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Accurate modeling of satellite clock bias (SCB) is critical for enhancing high-precision positioning 
capabilities. Existing approaches, such as semiparametric adjustment models and neural networks, 
address the nonlinearity and non-stationarity of SCB time series, as well as potential distortions 
from trend and noise component overlap. However, these methods encounter practical limitations, 
particularly in the selection of kernel functions for semiparametric models and the initialization 
of parameters for neural networks. To overcome these challenges, this paper introduces a novel 
integrated model called the Semi-LFA-Informer (SLFAI) model. Moreover, this model combines 
semiparametric techniques with optimized self-attention neural networks and is applied to predict 
SCB for BDS-3. Its performance is compared with other models, including quadratic polynomial (QP), 
spectral analysis (SA), and long short-term memory (LSTM) networks. The comparison is focused 
on prediction stability and accuracy. The experimental results show that the proposed method can 
not only effectively solve the problem of the generalization ability, but also significantly enhance 
the computational efficiency and accuracy. The SLFAI model achieves average prediction accuracies 
exceeding 0.15 ns, 0.25 ns, and 0.35 ns for 3-hour, 6-hour, and 12-hour forecasts, respectively, 
Meanwhile, compared with the other three models, The SLFAI model shows an average prediction 
accuracy improvement of approximately 53.6%, 59.4%, and 43.5% for the 3-hour, 6-hour, and 12-hour 
forecasts, respectively, representing a new approach to acquiring high-quality SCB.
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Background and motivation
With the widespread application of global positioning system (GPS) and other satellite navigation systems in 
various fields, the demand for high-precision positioning is growing rapidly. Real-time precise point positioning 
(PPP) is an important positioning technology that can provide centimeter-level accuracy and is widely used in 
aviation, navigation, autonomous driving, precision agriculture, and other fields1,2. However, the accuracy and 
reliability of real-time PPP largely depend on the accurate prediction of satellite clock bias (SCB)3. SCB is the 
deviation between the satellite clock and the reference clock, and its changes directly affect the propagation time 
of satellite signals, thereby impacting positioning accuracy. Therefore, improving the accuracy of SCB prediction 
is crucial for enhancing the performance of real-time PPP.

Related results
Real-time PPP mainly relies on the state space representation (SSR) provided by monitoring and assessment 
centers (ACs), as well as the broadcast ephemeris. Then it is restored to acquire real-time satellite orbits and 
satellite clock bias products. Although the real-time restoration of precise SCB is sufficiently accurate for real-
time users4, the timeliness and completeness of real-time SCB are easily affected by the latency and instability 
of the internet caused by transmission interruptions5. At the same time, a timing error of 1 ns can result in a 
distance error of up to 3 dm. In addition, while the accuracy of both rapid and final precision SCB products 
offered by various ACs can reach 0.1 nanosecond (ns) (​h​t​t​p​:​​​/​​/​w​w​​w​.​i​g​m​a​​s​.​o​​r​g​/​P​​r​o​d​u​​c​​t​​/​Z​p​/​z​​​z​z​c​/​​c​​a​t​​e​_​​​i​d​/​3​3​.​h​t​m​
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l), their respective delays of 17 h and 12 days impede real-time applications. Therefore, there is a critical need 
to explore methods to enhance the quality of real-time SCB products to meet the timeliness and completeness 
requirements6,7.

Currently, numerous researchers have proposed various SCB prediction models, such as the quadratic 
polynomial (QP) model8,9, grey model (GM)10,11, and spectral analysis (SA) model12,13. A comprehensive analysis 
reveals that while these models have distinct advantages, they also exhibit limitations. The modeling process 
of the QP model is simple, but it can cause serious cumulative errors over time. In addition, the forecasting 
performance of the GM depends on the exponential moving average coefficient of the series, while the SA model 
requires sufficient prior information. The interaction and dependence among SCB parameters, periodic terms, 
outliers, and systematic errors are common in SCB models, making it difficult to obtain the optimal parameters. 
In response, researchers have developed a semiparametric SCB model that segments SCB into parametric 
components, assigns periodic terms to nonparametric components, and categorizes outliers as residuals. This 
model, which simultaneously considers both parametric and nonparametric components, effectively accounts 
for periodic term corrections14–17. used a semiparametric model to correct the dynamic error of the SCB series, 
which mitigated the impact of nonlinear factors and improved the accuracy of prediction. However, subsequent 
researches have indicated that the choice of kernel function and bandwidth parameters critically influences the 
accuracy of parameter estimation in semiparametric models. In addition, inconsistencies in the periodicity of 
different satellite clocks may lead to overfitting or underfitting phenomena17,18. Consequently, the selection of 
kernel functions in semiparametric models can lead to biased estimates, indicating that SCB sequences from 
various satellites might require distinct kernels for accurate modeling, which affects their generalizability.

In addition to linear components, SCB encompasses complex nonlinear factors. To mitigate the impact of 
these nonlinearities, numerous researchers have implemented neural network algorithms19,20. employed a long 
short-term memory (LSTM) algorithm to predict BDS-2 ultrarapid SCB, enhancing prediction accuracy by 50% 
for a 6-hour interval. Similarly21, utilized a bidirectional long short-term memory (BiLSTM) model to forecast 
BDS SCB, achieving superior outcomes compared to traditional models. However, these models are based on 
serial structures of recursive neural networks22, and encounter several limitations: they are incapable of parallel 
processing, failing to fully exploit the computational capabilities of graphics processing units (GPUs), which 
results in significant time consumption. Additionally, the process of sequential data extraction and backward 
transmission may cause information loss, complicating the extraction of deeply hidden features in high-density 
datasets such as SCB, thereby challenging the network training process. Furthermore, common neural network 
practices like random initialization of weights, setting of thresholds, and gradient descent for network training 
can lead to slow convergence and issues with local minima22, hindering the achievement of stable SCB results.

The potential consequences resulting from inaccurate SCB prediction
Inaccurate SCB prediction can have significant consequences across various industries23. In aviation, even 
minor errors in SCB can lead to substantial discrepancies in aircraft navigation systems, potentially causing 
flight delays, increased fuel consumption, and in extreme cases, safety hazards. For instance, data from previous 
incidents have shown that navigation errors due to SCB inaccuracies have led to an average delay of 15 min per 
flight, resulting in significant economic losses for airlines. In the maritime industry, precise SCB is essential for 
ensuring the safe navigation of ships, especially in congested waterways or during adverse weather conditions. 
Inaccuracies here can lead to collisions or grounding incidents. Similarly, in the field of autonomous vehicles, 
reliable SCB prediction is vital for accurate positioning, which is fundamental to the safe operation of these 
vehicles. A study conducted in 2022 reported that SCB inaccuracies contributed to a 10% increase in the error 
rate of autonomous vehicle positioning systems.

The aforementioned limitations of the semiparametric and neural network models can significantly impede 
the delivery of timely and stable forecasting results in practical scenarios. To deal with these problems, this 
paper proposes a combination model that combines a semiparametric adjustment model with a self-attention 
neural network. First, it uses a semiparametric estimation method to correct system errors based on periodicity, 
obtaining estimates of parametric and nonparametric components and fitting residuals. Then, the dot-product 
calculation of self-attention neural networks (Transformer) is optimized to improve the computational efficiency 
and space occupancy rate through sparsity optimization (Informer). An improved Levy Firefly algorithm (LFA) 
is utilized to determine the parameters of the sparse self-attention model (LFA-Informer)15,24. Subsequently, 
the LFA-Informer is used to model and forecast the fitting residuals of semiparametric, then compensates the 
semiparametric forecast results with these predictions by linear compensation method. Finally, a comprehensive 
experimental analysis is conducted with Semi-LFA-Informer (SLFAI), and the results are evaluated by stability 
and forecasting accuracy.

The organization of this paper is structured as follows: Sect. "Semi-LFA-Informer Model" describes the 
construction of the semiparametric clock bias model and its compensatory forecasting method. Section "Neural 
Network Optimization for Compensation Prediction" details the neural networks employed for compensation 
forecasting, along with their optimization strategies. Section "Results and analysis"  is dedicated to the 
validation and analysis of the SLFAI model, utilizing experimental data from multiple perspectives. Section 
"Conclusion" summarizes the experimental results of the SLFAI.

Semi-LFA-Informer model
In this section, we initially outline the establishment and resolution of the semi-parametric SCB model. 
Subsequently, we introduce the linear compensation approach for combined forecasting.

Scientific Reports |        (2025) 15:11880 2| https://doi.org/10.1038/s41598-025-95876-0

www.nature.com/scientificreports/

http://www.igmas.org/Product/Zp/zzzc/cate_id/33.html
http://www.nature.com/scientificreports


Semiparametric components of the SCB prediction model
Due to the influence of satellite orbits, space environment, and various perturbative forces on in-orbit satellites, 
periodic terms are added to the conventional QP model to establish an SA model for mitigating the impact of 
these disturbances on SCB prediction. The SA model can be formulated as follows:

	
Li = a0 + a1(ti − t0) + a2(ti − t0)2 +

p∑
k=1

(Aik sin(2πfkti) + Bik cos(2πfkti)) + ∆i� (1)

where Li represents the SCB at epoch ti; i  is the epoch number; a0, a1, and a2 represent the phase, clock rate 
(frequency), and clock drift, respectively; t0 is the reference epoch of the SCB; ∆i represents the model residual; 
and n represents the number of SCB. p is the number of periodic terms; k is the order of the periods; and Ak , 
Bk , and represents the amplitude and frequency of the corresponding periodic term, respectively. In addition to 
the periodic errors in the SA model, the SCB is also affected by factors such as satellite orbital errors, mechanical 
modeling system biases and the quality of the SCB; none of these factors can be parameterized and lumped into 
residuals. Therefore, by considering the periodic term, this paper incorporates these nonparametric errors into 
the nonparametric component with s(ti). The semiparametric SCB prediction model is established as follows:

	
Li = a0 + a1(ti − t0) + a2(ti − t0)2 +

p∑
k=1

A′
ik sin(2πfkti + φk) + s(ti) + ∆i� (2)

L = (L1 L2 · · · Ln)T , bi = [1 ti − t0 (ti − t0)2 sin(2πfi1ti + φi1) · · · sin(2πfipti + φip)]
, B = [b1 b2 · · · bn]T , X = [a0 a1 a2 A′

i1 · · · A′
ip]T , S = [s1 s2 · · · sn]T , si = s(ti), 

∆ = [∆1 ∆2 · · · ∆n]T . Thus, Eq. (2) can be expressed in matrix form:

	 L = BX + S + ∆� (3)

Parameter Estimation
To obtain the optimal estimation of the parametric and nonparametric components in Eq.  (3), a three-step 
method is employed. First, assuming that X̂  is known, based on {tk, Lk − BkX}n

k=1 we introduce the kernel 
weight function Wk(t) = W (tk : t1, t2, · · · , tn) to estimate the kernel of the nonparametric component S(ti)
, i.e.,

	
Ŝ(ti)h =

n∑
k=1

wk(ti)(Lk−B(tk)X)� (4)

The details of the kernel weight function are calculated as follows:

	
Wk(ti) = K((ti − tk)h−1)/

n∑
j=1

K((ti − tj)h−1)� (5)

In Eq. (5), K(·) is an arbitrarily chosen kernel function, and h is the window width typically selected by the 
generalized cross-validation (GCV) method16. There are three commonly used kernel functions. in this paper, 
the sixth-order kernel weight function Kernel2 is chosen as K(·)14,18: Kernel1, the Quartic kernel, Kernel2, the 
Sixth-order kernel, and Kernel3, the Probability Density kernel, are respectively represented by Eq. (6), Eq. (7), 
and Eq. (8).

	
K(x) =

{
15
16 (1 − x2)2

, x ∈ [−1, 1]

0 otherwise
� (6)

	
K(x) =

{
35
32 (1 − x2)3

, x ∈ [−1, 1]

0 otherwise
� (7)

	
K(x) = 1

π(1 + x2) , x ∈ R� (8)

Considering that the least squares (LS) method is a widely used approach for linear regression estimation, 
parameter X̂h can be estimated by LS with the obtained information W   by introducing

	 X̂h = (BT (I − W )2B)−1BT (I − W )2L� (9)

Substituting X̂h into Eq. (4), we obtain the estimate of the nonparametric component S(ti):
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Ŝ(ti)2h =

n∑
k=1

wk(ti)(Lk−B(tk)X̂h) = W (L − BX̂h)� (10)

According to processes Eq. (6) to Eq. (10), the accuracy of the nonparametric component estimates is strongly 
influenced by the estimations of the parametric component, the kernel weight function, and the window width. 
The estimation of the parametric component and the nonparametric component are interdependent and affect 
each other. To improve the accuracy, Eq. (10) can be iterated into Eq. (4), again with LS to obtain parameter X̂  
as follows:

	 X̂2h = (BT (I − W )3B)−1BT (I − W )3L� (11)

Substituting X̂2h into Eq. (10), we can obtain the third estimation of the nonparametric component:

	
Ŝ(ti)3h =

n∑
k=1

wk(ti)(Lk−B(tk)X̂2h)� (12)

From processes Eq. (11) to Eq. (12), the estimated values of the observations as L̂ = BX̂2h + Ŝ3h=̂H(h)L can 
be obtained, where H(h) is the hat matrix.

Fitting residual prediction
The semiparametric kernel estimation method can effectively reduce systematic errors during the forecasting 
process. As shown in Eq. (11) and Eq. (12), the calculation of the kernel function has a significant impact on the 
estimation of signal Ŝ and determines the applicability of the kernel weight function. Furthermore, the penalty 
factor window width of the kernel function may introduce estimation bias in separating the nonparametric 
component, leading to issues such as insufficient fitting residuals or overfitting, ultimately affecting the 
forecasting results of the semiparametric model. To fully utilize and extract the useful information in the fitting 
residuals, the fitting residual sequence is subtracted from the fittings of the semiparametric SCB prediction 
model V n as follows:

	 V n = L − Ln� (13)

where L  represents the SCB series, Ln is the fitted value of the semiparametric SCB prediction model, and V n 
is the fitting residual.

Through selecting appropriate thresholds and weights, neural networks can estimate any continuous 
function, which gives them a unique advantage in fitting the complex nonlinear characteristics of residuals. 
Self-attention neural networks provide a new approach to address these issues with a serial structure. Compared 
to traditional neural network algorithms, self-attention neural networks can effectively capture long-distance 
dependencies between sequences. Researches have replaced the serial structure with the Transformer model, 
which achieved significant results in computer vision and natural language processing. Therefore, this paper 
employs a cascading combination of two prediction models, where the predicted values of the semiparametric 
model are compensated by the predicted values of the neural network model. This approach yields the final SCB 
prediction result, as shown in Eq. (14):

	 Lcomb = Lsemi + Vnet� (14)

In Eq.  (14), Lcomb represents the predictions from the combined prediction model, Lsemi denotes the 
predictions from the semiparametric model, and Vnet refers to the neural network fitting residuals.

Neural network optimization for compensation prediction
In this section, we explore the optimization techniques for neural networks used in compensation prediction. 
We begin with an examination of the sparse optimization scheme of the Transformer neural network, followed 
by an analysis of the optimization of neural network parameters.

Sparse optimization scheme of the transformer neural network
At present, LSTM and BiLSTM, which are dependent on sequential data architectures, are widely used neural 
network models for satellite clock bias (SCB) prediction. To avoid the drawbacks of the sequential structure in 
these models, we chose Transformer as the semiparametric model for compensation15,19. In the Transformer 
neural network, the self-attention mechanism allocates weights to samples. In this framework, the sequence 
input to the model undergoes an initial linear transformation, producing three matrices of identical dimensions: 
the query (Q), key (K), and value (V ) matrices. Subsequently, these matrices are processed through scaled dot-
product attention. The functional expression can be expressed as follows:

	
Attention(Q, K, V ) = softmax

(
QKT

√
d

)
· V � (15)

where softmax(·) is the activation function and d represents the dimension of the input sequence.
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The self-attention mechanism utilizes a standard dot product calculation method, in which each element 
of the input sequences forms a connection with the entire sequence, resulting in the time complexity of each 
attention layer being related to the length of the input sequence as O(N2). As the length of the input data 
sequence increases, the computational complexity grows exponentially. However, in applications, part of the 
elements is significantly related to only a few other elements, and their connections are relatively unimportant 
to most other elements. These unimportant connections consume considerable memory and computational 
resources. To reduce computational complexity, a sparsity optimization scheme can be adopted for self-attention 
calculations, using the dot product results of a few queries Q and keys K  to dominate the complexity.

For this reason, sparsity can be achieved by evaluating the importance of the target sequence vectors and 
performing subsequent dot product calculations based on the evaluations. This approach allows for selective 
focus on the most relevant parts of the sequence, which reduces the attention mechanism’s focus to the most 
significant elements and ignores or lowers the weight to the less relevant parts, thus helping to optimize the 
computational procedure. This method helps in managing and significantly lowering the computational load 
and memory requirements without compromising accuracy, especially for long sequences, making the model 
more efficient:

Selecting a constant sampling factor s as a hyperparameter to compute a1 = NQ ln(NK), and set 
a2 = s ln(NK) under the control of s .

Sampling a1 dot product pairs for the K  vectors randomly, form a new key matrix K , and calculate the 
sampled score score as follows:

	 score = QK̄
T� (16)

The sparsity score M  for each row is computed as follows:

	
M(qi, K) = max

{
qik

T
j√
d

}
− 1

Nk

Nk∑
j

qik
T
j√
d

� (17)

The matrix is scored, the top a2 qi vectors are selected, and a new matrix Q is formed. The self-attention 
mechanism after sparsity optimization is represented as follows:

	
Attention(Q, K, V ) = softmax

(
QKT

√
d

)
· V � (18)

The remaining qi does not participate in the dot product operation. After probabilistic sparsification of the Q 
matrix to obtain Q, the computational complexity is reduced from O(N2) to O(N log N) with exponential 
decreases. This enables the model to extract weighted feature information from a large amount of redundant 
information for computation.

Optimization of the neural network parameters
To address the unstable prediction results of neural networks in SCB forecasting, this section focuses on 
optimizing parameters of Informer. Sparsity optimization improves the computational efficiency and spatial 
complexity of the network, whereas, it neglects the selection of the initial parameters. Neural networks have strong 
nonlinear sequence fitting and prediction capabilities. However, the typically utilized random initialization of 
weights and thresholds along with learning methods based on gradient descent could lead to issues such as slow 
convergence or becoming trapped in local optima. In the short-term forecasting of SCB, which has timeliness, 
stability, and accuracy requirements. It is easily limited by the random initialization of weights and thresholds of 
the neural network. The FA model is known for its excellent global optimization capability and fast convergence. 
Moreover, it does not rely on the gradient information of the objective function. Therefore, the hyperparameter 
optimization of the FA algorithm is chosen for SCB forecasting.

During the optimization of the FA model, the convergence speed and accuracy are influenced by the set 
parameters. For parameter setting, too large of a value will accelerate convergence but reduce accuracy, while 
too small of a value may converge to suboptimal values and prevent the identification of the global optimum. To 
address this issue, the Levy flight algorithm is introduced to complement the position updates of the traditional 
FA model with a random search. Levy flight is a random search method that follows the Levy distribution, and 
is characterized by a mixed search pattern of short and occasionally long distances. This flight pattern enhances 
local neighborhood searches around the optimal solution and explores the solution away from the algorithm 
space. By increasing population diversity and expanding the search range, it resolves issues such as becoming 
trapped in local optima and premature convergence in swarm intelligence algorithms24. As shown in Fig. 1, 
when updating the position of fireflies with FA, the Levy flight algorithm is used to generate random step sizes. 
The random step sizes generated by the Levy algorithm can not only satisfy the need for convergence, but also 
have a certain probability of generating larger step sizes to escape suboptimal values and converge to the global 
optimum.

Based on the above discussion, this paper combines semiparametric and neural network approaches and 
enhances model computational efficiency. Initially, the semiparametric kernel estimation method is employed 
to eliminate systematic errors from the clock error sequences. Subsequently, the optimized neural network 
is utilized to fit the residuals obtained from the semiparametric estimation, thereby compensating for the 
semiparametric forecast values. This approach circumvents information loss due to kernel function selection in 
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semiparametric methods. Besides, the proposed method addresses the instability issues associated with single 
neural network forecasting models. The framework of the proposed method is shown in Fig. 2. (Table 1)

Results and analysis
In this section, we first analyzed the necessity of the algorithm and the effectiveness of the optimization strategy, 
and then verified the performance of the proposed method for SCB prediction. The experiments were conducted 
with precise SCB products provided by the German Research Centre for Geosciences on February 21, 2023. In 
this work, the prediction accuracy is evaluated by two indices: the standard deviation (STD) for stability, and the 
root mean square (RMS) for Accuracy.

Influence of semiparametric kernel function
First, the effect of the semiparametric kernel method on the extraction of systematic errors is analyzed. The QP 
and SA methods (with two effective main periodic correction terms added, where the first and second important 

Clock types PRN

MEO Rubidium C19 C20 C21 C22 C23 C24 C32 C33 C36 C37 C41 C42

MEO Hydrogen C25 C26 C27 C28 C29 C30 C34 C43 C44 C45 C46

IGSO Hydrogen C38 C39 C40

GEO Hydrogen C59 C60

Table 1.  Onboard atomic clock information of BDS-3.

 

Fig. 2.  The framework of the proposed SLFAI model for SCB prediction.

 

Fig. 1.  Flight trajectory of the Levy algorithm.
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main periods for the GEO, IGSO, and MEO satellites are 12 h and 24 h; 24 h and 12 h; and 12.911 h and 6.444 h, 
respectively)1,25, at the same time the semiparametric model using the kernel2 function (Semi-K) is used to fit 
the SCB series. The fitting residuals of the three models and the nonparametric component curve extracted by 
the semiparametric model, as shown in Fig. 3. The fitting residuals of the SA model are somewhat improved 
compared to those of the QP model, with certain corrections with periodic terms introduced. However, there 
still exist certain periodic characteristics in the separated nonparametric, which indicate the added periodic 
terms in the model are not optimal for all satellites, leading to significant systematic errors in the SCB series. This 
demonstrates the limitations of the SA model, whereas the semiparametric model can effectively identify and 
separate nonparametric components and solve the physical parameters of the satellite clocks, thereby enhancing 
the fitting and prediction performance.

To compare the impact of kernel function selection on the prediction results, a semiparametric SCB 
prediction model with three different kernel functions was tested for an short-term prediction of 12 h. The RMS 
of the prediction errors for the three kernel functions and the QP and SA models are presented in Fig. 4.

The RMS of the SA model is closed and slightly better than that of the QP model. The average RMS of 
the semiparametric model with the three kernel functions is significantly better than that of the SA model, 
indicating that the semiparametric kernel method can effectively separate systematic errors based on periodic 
corrections. However, due to the varied periodic characteristics among satellites and inconsistencies in SCB data 
quality, kernel functions are not universally applicable to all satellites, leading to estimation biases.

As shown in Table 2, the average prediction accuracy using three different functions is 0.65 ns, 0.58 ns, and 
0.76 ns. Among them, kernel2 exhibits the best overall performance. However, its average prediction accuracy 
on IGSO hydrogen clocks is 0.51 ns, which is lower than the 0.42 ns and 0.38 ns achieved by kernel1 and kernel3, 
respectively. Due to space limitations, only the test results of C20, C24, and C43 are given. From the result, it 
can be found that the kernel2 function performs the best on average. However, in the results of satellite C20, 
the prediction accuracy of kernel1 and kernel3 are 0.40 ns and 0.45 ns, respectively, while that of kernel2 is 0.87 
ns. For C24 and C43, the prediction accuracy of both kernel1 and kernel2 is approximately 0.5 ns, but kernel3 
performs poorly, with an accuracy at the nanosecond level. This indicates that the choice of kernel function has a 
significant impact on the results of semiparametric prediction. Inappropriate selection of the kernel function can 
lead to prediction biases and insufficient fitting. Therefore, it is necessary to apply neural networks to compensate 
for the prediction of semiparametric models for extracting information of fitting residuals.

Sparse effect analysis of the transformer neural network
To verify the computational performance of the sequence neural network LSTM models, the traditional self-
attention transformer models, and the sparse optimization self-attention Informer models, this section will 
analyze the theoretical time-space complexity and actual time consumption of these models in SCB forecasting. 
Table  3 provides information on theoretical training complexity, space occupancy, and prediction time 
complexity of the three models. According to statistical analysis, the training time for the Transformer model 
increases quadratically with the length of the input sequence. In contrast, the Informer model outperforms the 
Transformer in spatial and temporal complexity. Regarding prediction speed, the Transformer and LSTM models 
have similar time complexities, but the Informer model surpasses both, requiring less time and significantly 
faster processing speeds.

Fig. 3.  Fitting residuals of the different models.
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Moreover, a comparative analysis of these three models was conducted, and Fig. 5 shows the training time 
and prediction time results for the three models (this study employs the PyTorch deep learning framework, i9-
CPU, and Nvidia GTX3090 24 GB GPU server).

According to Fig.  5(a), if the amount of input epochs of the encoder is less than 168, the runtimes of 
the Informer and LSTM models are approximately the same within 3 min; both are smaller than that of the 
Transformer model. When the number of input epochs ranges from 168 to 336, the training time of the Informer 
model slightly increases. As the number of input epochs increases to 336 or more, the training time of the 
Informer model rapidly increases. This is attributed to the self-attention mechanism requiring full connectivity 
attention computation between all the input positions and other positions, resulting in increased computational 
complexity. Moreover, the model contains multiple layers and multi-head attention mechanisms, and each 
layer requires parameter updates and backpropagation, further increasing the computational load. Therefore, 
the training time of the Informer model begins to increase. For the prediction stage in Fig. 5(b), the Informer 
model can generate prediction sequences in a single step without increasing the computational burden, thereby 
enhancing the prediction efficiency and stability and outperforming the LSTM and Transformer models. In 
short-term SCB prediction, considering both training and prediction computation times, the Informer model 
exhibits a significant advantage.

Selection of the neural network parameter optimization
To compare the convergence speed and effectiveness of parameter optimization algorithms, this study employed 
three optimization methods to validate the feasibility of LFA. Figure 6 presents the fitness convergence curves of 
the LFA algorithm, FA, and SSA (sparrow search algorithm) over 100 iterations.

Figure 6 shows that LFA has certain advantages over FA and shows even more significant performance 
improvements compared to the SSA. Within 50 iterations, both the fitness values of the FA and SSA methods 
converge to within 0.025 ns, while the fitness of LFA has already converged to within 0.023 ns. By the 85th 
iteration, the convergence effects of the FA and SSA algorithms tend to stabilize, with fitness values of 0.024 
ns and 0.0245 ns, respectively. The results indicate that the FA algorithm outperforms the SSA algorithm. 
Besides, the LFA algorithm outperforms both the FA and SSA algorithms in terms of convergence speed and 
effectiveness. This suggests that the LFA algorithm can provide more reliable initial thresholds and weights for 
neural networks, thereby laying a better foundation for model training.

Stability verification
All the satellites, including the MEO rubidium clocks, MEO hydrogen clocks, IGSO hydrogen clocks, and GEO 
hydrogen clocks, are included in the experiment except for C35, which has missing data. The commonly used QP 
model, SA model, LSTM model, and proposed SLFAI model are used for comparative analysis.

In the experiment, we select the first 12 h of SCB with a sampling time of 5 min as the input for the models. 
Then, the trained models were used for SCB prediction for 3 h, 6 h, and 12 h (Lv et al., 2020). The stability of the 
predictions was evaluated based on the STD. Figure 7 provides a chart comparing the stability of the four models 
at different prediction times.

Fig. 4.  Prediction results for all satellites in the system.
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Figure 7 shows that in the 3  h prediction, the prediction stability of the SLFAI model is relatively worse 
for C43, with an STD value of 0.24 ns, and the stabilities of the other satellites are relatively better than 0.2 
ns on average. As the prediction time increases to 6 h, the stability of the SLFAI model predictions for C43 
does not decrease with increasing prediction time, and the STD returns to the same level as that of the other 
models. According to the 12 h prediction time, the prediction stability of the SLFAI model is relatively stable and 
better than 0.5 ns for all satellites. Additionally, Table 4 has shown that compared with the other three models, 
the average prediction stability of 3 h, 6 h, and 12 h forecasting of the SLFAI has improved by approximately 
(46.1%, 53.3%, 41.7%), (53.9%, 57.1%, 36.8%) and (72.3%, 71.9%, 47.1%), respectively. The stability advantage 
of the proposed SLFAI model is more pronounced than that of the other three models, with the highest average 
stability. This result indicates a significant advantage in stability for all three forecast durations of the short-term 
SCB prediction.

Model Transformer Informer LSTM

Training time complexity O(N2) O(N log N) O(N)

Space occupancy rate O(N2) O(N log N) O(N)

Predict time complexity O(N) O(1) O(N)

Table 3.  Theoretical computational efficiency.

 

Clock Type PRN

Semi-K

kernel1 kernel2 kernel3

MEO Rubidium

C19 0.95 0.66 0.77

C20 0.40 0.87 0.44

C21 0.70 0.57 0.56

C22 1.38 0.67 1.71

C23 1.40 1.19 1.11

C24 0.47 0.64 4.69

C32 0.70 1.00 0.36

C33 1.26 0.69 0.99

C36 0.34 0.35 1.14

C37 1.35 0.96 0.93

C41 0.82 0.78 3.29

C42 1.64 1.23 0.70

Average 0.95 0.80 1.39

MEO Hydrogen

C25 0.55 0.78 0.97

C26 0.12 0.06 0.45

C27 0.42 0.18 0.70

C28 0.30 0.25 0.53

C29 0.33 0.36 0.16

C30 0.55 0.15 0.45

C34 0.50 0.93 0.61

C43 0.45 0.56 1.53

C44 0.33 0.21 0.57

C45 0.24 0.10 0.32

C46 0.46 0.31 0.34

Average 0.38 0.35 0.60

IGSO Hydrogen

C38 0.99 0.83 0.91

C39 0.10 0.42 0.10

C40 0.18 0.28 0.15

Average 0.42 0.51 0.38

GEO Hydrogen

C59 0.57 0.42 0.45

C60 1.19 0.95 0.93

Average 0.88 0.68 0.69

Table 2.  Prediction accuracy achieved with different kernel functions (Unit: ns).
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Accuracy assessment
To further compare the prediction accuracy of different models for SCB prediction, we calculated the accuracy 
statistics with RMS for the four models over three prediction schemes. The statistics for all satellites are presented 
in the Fig. 8.

Figure 8 shows that in the 3 h scheme, the SLFAI model maintains RMS of less than 0.5 ns, and the average 
performance is superior to the other three models. For the prediction results for 6 h in Fig. 8, the prediction 
accuracy of C23 and C43 are worse than those of all the other satellites with all the prediction models. This 
suggests that the quality of the SCB sequence for these two satellites might be poor, with the removal of outliers 
significantly impacting the prediction models. However, in the 12 h prediction, the SLFAI model consistently 
exhibited excellent prediction performance for all satellites, with the lowest RMS values achieved in the four 
models. The results in Table 5 show that the proposed SLFAI model can achieve better prediction accuracy with 
more reasonable modeling. Compared with the other three models, the average prediction accuracy of the 3 h, 
6 h, and 12 h forecasting has improved by approximately (53.6%, 59.4%, 43.5%), (56.3%, 60.4%, 38.2%) and 
(71.2%, 70.6%, 44.8%), respectively. It is evident that as the forecasting duration extends from 3 h to 12 h, and 

Fig. 6.  Fitness curves for the three algorithms.

 

Fig. 5.  Duration required for training and prediction.
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the number of prediction epochs increases, the prediction accuracy advantage of the SLFAI model becomes 
more pronounced. This indicates that the QP and SA models accumulate significant errors as the number of 
prediction epochs increases, whereas the SLFAI model is more effective than the LSTM model in controlling 
error accumulation.

Conclusion
In this paper, the SLFAI model is introduced as an innovative approach that integrates semiparametric techniques 
with neural network methodologies to enhance the prediction accuracy of SCB. In the SLFAI framework, 
limitations such as the generalization capability of the kernel function, as well as the randomness and slow 
convergence speed of neural networks, have been optimized. The SLFAI model is well-suited to the high-density, 
long-sequence, and complex nonlinear characteristics of SCB, enabling effective extraction of global features. 
Experimental results show that the Levy flight strategy is employed to reduce the iteration count and improve 
the quality of hyperparameter optimization in the FA. In the later stages of the iteration, the fitness value reached 
0.024, significantly outperforming SSA and FA. The improvements in the search strategy based on Levy flight 
have broad applicability and offer new insights for other optimization algorithms. Additionally, Moreover, the 
computational efficiency of the Transformer model is enhanced through the sparse dot product process. These 
improvements collectively bolster the stability and responsiveness of the neural network for compensating the 
semiparametric model, thus enhancing the ability of the SLFAI model for the SCB prediction. Furthermore, 
The SLFAI model compensates for the missing information caused by kernel function selection and effectively 
improves the stability and accuracy of SCB prediction. It demonstrates strong performance in forecasting across 
3 h, 6 h, and 12 h intervals, achieving stability of 0.07 ns, 0.12 ns, and 0.18 ns, and the accuracy of 0.12 ns, 0.20 
ns, and 0.32 ns, respectively. These results indicate that the method not only excels in 3-hour predictions but 
also delivers even more substantial benefits over the longer 12-hour forecast period, showcasing its superior 
effectiveness in controlling cumulative errors.

Model/Time QP SA LSTM SLFAI

3 h 0.13(46.1%) 0.15(53.3%) 0.12(41.7%) 0.07

6 h 0.26(53.8%) 0.28(57.1%) 0.19(36.8%) 0.12

12 h 0.65(72.3%) 0.64(71.9%) 0.34(47.1%) 0.18

Table 4.  Stability and improvement rate of the SLFAI model relative to other models (Unit: ns).

 

Fig. 7.  Predicted stability statistics for the different models.
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Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author upon reasonable request. The authors thank the GFZ for providing accessible data for this study. and can 
be downloaded from http://ftp.gfz-potsdam.de/pub/GNSS/products/mgnss/.
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