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Speech emotion recognition with
light weight deep neural ensemble
model using hand crafted features

Jaher Hassan Chowdhury?, Sheela Ramanna'* & Ketan Kotecha?

Automatic emotion detection has become crucial in various domains, such as healthcare, neuroscience,
smart home technologies, and human-computer interaction (HCl). Speech Emotion Recognition
(SER) has attracted considerable attention because of its potential to improve conversational robotics
and human-computer interaction (HCI) systems. Despite its promise, SER research faces challenges
such as data scarcity, the subjective nature of emotions, and complex feature extraction methods.

In this paper, we seek to investigate whether a lightweight deep neural ensemble model (CNN and
CNN_Bi-LSTM) using well-known hand-crafted features such as ZCR, RMSE, Chroma STFT, and MFCC
would outperform models that use automatic feature extraction techniques (e.g., spectrogram-based
methods) on benchmarked datasets. The focus of this paper is on the effectiveness of careful fine-
tuning of the neural models with learning rate (LR) schedulers and applying regularization techniques.
Our proposed ensemble model is validated using five publicly available datasets: RAVDESS, TESS,
SAVEE, CREMA-D, and EmoDB. Accuracy, AUC-ROC, AUC-PRC, and F1-score metrics were used for
performance testing, and the LIME (Local Interpretable Model-agnostic Explanations) technique was
used for interpreting the results of our proposed ensemble model. Results indicate that our ensemble
model consistently outperforms individual models, as well as several compared models which include
spectrogram-based models for the above datasets in terms of the evaluation metrics.

Keywords Speech emotion recognition, Averaging ensemble, Convolutional neural network, Bi-directional
LSTM, Audio signal processing

Emotions play a crucial role in human social interactions, aiding communication through different channels
including facial expressions, speech patterns, and body language!. The significance of automatic emotion detection
through computer vision has garnered considerable attention across various fields, such as healthcare?, neuroscience,
smart home technologies, and cancer treatment®*. This growing interest underscores the importance of emotion
recognition as an expanding field, owing to its profound impact on human life. SER is increasingly being adopted in
human-computer interaction (HCI), where it contributes to improving the intelligence of conversational robots and
HCI systems>°. By interpreting emotions expressed through speech, SER enhances service quality and promotes
more natural and personalized interaction experiences’.

In recent years, various algorithms have been proposed for extracting features from audio signals to address
challenges such as noise and signal complexities. Among the commonly used algorithms are Zero Crossing Rate
(ZCR), Mel-Frequency Cepstral Coeflicients (MFCC), and Root Mean Square Energy (RMSE)3-1°. Moreover,
advanced neural models like Convolutional Neural Networks (CNN)!!, Bi- Directional Long time Short Time
Memory (Bi-LSTM)'2, and CNN + LSTM (CNN-LSTM)!? have proven effective!* for audio signal processing.
These models excel in automatically capturing temporal dependencies and extracting meaningful features from
audio signals. However, despite its promise, SER research encounters challenges from the scarcity of high-
quality data, the subjective nature of emotions, and the complexity of feature extraction methods. While feature
extraction methods like spectral and qualitative features offer relatively high accuracy, their extraction requires
specialized expertise!®.

In this work, we seek to investigate whether a lightweight deep neural ensemble model using well-known
hand-crafted features such as ZCR, RMSE, Chroma Short-Time Fourier Transform (Chroma STFT)'®, and
MFCC'!7 would outperform models that use automatic feature extraction techniques (e.g., spectrogram-based
methods) on benchmarked datasets. Instead of relying on complex and resource-intensive architectures, this
study focuses on the effectiveness of careful fine-tuning of deep neural networks (DNN) in achieving improved
performance metrics. Fine-tuning methods including regularization techniques and LR schedulers were applied
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to optimize our proposed ensemble model. Five publicly available datasets were used for experiments: the
Ryerson Audiovisual Database of Emotional Speech and Music (RAVDESS)!8, the Toronto Emotional Speech Set
(TESS)*, the Surrey Audio-Visual Expressed Emotion (SAVEE)?, the Crowdsourced Emotional Multimodal
Actors (CREMA-D)?!, and the Berlin Database of Emotional Speech (EmoDB)?2. These datasets vary in terms
of sample sizes and also exhibit imbalances in data distribution. Data augmentation was used as a part of the
preprocessing step. Accuracy, AUC-ROC, AUC-PRC, and F1-score were used for performance testing, and the
LIME? technique was used for interpreting the results of our proposed model. This work has shown that our
proposed ensemble model surpasses the compared models, including spectrogram-based models, in terms of
accuracy across the datasets mentioned.

Figure 1 offers a schematic overview of our approach. In Step 1, we begin by preparing the data and applying
enhancement through augmentation techniques. In Step 2, features are extracted from audio signals, followed
by the normalization of data and the handling of any missing feature values. Step 3 involves training neural
network models using these features and obtaining final predictions from our ensemble model. P; (¢) and P (t)
denote the output probabilities of the 1D Convolutional Neural Network (IDCNN) and CNN_Bi-LSTM models,
respectively. The ensemble output probability P(t) is computed by averaging the corresponding probabilities at
each time step ¢ using an averaging unit.

This paper is organized as follows: Sect. 2 provides a comprehensive review of the literature related to SER.
Section 3 discusses handcrafted features, including RMSE, ZCR, Chroma STFT, and MFCC. Section 4 gives
implementation details that include datasets used in the experiments, data augmentation and feature extraction
pipeline, and model configuration and optimization methods. Section 5 details the experimental findings and
compares them with existing studies. Section 6 thoroughly discusses the outcomes of the results. Finally, Sect. 7
wraps up the study by discussing its significance and outlining potential directions for future work.

Review of related works

In this section, we provide a detailed discussion of research related to SER starting with a general overview,
followed by traditional machine learning methods in SER since early work focused on hand-crafted features and
curating datasets. In addition, we discuss recent research on the application of DNNs in SER and conclude with
a detailed discussion of papers related to our proposed study.

General Overview Early efforts in SER focused on representing emotions through various feature sets, which
encode emotional content into numerical values and their variations. Key feature sets in this area include
Interspeech?*?>, GeMAPS (or eGeMAPS)?, and openSMILE?. These sets encompass a range of effective
speech-based features, particularly GeMAPS. However, due to the inherent complexity of SER, researchers
have explored alternative approaches, notably deep learning (DL) techniques. Among these, CNNs have been
used to analyze speech by processing time and frequency information, demonstrating promising results?®2°.
Building on this, transfer learning has been applied in SER, with pre-trained Residual Networks (ResNets) on
large emotional speech datasets being adapted for other datasets. Additionally, advancements in deep learning
architectures, such as attention mechanisms and sophisticated LSTM models, have significantly contributed to
the field. Furthermore, refined feature extraction methods, including phase information®® and mel-frequency
magnitude coefficients (MFMC)?!, underscore the ongoing progress and innovation in SER research.

Machine Learning in SER

Support Vector Machine (SVM)3233, Gaussian Mixture Model (GMM), k-nearest Neighbor (KNN)3* were the
most commonly used classifiers for SER. In*, researchers introduced a statistical feature selection method that
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Fig. 1. Overview of the proposed approach.
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considers the average of each feature within the feature set. Evaluating emotion recognition performance across
multiple datasets, including EmoDB, Extended Natural Task Enacted in Realistic Conditions with Involuntary,
Spontaneous, and Induced Emotional Expressions (eNTERFACE05)%¢, Emotional Voices of Parisiennes
(EMOVO)?¥, and SAVEE, the study employed SVM, Multi-Layer Perceptron (MLP), and KNN classifiers.
The SVM model consistently demonstrated superior classification accuracy across all datasets, except the
eNTERFACEO5 dataset. Zehra et al.* introduced an ensemble-based framework for cross-corpus multilingual
speech emotion recognition. This framework employs a majority voting approach, resulting in nearly a 13%
improvement in classification accuracy. In their work, Noroozi et al.*® presented a novel method for vocal-based
emotion identification using random forests. They utilized a variety of features from speech signals and applied
this method to the SAVEE dataset, employing leave-one-out cross-validation. In*, researchers achieved a
classification accuracy of 93.63% with decision trees and 73% with logistic regression classifiers on a Malayalam
emotional speech database with 2800 speech audios from ten speakers for recognizing eight emotions from
speech based on vocal tract characteristics.

DNN in SER

Recent research has focused on improving the generalization capabilities of DNNs across various datasets.
This has been achieved by using RNNs*’ and LSTM networks*!, which are adept at learning temporal information
crucial for emotion recognition by using contextual dependencies. Nevertheless, RNNs often face challenges
related to gradient descent*?. Recent advancements in automatic feature selection for SER tasks have been driven
by improvements in CNNs*? and DNNs*4%°. Seo et al.* introduced a method that involves pre-training log-mel
spectrograms from a source dataset using a Visual Attention Convolutional Neural Network, followed by fine-
tuning the target dataset with a Bag of Visual Words approach. Experimental results demonstrate significant
performance improvements on benchmark datasets, including RAVDESS, EmoDB, and SAVEE, with accuracy
boosts of up to 15.12% compared with existing approaches. Using parallel-based networks, Bautista et al.*’
worked with eight different emotions on the RAVDESS dataset. They applied various augmentation techniques
and achieved an accuracy of 89.33% with a Parallel CNN-Transformer and 85.67% with a Parallel CNN-Bi-
LSTM-Attention Network. Sera et al.*® introduced Bi-LSTM Transformer and 2D CNN models, applying
dimensionality reduction algorithms with 10-fold cross-validation on the EmoDB and RAVDESS databases.
This approach achieved accuracy rates of 95.65% and 80.19%, respectively. Pan et al.*’ proposed an architecture
that combines CNN, LSTM, and DNN using MFCC features as input to local feature learning blocks (LFLBs),
followed by LSTM layers to effectively capture temporal dynamics in speech signals. Experimental results
across RAVDESS, EmoDB, and IEMOCAP demonstrated classification rates of 95.52%, 95.84%, and 96.21%,
respectively. In*’, spectrogram features extracted from the RAVDESS dataset were input into a DNN with a
gated residual network, resulting in an accuracy of 65.97% for emotion recognition on the test data. Issa et al.>!
extracted spectral contrast, MFCC, and Mel-Spectrogram features, which were fused and used as input for a
DNN model, achieving an accuracy of 71.61% with the RAVDESS dataset. However, their CNN model struggled
to effectively capture the spatial features and sequences crucial for speech signals. Zhao et al.?? used CNNs to
extract features from raw speech signals and employed RNN models to capture long-term dependency features.
Pawar et al.>? trained a CNN model using MFCC features and achieved an accuracy of 93.8% on the EmoDB
dataset. Bhangale®® trained a 1D CNN model using a range of acoustic features and achieved accuracies of
93.31% on the EmoDB dataset and 94.18% on the RAVDESS dataset. Badshah et al.>* employed a double CNN
model with input generated from spectrograms using the Fast Fourier Transform (FFT). Chen et al.> introduced
a comprehensive audio transformer for speech analysis, incorporating a speech-denoising approach to learn
general speech representations from the unannotated SUPERB®® dataset.

Discussion on papers related to our proposed model

In this section, we provide a brief overview of research that is directly relevant to our study. Akinpelu et al.>’
developed an efficient model by integrating Random Forest and MLP classifiers within the VGGNet framework
resulting in accuracies with the following datasets: TESS (100%), EmoDB (96%), and RAVDESS (86.25%)
with the MFCC feature. Ottoni et al.*® trained CNN and LSTM models resulting in good accuracies with the
following datasets: RAVDESS (97.01%), TESS (100%), CREMA-D (83.28%), and SAVEE (90.62%) with the
MFCC, Chroma, ZCR, and RMSE features. Jothimani et al.”>® utilized a combination of MFCC, ZCR, and RMSE
features, along with data augmentation techniques, to train a CNN model. The model achieved accuracies of
92.60% on RAVDESS, 99.60% on TESS, 89.90% on CREMA-D, and 84.90% on SAVEE. Jiang et al.®® developed
a hybrid model that integrates convolutional and recurrent neural network components to combine spectral
features with frame-level learning, applied to the EmoDB, SAVEE, CASIA®! and ABC%? datasets. LSTM handles
temporal features, while a CNN processes static, delta and delta-delta log Mel-spectrogram features. The model
integrates and normalizes these features. Mustageem et al.*® introduced a method that employs radial basis
function networks to measure similarity by selecting important sequence segments, applied to the IEMOCAP,
EmoDB, and RAVDESS datasets. The selected segments are converted into spectrograms using the STFT
algorithm, processed by a CNN model for feature extraction, normalized, and then fed into a deep Bi-LSTM
model for temporal information learning. In®, researchers proposed a self-labeling method that segments and
labels frames with corresponding emotional tags using a time-frequency deep neural network. They enhanced
performance with a feature transfer learning model, demonstrating effectiveness on datasets like EmoDB and
SAVEE. Guizzo et al.%° proposed RH-emo, a semi-supervised framework for extracting quaternion embeddings
from real-valued spectrograms. This method uses a hybrid autoencoder network, which integrates a real-valued
encoder, an emotion classification component, and a quaternion-valued decoder. When tested on IEMOCAP,
RAVDESS, EmoDB, and TESS datasets, RH-emo demonstrated improved test accuracy and reduced resource
demands compared to traditional CNN architectures. In®, the researchers introduced a combination of dilated
CNN and residual blocks along with Bi-LSTM including attention mechanisms to improve feature extraction
and model performance on the IEMOCAP and EmoDB datasets. Kwon et al.” proposed a one-dimensional
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dilated CNN that incorporates residual blocks and sequence learning modules to extract and learn spatial
features which resulted in accuracies of 73% (IEMOCAP) and 90%(EmoDB). In their paper, Krishnan et al.%
explore recognizing seven emotional states from speech signals using entropy features based on randomness
measures. They decompose speech into Intrinsic Mode Functions and compute entropy measures from different
frequency bands. The resulting feature vectors are used to train various classifiers, with Linear Discriminant
Analysis resulting in an accuracy of 93.3% with the TESS dataset.

Representative features
In this section, we provide a brief overview of the methods for computing four widely used features in speech
and audio signal processing.

Mel frequency cepstral coefficients (MFCC)

MECCs are derived from the Mel-frequency scale, which is designed to align with human auditory perception.
Given a discrete-time audio signal s[n], let Spre-empn [12] denote the signal after applying pre-emphasis, h[n] be
the window function, and S(f) represents the magnitude spectrum obtained via FFT. The steps to compute
MEFCC:s are as follows, as detailed in Egs. (1 to 6):

1o Pre-emphasis: Apply a pre-emphasis filter to enhance high-frequency components of the signal.

Spre-emph[1] = $[n] — pre_emph_coef x s[n — 1] (1)

20 Framing: Segment the pre-emphasized signal into short frames, typically ranging from 20 to 40 millisec-
onds, and apply a window function to each frame.

Sfranle[n] = Spre-emph [n] X h[n] )

30 Fast Fourier Transform (FFT): Transform each frame from the time domain to the frequency domain by
calculating its Discrete Fourier Transform (DFT).

S(f) = DFT{strame[n]} 3)

40 Mel-filterbank: Apply a filterbank consisting of triangular filters arranged according to the Mel scale to
the magnitude spectrum derived from the FFT. Denote m/[f] as the m-th frequency on the Mel scale.

0 o if f<m[f—1]
sl i m[f —1] < f < mf]
Gm _ m[f 77{{ 1] 1
] % it m(f] < f < mlf+1]
0 if f>m[f+1]

(4)

50 Logarithm: Compute the natural logarithm of the filterbank energies to approximate the human percep-
tion of loudness, where N is the FFT length.

Ey = log <Z s<f>|20m[f1> (5)

f=0

6°  Discrete Cosine Transform (DCT): Perform the DCT on the logarithm of the filterbank energies to trans-
form and decorrelate the features, resulting in the MFCC coefficients.

F—-1
MFCCy, = 3 cos [% (i +0.5) k} Enm ©)

=0

where MFCC), represents the resulting MFCC coefficients, and F denotes the number of Mel
filters.Zero crossing rate (ZCR)

The Zero Crossing Rate (ZCR) measures the rate at which the amplitude of a speech signal crosses the zero level
within a given time frame. It is computed by averaging the number of zero-crossings across the length of the
signal, as outlined in Eq. 7:

N-1
1
ZCR = m Z 1{xia:,i,1<0} (7)
=1

where x represents a signal of length N, and 1¢,,., , <o} is an indicator function that equals 1 when the product
xiT;—1 is negative, indicating a zero-crossing, and 0 otherwise.
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Root mean square energy (RMSE)

Root Mean Square Energy (RMSE) is computed for each frame of an audio signal to measure the average
amplitude of the signal, independent of its sign. For asignal a = (a1, az, . . ., an ), the Root Mean Square Energy
(RMSE) value RMSEL, is computed as follows using Eq. 8:

RMSEa—\/i(a§+a§+a§+...+a%) (8)

Chroma short-time fourier transform

The computation of chroma features involves summarizing the spectral information of an audio signal into 12

bins, each representing a pitch class in the chromatic scale. The process is detailed below:

1o Short-Time Fourier Transform (STFT): Begin by performing the STFT to obtain a time-frequency
representation of the audio signal:

STFT(1,6) = ) [a(m) - glm — 1) - 727" o

m

where z(m) denotes the signal value at time m, g(m — t) represents the window function centered at time ¢
and e 727" is the complex exponential for frequency &.
20 Magnitude Spectrum: Calculate the magnitude spectrum from the STFT as shown in Eqn:10:

ISTFT(t,€)| = /Re{STFT(¢,£)}? + Im{STFT(t,£)}2 (10)

where Re{-} and Im{-} represent the real and imaginary parts of the STFT.

32 Mapping Frequencies to Chroma Bins: Map the frequency bins to 12 pitch classes. Each pitch class
corresponds to one of the 12 chroma bins (e.g., C, C#, D, D#, E, F, F#, G, G#, A, A#, B). For each chroma
bin +, the chroma feature Chromay(t, y) is obtained by summing the magnitudes of the STFT bins that
fall into pitch class 7y as shown in Eqn:11:

Chromal(t,y) = Z [STET(t,¢)| (11)

£EBy

where B, denotes the set of frequency bins corresponding to pitch class . The chroma feature Chroma(t) for
a specific time ¢ is a 12-dimensional vector, where each element indicates the intensity of one of the 12 pitch
classes.

Implementation

Dataset

In this section, we briefly describe the distribution of samples across different emotion categories of the five
datasets used in this work (see Table 1). The audio files for these multimodal datasets: SAVEE, RAVDESS,
CREMA-D, TESS, and EmoDB are all publicly available.

The RAVDESS (Ryerson Audiovisual Database of Emotional Speech and Music): The RAVDESS is a prominent
database frequently used in SER research. It features recordings from 24 professional actors, equally divided
between 12 women and 12 men, each providing two types of utterances-one in speech and one in song. The
audio clips are 3 seconds long and are labeled with various emotions, including happy, sad, angry, fear, surprise,
neutral, and disgust. Each emotion is expressed in two intensity levels: normal and strong, resulting in a
comprehensive collection of 2,076 audios.

The Toronto Emotional Speech Set (TESS): The Toronto Emotional Speech Set (TESS) is a dataset comprising
audio recordings of two English-speaking actresses, aged 26 and 64. Each recording is two seconds in length
and is categorized into one of seven emotions: anger, disgust, fear, happy, neutral, surprise, and sad. The dataset
consists of 2,800 audio files, with 400 files allocated to each emotional category.

The SAVEE (Surrey Audio-Visual Expressed Emotion): The SAVEE dataset includes 480 spoken audio
recordings performed by four English-speaking actors, who are between 27 and 31 years old. Each clip is
approximately 3 seconds long and is labeled with one of seven emotions: anger, happy, neutral, disgust, sad,
surprise, and fear.

Dataset Happy | Sad | Angry | Fear | Disgust | Surprise | Neutral | Total
RAVDESS | 192 192 | 192 192 | 192 192 288 1440
TESS 400 400 | 400 400 | 400 400 400 2800
SAVEE 60 60 60 60 60 60 120 480
CREMA-D | 1271 1271 | 1271 1271 | 1271 N/A 1087 7442
EmoDB 71 143 127 69 46 N/A 79 535

Table 1. Total number of audio samples in each dataset.
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The Crowdsourced Emotional Multimodal Actors (CREMA-D): The dataset comprises 7,442 unique audio
samples recorded by 91 actors from a range of cultural and demographic backgrounds. The group includes 48
male and 43 female actors, each of whom recorded 12 sentences. The audio clips, averaging 2 seconds in length,
convey six distinct emotions: angry, happy, disgust, sad, neutral, and fear.

Berlin Database of Emotional Speech (EmoDB): EmoDB, also referred to as the Berlin Emotion Dataset, is
one of the most extensively used collections in SER. It consists of 535 voice utterances, each conveying one of
six distinct emotions. The dataset includes recordings from five male and five female professional actors, who
recited scripted phrases to express various emotions. Recorded at a sampling rate of 16 kHz, each recording
lasts between 2 to 3 seconds. All utterances are standardized to fit within the same temporal window, ensuring
consistent duration across the dataset.

Among the five datasets, most are relatively balanced, except for the EmoDB dataset, which is not balanced.
In this study, with the RAVDESS dataset, the focus was on the speech segments disregarding the audio clips
containing songs. As a result, instead of analyzing the entire set of 2076 audio files from the original dataset, only
1440 audio files that contain speech segments were used. Moreover, to ensure consistency across experiments
with different datasets, we converted the sampling rate of all audio files to 22,050 Hz. To train the deep learning
models, the datasets were split into three parts: 80% allocated for training, 10% for testing, and 10% for validation.

Experimental setup

This work was conducted within a Docker environment, utilizing an NVIDIA RTX 2080 GPU on a Windows
10 Education 64-bit system. The system was equipped with 32 GB of RAM and an Intel Core i7-9700k 3.60 GHz
CPU. The models were developed and executed using the Keras python library (https://keras.io/api/ (accessed
on March 23, 2024)). Visualizations of the results were generated using the Matplotlib library (https://matplotl
ib.org/ (accessed on March 23, 2024)) and the Seaborn library (https://seaborn.pydata.org/ (accessed on March
23, 2024)). Additionally, the SciKit-learn library (https://scikit-learn.org/stable/about.html (accessed on March
23,2024)) was used to create evaluation metrics. Additionally, the Librosa library (https://librosa.org/ accessed
on June 3, 2024) was used to load the audio data and adjust the sampling rate. Moreover, the Numpy library
(https://numpy.org/ accessed on 29 December 2024) was used to generate Gaussian noise and handle the arrays.

Data augmentation and feature extraction process

Fortunately, these datasets provide audio files containing only speech, eliminating the need for additional pre-
processing steps to extract speech segments. Figure 2 describes the process of data augmentation and feature
extraction.

Process (i) outlines the procedure for creating noise-augmented data (N.A.), (ii) details the process for
pitch-shifted augmented audio data (P.A.), (iii) includes both noise-augmented and pitch-shifted audio data
(N.A.+P.A.), and (iv) uses only non-augmented data (O.A.). Subsequently, all these data were processed for
feature extraction and then concatenated to form the final feature set.

In the first method, noise from a normal (Gaussian) distribution was multiplied by a noise amplitude « and
added to the input data. The value for o = 0.035 was experimentally determined to control the intensity of the
added noise. The augmented noise was scaled to a maximum value before adding the noise to the input data. In
the second method, the pitch-shifted audio was obtained by first applying a sampling rate SR and then altering
the pitch by specified pitch factor (8 =0.7) to achieve the desired modification. In the third method, a combined
noise and pitch-shifted audio was used to generate the audio features.

For the feature extraction process, a frame length of 2,048 samples and a hop length of 512 samples were used.
The length of the audio clip for the five selected datasets was typically between 2 to 3 seconds. As a result, we
used 2.5 seconds for the feature extraction process. In addition, the offset parameter was set to 0.6 to ensure that
sufficient features were available for extraction, especially considering that the beginning of the audio files often
contained insufficient information for feature extraction.

The ZCR and RMSE features were computed, followed by a squeezing operation to remove singleton
dimensions. MFCCS and Chroma features were also extracted and then converted into one-dimensional arrays.
The extracted features were horizontally concatenated to form a single feature vector. We have extracted the

Gaussian Noise allpea
[ 9 Amplitude (a ) ] c II (N.A)
Audio Data

i) Noise Augmented Audio (N.A.)

Sampling = ’ Apply Pitch PA
Rate (SR) } Pitch Factor (B) = (P.A)

ii) Pitch Shifted Augmented Audio (P.A.)

1010

Noise Augmented Pitch Shifted
Audio Audio
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Fig. 2. Data augmentation and feature scaling process.
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features from both the augmented and non-augmented audio samples to create the final concatenated feature set
consisting four components: N.A ., PA,, {{N.A.) + (P.A.)} and O.A..

Null values were replaced with zeroes to maintain data integrity. Also, data normalization was done to
standardize each feature independently with the StandardScaler. The librosa library was used for pitch shifting
and for extracting the four features. After augmentation, the RAVDESS training set had almost 4608 samples,
each with 3672 features and 7 labels. The augmentation process increased the dataset size by almost three times
the original dataset.

Model configuration and learning strategy

Table 2 gives the architectural configurations of our proposed CNN_Bi-LSTM model. Each convolutional block
comprises 1D convolutional layers, BatchNormalization, and MaxPooling layers. After processing through
the convolutional and LSTM layers, a Flattening layer is applied to the output. The flattened output is then
passed through a Dense layer, activated by ReLU, followed by BatchNormalization and a Softmax classifier for
emotion classification. Convolutional Blocks 1 and 3 do not incorporate dropout layers. However, for both the
CNN and CNN_Bi-LSTM models, dropout layers were introduced in Blocks 2, 4, and 5 after the MaxPooling
layers. The CNN model shares a similar structure but does not include the Bi-directional LSTM layer before the
convolutional layers.

An ensemble method combining the CNN and CNN_Bi-LSTM models was employed to improve
generalization and reduce individual model biases. Both models share an input layer, and their predictions
are combined through an Average layer. The Adam optimizer and categorical cross-entropy loss function were
employed for training, and the class labels were encoded using one-hot encoding.

Table 3 summarizes the parameter settings used for training the model. The first three convolutional layers
use a kernel size of 5, followed by layers with a kernel size of 3, all with a stride of 1. The ReLU activation function
introduces non-linearity, and a dropout rate of 20% helps prevent overfitting. Padding is consistently set to
“same” across convolutional and max-pooling layers to maintain the dimensions of the output feature map. The
first four MaxPooling layers employ a pool size of “2x2”, while the last MaxPooling layer uses a pool size of “2x1”.

To prevent overfitting, early stopping was implemented by monitoring validation accuracy over five
consecutive epochs. Additionally, an LR scheduler was used to optimize the training process by reducing the LR
by 50% if validation accuracy failed to improve for three consecutive epochs. To prevent excessive reduction, a
minimum LR of 0.00001 was set. The models were trained using a batch size of 64 for 100 epochs.

Layer (type) Output shape Parameters
1D conv. layer (None, 3672, 128) 768
Batch norm. layer (None, 3672, 128) 512
Max pooling (1D) (None, 1836, 128) 0
1D conv. layer (None, 1836, 128) 82048
Batch norm. layer (None, 1836, 128) 512
Max pooling (1D) (None, 918, 128) 0
Dropout (None, 918, 128) 0
1D conv. layer (None, 918, 64) 24640
Batch norm. layer (None, 918, 64) 256
Max pooling (1D) (None, 459, 64) 0
1D conv. layer (None, 459, 64) 12352
Batch norm. layer (None, 459, 64) 256
Max pooling (1D) (None, 230, 64) 0
Dropout (None, 230, 64) 0
Bi-directional LSTM layer | (None, 230, 128) 66048
1D conv. layer (None, 230, 32) 6176
Batch norm. layer (None, 230, 32) 128
Max pooling (1D) (None, 115, 32) 0
Dropout (None, 115, 32) 0
Flatten (None, 3680) 0
Dense (None, 128) 471168
Batch norm. layer (None, 128) 512
Dense (None, 7) 903
Trainable parameters 671335
Non-trainable parameters | 1088
Total parameters 672423

Table 2. Proposed CNN_Bi-LSTM Model (The Bi-directional LSTM layer, shown in bold, is absent in the
standard CNN model).
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Parameter Value
Batch size 64
Epochs 100

Objective function Cross-Entropy (Categorical)

Final layer activation | Softmax function

Adam optimizer 0.001

LR adjustment monitor="validation_accuracy, patience=3, reduction_factor=0.5, minimum_LR=0.00001
Early stopping monitor="val_accuracy, patience=5

Kernel size ”5x1” for first 3 Convolutional Layers ”3x1” for the rest

Pool size 72x2” for first 4 MaxPooling Layers "2x1” for the last

Activation Relu (Rectified Linear Unit)

Padding Same

Dropout rate 20%

Table 3. Applied parameters for training the proposed models.

Method Dataset Accuracy | Weighted F1 | AUC-ROC | AUC-PRC
1D CNN EmoDB 98.60 98.06 100.00 100.00
CNN_Bi-LSTM | EmoDB 94.39 93.74 99.87 99.39
Ensemble EmoDB 98.13 98.12 100.00 99.95
1D CNN RAVDESS | 96.18 96.22 99.91 99.50
CNN_Bi-LSTM | RAVDESS | 97.57 97.29 99.92 99.57
Ensemble RAVDESS | 97.57 97.56 99.95 99.68
1D CNN TESS 100.00 100.00 100.00 100.00
CNN_Bi-LSTM | TESS 99.82 100.00 100.00 100.00
Ensemble TESS 100.00 100.00 100.00 100.00
1D CNN SAVEE 96.88 97.63 99.98 99.87
CNN_Bi-LSTM | SAVEE 89.58 87.42 99.28 96.31
Ensemble SAVEE 98.44 98.45 99.98 99.88
1D CNN CREMA-D | 96.07 96.24 99.77 99.29
CNN_Bi-LSTM | CREMA-D | 97.31 97.34 99.81 99.50
Ensemble CREMA-D | 98.66 98.65 99.88 99.72

Table 4. Performance metrics for different methods and datasets.

Class | Precision | Recall | F1-score | Support
Angry |0.95 1.00 | 0.97 52
Disgust | 1.00 0.94 0.97 17
Fear 0.97 1.00 0.98 29
Happy | 1.00 091 |09 35
Neutral | 0.97 0.94 0.95 31
Sad 0.96 0.98 0.97 50

Table 5. Class wise performance report in EmoDB dataset for the proposed ensemble model.

Results
In this section, Table 4 gives the results of our experiments and the best results highlighted in bold.

It is noteworthy that our proposed Ensemble model performed notably well by averaging the outputs of two
base models (CNN and CNN_Bi-LSTM) with all five datasets, and consistently demonstrated a higher FI-score
than the individual base models. With the EmoDB dataset, the ensemble model was performing slightly lower
than the CNN model in terms of the accuracy metric and matched the performance of CNN_Bi-LSTM model
for the RAVDESS dataset. While LSTM models are known for their effectiveness in analyzing time series data,
our results show that the 1D CNN mostly outperformed the Bi-LSTM models.

Since the EmoDB dataset is the only dataset with class imbalance, it is worthwhile reviewing the class-wise
performance of our proposed model to gain some insights into its generalization capabilities. Table 5 shows the
breakdown of the metrics for each class. Our proposed ensemble model demonstrated exceptional performance
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with a precision of 100%, a recall of 94%, and an F1-score of 97% for the disgust emotion class, despite being
based on just 17 samples. These results show the model’s effectiveness in handling classes with limited instances.

In optimizing a model’s performance, the choice of optimizer and LR is crucial. Analysis of the loss trends
depicted in Fig. 3 revealed that during the initial 10 epochs, the model exhibited high validation loss while the
training loss was considerably low. This discrepancy highlighted that the model is struggling with generalization
to unseen data. To address this issue, a LR scheduler was introduced, which adjusted the LR from 0.01 to
0.005 in the 11th epoch. This adjustment led to significant improvements in both accuracy and loss reduction.
Consequently, by the end of the training process, the model attained a training loss of 0.0095 and a validation
loss of 0.0643.

A key consideration is whether all the features are essential for our experiments. Additionally, we need to verify
if the model is making correct decisions, especially given its high accuracy. For this reason, the interpretability of
the models is also crucial. DNNs are often regarded as “black boxes,” making it challenging to understand their
decision-making processes. To address this, we have used LIME which is lightweight and effective, providing
valuable insights into how individual predictions are made. It allows us to identify which features contribute most
to the model’s decisions, thereby enhancing our understanding and trust in the model’s outputs. Figure 4 shows
LIME explanations for our proposed ensemble model’s predictions across different datasets, highlighting the
impact of various features. By examining random test instances, we can identify significant features influencing the
model’s decisions. The figure indicates that all features contribute, with some having positive influences and others
negative. A more detailed explanation is given in sect. 6.

Table 6 provides a detailed comparison between our work and existing studies, highlighting accuracies,
methodologies, and feature extraction techniques. Our method closely aligns with the approaches of Akinpelu
et al.*’, Ottoni et al.*%, and Jothimani et al.*®, which also utilize MFCC, RMSE, and ZCR features in training
DNN models (also discussed in sect. 2). From Table 6, it can be observed that the models discussed in the two
papers (Ottoni et al. and Akinpelu et al.) achieve 100% accuracy with the TESS datasets, though the methods
and features used are different. What sets our work apart is the addition of the Chroma STFT features and
refined model training strategies. Our proposed ensemble model outperforms Ottoni et al. with the SAVEE
and CREMA-D datasets, surpassing their benchmark results with 98.43% and 98.66% accuracy, respectively.
Similarly, while Jothimani et al. achieved 89.90% with the CREMA-D dataset, our proposed ensemble model
significantly outperforms their model with 98.66% accuracy. Other researchers used temporal, entropy, and
frame-level features but did not achieve strong performance across various datasets.

Discussion
In our approach, we employed both CNN-Bi-directional LSTM and 1D CNN models, which yielded promising
results. Bi-directional LSTMs are particularly effective at capturing temporal dependencies present in audio data,
allowing them to understand the context of previous and future audio frames. Concurrently, 1D CNNs are proficient
at capturing patterns within frequency bands over time from sequential audio features, such as those derived from
spectrograms. Unlike images where 2D CNNs excel at capturing spatial patterns, in the context of sequential
audio data, 1D CNNs effectively capture local patterns along the temporal axis. Averaging the predictions from
these complementary models potentially mitigates individual model biases and enhances overall robustness and
performance in audio data analysis tasks. As a result, the averaging ensemble model excelled in this study across
various datasets, as shown in Table 4.

The second noteworthy point is why the pipeline performed well on the imbalanced EmoDB dataset. The
EmoDB dataset includes audio recordings of varying lengths, which could introduce feature space imbalances.
For example, a 300-second audio clip generates significantly more features than a 3-second clip, potentially
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Fig. 3. Training and validation loss while training 1D CNN model on SAVEE dataset.
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Fig. 4. LIME explanations of model predictions across different datasets.
Author Technique Features Datasets | Accuracy (%)
RAVDESS | 86.25
Akinpelu et al.*’ VGGNet -MFCC TESS 100
EmoDB 96
-MFCC RAVDESS | 97.01
RMSE SAVEE 90.62
Ottoni et al.*® Meta-Learning
ZCR TESS 100.00
CREMA-D | 83.28
MEFCC RAVDESS | 92.60
RMSE SAVEE 84.90
Jothimani etal®® | CNN1D
-ZCR TESS 99.60
CREMA-D | 89.90
Log Mel Spectrogram EMODB 84.53
Jiang et al.® Parallelized CRNN
-Frame Level Features SAVEE 59.40
EMODB 85.57
Mustaqeem et al.®® | Bi-LSTM -Spatial Features
RAVDESS | 77.02
EMODB 84.14
Wen et al.®* Transfer Learning -Log Mel Spectrogram
SAVEE 52.09
EMODB 73.00
Guizzo et al.® Quantarion CNN Real-valued spectrograms | RAVDESS | 55.15
TESS 99.76
Meng et al.% Bi-LSTM 3-D Log-Mel spectrums EMODB 84.99
Kwon®’ CNN Spatial Features EMODB | 90.01
Krishnan et al.% LDA Entropy Feature TESS 93.30
MFCC RAVDESS | 97.57
RMSE SAVEE 98.43
Proposed method | Averaging ensemble | ZCR TESS 100
CREMA-D | 98.66
Chroma
EmoDB 98.60
Table 6. Comparison with existing work. Significant values are in [bold].
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skewing the data. To mitigate this, we extracted uniform-length audio segments across different files, ensuring
balanced feature representation and preventing potential data imbalances.

In the SAVEE dataset, we observed an interesting behavior in the CNN model (see Fig. 3). Initially, the
model’s validation loss showed little improvement during the first ten epochs. However, as we decreased the LR,
the accuracy began to increase steadily. This occurred because the dataset was small, providing the model with
fewer examples to learn from. With a large LR, the model made significant changes to its weights during training,
often overshooting and performing poorly. Conversely, with a smaller LR, the model made more gradual and
careful adjustments to its weights, leading to better performance even with limited data.

Another aspect of this work is model optimization. We worked with datasets ranging from 7442 to 480 samples.
CNNs, which are effective for large datasets, can overfit when the dataset is small. To address this, we fine-tuned
the kernel sizes and filter sizes of the layers. Large models can overfit small datasets, while small models may
underfit large datasets. Thus, we adjusted the model to find a balance that enhances performance across various
datasets. Additionally, early stopping and regularization techniques were also beneficial in this experiment, as they
prevented excessive training and helped avoid overfitting.

Moreover, the importance of chroma features across different datasets should be noted. Traditionally,
chroma features have been used more for music analysis than for speech, with early research focusing mainly
on MFCC and ZCR (see Table 6). However, as shown in Fig. 4, chroma features contribute significantly to
predictions across almost all datasets. Chroma features capture harmonic and pitch information, which are
crucial for recognizing emotions in speech. They effectively represent variations in pitch and harmonic content,
complementing features like MFCC and ZCR by adding harmonic details. This creates a more comprehensive
feature set, helping the model better distinguish between emotional states and improving performance across
various datasets, highlighting the robustness and relevance of chroma features in SER.

From Fig. 4, it is evident that CREMA-D, RMSE, MFCC, and ZCR features are significant contributors,
with RMSE having the highest impact. In the SAVEE dataset, ZCR shows both positive and negative influences,
indicating its complex role. TESS relies heavily on Chroma features, suggesting the importance of tonal
information. RAVDESS also emphasizes Chroma and MFCC, with ZCR having a notable negative influence.
EmoDB presents an interplay of Chroma, MFCC, RMSE, and ZCR, with contributions varying across different
value ranges. Overall, RMSE, MFCC, ZCR, and Chroma are consistently important, though their relative
importance varies by dataset.

Additionally, the lack of data poses another challenge; the models struggle with generalization due to
insufficient training data. Models trained on one dataset may not perform well on another because of the limited
data, diverse emotion classes, and a lack of variety in the speeches. For example, in the Crema-D dataset, the
same sentence is expressed in different ways to represent various emotion classes. On the other hand, datasets
like EmoDB and SAVEE contain a limited number of samples.

Conclusion
In this paper, we thoroughly explored data augmentation techniques and employed classical audio feature
extraction methods such as ZCR, RMSE, Chroma STFT, and MFCC, with five well-known multimodal datasets
illustrating their significance in SER. Additionally, we conducted extensive experiments with learning schedulers
and regularization techniques to construct an effective ensemble model. This study aimed to evaluate the
effectiveness of feature extraction methods, including RMSE, ZCR, MFCC, and Chroma STFT, and to examine
how regularization techniques and learning rate schedulers impact the performance of models built using simpler
CNN variants, as opposed to more complex and resource-demanding architectures. This work has shown that our
proposed ensemble model surpasses the performance of the spectrogram-based model, as indicated in Table 4.
However, this study has its limitations. Hand-crafted feature extraction techniques proved to be time-
consuming and resource-intensive. Using raw audio directly with 1D CNN and LSTM models could save time,
but it may impact the emotion recognition rate for this study. Therefore, a trade-off must be considered between
processing time and accuracy in emotion detection. In our future work, we will explore advanced models for
automated extraction of audio speech features, coupled with the implementation of a robust classification method
to accurately discern speech emotions. Model optimization techniques, diverse data augmentation methods,
feature extraction, and cross-dataset validation could improve efficiency and generalization. Additionally,
enhancing model interpretability and conducting user-centric evaluations would refine the system and assess
its practical impact.

Availability of data and materials

The datasets generated and/or analyzed during the current study are available at: 1. TESS: Toronto emotion-
al speech set (TESS) https://www.kaggle.com/datasets/ejlokl/toronto-emotional-speech-data 2. CREMAD:
https://www.kaggle.com/datasets/ejlok1l/cremad/data 3. RAVDESS: RAVDESS Emotional speech audio https://
www.kaggle.com/datasets/uwrfkaggler/ravdess-emotional-4. SAVEE: Surrey Audio-Visual Expressed Emotion
(SAVEE) https://www.kaggle.com/datasets/ejlokl/ surrey-audiovisual-expressed-emotion-savee 5. EmoDB:
EmoDB Dataset https://www.kaggle.com/datasets/piyushagni5/berlin-database-of-emotional-data
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