www.nature.com/scientificreports

scientific reports

OPEN

W) Check for updates

Prescribed time adaptive periodic
sliding mode control of unmanned
surface vehicle cluster under
singular disturbance

Fangfang Zhou?, Qi An?, Yuhang He?, Jun Pan?*“ & Mengyue He!

This paper proposes an adaptive prescribed-time periodic sliding mode control method to address the
issue of singular disturbances in the rapid convergence of unmanned surface vehicle (USV) formation
control. Firstly, preset performance ensures that the formation error of the closed-loop control system
converges within a predefined allowable range. An adaptive control gain function is introduced to
adjust the control gain in real-time according to the system state. Secondly, considering the unknown
control direction, a periodic sliding mode method is proposed to maintain the robustness of the
tracking project, and virtual signals and actual control laws are defined. Furthermore, this method
ensures that the tracking error converges to zero within a user-defined time frame, regardless of the
initial conditions. Simulation results demonstrate the effectiveness of this method, providing a new
solution for the rapid convergence and stable control of unmanned surface vehicle formations.

Keywords Prescribed-time stability, Unknown sign-switching control direction, Adaptive control,
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With the rapid development of unmanned surface vehicle technology, unmanned surface vehicle formation
plays an increasingly important role in the marine field'~>. The rapid development of this technology not only
makes the tasks in the fields of marine survey4, resource exploration®, and maritime rescue® more efficient
and safe, but also provides a new means of marine scientific research and marine environmental monitoring.
Some outstanding advantages of the unmanned surface vehicle formation system such as improving efficiency,
reducing cost, enhancing mission ﬂexibility7, etc. have attracted much attention. However, it is accompanied
by many challenges in practical applications, such as the non-linear characteristics of the system, unknown
environmental factors, and the design of control strategy. Nonlinearity is the inherent characteristic of USV
cluster control system, which increases the complexity of controller design.

In the field of unmanned surface vehicle cluster control method, many scholars have made a lot of research.
There are many methods and algorithms used to study the group control problem of USV, such as behavior-based
formation control methods?, artificial potential field methods’, limited field of view!? and others. Considering
the environment and control delays of USVs, Wu et al.!! proposed a new reward function that optimizes
waiting time at path corners, thereby reducing coordination time among USVs; Wang et al.!? introduced a
time-synchronized formation control method, enabling all state components to converge to the equilibrium
point simultaneously with a time constant; Sun et al.!? investigated the autonomous navigation system for USV
formations, where individuals within the formation possess a certain degree of autonomy to adjust the safety and
length of the planned paths; Jin et al.'* proposed a distributed soft formation obstacle avoidance strategy, solving
the problem of formation obstacle avoidance for USVs with limited observation capabilities and under complex
environmental disturbances, contributing to USV swarm control; Mu et al.!> adopted a leader-follower approach
and minimum learning parameter techniques to study formation tracking control for multiple underactuated
USVs, enhancing the robustness of the control system.

In the complex marine environment, the unmanned ship cluster may be affected by wind and waves and other
factors, resulting in the deviation of navigation trajectory and speed, which brings challenges to the controller
design. At this point, a rapidly converging control system can quickly adjust the state of the USVs, restoring
them to the expected trajectories and speeds, thereby enhancing the anti-interference capability and stability of
the USV swarm. Meanwhile, a rapidly converging control system can more effectively achieve coordination and
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collaboration among USVs, thus improving the cooperative performance of the swarm. To optimize convergence
speed, Liu et al.'® studied event-triggered finite-time tracking control for USV swarms; Jiang et al.'” designed
a fully distributed adaptive containment controller with the help of finite-time differentiators, etc.; Shen et al.!8
proposed a fixed-time formation control strategy based on an accurate disturbance observer (ADO), which
has advantages for USV formation control; Liu et al.!® integrated a non-singular fast terminal sliding mode
into a fixed-time control framework, improving the robustness and convergence speed of the USV system. The
aforementioned research has made academic contributions to increasing the convergence speed of USV swarms.
However, it can be observed that there is little research on preset-time convergence control for USV swarms.

Furthermore, the impact of external disturbances on USV formation systems is also an issue that needs to
be considered. Mu et al.?° treated unknown dynamics and external disturbances as a whole and used minimum
learning parameter techniques to compensate for them; Li et al.?! adopted an improved state observer based on
the fal function to deal with unknown disturbances caused by the unknown environment during formation;
Mu et al.?2 studied the impact of disturbances such as water currents on the paths of USV swarms and proposed
a path planning compensation strategy. To address the problem of formation obstacle avoidance for USVs
with limited observation capabilities and under complex environmental disturbances, Jin et al.?* proposed a
distributed formation obstacle avoidance strategy to improve robustness against unknown environmental
disturbances. However, the aforementioned research did not take into account the phenomenon of unknown
signal switching control directions that may occur in practical applications. Unknown disturbances can lead to
abnormal directional changes in USV swarm control, resulting in an abnormal jump in control and degrading
the system’s control performance.

In response to the aforementioned research, a preset-time adaptive periodic sliding mode control method
is proposed, which can address the issue of singular disturbances in the rapid convergence of USV swarm
control. It is necessary to consider the robustness to singular disturbances and the need to adapt to multi USV
cooperative control while ensuring the stability and rapid convergence of the system. An adaptive preset-time
control approach is designed to ensure that the USV formation rapidly reaches a stable state within a preset time,
enhancing the overall system performance. Considering the switching of control directions caused by external
unknown disturbance signals that deviate the control system from its intended stable state, we develop a periodic
sliding mode control technique to maintain the inherent effectiveness of the USV tracking scheme even when
the sign of control direction switching is unknown. Furthermore, the design of the adaptive controller employs
adaptive techniques to acquire system state information in real-time and update control parameters, a process
involving continuous time variation. To reduce computational burden, rather than using time-varying functions
for state transformation, we appropriately apply this process to the design of the adaptive controller, avoiding the
uncertainties introduced by time variation and improving system adaptability.

In the penultimate paragraph of the introduction, we changed.

1. An adaptive scheduled time periodic sliding mode control method is proposed by this paper. Compared
with?%2>, this method combines the advantages of scheduled time control and periodic sliding mode method,
and realizes the rapid convergence and robust tracking of USV cluster under singular disturbance.

2. Compared with?, this paper considers the sensitivity of the system to unknown interference signals. By in-
troducing the virtual signal and the actual control law, this paper designs a periodic sliding mode controller,
which can maintain the tracking effectiveness and improve the robustness of the system when the control
direction switching symbol is unknown.

The remainder of this paper is organized as follows. In section “Problem description”, the dynamic model of the
unmanned surface vehicle (USV) is described, and its main control objectives are introduced. In section “Design
of formation controller’, the stability proof of the proposed control scheme is presented. Section “Simulation”
validates the effectiveness of the control scheme proposed in this paper through simulation experiments. Finally,
section “Conclusion” presents the conclusions of this paper.

Problem description
The digital model for USVs is described as follows:

The water surface coordinate system is denoted as O, XY, and the system coordinate system is represented
by 0vZbys. The formation system comprises N USVs. Let the model?® of i;5, USV be:

i = u; cos (i) — v sin (¢;)

Ui = i sin (p;) + v; cos (p;)

$i=Ti

M;Vi=—=C; (vi) Vi — D; (vi) Vi + 1

(1)

In the formula, the coordinates of the i¢;, USV under O.X.Y are represented as (z;, y;), the course angle
is denoted as ;, the speed of disembarking the i;, USV under opzsys is given by w;, v; and r; represent
the yaw velocity and the angular velocity, respectively, satisfying 7; = [xi,yi,api}T, Vi = [ui,vi,ri]T,

t = 1,2...,n. The control input of the iz, USVis s = Tiu O Tir |*. The Coriolis force and centripetal
0 0 —M220;
acceleration matrix of the USV are C; (v;), C; (v;) = 0 0 mi1u; | .The damping matrix
m22v;  —Mi11U; 0
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Fig. 1. Motion model of USV.
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Fig. 2. Leader-follower model.

di1 0
of the USV is D; (v;),D; (v;) [ de2 0 ]; M; is the inertia matrix in the inertial coordinate

mir 0 0
system,M; = 0 ma2 0
0 0 mss

Formation model of USVs

In this study, the leader-follower approach is employed to regulate the formation of USVs. As shown in Fig. 1,
designating one USV as the leader. The entire formation assumes a leader-follower structure based on the
movement trajectory of the leader. Positions (xi,yi) and (xif,yir) (i = 1,2, 3...n) represent the leader
and the follower USV, respectively. The distance between the two USVs is denoted as L , with transverse and
longitudinal distances labeled as L, and L. The heading of the leader USV and the follower USV are designated
as 4 and @5, respectively. To maintain a constant distance between the USVs, we control both the expected
distance Lq and the true distance L between the leader USV and the follower USV.

In Fig. 2, the relative position relation between the leader USV and the follower USV is:

Loi = —(za — mif) cos i — (ya — yir) sin i
Ly = (xa — ig) sin i — (Yar — Yif) COS i (2)
Cpi = Til = Tif
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Taking the derivative on both sides yields:

Ly = uy 4+ uif cosey, + vipsiney, + Lyry
Ly = —vy —uifsine, + vif cosey, — Lpri

Assuming the transverse expected distance between two unmanned ships is denoted as L4, , and the longitudinal
expected distance is denoted as Lq,, then:

Lq, = Lqcosfq
Ldy = Lgsin0Oy (3)

where, 0 expresses the expected relative angle between the leading ship and following ship, and Lg expresses
the expected relative distance between the leading ship and following ship. At this juncture, the errors in the x
and y directions are:

ex = Ly _Ld,_,
{aZotor @)

In summary, the USV formation model is as follows:

€xi = Uif COS €y + Vifsine, + eyri + f1

€yi = —Uif Sin ey, + Vip cOSey — exTi + f2
€pi = Til — Tif
. mayf diy
Wi = Vi fTie — wif + T
if miy EA miy gl miy et (5)
I
Vif = —WUifTif — ——VUif
2f
mif — M2 d3
Fip = = Luipoig = —Lrip + ——ing
msyf msyf

Where ;.5 and 7y represent the forward thrust and bow rol moment of the following ship, respectively. In
the formula:
fi=—uu— Ldr + La,ma ©6)
fo=—va — La, — La,Ta

Formation control objectives

In this section, we provide a detailed exposition of the specific goals of formation control, integrating key concepts
from sliding mode control (SMC) and equivalent control. Additionally, we introduce pertinent assumptions
guiding our control design.

Formation control objectives
In this section, The specific objectives of formation control and the associated fundamental assumptions are
elaborated upon.

Given the non-linear system below with unknown control coefficients:

e — MILg g, d22 00

T . @)
F, — M11—may _ dss 1

T8 = “mag UIT T mgg U ma TS

Our primary aim is to achieve these control objectives through the design of a state feedback control law 7 :

1. Signal Boundedness: Ensure the boundedness of all signals within the closed loop system.
Precise Tracking: On the premise of ensuring performance,attain precise tracking of the output y(t) to a
desired command y.(t). The tracking error |e(t) = y(t) — y»(t)| < p(t) is constrained for ¢ > 0 in which
the p(t) is a performance bound function and it is differentiable, bounded, positive, and exhibits a decreasing
behavior over time.

3. Asymptotic Precise Tracking: Expect the system to achieve asymptotic exact tracking, emphasizing conver-
gence towards precise long-term formation.

Additionally, we introduce the following fundamental assumptions to guide the control design:

Assumption 1 2"The required command y.(¢) is bounded, continuous, and smooth. The derivative ¢, (¢) is also
bounded.

Assumption 2 Positive constants b1 and b, are defined such that 0 < b, < |by (21,...,2;)| < by for
i=1,...,n.
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Integration with sliding mode control concepts
Consider a dynamical system described by the equation:

1
re=1I(t) + —Tir 8
£ (t) ——— (8)

Here, z(t) € R represents the system state, and II(¢) € R is an unknown bounded disturbance. The control
input 7(¢) is designed using SMC:

7(t) = —k(t)sgn(z(t)) ©)

In SMC, the gain function k(¢) > |II (t)| ensures sliding mode motion, leading to (¢) = 0 in limited time.
Equivalent control refers to the average control value required to remain ideal sliding motion, which can be
expressed as:

Definition 1 2%?°Equivalent control can be used as a control action required to hold ideal sliding motion. Ac-
cording to the non-linear system (7), the equivalent control 7eq(t) is received by 7eq(t) = —II(t) because of
#(t) = 0 during sliding motion.

In this context, Teq (¢) encapsulates the unknown disturbance information, facilitating the construction of an
adaptive algorithm for chattering suppression®*-3..

While the theoretical equivalent control 7.q(t) is inaccessible, a close approximation 7eq(¢) is obtained
through low-pass filtering the actual control 7(¢). This process is theoretically demonstrated by the part below:

Lemma 1 83°Filtering a discontinuous signal T(t) with a low pass filter

aTeq(t) + Teq(t) = 7(t), Teq(0) = 0 (10)
yields a bounded output Teq(t) and its derivative Toq(t). Furthermore, the output Teq(t) satisfies
|Teq (t) — 7o < O(7) = 0as7 — 0 during sliding motion.

System stability and controller design
According to (5), we can get:

éu = fl (V7 T7t7 61)
éT = f2 (Va T,t,@Q)
V= [u,v,r]"

Definition 2 According to the above system, if the controller has adaptive law
u(t) = u(t, z, B),u(t,0,8) =0 (1)
0(t) =(t,x,B),¥(t,0,8) =0 (12)

Under the controller (2), the trajectories of ©(t) and the state variables are bounded. Under the condition
V(t) = 0Vt > T), and for a positive constant T}, the equilibrium points of above system are referred to as the
locally defined time stable point, and the prescribed time T',( expressed aslocal T}, ¢ps) has nothing to do with
the initial conditions of the system. Particularly, if V(0) € R, the balance point of system (1) is referred to as the
globally defined time stable point (expressed as global T, p¢s) .

Lemma 2 32Considering a continuous function g(y) > 0 defined on the interval y € [a, b) with a discontinuity at
y = b, if it meets the following condition:

The improper integral fab 9(y)dy = 400 diverges when d is a finite constant or tends to positive infinity.

Definition 3 If a continuous function meets the following condition:

)u(t) > 07Vt € [OvTI’)
lim (T, — t)ult) = p
t—Tp

In which, p is a positive constant or positive infinity, and j(t) is referred to as the regulated time adjustment
function (T, —PTA).
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lim p(t) =400

t—=T,

ma 3 facilitates an easy observation of f OTP w(t)dt = +o0. It follows naturally that the 7, — PT'A function

Remark 1 Given that the Definition 3, it can be demonstrated that . Furthermore, Lem-

satisfies all conditions defined for T-finite-time stable (T-FTS) functions in reference®, thereby being consid-
ered a T-FTS function as well. Various functions meet the definition of the function 7}, — PT A, including
L_(k>1), etc.

(Tp—t)"

Theorem 1 Considering system (1) equipped with a controller (2), if there have two positive continuous and differ-
entiable functions Vi (x(t)) and Vo(6(t)), along with a class K« function a.,(w = 1,2, 3, 4), meeting conditions

Vit)y=Vi+Va (13)
a1 <V <az (14)
as < Vo< aq (15)
V(t) < —cu(t)Wr (16)

where u(t) has been defined in Definition 2 mentioned earlier, and ¢ is a normal number, after that the equilibrium
point of system (1) is globally defined as time steady.

Proof The proof can be elaborated from the following two parts. Part A: Under the controller (2), the tracks
of x(t) and 6(t) are bounded. Part B: The solution x(t) of system (1) converges to zero at the specified time T},.

Part A: Form (17), we can get

V(t) <0,¥ € [0,T})

Therefore, V(f) is monotonically decreasing for t € [0, T},). Next, from (14), we can get

Vi <V <V(0)
V2 <V <V(0)

Then, according to (15), (16), and (18), we can get

2] <ar™ ' (Vi) <™ H(Vo

)
0] < a3~ (Va) < az™' (Vo)

ensuring that both x(#) and 6(t) are bounded. Due to §(t) = 6 — (t), We can draw a conclusion that B(t) is

bounded forany ¢ € [0,T) .
Part B: To begin with, integrating both sides of equation (17), we obtain

T, T,
/ Vdt < / cpVadt (18)
0 0

iy
Subsequently, it can be transformed into fo " epVidt < C where C = V(0) — V/(T,,) is a constant. Thus, we
can conclude that f OTP cpVidt is bounded.

In the following, we will employ a contradiction method to prove the convergence of x(f) to zero at the
prescribed time Tp.
Firstly, we are working on the assumption that

Jm i=e#£0 (19)

Here, 3 is a positive constant. Due to lim p(t) = 400, it causes f OT” cpVidt becoming an inappropriate
t—=T,
point of an unbounded function with T, singularity.
For one thing, due to the monotonic increasing nature of cuV; > 0 over the interval [0, Tp) and F(7) < C,
fOTp cpVidt is convergent. On the other hand, since lim (7}, — t)ouVi = cpe > 0, we can deduce that the
t—Tp~
improper integral f OTP cpVidt diverges in accordance with Lemma 3.

Upon comparison, we observe that the contents of these two fields are contradictory. Thus, assuming Eq.
lim V1 =e=0
(20) cannot be satisfied, which shows t—T}, = . Additionally, according to Eq. (15), it can be inferred

that lim x = 0. Firstly, by leveraging the existence and continuity of solutions x(t), we obtain z(7,) = 0 and
t—Tp~
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u(Tp) = 0. Subsequently, due to f (¢, z(t), u(t),d) being zero at the origin, and for V¢ > T}, u(t) =0, we
have z(t) = 0, 6(t) = 6(T},). Based on Definition 1, two parts of proof, we conclude that the equilibrium point
of system (1) is globally defined and time steady. Prove that it has been completed. O

Remark 2 Through the proof of Theorem 1, we observe that as £ — T},, V monotonically decreases and skews
toward to be constant, V; converges to zero, and V> remains bounded. Additionally, for ¢ > T}, V (t) = Va(t),
and Vi (t) = 0.

Remark 3 For system (1), if the parameters 6 is known and Theorem 1 holds, setting V> = 0, (17) reduces to
V(t) < —cu(t)V,Vt € [0,Tp) (20)

Considering Remark 2, we can ascertain that u(t) is considered as the T-FTS function in reference®*. Hence, (21)
is equivalent to Eq. (7). In general, for some systems, Theorem 1 in this article can be converted to Theorem 1
in reference™®.

Remark 4 In actual control systems, due to the limited energy that actuators can release, the control signal u(#)
cannot be infinitely large®*. Therefore, it is essential to choose an appropriate 7, — PT A function to ensure the
bounteousness of the controller u(t).

Design of formation controller
Virtual quantity design
Base on the Sliding Mode Control, define the state vectors of the system z; and 22 as:

21 = €5 COoS e, — €y sine, (1)
Zz2 = egsiney, + ey cos e,
Derive from 21 and z2, we can obtain:
Z = uf + f1 cosey, — f2 sin ey + zarf (22)
%22 =vs + fisine, + facose, — 217y

Assuming uy and vy are the inputs of (z1, z2) system, then uy, and vy, are separately the virtual quantities of
uy and vy. We consider the Lyapunov function as Vi = 321 + 322°. Then uy,, and vy, are obtained:

(23)

uyg, = —k1z1 — f1cose, + fasine,
vy, = —kazo — fisine, — facose,

Where k1, k2 are the design parameters. The velocity error is e, = vy — vy,, its derivative is &, = Uy — Vyq,
which is:

mi1 da2
urry — m—vf

éy =
ma2

+ k2 (vf + fisine, + facose, — z17f) (24)
+ ficosey(ri —Tf)

— fasine,(r; — ry)

r; and 75 represent the roll speed of the leading USV and the following USV respectively. us and vy represent
the longitudinal and lateral speeds following the USV, respectively.
Due to simplified control design, the back-stepping method is introduced. Therefore, we define the tracking
error as:
{pl . (25)
p2=Tf — Q1

Among (25), vy and vy, are system input and corresponding virtual quantity respectively. & (t) represents the
outputs of the following first-order filters:
Ta(t) + at) = aft) (26)

where the constant 71 > 0 and «(t) is virtual control signal. By introducing periodic sliding mode method, we
can solve the problem with unknown control direction. Therefore, define the virtual signal o1 and the actual
control law 7, ¢ as:

a1 = Ri(t) sgn (sin (501 (t))) (27)
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Tiry = Ra(t) sgn (sin (%O’z(t))) (28)

where R is the adaptive gain function, sgn is the sign function, and €1 > 0,2 > 0 are the normal number. o;
indicate the sliding mode surfaces represented by the equation below:

t
§i(k) ,
oi(t) = &(t —|—ci/ —— —dk,i=1,2 (29)
W=6te | S wa-n2m)
where & > 0and ¢; > 0 are positive constants. And

&(t) = In (H"(t)> (30)

(31)

where p;(t) is the pre selection bound performance function. From (2) of part B in Section II, p;(¢) is a
differentiable, bounded, positive, and decreasing function over time, typically chosen in the form of the following
index:

pi(t) = (pio — pic)e” " + pisoo (32)
where constants p; 0 > pi,eo > 0 and I; > 0. It should be noted that the function p;(¢) should meet with

p1(0) > |v7(0) —vo(0)| and p2(0) > |ry(0) — a1 (0)]. In (28), the expression of adaptive control gain
function is as shown below:

R;i(t) =ri(t) + 1i0 (33)

where r; o is Positive scalar. And the adaptive term r;(¢) can be derived from the following equation:
t
’f‘i(t) = — (/ i ‘X1(7)| dr + Si70) sgn (Xl(t)) (34)
0

and:

Xilt) = Ralt) = 32 [a1.ea(0)] — B (5)

where s;,0, 11; are normal numbers, E; are small positive scalars. The normal numbers h; meets with0 < h; < 1.
In (25), taking the derivative of velocity error p yields:

P1 = 1M1p1 +Mmp1

:mlfu r ——dzfv — 0
May frf may f fa
36
= (p2 + Ri(t)sgn (sin (6101 (t))) (36)
1
. miyf d2f .
— T1Q1) —Uf — ——Vf — Vfq
1 1) p—. — f f
where
= o ( + Ri(t)s n(sin(io (t))) — T ) My
Wl—pl p2 1 g o 1 1001 g f
(37)

~ B e —mp
may f fa — NP1
== hl(t7nlv772)

From (23), the derivative of v, is:

Ufa = ko (vf + fisine, + facose, — z17y)
+ frcosey(ri —ry) (38)

— fasiney(ry —ry)
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C L am)
Because of §1 = 17?,11?@) , and from (29) and (37), we can obtain:

ciéi(t)

a1(t) = &u(t) + 1 -2 @)

2 ™
=— < Ri(t in (—o(t
By | @+ s (sn (S 0) )
myg o dey c1é&r
)mzfuf m2fvf Ufa = MmpLt 2 1 (39)
-2 Ri(t)sgn (sin (10 (t))) x ALy,
EIGIEEEI0) ) M a’t may
+N1(t)]
where
Ni(t) = — da+ (p2 — T1—01) Ly — @uf —mpr + ad (40)
mayf mayf 2
.1 fmay —may _de
2 = P [me ugvy 7m3f rf
. ™ 1
+ b1 R2(t) sgn (sm (gUg(t))) P (41)
—1N2p2 — 561]
= hQ(ta 7717772)
&a(t) = &(t)
n c262(t)
p2(t)(1 = n3(t))
2 ™ 1
-2 bRt ((7 t))— (42)
01—y | s W) )
+N2(t)]
No(t) = —“aq 4 MU Zm2r, o Gar 4 O282 (43)
msy maf 2

Position controller design

The following part is intended to use a design controller to converge the actual velocity to the virtual expected
velocity. When the velocity error approaches zero, the USV formation is in stable status. Design the speed error
as €y, = Uif — Uifaq. After taking the derivative of the e, we can obtain that:

. 1 mo d1 .
€y = —Tiuf + —fvfrf — —fuf —Ufa (44)
mif mif maiyf
diy . . o .
Let 07 ko = :?ﬁ VETF — mllff uf — Ugq Prior to designing a controller, select the Lyapunov function as:

V = Vi + Va. Where V7 and V5 are defined as:V; = Z 05, Vo = 0T T~ 9 Next, we will raise an adaptive

i=1
specified time controller for any given time Tp. The design process can be separated into two situations:
0<t<Tpandt > T,.
Case 1 (0 < ¢ < T5): The following is the formula for state transformation:

o= (45)
02 = ey — P
where /3 indicates the virtual controller. Next, we will design a timing controller based on the backstepping
method. This method has two steps.
Step 1: The derivative of 01 meets with
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01 =02+ b1 (46)
Design the virtual controller 81 as
_ 51 01
= (47)

where d1 > n is design parameter. The derivative of 01 and Wi = 012 + V5 satisfy

6101

S T
01 T, —1 + 11
: 281012 P i (“48)
Wi = -2 4 20100 + 207 (A — T 10)
T, —t
where Y1 = 02, A1 = 0.
Step 2: Considering (45) and (47), the derivative of 02 meets with
. 0p1; 0P 0p1
= 0" ko — =210 — v — ——
02 o T1cosp + 0" Ko Y Be, Cuy N (49)
Design the controller 7 and the adaptive as:
m —0T ks + @ X
L 17 (=07 k2 079::FA2 (50)
cos
where Ay = A; + 02k2. And
5101 6/81 aﬁl aﬁl 651
P = — — — ~T'A w I—
1 T, —t O1+8t+80 2+8e$e‘”+m 8902 (51)
Then, we can obtain that
02 = — 0202 + T2
»p—t (52)
V=W < 2NtV
where Yo = —o01 + 6T ko + %(FAQ — é) + KQF%O% N(t) = % is the function of T, — PT A.
Case 2 (t = Tp): When t > T, design the control signal and adaptive law as:
n=0 6=0 (53)
Attitude controller design
The angular velocity error can be defined as e, = 7y — 74, derivation on both sides
mi1 — Moz ds3 1 .
Cp = ———————UfVf — —Tf+ ——Tirf —Tfa
mass3 m, mas3 (54)
ér = Tirf + d)

Similarly, select the Lyapunov function as: V = Vs + V), where V3 and Vj are defined as:

n
Va=3g5,Va=0"T""9
i=1
Next, we will raise an adaptive specified time controller for any given time 7. Similarly, we will discuss in
two cases.

Case 1(0 < t < T}): The following is the formula for state transformation:

g1 = €y

g2 =er — B2 (53)

where (2 indicates the virtual controller.Next, we will design a timing controller based on the backstepping
method. This method has two steps.
Step 1: The derivative of g1 meets with

g1 = g2 + P2 (56)

Design the virtual controller 32 can as
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0291
B2 = T,—1 (57)
where d2 > n is design parameter. The derivative of g1 and W» = 912 + Vi satisfy
. d391
=_——2 17T
g1 T, —1 + I3
20 y (58)
Wy =— 20198 -+ 201 g2 + 207 (Ag—r1é>
T, —
where T3 = g2, A3 = 0.
Step 2: According (45) and (47), the derivative of g2 meets with
. 1 T 0B2j5 0B 082
— 0Ty - 2 2, O
g2 P Tirf + 0 K3 20 de., e ot (59)
Design the controller 7 and the adaptive law as:
T2 = 33 ( 9 K3 + CI)Q) é (60)
where Ay = As + gaks. And
d3g1 0Bz | 0B 0B 082
Py = — — T'As + —e, I'—
2 T, —t ot 20 —&-8(/;6 + K3 8992 (61)
Then, we can obtain that
, 4Gz
= + Yo
g2 T — 62)

V =Wy < —2N(t)Vs

where Yo = —g1 + 07 ks + aﬁz (FA — 6) + N3F%g2, and N(t) = ﬁ is the function of T, — PT A.
Case2 (t > Tp): When t > Tp, design the control signal and adaptive law as follows:

:(),é:o (63)

Stability analysis
In this section, we provide the theorem below to analyze the bounteousness of uncertainty N1(t), N2(t) and
closed-loop systems.

Theorem 1 Both Assumption 1 and Assumption 2 hold, if design the controller as (27) and (28), and the control
gain functions are designed as (33)-(35), then the following two conditions are met:

(a) Allsignals in a closed-loop system are bounded.
(b) For V¢t > 0, the errors p; satisfy |p; (t)| < pi(t).

Theorem 1 can ensure that the preselected performance limit p;(t) meets the following condition:
t € [0, +00). Moreover, the uncertainties N; ( still has a boundary for ¢ € [0, +00). For the following design
process, the above explanation is very necessary.

When the synovium moves, we have:

N1 N>

E:Teq = _H (64)

Qleq = —

It should be noted that V7 and .bo are unknown, so the equivalent control signals cv1,¢q4 are also unknown. But
we can introduce filters as ¢1—au,eq + @1,eq = au which can obtain approximate value &4 according to
Theorem. Then, add &,e4 to the adaptive scheme (35).

Theorem 2 Both Assumption 1 and Assumption 2 hold. According to the control law (27) and (28) with adaptive
solutions (33)-(35), so we can achieve the following control objectives:

(a) Adaptive gain R;(¢) is still bounded.
(b) The tracking error p; asymptotically converge to 0.
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Proof Define s; as s1 = fot w1 | X1(0)|d6 and Ay = s1 + s1,0, where s1,0 is a positive scalar. Equation

71(t) = —A1sgn (X1 (t)) and 81 = p1 | X1(t)| hold. From Theorem 1, [N1| < Ny with an unknown normal
number N, the proof process is separated into the three stages below.

Phase 1: R1(t) < g—ol

This  situation implies that the system is in the arrival stage, so we have
loa| = [R1(t)] - [ sgn (sin (igl (t))) | = |R1(t)], Please take notice that there is currently no definition
of equivalent control, so we take into account the approximate accuracy |(|@1,eq(t)| — |(@1(t)])|. Given that
Lemma 2, there are scalars lp > 0,0 < I3 < 1. Then |(|a1,eq(t)| — |1 (¥)|)] < 1 |a1(¢)] + lo hold. This
leads to |@1,eq(t)| — |1 (t)] > —l1 |a1(t)] + lo, resulting in |a1,eq(t)| > (1 — 1) |aa ()] — lo. Noted that

b, < b1, B> 220 and 0 < h; < 1 — 1. Then, it is obtained that:
21
Then, it is obtained that:

bo

X1(t) = Ra1(t) — b |Q1,eq ()| — En
)
bo(1—11) - bol
< Rl(t) — % |Oél,eq(t)| + hfbo -k (65)
20 0
Eo(l — ll) BOZO
_ _ oo =0) B
Rl(t) hlé |R1(t)| + hll_) 1
0 0

wheregofllligm > land 220 — B < _ bolg. < 0,thus X1(t) < Oholds. After a period of time, R1(¢) > M@
=20 0

bol 1
h1 QO hi Q 90
is satisfied.

Phase 2: Ry (t) > My

Define thatw: (t) = Ri(t)

function candidates as Vi = %(01 (t) — k161)2, where k1 is positive constants. Find the derivative of V; for t:

Ni(t
— ‘;7(” which has constants w0 > 0suchaswi (t) > w1,0. Choose Lyapunov
20

Vi = (01(t) — k1e1)61(t)

- 2nlO e (o p, @) sen (30 (Zon0)) + 0)

If the control function by > 0, then bo > by. If o1(t) = kie1 is satisfied with k1 is odd, then
sgn (sin (ﬁal (t))) = —sgn(o1(t) — kie1) is met. And (66) can be expressed as:

(66)

2(=boR1(t) + N1 (t)]) [o1(t) — kaex]
p1(t)(1 —m?2(t))

Otherwise by <0, bo<—b, in the field of o1(t)=kiex with ki is even, then

sgn (sin (ial (t))) = sgn(o1(t) — k1e1) is met. And (66) can be expressed as:

Vi <

(67)

o 2(boRa(t) + [N1(t)]) |on(t) — kien]

Vi < (68)
' p1(t) (1 —m?(t))
Therefore, it can be noted that p1,0 < p1(t) < p1,00 and 0 < 1 — n12(t) < 1, and we can obtain that:
v < 200 Ba(®) + [N (1)) o1 (2) = krea
1 x 2
PO —mi2(0) o
_ 2bywi(t) o1 (t) — kie1] < 2v/2byw1 0 Vi
- X T 1
()L —m>(t)) P1,00

This represents that the sliding mode happens. Phase 3: When the system moves on the sliding surface, 55 (t) = 0
always holds true. According to Theorem 1, @1,¢4(t) is bounded. Suppose |@1,¢q ()| < 7 has a positive scalar j.
Therefore, we can obtain the derivative of X; (¢) on the sliding surface as shown below:

Scientific Reports |

(2025) 15:19483 | https://doi.org/10.1038/541598-025-95695-3 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

. . bo d ,_
Xi(t) = Ra(t) - hj; 7 [0ea(t)]
99
. by - _
=R (t) - hl(l)) Q1,eq(t)sgn (01,eq(1)) (70)
99
e o
<R (t) + b
99

Substituting (33) into (70) yields:

; . d —wnt , boj1
Xi1(t) < t — ! 71
1()\r1()+dtl|§1||t6 +h1b0 (71)
where £||&1]],e”7*" is bounded. Let |ai1,¢q(t)| < j1, % (H§1||t67wlt) < Mi — s1 (), constants ji and M
are Positive values but unknown. Define that K7 (¢) = 2‘31 + M — s1 (t). The Lyapunov function candidates
20
can be selected as:

1o 1 o

t)=-X —K
Vx, (t) g1 + o (72)

where K (t) = —$1 (t) = —p1 | X1] hold. Then, we can obtain that:
Vx, (t) = X1+ K1 K,

boj1

hab,

< =1 | Xa| + 1] X4

=—51|X1] <0

< X+ My | X + | X1 — K1 X4]

Its obvious that when V¢ > 0, Xi(¢) and e;(t) are bounded. Consequently, the adaptive gain R(f) remains
bounded, ensuring the target (1). According to LaSalle invariance principle, it is follows that:

b B

X1(t) = |R1(t) — m |a1,eq(t)] — En| < 5 (74)

In the first phase, it is follows that |&1,eq(t)| > (1 — 1) |1 (¢)| — lo. Then (74) yields
Ri(t) 2 |an.eq(t)| — En

bo(1—11) - bolo ~ E:

hlbl |a1,eq(t)| hlé() 7 (75)

_Bla-1) bl B

hab, hiby, 2

[bocrt,eq(t)]

_ b
Where the function Bi(t) = i, and B;(t) > 1. From (64), we can get |boa1,eq (£)| = |N1|.
And thus

|B1]|N1| (1 —11) bolo Eq
B o 76
by h1b, 3 (76)

Ri(t) 2

Where E; > 31511)10 and 0 < h1 <1—11, then —5020 % >0 and ‘Bll}(L;ll) > hold. This led to
1B, 1bg 1
N
Ri(t) > ‘éll‘.
Noted that on the synovial surface, o1(t) = kie1( and &1(t) =0 are satisfied, we can get that

Gi(t) =&i(t) + pl(t)c(lfj;tl) @y = 0- Select the Lyapunov function as W, (t) = $& 7, and it is follows that:

01521“) <0 (77)

Wit) =661 =~ ay S

O
Simulation

Simulation parameter setting
The parameter settings for the USV are specified as follows:
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mi; = 1.2 x 10° kg,d1; = 2.15 x 10* kg -s~*
moe = 2.179 x 10° kg, doe = 1.17 x 10® kg - s~ !
maz = 6.36 x 107 kg, dzz = 8.02 x 10 kg - s™*

Based on (5) and (44), the following system is obtained:

€r = Ujf COS€EL, + Vi FSINEL, + €yri +
S A SR LN Y
€u = 5 Tiuf + myy VifTif ma  Wif — Ufa
In Equation (51), we stipulate that:
Ao = A1 + 02k2

5101 861 aﬂl 8/31 861

P = — — —_— ~T'A ” I'—
1 T, ¢ 01 + 5't+80 2+86161+KL2 8902

when T, = 0.5s,the simulation results can be shown in Figs. 4, 5, 6 and 7.
Based on the attitude model (7),

o, — M1l _ dao

VF = WTF T gy U{i b
L, mil—mao _ dss 1
rr= maz TS T g VS + maz 'S

In this paper, the time-varying parameter 6(t) is regarded as the controlling direction. To account for possible
signal switching of the control direction, based on the models By = {"luy, By = %H,the control parameter

6(t) meets with the following conditions:

1 0<t<005s
o(t) :{ ~1 t> 0.05s

In this scenario, the control direction in t = (.05. The initial conditions are set as vy = ry = 0.01, with
b1 = 1000, b; = 1;b2 = 1000,b, = 1. The control objective is to force the output to track the required output
vfa = sin(5t) when satisfying the constraints of the following performance functions:

p1(t) = (1 —=0.01)e >* +0.1
p2(t) = (4 —0.1)e™ %% 4 0.4

Set the control parameters to: ¢; = 0.5, e1 =2, 1 =0.015, E; =0.11, r; 0 = 0.23; w1 = 0.5,
51,0 = 13.5, h1 = 0.8,51 = 1,7‘1 = 0.25; C2 = 2, g2 = 3,1/)2 = 0.035, By = 0.11,7“2,0 = 15.57/1,2 = 0.5,
s2,0 = 22.5, hp =0.75, (2 =1. The simulation results can be shown in Figs. 8 and 9.

The simulation result

Figure 3 presents the USV swarm trajectories based on the preset-time adaptive periodic sliding mode control
method mentioned in (28). The figure shows the two-dimensional trajectories of five vessels. It can be observed
that as the routes of the vessels extend, the curves of different vessels exhibit similar trends overall. This indicates

-200 0 200 400 600 800 1000 1200 1400 1600 1800 2000

] T T L] T L) T T L) T
2500 | < 2500
2000 | 4 2000
1500 4 1500
=]
~
>
1000 | "4 1000
500 | 500
of 40
1 1 1 1 1 1 1 L 1 1

-200 0 200 400 600 800 1000 1200 1400 1600 1800 2000
x/m

Fig. 3. Formation trajectory diagram.
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Fig. 4. X-axis position error diagram of USV.

0.4 F <10.4

Fig. 5. Y-axis position error diagram of USV.

that the swarm control method can enable multiple vessels to maintain a certain level of coordination and
adaptability. Figure 4 is a chart showing the variation of the USV’s position error on the X-axis over time. As the
USV’s sailing route swings in Fig. 3, the data points fluctuate above and below the zero-error line, with the error
values ranging from — 0.025 to 0.025 m, indicating that the position error of the USV on the X-axis is relatively
small.Similarly, Fig. 5 presents the variation of the USV’s position error on the Y-axis over a specific time period.
The error values show a certain decreasing trend over time, and the error range is small, which can be considered
as tending towards stability.

In Fig. 6, the red and black lines represent two state variables of the unmanned surface vehicle. Under the
finite-time control method, these state variables remain stable only for a finite duration of time.After a certain
point in time, the state variables will start to deviate from their stable values. Large errors in state variables may
lead to a decrease in system stability. Especially in finite-time control methods, when the state variables deviate
from their stable range, the system may become unstable, resulting in performance degradation or even loss of
control. In Fig. 7, blue and green represent the error of the unmanned surface vehicles under prescribed-time
control, while black and red represent the error under finite-time control. As shown in Fig. 7, this indicates that
prescribed-time control is capable of accurately converging the error to zero within a predefined time period,
exhibiting high control precision and stability. In contrast, finite-time control can only guarantee that the error
remains bounded within a finite time, but cannot achieve zero-error precise control.

Figure 8 is used to demonstrate the variation of tracking error over time. As shown in Fig. 8, the tracking
error converges approximately to zero around 0.05 s, even when considering disturbances and changes in the
sign of the control direction. This indicates that the proposed control scheme remains effective. Figure 9 is an
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Fig. 6. Arbitrary state variables of USV under finite-time control.
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Fig. 7. Comparison of control error between finite-time and prescribed-time control for USV.
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Time/s

output curve that changes over time. The red dashed line represents the desired velocity value, which is a preset
velocity curve that is expected to be achieved. The blue solid line vy, is the output velocity value. The blue solid
v, line closely follows the red dashed line, indicating that the system performance is good and it can accurately

track the desired velocity.

The simulation demonstrates the feasibility of our controller design.

Conclusion

This article delves into the adaptive prescribed-time control problem for unmanned surface vehicle (USV)
formations, tackling complexities stemming from system nonlinearity, environmental uncertainties, and the
intricacies of control strategy design. We introduce an innovative control approach grounded in prescribed-
time and prescribed-performance control (PPC), initially defining prescribed-time stability. Subsequently, we
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Time/s

Fig. 9. Output curve.

present a tailored novel adaptive prescribed-time convergence theorem, leveraging it to devise a time-varying
state feedback controller for uncertain nonlinear USV systems. This controller ensures tracking errors converge
to zero within a user-defined time frame, independent of initial conditions, thereby enhancing flexibility
and adaptability. Furthermore, it employs periodic sliding mode techniques to effectively handle uncertain
control direction switches, while minimizing computational burden by forgoing complex time-varying state
transformations. The experimental results show that the predetermined time control can converge the tracking
error to zero within the user-defined time frame, regardless of the initial conditions. This feature provides strong
support for the practical application of USV cluster in complex marine environment.In the future, the research
on the control of unmanned surface vehicle cluster can explore more efficient adaptive control algorithm. For
example, we can try to combine other advanced control algorithms, such as neural network control and fuzzy
control, to improve the intelligent and adaptive ability of control.
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