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method

Site Xu & Mu Sun®™*

Limited research exists on the association between depression and heavy metal exposure. This study
aims to develop an interpretable and efficient machine learning (ML) model with robust performance
to identify depression linked to heavy metal exposure. Data were derived from the US National Health
and Nutrition Examination Survey (NHANES) spanning from 2013 to March 2020. We constructed 5

ML models to detect depression based on heavy metal exposure and assessed their performance using
10 discrimination metrics. The optimal model was selected after parameter tuning with a Genetic
Algorithm (GA). To enhance the interpretability of the model’s predictions, we applied SHapley
Additive exPlanation (SHAP) and Local Interpretable Model-Agnostic Explanations (LIME) algorithms.
The study included 19,368 participants. The highest-performing model, an eXtreme Gradient Boosting
(XGB) algorithm optimized with GA, identified depression using 16 heavy metal indicators (AUC: 0.686;
95% Cl: 0.68-0.69; accuracy: 97.1%). SHAP analysis revealed that elevated blood cadmium levels had
a positive influence on the model’s prediction of depression, while urine concentrations of barium,
thallium, tin, manganese, antimony, lead, and tungsten, along with blood levels of lead, cadmium,
mercury, selenium, and manganese, showed a negative influence. In conclusion, the study successfully
utilized an efficient and robust GA-XGB model to identify depression linked to heavy metal exposure,
supported by SHAP and LIME explanations. Blood cadmium was positively correlated with depression,
whereas barium, thallium, tin, manganese, antimony, lead, and tungsten in urine, along with lead,
cadmium, mercury, selenium, and manganese in blood, were negatively correlated with depression.
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Depression is marked by persistent and profound emotional distress, and it has become an increasingly serious
global mental health issue. It leads to a significant reduction in physical functioning and quality of life, while
contributing to a rise in disease incidence and mortality rates. In 2017, approximately 17.3 million adults in the
United States, aged 18 and older, experienced at least one major depressive episode, representing a prevalence
of around 7.1%!. According to the World Health Organization’s (WHO) 2017 report, “Depression and Other
Common Mental Disorders: Global Health Estimates’, there were 322 million individuals worldwide living
with depression. Nearly half of these cases are concentrated in Southeast Asia and the Western Pacific regions,
including countries like China and India. In China, depressive disorders have been identified as the second
leading cause of years lived with disability (YLDs)?. The prevalence of depression varies by age, with rates
peaking in the elderly. Among women aged 55-74, the estimated prevalence exceeds 7.5%.

Given the low cure rates and ineffective treatments, identifying risk factors for depression is crucial. Early
prevention and intervention can effectively slow the progression of the disorder. Various factors have been
linked to depression, including age, gender, occupation, and lifestyle’. As a leading cause of disability worldwide,
depression also has been linked to various environmental factors, including exposure to heavy metals.

Human health, including the occurrence of depression, is often influenced by the combined impact of multiple
metals. However, most studies have focused solely on specific metal exposures*®, utilizing traditional statistical
or ML analyses’®. To more effectively explore the relationship between depression and heavy metal exposure, a
novel analytical approach is required that accounts for the combined effects of multiple metal exposures.

Traditional methodologies for disease identification involve numerous stringent standards for preparing
datasets. However, with advancements in computer science and the growing volume of information, researchers
are increasingly challenged to uncover hidden insights from big data!'®. Machine learning (ML), with its black-
box nature, requires fewer preprocessing standards, thereby enhancing the ability to analyze large volumes of
information. This capability supports hazard identification and other health-related decision-making processes!!.

Recent research leveraging machine learning techniques has provided novel insights into the relationship
between heavy metals and depression, particularly among aging populations. This review synthesizes findings
from the past 5 years, focusing on the role of heavy metals in the etiology of depression. Xia et al.'”> conducted a
study using machine learning algorithms to analyze data from the National Health and Nutrition Examination
Survey (NHANES) 2017-2018, revealing significant associations between depression and specific heavy metals.
Their research indicated that cadmium (Cd), ethyl mercury (EtHg), and mercury (Hg) were particularly
associated with depression, with Cd and EtHg showing positive correlations and Hg a negative one. This study
contributes to a broader literature on the environmental determinants of mental health. For example, Berk et
al.!? found associations between persistent organic pollutants and depressive symptoms, while Scinicariello et
al.? reported links between hearing loss and depression, which may be influenced by heavy metal exposure. The
neurotoxic effects of Cd are well-established, with mechanisms including oxidative stress and interference with
essential minerals like zinc and calcium'%. Mercury’s role in neuropsychiatric disorders is also recognized, with
EtHg and inorganic mercury species being of particular concern due to their ability to cross the blood-brain
barrier!®. The inverse relationship between Hg and depression, as noted by Xia et al., is intriguing and suggests
a complex interplay between environmental toxins and mental health. This finding aligns with other studies
that suggest a protective effect of fish consumption against depression, likely due to the nutritional benefits of
omega-3 fatty acids outweighing the risks associated with mercury exposure'.

In our study, we analyzed datasets from the NHANES (2013-March 2020) to explore the relationship between
depression and heavy metal exposure. We developed 5 machine learning (ML) models to identify depression
based on heavy metal exposure and compared their performance metrics. The best-performing model was
further optimized using a GA to enhance its efficiency. Additionally, we incorporated advanced electronic
medical record (EMR) mining techniques, specifically SHAP'® and LIME"’, to evaluate the contribution of heavy
metals in the identification of depression. This approach highlights potential associations that could inform
future research and guide epidemiological investigations, contributing to a better understanding of early risk
factors for intervention.

Methods

Participants

The US NHANES investigates the US population using various survey strategies to collect demographics,
dietary, examination, laboratory, and questionnaire data. All data are available on the American Centers for
Disease Control and Prevention website (https://www.cdc.gov/nchs/nhanes). Our study sample comprised three
contiguous cycles of NHANES data from 2013 to March 2020.

The study applied specific inclusion criteria: participants were required to be over 20 years old, have
completed both blood and urine tests for heavy metals, and provided responses to the NHANES questionnaire,
which included information on their depression status. The exclusion criteria included participants with more
than 10% missing data or any contradictory information. As a result, 19,368 participants were included in the
final analysis.

Data collection

Demographics characteristics of the study participants

Participants’ demographic and relevant characteristics were gathered from NHANES, including gender, age
(in years at screening), Race/Hispanic origin w/ NH Asian, education level (college or above, high school or
equivalent, and less than high school), poverty-to-income ratio (PIR) (<1, 1-4, and >4)'8, and body mass index
(BMI, kg/m?).
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Heavy metals
Our analysis incorporated the urinary and blood concentrations of 16 heavy metals. The National Center for
Environmental Health implemented strict quality control protocols to ensure accurate detection of all heavy
metal levels'’.

Outcome ascertainment

Since the 2013-2014 data release cycle, professional physicians have diagnosed major depressive disorder in
NHANES using the codes F32.9 and F33.9, in accordance with the International Statistical Classification of
Diseases and Related Health Problems, Tenth Revision (ICD-10)%.

Pre-processing of features
In our study, we selected 22 variables (referred to as features in the field of machine learning), including 19
continuous and 3 categorical variables. After splitting the data into training and test sets, we applied data
preprocessing only to the training set, ensuring the independence of the test set and preventing data leakage.
We excluded data with a loss rate of 10% or higher. Missing values in continuous variables were imputed
with the median, unordered categorical variables with the mode, and ordinal categorical variables with the
nearest neighbor values. Features were standardized using the Standard Scaler, and categorical variables were
transformed using one-hot encoding®!. We employed Principal Component Analysis (PCA) and the Select K
Best (SKB) algorithm for feature extraction?2. Variables contributing little to the model were removed during
preprocessing to prevent overfitting.

The entire process of feature selection and preprocessing was strictly conducted within the training data and
did not involve the test set at any stage. The test set remained completely independent and was not used for any
feature selection or preprocessing steps.

Model establishment

Repeated K-Fold cross-validation was applied on the training set to construct and evaluate the model?’. We
employed 5 ML algorithms commonly used in the field of EMR mining®*?, including Deep Neural Networks
(DNN), Support Vector Machine (SVM), Gaussian Naive Bayes (GNB), Decision Tree (DT), and eXtreme
Gradient Boosting (XGB), to establish models for identifying depression based on heavy metal exposure. Each
of these 5 models has distinct characteristics. DNN: Typically offers higher accuracy with a simple structure for
data training but possesses strong black-box characteristics, making it difficult to understand its decision-making
principles®>. SVM: Robust to data variations and capable of handling nonlinear, multidimensional datasets?.
GNB: Performs well on small-scale data, supports multiple classification tasks, and is suitable for incremental
training, though it may introduce noise and redundancy?”?8. DT: Supports visual analytics, is easy to understand
and interpret, but is prone to overfitting?®. XGB: An optimized library designed to increase distributed gradient
boosting, offering high efficiency, flexibility, and portability*®. However, it has numerous parameters that need
adjustment for optimal performance’!. To mitigate the class imbalance issue, we applied the built-in class
weighting function in the model, which assigns higher importance to the minority class, enhancing the model’s
ability to detect cases of depression.

Initially, each algorithm’s mean performance was evaluated on the training set using K-fold cross-validation,
where hyperparameters were tuned to achieve the most stable performance on the validation set (derived from
the training set). The most effective machine learning algorithm was then selected based on its performance
on an independent test set. We then used a Genetic Algorithm (GA) to fine-tune the parameters of the chosen
model to overcome its limitations. SHAP and LIME were applied to interpret the model by highlighting relevant
risk variables for identifying depression in participants from 2013 to March 2020°2. SHAP provided an overall
interpretation of the model, while LIME was used for more localized, partial interpretations.

Statistical analysis

Continuous variables were presented as medians with interquartile ranges, while categorical variables were
described as counts with percentages. The chi-square test was used to compare group-specific characteristics.
Heavy metal concentrations were expressed as geometric means with geometric standard deviations. Trends
over the 8 +years (across 3 data release cycles) were analyzed using the Mann-Kendall test.

Model effectiveness was evaluated using several indicators, including average area under the curve (AAUC)*
and 95% confidence intervals (95%CI), best AUC (BAUC), average precision score (APS), average recall, average
f1 score, average accuracy, average Brier score loss, average cross-entropy loss, average Jaccard index, and average
Cohen’s kappa of each model by repeated K-Fold cross-validation. Focusing on these metrics is more appropriate
for imbalanced datasets and provides a more comprehensive evaluation of how well the model identifies cases
of depression.

All analyses were conducted using Python 3.9.7, with the majority of the modeling and evaluation
processes implemented using the scikit-learn library. A significance level was set at P<0.05. An overview of the
methodology is presented in Fig. 1.

Results

Participants’ demographics characteristics

The characteristics of the study participants are presented in Table 1. A total of 19,368 individuals were included
in the analysis. Of these, 555 were diagnosed with major depressive disorder. The cohort consisted of 9,397 men
(48.5%), and the median age of participants was 57 years (33, 69). Those with major depressive disorder were
more likely to be women, younger, have a higher BMI, and be non-Hispanic white (all P<0.05).

Scientific Reports |

(2025) 15:10811 | https://doi.org/10.1038/s41598-025-95938-3 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Receiver Operating Characteristic Curve

10
Depression identifying
Normalization os
US NHAES Data StandardScaler .
(2013-2020.3) / One-hot code — | Preprocessed data 206
1 \ il L g
Split dataset PCA &SKB algorithm [———»{ Selected features g e e
I — VM BAUC-085
02 — B BAUC-061S
— b1 BAUC-0628
o A\:(iB:IV)AU("O‘?JZ )
K-Fold cross validation Mean performance ® e
J, l 00 02 IH‘ 06 08 10
Fatse posiv Ratc
Processed data ‘< ML models Models’ comparison | =9 Peecisicorvecall e
l l 10
Genetic algorithm —» Optimized model - e
l - XGB APS'O’%Z
— GAXG APS-0068
Lo
“ SHAP ——»| Global interpretation an
i 1
GA-XGB model }< LIME Local interpretation -
! !
SHAP&LIME-GA-XGB | » Interpretable model " —=
0.0 02 04 06 08 1.0
* Recall
P S W TETREE — xe
& —a—— FARVTE IE R IR S = - a
cnim e — 4= et + 4+ 4 4 =1 il Lesd bios
: ——- + e e 4 = AllL i, e
: ~— 4+ ¢ 4+ ot L. L i, 1
» - ——— + + + + + = 4 1L S8lenium, blood Mercury. blood
> L B SO UG U, s L. SIS "t L e P Sdnise
" RS S s Solooks oo b ne
, = | e
B < ocal explanation for class 1 Manganese, urine
- —— =0 oo, wrise
>—- — e Aatiscey, urine
— - Toeston, wios
> - s | - S i Race/Misosnic
*= H P i b1t
— s (R Kancrese, blood
-+ ' Eduestion level
e o 0010 ©Ws 000 0w e
Fig. 1. Overview plot.
With Without
Total Depression | Depression
Characteristics (n=19368) (n=555) (n=18813) P
Gender: Percentage (%)
<0.001*
Men 9397(48.52%) 1299(49.02%) | 8098(48.44%)
Age: Median (IQR) 57(33, 69) 55(42, 66) 57(33, 69) 0.008*
. . 28.4 314 28.4 .
BMI kg/m2: Median (IQR) | (53¢ 33) (26.3,35.65) | (23.8,33.5) <0.001
Race/Hispanic: Percentage (%)
Mexican American 2605(13.45%) 47(8.47%) 2558(13.6%)
Other Hispanic 1888(9.75%) 58(10.45%) | 1830(9.73%)
Non-Hispanic White 7777(40.15%) 316(56.94%) | 7461(39.66%) <0.001*
Non-Hispanic Black 4502(23.24%) 90(16.22%) 4412(23.45%)
Non-Hispanic Asian 1673(8.64%) 15(2.7%) 1658(8.81%)
Other Race 923(4.77%) 29(5.23%) 894(4.75%)
Education level: Percentage (%)
College or above 11,603(59.91%) | 339(61.08%) | 11,264(59.87%) 0.903
High school or equivalent 4027(20.79%) 122(21.98%) | 3905(20.76%) '
Less than high school 3738(19.3%) 94(16.94%) 3644(19.37%)
PIR: Percentage (%)
High 3826(19.75%) | 94(16.94%) | 3732(19.84%) 0786
Medium 11,368(58.69%) | 332(59.82%) | 11,036(58.66%) '
Low 4174(21.55%) 129(23.24%) 4045(21.5%)

Table 1. The study participants’ characteristics in NHANES (2013-2020.3). BMI: body mass index; PIR:

poverty to income ratio; *: P<0.05.
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Heavy metals’ concentrations

The heavy metal concentrations in urine and blood for each data release cycle are described in Table 2. Across
the data release cycles, significant trends were observed for Barium, Cadmium, Cobalt, Cesium, Manganese,
Lead, Antimony, Tin, Thallium, and Tungsten in urine, as well as Lead, Cadmium, Mercury, Selenium, and
Manganese in blood (all P . < 0.05).

Models’ preprocessing

In the feature selection process, PCA determined that at least 18 variables were needed to retain over 90% of
the original information. The SKB feature scores ranged from 0.01 to 1083.44. We selected the top 18 features
based on these scores to optimize our ML models. Five machine learning algorithms were then applied to the
NHANES datasets using repeated K-Fold cross-validation for model training.

Models’ performance

The XGB model exhibited optimal performance with an AAUC of 0.686 (95% CI: 0.68-0.69), a BAUC of
0.942, and an APS of 0.062, all significantly higher than the AUC values of the other four models (P<0.05). To
improve AAUC and APS for depression identification, we utilized a GA for parameter tuning, which resulted
in the GA-XGB model achieving the best performance. The receiver operating characteristic (ROC) curves and
precision-recall curves for all six machine learning models, including GA-XGB, are displayed in Fig. 2. The
models demonstrated good accuracy in identifying depression: DNN (97.2%), SVM (97.2%), DT (93.6%), XGB
(97.1%), and GA-XGB (97.4%).

Models’ comparison

Table 3 compares the performance of the machine learning models, including metrics such as AAUC, BAUC,
APS, average recall, average F1 score, average accuracy, average Brier score loss, average cross-entropy loss,
average Jaccard index, and average Cohen’s kappa for all 5 models. The XGB model achieved the highest scores
in 6 out of the 10 performance indicators, demonstrating its superior performance in depression identification.
Subsequently, we used GA to optimize the parameters of the XGB model, further enhancing its effectiveness, as
shown in the far right of Table 3. Specifically, the GA-XGB model achieved the highest scores in 7 out of the 10
discrimination characteristics. The GA-XGB model’s performance metrics were AAUC (AUC: 0.669; 95% CI:
0.663-0.676), BAUC (0.97), and APS (0.068).

Feature importance visualization

SHAP and LIME were employed to visualize the influence of features on depression identification in the GA-
XGB model. The SHAP and LIME summary plot illustrates the impact of each selected feature on the model’s
performance in identifying depression (Fig. 3).

The SHAP value plot on the left side of Fig. 3 globally indicates that Cadmium (20.636) in blood positively
influenced the model, while Barium (- 30.558), Thallium (- 11.242), Tin (- 12.339), Manganese (- 17.385),
Antimony (- 19.088), Lead (- 23.989), Tungsten (- 21.126) in urine, and Lead (- 111.499), Cadmium (-
35.003), Mercury (- 70.835), Selenium (- 10.389), Manganese (- 16.206) in blood negatively influenced the

Cycles of NHANES
Heavy metal 2013-2014 2015-2016 | 2017-2020.3 | P for trend
In urine
Barium (ug/L) 1.6(2.68) 1.59(2.25) 1.45(2.34) <0.001*
Cadmium (ug/L) 0.34(0.44) 0.32(0.39) 0.39(0.55) <0.001*
Cobalt (ug/L) 0.68(2.09) 0.66(1.52) 0.56(1.12) <0.001*
Cesium (ug/L) 4.86(3.24) 4.96(3.83) 5.11(3.47) <0.001*
Manganese (ug/L) 51.45(49.43) | 54.5(50.45) |51.12(49.21) |<0.001*
Molybdenum (ug/L) 0.19(0.76) 0.15(0.42) 0.16(0.3) 0.424
Lead, urine (ug/L) 0.49(0.7) 0.48(0.62) 0.45(0.55) <0.001*
Antimony, urine (ug/L) | 0.07(0.12) 0.08(0.28) 0.07(0.15) <0.001*
Tin, urine (ug/L) 1.89(6.21) 1.49(3.08) 1.46(3.63) <0.001*
Thallium, urine (ug/L) | 0.17(0.14) 0.18(0.16) 0.19(0.14) <0.001*
Tungsten, urine (ug/L) | 0.14(0.46) 0.13(0.26) 0.12(0.4) <0.001*
In blood
Lead (ug/dL) 1.33(1.57) 1.24(1.12) 1.18(1.05) <0.001*
Cadmium (ug/L) 0.46(0.52) 0.43(0.5) 0.48(0.65) <0.001*
Mercury, total (ug/L) 1.37(2.46) 1.22(2.0) 1.17(2.28) <0.001*
Selenium (ug/L) 194.46(26.82) | 189.79(25.5) | 183.93(26.83) | <0.001*
Manganese (ug/L) 9.78(3.72) 10.17(3.71) | 9.58(3.69) <0.001*

Table 2. Mean values of heavy metal concentration by each NHANES (2013-2020.3) data release cycle.
*P<0.05.
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Fig. 2. The best receiver operating characteristic curve and precision-recall curve for models.

model. Additionally, the SHAP and LIME summary plot with statistical tests shows that being women, younger,
non-Hispanic, and having a lower BMI are associated with a higher risk of depression. The SHAP interaction
value plot, located on the upper right of Fig. 3, demonstrates the interactions between key features. The LIME
value plot, on the lower right of Fig. 3, locally indicates the feature importance for a single sample (the 14,000th
sample). SHAP values illustrate the contributions of each feature to the model’s ability to identify depression.

Scientific Reports|  (2025) 15:10811 | https://doi.org/10.1038/s41598-025-95938-3 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Cadmium,

Cadmium,

1
1

1

1

1

1

1

1

1

' Lead,
1

1

1

1

1 Mercury,
1

1

1

Barium,

_______

Thal Il ium,
Tin,
Manganese,
Antimony,

Lead,

Race/Hispanic

Tungsten,
Selenium,

Manganese,

Education level
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AAUC (0.65, | (0.594, | (0.599, | (0.608, | (0.68, | (0.663,
0.664) | 0.606) |0.616) |0.62) |0.69) | 0.676)
BAUC 0.89 [0.843 |0.618 |0.628 |0.942 | 0.97
APS 0.06 | 0.047 |0.044 |0.038 |0.062 | 0.068
Average recall 0.972 |0.972 0936 |0.971 |0.971 |0.974
Average f1 score 0.958 |0.958 |0.941 |0.957 |0.957 |0.964
Average accuracy 0972 0972 ]0.936 |0.971 |0.971 | 0.974
Average Brier score loss 0.028 |0.029 |0.064 |0.029 |0.027 |0.026
Average cross-entropy loss | 0.976 |0.984 |2.21 0.99 0.99 |0.908
Average Jaccard index 0.944 |0.944 |091 0.943 | 0.944 | 0.949
Average Cohen’s kappa 0.031 |0.011 |0.04 0 0 0.178

Table 3. Comparison of ML models’ performance. DNN: deep neural networks; SVM: support vector
machine; GNB: Gaussian naive bayes; DT: decision tree classifier; XGB: extreme gradient boosting; AAUC:
average area under the curve; BAUC: best area under the curve; APS: average precision score; NA: null.
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Fig. 3. The SHAP&LIME-GA-XGB summary plot.

Prediction interpretation

In the SHAP decision plot on the right side of Fig. 4, each line represents an individual participant, with all lines
converging at a single point, 0.971. The features are arranged in descending order based on their impact on the
observations. On the left side of Fig. 4, the tree plot illustrates the optimal decision logic used for discrimination,
representing one of the fundamental trees in the model’s decision-making process.

Discussion

In our study, we developed a ML strategy to identify depression in the 2013-2020.3 NHANES data, with a focus
on its relationship with heavy metal exposure. The GA-XGB model was selected for its superior performance
among the five ML algorithms tested, achieving an average AUC of 0.959 and an accuracy of 0.968. To improve
the interpretability of these algorithms, we combined the SHAP game theory method with LIME, enabling more
comprehensive feature interpretation on both global and local scales through summary and decision plots. Our
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Fig. 4. The SHAP-GA-XGB decision plot.

findings suggest that the SHAP & LIME-enhanced GA-XGB model shows promising potential for identifying
depression associated with heavy metal exposure.

This research builds on previous studies that used machine learning (ML) algorithms for disease prediction,
highlighting the advantages of advanced classification techniques in enhancing prediction accuracy. ML, a branch
of artificial intelligence, employs mathematical algorithms to detect patterns in diverse datasets, thereby aiding
in the decision-making process®*. However, the complexity of ML algorithms often limits their interpretability,
making it challenging to apply them effectively in medical decision-making®.

Our SHAP & LIME-GA-XGB model utilizes multi-source NHANES data, including demographics,
examinations, laboratory results, and questionnaires, eliminating the need for additional data collection. Since
2013, significant focus has been placed on heavy metal exposure in the United States®, coinciding with the
implementation of ICD-10 for recording NHANES disease data. ** We analyzed extensive data, particularly the
concentrations of heavy metals in participants’ urine and blood samples. The GA-XGB model demonstrated high
efficiency, outperforming six tested ML algorithms in terms of classification robustness, supported by repeated
K-Fold cross-validation to prevent overfitting®®. SHAP and LIME analyses further enhanced the interpretability
of the GA-XGB model, emphasizing the importance of various features in identifying depression.

The findings from SHAP were consistent with those of previous studies, which primarily investigated the
impact of heavy metal exposure on depression. Notably, the relationship between cadmium exposure and
depression is particularly significant. Cybulska®* and Buser?® found that higher blood cadmium levels were
associated with an increased risk of depressive symptoms. However, Gao*! and Rhee*? found that lower levels of
serum uric acid, which can be influenced by cadmium exposure, were associated with depression. These findings
suggest a complex relationship between cadmium exposure, depression, and potential moderating factors.

Future research should focus on monitoring and analyzing key features to help experts draw informed
conclusions, rather than relying solely on algorithmic predictions. Expanding the dataset and incorporating

clinical expertise could further enhance the model’s validity and performance®.

Limitations

Our study has several limitations. Firstly, due to computational constraints, we were unable to explore other
potentially dynamic correlations within the limited dataset. Secondly, the self-reported nature of depression
diagnoses in the NHANES questionnaire, despite following ICD-10 standards, may introduce information bias.
Thirdly, the strict inclusion criteria resulted in substantial missing data, potentially leading to bias. Fourthly, the
complexity of the model’s interpretation may impact the reproducibility of our findings. Fifthly, the integration
of machine learning into epidemiological research offers a powerful tool for identifying patterns in large and
complex datasets. However, the cross-sectional nature of the NHANES data limits the ability to establish causality,
and the study’s focus on heavy metals means that other potential risk factors for depression are not considered.
Lastly, in this study, feature selection and preprocessing were conducted strictly within the training data, with the
test set kept entirely independent to ensure unbiased evaluation. However, feature selection was not embedded
within each fold of the cross-validation process, which may risk slight overestimation of performance during
internal validation. While this approach improves processing consistency and efficiency, embedding feature
selection within folds would provide a more rigorous methodology. Future studies could adopt this workflow to
further enhance robustness. Nevertheless, the final performance evaluation relied exclusively on an independent
test set, mitigating the risk of data leakage and ensuring reliable generalizability.
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Conclusion

In our study among US NHANES 2013-2020.3 participants, the SHAP&LIME-GA-XGB model was identified
as an interpretable, efficient, and robust machine learning model for detecting depression based on heavy metal
exposure. Cadmium in blood positively contribute to depression, while Barium, Thallium, Tin, Manganese,
Antimony, Lead, Tungsten in urine, and Lead, Cadmium, Mercury, Selenium, Manganese in blood negatively
contribute to depression.

Data availability

The datasets that support the findings of this study are available publicly. Full lists of records identified through
database searching are available on reasonable request from the corresponding author. Correspondence: schus-
ter_ter@163.com.
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