain:

	

σ̇1(t) = ξ̇1(t) + c1ξ1(t)
ρ1(t)(1 − η2

1(t))

= 2
ρ1(t)(1 − η12(t))

[
(p2 + R1(t) sgn

(
sin

(
π

ε1
σ1(t)

))

) m1f

m2f
uf − d2f

m2f
vf − v̇fa − η1ρ̇1 + c1ξ1

2

]

= 2
ρ1(t)(1 − η12(t))

[
R1(t) sgn

(
sin

(
π

ε1
σ1(t)

))
× m1f

m2f
uf

+ N1(t)

]

� (39)

where

	
N1(t) = − v̇fa + (p2 − τ1−̇α1) m1f

m2f
uf − d2f

m2f
vf − η1ρ̇1 + c1ξ1

2 � (40)

	

η̇2 = 1
ρ2

[
m1f − m2f

m3f
uf vf − d3f

m3f
rf

+ b1R2(t) sgn
(

sin
(

π

ε2
σ2(t)

)) 1
m3f

−η2ρ̇2 − ˙̄α1
]

= h2(t, η1, η2)

� (41)

	

σ̇2(t) = ξ̇2(t)

+ c2ξ2(t)
ρ2(t)(1 − η2

2(t))

= 2
ρ2(t)(1 − η2

2(t))

[
b1R2(t) sgn

(
sin

(
π

ε2
σ2(t)

)) 1
m3f

+ N2(t)

]
� (42)

	
N2(t) = − −̇α1 + m1f − m2f

m3f
uf vf − d3f

m3f
rf − η2ρ̇2 + c2ξ2

2 � (43)

Position controller design
The following part is intended to use a design controller to converge the actual velocity to the virtual expected 
velocity. When the velocity error approaches zero, the USV formation is in stable status. Design the speed error 
as eu = uif − uifa. After taking the derivative of the eu, we can obtain that:

	
ėu = 1

m1f
τiuf + m2f

m1f
vf rf − d1f

m1f
uf − u̇fa� (44)

Let θT κ2 = m2f

m1f
vf rf − d1f

m1f
uf − u̇fa Prior to designing a controller, select the Lyapunov function as: 

V = V1 + V2. Where V1 and V2 are defined as:V1 =
n∑

i=1
o2

j , V2 = θT Γ−1
θ Next, we will raise an adaptive 

specified time controller for any given time TP . The design process can be separated into two situations: 
0 ⩽ t < Tp and t ⩾ Tp.

Case 1 (0 ⩽ t < Tp): The following is the formula for state transformation:

	

o1 = ex

o2 = eu − β1
� (45)

where β1 indicates the virtual controller. Next, we will design a timing controller based on the backstepping 
method. This method has two steps.

Step 1: The derivative of o1 meets with
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	 ȯ1 = o2 + β1� (46)

Design the virtual controller β1 as

	
β1 = − δ1o1

Tp − t
� (47)

where δ1 > n is design parameter. The derivative of o1 and W1 = o1
2 + V2 satisfy

	

ȯ1 = − δ1o1

Tp − t
+ Υ1

Ẇ1 = −2δ1o1
2

Tp − t
+ 2o1o2 + 2θ̃T (Λ1 − Γ−1 ˙̂

θ)
� (48)

where Υ1 = o2, Λ1 = 0.
Step 2: Considering (45) and (47), the derivative of o2 meets with

	
ȯ2 = 1

m1f
τ1 cos φ + θT κ2 − ∂β1

∂θ̂

˙̂
θ − ∂β1

∂ex
eux − ∂β1

∂t
� (49)

Design the controller τ  and the adaptive as:

	
τ1 =

m1f

(
−θ̂T κ2 + Φ1

)
cos φ

,
˙̂
θ = ΓΛ2� (50)

where Λ2 = Λ1 + o2κ2. And

	
Φ1 = − δ1o1

Tp − t
− o1 + ∂β1

∂t
+ ∂β1

∂θ̂
ΓΛ2 + ∂β1

∂ex
eux + κ2Γ∂β1

∂θ̂
o2� (51)

Then, we can obtain that

	

ȯ2 = − δ2o2

Tp − t
+ Υ2

V̇ = Ẇ1 ⩽ −2N(t)V1

� (52)

where Υ2 = −o1 + θ̃T κ2 + ∂β1
∂θ̂

(ΓΛ2 − ˙̂
θ) + κ2Γ ∂β1

∂θ̂
o2, N(t) = δ

Tp−t  is the function of Tp − P T A.
Case 2 (t ⩾ Tp): When t ⩾ Tp, design the control signal and adaptive law as:

	 τ1 = 0,
˙̂
θ = 0� (53)

Attitude controller design
The angular velocity error can be defined as er = rif − rfa, derivation on both sides

	

ėr = m11 − m22

m33
uf vf − d33

m33
rf + 1

m33
τirf − ṙfa

ėr = 1
m33

τirf + ϕ

� (54)

Similarly, select the Lyapunov function as: V = V3 + V4, where V3 and V4 are defined as: 

V3 =
n∑

i=1
g2

j , V4 = θT Γ−1
θ

Next, we will raise an adaptive specified time controller for any given time TP . Similarly, we will discuss in 
two cases.

Case 1(0 ⩽ t < Tp): The following is the formula for state transformation:

	

g1 = eφ

g2 = er − β2
� (55)

where β2 indicates the virtual controller.Next, we will design a timing controller based on the backstepping 
method. This method has two steps.

Step 1: The derivative of g1 meets with

	 ġ1 = g2 + β2� (56)

Design the virtual controller β2 can as
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β2 = − δ2g1

Tp − t
� (57)

where δ2 > n is design parameter. The derivative of g1 and W2 = g1
2 + V4 satisfy

	

ġ1 = − δ3g1

Tp − t
+ Υ3

Ẇ2 = − 2δ1g2
1

Tp − t
+ 2g1g2 + 2θ̃T

(
Λ3 − Γ−1

.

θ̂

)� (58)

where Υ3 = g2, Λ3 = 0.
Step 2: According (45) and (47), the derivative of g2 meets with

	
ġ2 = 1

m33
τirf + θT κ3 − ∂β2

∂θ̂

˙̂
θ − ∂β2

∂eφ
er − ∂β2

∂t
� (59)

Design the controller τ  and the adaptive law as:

	 τ2 = m33
(
−θ̂T κ3 + Φ2

)
,

˙̂
θ = ΓΛ4� (60)

where Λ4 = Λ3 + g2κ3. And

	
Φ2 = − δ3g1

Tp − t
− g1 + ∂β2

∂t
+ ∂β2

∂θ̂
ΓΛ3 + ∂β2

∂eφ
er + κ3Γ∂β2

∂θ̂
g2� (61)

Then, we can obtain that

	

ġ2 = − δ4g2

Tp − t
+ Υ2

V̇ = Ẇ2 ⩽ −2N(t)V3

� (62)

where Υ2 = −g1 + θ̃T κ3 + ∂β2
∂θ̂

(ΓΛ4 − ˙̂
θ) + κ3Γ ∂β2

∂θ̂
g2, and N(t) = δ

Tp−t  is the function of Tp − P T A.
Case 2 (t ⩾ Tp): When t ⩾ Tp, design the control signal and adaptive law as follows:

	 τ1 = 0,
˙̂
θ = 0� (63)

Stability analysis
In this section, we provide the theorem below to analyze the bounteousness of uncertainty N1(t), N2(t) and 
closed-loop systems.

Theorem 1  Both Assumption 1 and Assumption 2 hold, if design the controller as (27) and (28), and the control 
gain functions are designed as (33)–(35), then the following two conditions are met:

	(a)	 All signals in a closed-loop system are bounded.
	(b)	 For ∀t > 0, the errors pi satisfy |pi(t)| < ρi(t).

Theorem 1 can ensure that the preselected performance limit ρi(t) meets the following condition: 
t ∈ [0, +∞). Moreover, the uncertainties Ni( still has a boundary for t ∈ [0, +∞). For the following design 
process, the above explanation is very necessary.

When the synovium moves, we have:

	
α1,eq = −N1

b0
, τeq = −N2

b1
� (64)

It should be noted that N1 and b0 are unknown, so the equivalent control signals α1,eq  are also unknown. But 
we can introduce filters as φ1−̇α1,eq + ᾱ1,eq = au which can obtain approximate value ᾱ1,eq  according to 
Theorem. Then, add ᾱ1,eq  to the adaptive scheme (35).

Theorem 2  Both Assumption 1 and Assumption 2 hold. According to the control law (27) and (28) with adaptive 
solutions (33)–(35), so we can achieve the following control objectives:

	(a)	 Adaptive gain Ri(t) is still bounded.
	(b)	 The tracking error pi asymptotically converge to 0.
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Proof  Define s1 as s1 =
∫ t

0 µ1 |X1(θ)|dθ and λ1 = s1 + s1,0, where s1,0 is a positive scalar. Equation 
ṙ1(t) = −λ1 sgn (X1(t)) and ṡ1 = µ1 |X1(t)| hold. From Theorem 1, |N1| ⩽ N̄1 with an unknown normal 
number N̄i, the proof process is separated into the three stages below.

Phase 1: R1(t) < N̄1
b0

This situation implies that the system is in the arrival stage, so we have 
|α1| = |R1(t)| · | sgn

(
sin

(
π
ε1

σ1(t)
))

| = |R1(t)|. Please take notice that there is currently no definition 
of equivalent control, so we take into account the approximate accuracy |(|ᾱ1,eq(t)| − |(α1(t)|)|. Given that 
Lemma 2, there are scalars l0 > 0, 0 < l1 < 1. Then |(|ᾱ1,eq(t)| − |α1(t)|)| < l1 |α1(t)| + l0 hold. This 
leads to |ᾱ1,eq(t)| − |α1(t)| > −l1 |α1(t)| + l0, resulting in |ᾱ1,eq(t)| > (1 − l1) |α1(t)| − l0. Noted that 
b1 < b̄1, E > 2b̄1l0

hib1
 and 0 < hi < 1 − l1. Then, it is obtained that:

Then, it is obtained that:

	

X1(t) = R1(t) − b̄0

h1 b−
0

|ᾱ1,eq(t)| − E1

< R1(t) − b̄0(1 − l1)
h1 b−

0

|ᾱ1,eq(t)| + b̄0l0

h1 b−
0

− E1

= R1(t) − b̄0(1 − l1)
h1 b−

0

|R1(t)| + b̄0l0

h1 b−
0

− E1

� (65)

where b̄0(1−l1)
h1b0

> 1 and b̄0l0
h1b0

− E1 < − b̄0l0
h1b0

< 0, thus X1(t) < 0 holds. After a period of time, R1(t) > N̄1(t)
b0

 
is satisfied.

Phase 2: R1(t) > N̄1
b0

⩾ |N̄1(t)|
b0

Define that w1(t) = R1(t) − |N̄1(t)|
b0

 which has constants w1,0 > 0 such as w1(t) > w1,0. Choose Lyapunov 

function candidates as V1 = 1
2 (σ1(t) − k1ε1)2, where k1 is positive constants. Find the derivative of Vi for t:

	

V̇1 = (σ1(t) − k1ε1)σ̇1(t)

= 2(σ1(t) − k1ε1)
ρ1(t)(1 − η12(t))

(
b0R1(t) sgn

(
sin

(
π

ε1
σ1(t)

))
+ N1(t)

)� (66)

If the control function b0 > 0, then b0 ⩾ b0. If σ1(t) = k1ε1 is satisfied with k1 is odd, then 
sgn

(
sin

(
π
ε1

σ1(t)
))

= − sgn(σ1(t) − k1ε1) is met. And (66) can be expressed as:

	
V̇1 ⩽ 2(−b0R1(t) + |N1(t)|) |σ1(t) − k1ε1|

ρ1(t)(1 − η12(t)) � (67)

Otherwise b0 < 0, b0 ⩽ −b0 in the field of σ1(t) = k1ε1 with ki is even, then 
sgn

(
sin

(
π
ε1

σ1(t)
))

= sgn(σ1(t) − k1ε1) is met. And (66) can be expressed as:

	
V̇1 ⩽ 2(b0R1(t) + |N1(t)|) |σ1(t) − k1ε1|

ρ1(t)(1 − η12(t)) � (68)

Therefore, it can be noted that ρ1,0 < ρ1(t) < ρ1,∞ and 0 < 1 − η1
2(t) ⩽ 1, and we can obtain that:

	

V̇1 ⩽ 2(−b0R1(t) + |N1(t)|) |σ1(t) − k1ε1|
ρ1(t)(1 − η12(t))

= −2b0w1(t) |σ1(t) − k1ε1|
(t)(1 − η12(t)) ⩽ −2

√
2b0w1,0

ρ1,∞
V1

1
2

� (69)

This represents that the sliding mode happens. Phase 3: When the system moves on the sliding surface, σ̇i(t) = 0 
always holds true. According to Theorem 1, ᾱ1,eq(t) is bounded. Suppose |ᾱ1,eq(t)| ⩽ j̄ has a positive scalar j̄. 
T﻿herefore, we can obtain the derivative of Xi (t) on the sliding surface as shown below:
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Ẋ1(t) = Ṙ1(t) − b̄0

h1b0

d

dt
|ᾱ1,eq(t)|

= Ṙ1(t) − b̄0

h1b0

−̇α1,eq(t)sgn (ᾱ1,eq(t))

≤ Ṙ1(t) + b̄0j̄1

h1b0

� (70)

Substituting (33) into (70) yields:

	
Ẋ1(t) ⩽ ṙ1(t) + d

dt
∥ξ1∥te

−ϖ1t + b̄0j̄1

h1b0
� (71)

where d
dt

∥ξ1∥te
−ϖ1t is bounded. Let |ᾱ1,eq(t)| ⩽ j̄1, d

dt

(
∥ξ1∥te

−ϖ1t
)
⩽ M1 − s1 (t), constants j̄1 and M1 

are Positive values but unknown. Define that K1 (t) = b̄0 j̄1
h1b0

+ M1 − s1 (t). The Lyapunov function candidates 
can be selected as:

	
VX1 (t) = 1

2X1
2 + 1

2µ1
K2

1 � (72)

where K1 (t) = −ṡ1 (t) = −µ1 |X1| hold. Then, we can obtain that:

	

V̇X1 (t) = Ẋ1 + K1K1

⩽ X1ṙ + M1 |X1| + b̄0j̄1

h1b0
|X1| − K1 |X1|

⩽ −λ1 |X1| + s1 |X1|
= −s1 |X1| ⩽ 0

� (73)

It’s obvious that when ∀t > 0, Xi(t) and ei(t) are bounded. Consequently, the adaptive gain R(t) remains 
bounded, ensuring the target (1). According to LaSalle invariance principle36, it is follows that:

	
X1(t) =

∣∣∣∣R1(t) − b̄1

hibi

|ᾱ1,eq(t)| − E1

∣∣∣∣ ⩽
E1

2
� (74)

In the first phase, it is follows that |ᾱ1,eq(t)| > (1 − l1) |α1(t)| − l0. Then (74) yields

	

R1(t) ⩾ |ᾱ1,eq(t)| − E1

>
b̄0(1 − l1)

h1b1
|ᾱ1,eq(t)| − b̄0l0

h1b0
+ E1

2

= |B1| (1 − l1)
h1b0

|b0α1,eq(t)| − b̄1l0

h1b0
+ E1

2

� (75)

Where the function Bi(t) = b̄0
b0 , and Bi(t) ⩾ 1. From (64), we can get |b0α1,eq(t)| = |N1|.

And thus

	
R1(t) ⩾ |B1| |N1| (1 − l1)

b1h1
− b̄0l0

h1b0
+ E1

2
� (76)

Where E1 > 2b̄1l0
h1b0

 and 0 < h1 < 1 − l1, then − b̄0l0
h1b0

+ E1
2 > 0 and |B1|(1−l1)

h1
> hold. This led to 

R1(t) ⩾ |N1|
b1

.
Noted that on the synovial surface, σ1(t) = k1ε1( and σ̇1(t) = 0 are satisfied, we can get that 

σ̇1(t) = ξ̇1(t) + c1ξ1(t)
ρ1(t)(1−η12(t)) = 0. Select the Lyapunov function as W1 (t) = 1

2 ξ1
2, and it is follows that:

	
W1 (t) = ξ̇1ξ1 = − c1ξ2

1(t)
ρ1(t)(1 − η12(t)) ⩽ 0� (77)

� □

Simulation
Simulation parameter setting
The parameter settings for the USV are specified as follows:
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m11 = 1.2 × 105 kg,d11 = 2.15 × 104 kg · s−1

m22 = 2.179 × 105 kg, d22 = 1.17 × 103 kg · s−1

m33 = 6.36 × 107 kg, d33 = 8.02 × 106 kg · s−1

Based on (5) and (44), the following system is obtained:

	

{
ėx = uif cos eφ + vif sin eφ + eyril + f1
ėu = 1

m11
τiuf + m22

m11
vif rif − d11

m11
uif − u̇fa

i = 1, 2, 3, 4, 5

In Equation (51), we stipulate that:

	

Λ2 = Λ1 + o2κ2

Φ1 = − δ1o1

Tp − t
− o1 + ∂β1

∂t
+ ∂β1

∂θ̂
ΓΛ2 + ∂β1

∂ex
eux + κ2Γ∂β1

∂θ̂
o2

when Tp = 0.5s,the simulation results can be shown in Figs.  4, 5, 6 and 7.
Based on the attitude model (7),

	

v̇f = m11
m22

uf rf − d22
m22

vf

ṙf = m11−m22
m33

uf rf − d33
m33

vf + b1
m22

τf

In this paper, the time-varying parameter θ(t) is regarded as the controlling direction. To account for possible 
signal switching of the control direction, based on the models B1 = m11

m22
uf , B2 = b1

m22
θ,the control parameter 

θ(t) meets with the following conditions:

	
θ(t) =

{ 1 0 < t ≤ 0.05s
−1 t > 0.05s

In this scenario, the control direction in t = 0.05.  The initial conditions are set as vf = rf = 0.01,  with 
b̄1 = 1000,  b1 = 1; ̄b2 = 1000,b2 = 1.  The control objective is to force the output to track the required output 
vfa = sin( π

2 t) when satisfying the constraints of the following performance functions:

	
ρ1(t) = (1 − 0.01)e−0.5t + 0.1
ρ2(t) = (4 − 0.1)e−0.5t + 0.4

Set the control parameters to: c1 = 0.5, ε1 = 2,   ψ1 = 0.015,  E1 = 0.11, r1,0 = 0.23;     µ1 = 0.5,
s1,0 = 13.5,  h1 = 0.8, β1 = 1,τ1 = 0.25;   c2 = 2,  ε2 = 3, ψ2 = 0.035,   E2 = 0.11, r2,0 = 15.5, µ2 = 0.5,     
s2,0 = 22.5,   h2 = 0.75,      β2 = 1.    The simulation results can be shown in Figs.  8 and 9.

The simulation result
Figure 3 presents the USV swarm trajectories based on the preset-time adaptive periodic sliding mode control 
method mentioned in (28). The figure shows the two-dimensional trajectories of five vessels. It can be observed 
that as the routes of the vessels extend, the curves of different vessels exhibit similar trends overall. This indicates 

Fig. 3.  Formation trajectory diagram.
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that the swarm control method can enable multiple vessels to maintain a certain level of coordination and 
adaptability. Figure 4 is a chart showing the variation of the USV’s position error on the X-axis over time. As the 
USV’s sailing route swings in Fig. 3, the data points fluctuate above and below the zero-error line, with the error 
values ranging from − 0.025 to 0.025 m, indicating that the position error of the USV on the X-axis is relatively 
small.Similarly, Fig. 5 presents the variation of the USV’s position error on the Y-axis over a specific time period. 
The error values show a certain decreasing trend over time, and the error range is small, which can be considered 
as tending towards stability.

In Fig. 6, the red and black lines represent two state variables of the unmanned surface vehicle. Under the 
finite-time control method, these state variables remain stable only for a finite duration of time.After a certain 
point in time, the state variables will start to deviate from their stable values. Large errors in state variables may 
lead to a decrease in system stability. Especially in finite-time control methods, when the state variables deviate 
from their stable range, the system may become unstable, resulting in performance degradation or even loss of 
control. In Fig. 7, blue and green represent the error of the unmanned surface vehicles under prescribed-time 
control, while black and red represent the error under finite-time control. As shown in Fig. 7, this indicates that 
prescribed-time control is capable of accurately converging the error to zero within a predefined time period, 
exhibiting high control precision and stability. In contrast, finite-time control can only guarantee that the error 
remains bounded within a finite time, but cannot achieve zero-error precise control.

Figure 8 is used to demonstrate the variation of tracking error over time. As shown in Fig. 8, the tracking 
error converges approximately to zero around 0.05 s, even when considering disturbances and changes in the 
sign of the control direction. This indicates that the proposed control scheme remains effective. Figure 9 is an 

Fig. 5.  Y-axis position error diagram of USV.

 

Fig. 4.  X-axis position error diagram of USV.
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output curve that changes over time. The red dashed line represents the desired velocity value, which is a preset 
velocity curve that is expected to be achieved. The blue solid line vfa is the output velocity value. The blue solid 
va line closely follows the red dashed line, indicating that the system performance is good and it can accurately 
track the desired velocity.

The simulation demonstrates the feasibility of our controller design.

Conclusion
This article delves into the adaptive prescribed-time control problem for unmanned surface vehicle (USV) 
formations, tackling complexities stemming from system nonlinearity, environmental uncertainties, and the 
intricacies of control strategy design. We introduce an innovative control approach grounded in prescribed-
time and prescribed-performance control (PPC), initially defining prescribed-time stability. Subsequently, we 

Fig. 8.  Tracking error curve.

 

Fig. 7.  Comparison of control error between finite-time and prescribed-time control for USV.

 

Fig. 6.  Arbitrary state variables of USV under finite-time control.
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present a tailored novel adaptive prescribed-time convergence theorem, leveraging it to devise a time-varying 
state feedback controller for uncertain nonlinear USV systems. This controller ensures tracking errors converge 
to zero within a user-defined time frame, independent of initial conditions, thereby enhancing flexibility 
and adaptability. Furthermore, it employs periodic sliding mode techniques to effectively handle uncertain 
control direction switches, while minimizing computational burden by forgoing complex time-varying state 
transformations. The experimental results show that the predetermined time control can converge the tracking 
error to zero within the user-defined time frame, regardless of the initial conditions. This feature provides strong 
support for the practical application of USV cluster in complex marine environment.In the future, the research 
on the control of unmanned surface vehicle cluster can explore more efficient adaptive control algorithm. For 
example, we can try to combine other advanced control algorithms, such as neural network control and fuzzy 
control, to improve the intelligent and adaptive ability of control.
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