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Developing accurate predictive models for pile bearing capacity on rock is crucial for optimizing 
foundation design and ensuring structural stability. This research presents an advanced data-driven 
framework that integrates multiple machine learning algorithms to predict the bearing capacity of 
piles based on geotechnical and in-situ test parameters. A comprehensive dataset comprising key 
influencing factors such as pile dimensions, geological characteristics, and penetration resistance was 
utilized to train and validate various models, including Kstar, M5Rules, ElasticNet, XNV, and Decision 
Trees. The Taylor diagram and statistical evaluations demonstrated the superiority of the proposed 
models in capturing complex nonlinear relationships, with high correlation coefficients and low root 
mean square errors indicating robust predictive capabilities. Sensitivity analyses using Hoffman and 
Gardener’s approach and SHAP values identified the most influential parameters, revealing that 
penetration resistance, pile embedment depth, and geological conditions significantly impact pile 
capacity. The findings underscore the effectiveness of machine learning in geotechnical engineering 
applications, offering a reliable and efficient alternative to traditional empirical and analytical 
methods. The developed framework provides engineers and practitioners with a powerful tool for 
improving pile design accuracy, reducing uncertainties, and optimizing construction practices. Future 
research should focus on expanding the dataset with diverse geological conditions and exploring 
hybrid modeling techniques to enhance prediction accuracy further.
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The analytical and machine learning computational evaluation of the bearing capacity of piles on rock provides 
critical insights for the design of pile foundations, enhancing both accuracy and efficiency in geotechnical 
engineering1–3. Analytical methods typically rely on theoretical models and empirical correlations to estimate 
bearing capacity based on factors such as rock type, uniaxial compressive strength, pile dimensions, and rock-
pile interaction mechanisms4–6. These approaches, though widely used, often face limitations in accounting for 
complex geological conditions and variability in material properties7. Machine learning methods overcome these 
limitations by leveraging large datasets to capture nonlinear relationships between input parameters and bearing 
capacity outcomes8. Algorithms such as decision trees, support vector machines, and neural networks can 
predict pile capacity more accurately by learning from past data, including field tests and experimental studies9. 
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These models are particularly valuable when dealing with heterogeneous rock formations, complex boundary 
conditions, and incomplete datasets10. The integration of analytical and machine learning approaches provides 
a balanced framework for pile design11. Analytical models can guide the initial design by providing baseline 
estimates, while machine learning models refine these estimates by capturing site-specific factors and reducing 
prediction uncertainties12. This hybrid approach results in safer and more cost-effective foundation designs by 
minimizing the risks of underestimating or overestimating bearing capacities14. In practical applications, these 
computational advancements support informed decision-making in infrastructure projects, allowing engineers 
to optimize pile dimensions, material usage, and installation techniques5. They also contribute to sustainability 
by reducing material waste and enabling more accurate assessments of site conditions, leading to robust and 
durable foundation systems in diverse geological environments.

The bearing capacity of piles on rock is a crucial factor in geotechnical engineering, impacting the design and 
stability of deep foundations1. The precise prediction of this capacity is crucial for maintaining the safety and 
economic feasibility of structures, especially in regions where bedrock is found at shallow depths7. Conventional 
approaches to estimating pile bearing capacity on rock typically utilize empirical formulas, analytical solutions, 
and in-situ testing methods15. These methods are constrained by their dependence on simplified assumptions, 
variability in rock properties, and the complexity of rock-pile interactions16. Recent advancements in data-
driven methodologies, including machine learning (ML) and artificial intelligence (AI), have proven effective 
in predicting geotechnical parameters, thereby addressing the shortcomings of traditional techniques2,17. This 
review offers a thorough overview of the subject, examines the difficulties in predicting pile bearing capacity 
on rock, and investigates the potential of data-driven frameworks to mitigate these issues18. Pile foundations 
serve as deep structural components that facilitate the transfer of loads from superstructures to more stable soil 
or rock strata located at greater depths3. The bearing capacity of piles socketed into rock is affected by several 
factors, including the unconfined compressive strength (UCS) of the rock, the rock mass rating (RMR), the 
socket length, the pile diameter, and the interface friction between the pile and the rock9. The bearing capacity of 
piles on rock is generally categorized into two components: end-bearing capacity and side resistance5. The end-
bearing capacity originates from the resistance of the rock at the pile tip, whereas the side resistance is produced 
by the shear strength along the pile-rock interface.

Conventional approaches for assessing the bearing capacity of piles on rock have been extensively researched 
and implemented in the field of geotechnical engineering1. These methods generally rely on empirical 
correlations, analytical models, and field testing. Rowe and Armitage14 proposed a design method for drilled 
piers in soft rock that incorporates the unconfined compressive strength (UCS) of the rock and the socket 
length. Kulhawy and Goodman15 established a theoretical framework for estimating the side resistance of piles 
in discontinuous rock masses, highlighting the significance of rock mass rating (RMR) and joint characteristics. 
Pells16 conducted a thorough review of rock-socketed pile design, emphasizing the shortcomings of conventional 
methods, including their dependence on oversimplified assumptions and the challenges in accurately defining 
rock properties. Zhang and Einstein17 introduced an empirical approach for estimating the end-bearing capacity 
of drilled shafts in rock, grounded in an extensive database of pile load tests. Their method has gained extensive 
practical application; however, it is constrained by its dependence on site-specific data.

Traditional methods for predicting pile bearing capacity on rock encounter several challenges, despite their 
widespread application. Hoek and Brown18 observed that variability in rock properties, including UCS and 
RMR, can result in considerable uncertainties in predictions of pile capacity. Rowe and Armitage14 emphasized 
the challenges in accounting for the intricate interactions between the pile and the rock, especially in scenarios 
involving highly fractured or anisotropic rock masses. Field tests, including pile load tests and rock socket 
integrity tests, yield direct measurements of pile capacity; however, they tend to be costly and require significant 
time investment. Zhang and Xu19 highlighted the necessity for improved efficiency and cost-effectiveness in 
predicting pile bearing capacity, especially in large-scale projects where comprehensive field testing may be 
impractical.

Recently, data-driven methodologies, including machine learning (ML) and artificial intelligence (AI), 
have become increasingly prominent in geotechnical engineering to overcome the constraints of conventional 
techniques. Shahin20 illustrated the capability of artificial neural networks (ANNs) in forecasting the load-
settlement behavior of piles in cohesive soils. Alkroosh and Nikraz21 utilized support vector machines (SVMs) to 
predict the bearing capacity of piles in cohesive soils, demonstrating that the SVM model yielded more accurate 
predictions compared to empirical methods. Zhang et al.22 created an ensemble learning model to estimate the 
bearing capacity of rock-socketed piles, utilizing data from 120 case studies. The study demonstrated that the 
ensemble model, integrating predictions from various machine learning algorithms, yielded greater accuracy 
and reliability compared to standalone models. The studies demonstrate that data-driven methods effectively 
capture the intricate interactions between pile and rock properties, yielding accurate predictions despite limited 
data availability.

Numerous studies have investigated the combination of data-driven and traditional approaches to enhance 
the precision and interpretability of pile capacity forecasts. Goh et al.23 utilized artificial neural networks (ANNs) 
to predict the ultimate load capacity of piles using data from static load tests, demonstrating that the ANN 
model surpassed traditional methods in prediction accuracy and robustness. Zhang and Xu19 proposed a hybrid 
approach that integrates data-driven and analytical methods, resulting in enhanced accuracy and interpretability 
of predictions. Numerous case studies have shown the efficacy of data-driven methods in predicting the bearing 
capacity of piles on rock. Goh et al.23 employed artificial neural networks to forecast the ultimate load capacity 
of piles utilizing data derived from static load tests. The authors demonstrated that the ANN model surpassed 
traditional methods regarding prediction accuracy and robustness. Alkroosh and Nikraz21 utilized support 
vector machines (SVMs) to forecast the bearing capacity of piles in cohesive soils, demonstrating that the SVM 
model yielded more precise predictions compared to empirical methods. Zhang et al.22 developed an ensemble 
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learning model to predict the bearing capacity of rock-socketed piles, utilizing data from 120 case studies. The 
study demonstrated that the ensemble model, integrating predictions from various machine learning algorithms, 
yielded greater accuracy and reliability compared to standalone models. The case studies demonstrate the 
potential of data-driven methods to enhance the accuracy and efficiency of pile design. Recent research has 
concentrated on the validation of machine learning models using real-world data. Park et al.24 conducted a 
comparison between machine learning-based predictions and static load test results, attaining an accuracy 
exceeding 90%. Fattah et al.25 demonstrated enhanced prediction efficiency through the use of hybrid machine 
learning models that integrate geotechnical parameters. Additional studies have integrated real-time sensor data 
into machine learning frameworks, facilitating ongoing monitoring and enhancement of predictive models. 
Large-scale infrastructure project case studies demonstrate that data-driven models can enhance foundation 
design, simultaneously minimizing costs and uncertainties.

Statement of research innovation
This research introduces an innovative approach to predicting the bearing capacity of piles on rock by leveraging 
advanced data-driven methodologies, including machine learning (ML) and artificial intelligence (AI), to 
overcome the limitations of conventional empirical and analytical methods. Unlike traditional approaches 
that rely on simplified assumptions, site-specific empirical correlations, and costly in-situ testing, this study 
explores the capability of ML models to capture the complex interactions between rock and pile properties with 
greater accuracy and efficiency. By integrating various advanced ML techniques, including Semi-supervised 
classifier (Kstar), M5 classifier (M5Rules), Elastic net classifier (ElasticNet), Correlated Nystrom Views (XNV), 
and Decision Table (DT), the research aims to enhance prediction reliability while reducing the dependency 
on extensive field testing. Additionally, the study investigates hybrid methodologies that combine ML with 
analytical frameworks, ensuring both interpretability and precision in pile capacity estimation. The innovation 
lies in the ability of these data-driven approaches to process large-scale datasets, identify intricate patterns in 
geotechnical parameters, and provide cost-effective, accurate predictions that improve foundation design and 
stability. This research advances the field by validating ML-based models using real-world case studies and 
demonstrating their potential to enhance geotechnical engineering practices, ultimately contributing to safer 
and more economically viable deep foundation solutions.

Methodology
Data collection from experimental setup and preliminary analysis
A comprehensive literature was applied in this research work and 200 multiple data entries from experimental 
exercises were collected from literature1. The collected 200 records were partitioned into training set (150 
records = 75%) and validation set (50 records = 25%) in line with optimal partitioning pattern for reliable 
models26. The studied critical factors of this research included; the diameter of the pile (D), the initial soil 
exploration’s depth in meters (DSE1), the second soil exploration’s depth (meters) (DSE2), the third soil 
exploration (DSE3)’s depth (meters), the Phreatic Surface (PTE) is the depth in meters at which the groundwater 
table is located, the depth in meters of the effective stress point (Ge), the depth in meters of the expected 
phreatic surface (EPTE), the depth of the anticipated elastic settling point (Pe) (meters), the quantity of standard 
penetration tests (SPTs) measured at different depths, at every depth, and the standard penetration test blows 
count (SPTt), which are applied as input parameters. The maximum bearing capacity at the foundation level (Pu 
) expressed in kilo Newton (kN) is the output. Table 1 summarizes their statistical characteristics. The statistical 
analysis of the training and validation datasets provides insights into the variability and distribution of the 
parameters influencing pile bearing capacity on rock. The maximum and minimum values indicate the range 
of data considered for both sets, showing a significant spread in the key variables such as pile displacement (D), 
pile embedment depths (DSE1, DSE2, DSE3), penetration test values (SPTs, SPTt), and ultimate pile capacity 
(Pu). The mean values (Avg) of the datasets reveal slight differences between the training and validation sets, 

D DSE1 DSE2 DSE3 PTE Ge EPTE Pe SPTs SPTt Pu

mm m m m m m m m blows blows kN

Training set

Max. 400 5.40 8.00 1.18 3.40 3.72 4.45 15.58 14.70 7.73 1551

Min 300 3.40 1.72 0.00 1.95 3.27 1.06 8.52 5.82 4.57 407

Avg 373 3.94 6.62 0.31 2.70 3.51 2.93 13.56 10.88 6.98 1049

SD 44 0.50 1.74 0.44 0.58 0.07 0.59 1.87 2.28 0.74 367

Var 0.12 0.13 0.26 1.43 0.21 0.02 0.20 0.14 0.21 0.11 0.35

Validation set

Max. 400 4.75 8.00 1.10 3.40 3.65 4.35 15.50 13.45 7.69 1551

Min 300 3.40 1.80 0.00 2.05 3.32 2.05 8.60 5.90 4.64 532

Avg 386 4.03 6.95 0.44 2.54 3.53 2.83 13.95 11.41 7.10 1131

SD 35 0.44 1.77 0.46 0.54 0.07 0.59 1.91 2.25 0.78 328

Var 0.09 0.11 0.25 1.05 0.21 0.02 0.21 0.14 0.20 0.11 0.29

Table 1.  Statistical analysis of collected databases.

 

Scientific Reports |        (2025) 15:11051 3| https://doi.org/10.1038/s41598-025-96186-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


with the validation set having a slightly higher average in most parameters, particularly in Pu, which suggests 
a slight increase in the predicted bearing capacity in the validation phase27. The standard deviation (SD) and 
variance (Var) highlight the dispersion of data around the mean. For both training and validation sets, the 
highest SD is observed in Pu, indicating a wide spread in the pile capacity values. Similarly, parameters such 
as DSE2, Pe, and SPTs exhibit relatively high SDs, implying considerable variation in pile socketing and soil 
resistance characteristics. The variance of Pu in the validation set (0.29) is slightly lower than that in the training 
set (0.35), suggesting a reduction in variability, possibly due to the influence of improved model generalization. 
Comparing the two datasets, it is evident that the validation set exhibits slightly lower variability in most 
parameters, as shown by lower SD and variance values. The consistency between the training and validation 
datasets suggests that the data-driven model was trained on a well-balanced dataset, which supports reliable 
generalization. The minor differences in statistical metrics between the two datasets indicate that the model is 
not significantly overfitting, maintaining a good level of predictive accuracy and robustness in estimating the 
pile bearing capacity on rock. Finally, Figs. 1 and 2 show the violin sketch and the Pearson correlation matrix, 
histograms, and the relations between variables. The violin plot visualizes the distribution and density of various 
input parameters influencing the pile bearing capacity on rock. The shape of each violin provides insights into 
the spread and frequency of data points for each variable. Wider sections indicate higher density, while narrower 
regions suggest lower frequency. The plot for pile displacement (D) shows a bimodal distribution, with two main 
density peaks around 300 mm and 400 mm, indicating that most data points are concentrated in these regions. 
DSE1 and DSE2 exhibit multiple peaks, implying the presence of different clusters in the dataset, possibly due to 
varying geological conditions. DSE3 has a skewed distribution, with a dominant peak near zero, suggesting that 
a significant portion of the dataset has low values for this parameter. The Ge parameter exhibits a concentrated 
and narrow density distribution, which implies low variability in geological characteristics across the dataset. 
The PTE, EPTE, and Pe parameters show multimodal distributions, indicating that multiple factors influence 
their values, leading to different clusters of data points. SPTs and SPTt display distinct density variations, with a 
broad range of values and peaks at different intervals, suggesting the presence of varying subsurface conditions 

Fig. 1.  Violin distribution for each input.
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affecting standard penetration test results. The most critical parameter, Pu (pile bearing capacity), demonstrates 
a complex distribution with multiple peaks and a wide spread of values, indicating significant variability in the 
dataset. This suggests that pile bearing capacity is influenced by multiple interacting factors rather than a single 
dominant parameter. The violin plots overall confirm that the dataset consists of diverse input conditions, with 
varying levels of skewness and multimodality, highlighting the importance of advanced predictive models to 
capture these complexities in pile capacity estimation. Conversely, the correlation matrix visually represents the 
relationships between different variables influencing the pile bearing capacity on rock. The color-coded heatmap 
highlights the strength and direction of correlations, with red indicating strong positive correlations, green 
representing strong negative correlations, and yellow reflecting moderate relationships. The highest positive 
correlations are observed between Pe and SPTs (0.97), SPTs and Pu (0.85), and Pe and Pu (0.79), indicating 
that these parameters strongly influence pile bearing capacity. Conversely, PTE exhibits strong negative 
correlations with D (−0.71), DSE1 (−0.94), and Pu (−0.78), suggesting that higher PTE values correspond to 
lower pile capacity and displacement. The scatter plots provide additional insights into variable relationships. 
Strong positive correlations, such as between Pe and SPTs, show clear upward trends, while strong negative 
correlations, such as between PTE and Pu, exhibit downward patterns. Some parameters, such as Ge and Pu 
(−0.34), show weaker correlations, indicating less direct influence. The histograms along the diagonal illustrate 
the distribution of each variable, with D, Pe, and Pu showing right-skewed distributions, suggesting that most 
values are concentrated towards the lower end of the range. The overall interpretation of the chart highlights the 
significant impact of SPTs, Pe, and PTE on Pu, confirming their importance in predicting pile bearing capacity. 
Strong positive correlations between Pe, SPTs, and Pu suggest that penetration resistance plays a crucial role 

Fig. 2.  Correlation, Distribution and Interpreting chart.
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in determining pile performance, while the negative influence of PTE underscores the importance of soil and 
geological conditions. The insights derived from the correlation matrix provide valuable guidance for developing 
advanced predictive models by emphasizing the most influential factors.

Plan of research
Five (5) different ML techniques were used to predict (Pu) using the collected database. These techniques are 
“Semi-supervised classifier (Kstar)”, “M5 classifier (M5Rules), “Elastic net classifier (ElasticNet), “Correlated 
Nystrom Views (XNV)”, and “Decision Table (DT)”. All the models were created using “Weka Data Mining” 
software version 3.8.6. Further the models’ performance evaluation and sensitivity analyses were conducted and 
reported.

Theoretical framework
Semi-supervised classifier (Kstar)
Kstar is a semi-supervised instance-based classifier that uses an entropy-based distance function to classify data 
points. It generalizes the k-nearest neighbor approach by computing the probability of transforming one instance 
into another through a series of steps, rather than relying solely on Euclidean distance27. This transformation-
based distance function allows Kstar to adapt to diverse data structures and distributions, making it more 
flexible and effective in handling noisy or complex datasets. The model operates by evaluating the similarity 
between the target instance and training examples based on these transformation probabilities. By leveraging 
both labeled and unlabeled data, Kstar improves classification accuracy and generalization performance, 
especially in situations where fully labeled datasets are limited28. Its robust performance and adaptability make 
it suitable for applications requiring enhanced predictive power in complex environments. The probability of 
transformation P(x→y) is defined as the probability of transforming instance x to y. The computation involves 
all possible transformations.

	
P (x → y) =

∏
n
t=1Pt(x → y)� (1)

Where Pt​ represents the probability of each transformation step. The distance between two instances x and y is 
given by:

	 D (x, y) = −log (P (x → y))� (2)

The class of the neighbors nearest to it is applied for classification. The most probable class is determined using:

	
Class (x) = c

argmax
∑

iϵneighborswiP (xi → x)� (3)

Where: “wi” ​is the weight of the neighbor xi​ and P(xi→x)is the probability of transformation.

M5 classifier (M5Rules)
M5Rules is a rule-based regression model derived from the M5 model tree algorithm. It combines decision 
tree structures and linear regression models to predict continuous outcomes. The model first builds an M5 
model tree by recursively splitting the dataset based on input attributes and fitting linear regression models 
at the leaves28. These branches are then converted into a set of transparent and interpretable decision rules. 
Each rule generated by M5Rules represents a specific region in the input space and is associated with a linear 
regression equation to predict the target variable. This combination of rules and regression equations allows 
M5Rules to handle complex, nonlinear relationships while maintaining interpretability29. It is particularly useful 
for applications requiring both accurate predictions and insights into how the predictions are made. Each leaf 
node applies an equation of regression:

	
y = β 0 +

∑
n
i=1β ixi� (4)

Where β0​ is the intercept, βi​ are the coefficients, and xi​ are the input features. The decision tree splits are evaluated 
by minimizing the variance in the target variable y:

	
Split Criterion =

∑
n
i=1(yi−

−
y)

2
� (5)

Elastic net classifier (ElasticNet)
The ElasticNet classifier is a regularized machine learning algorithm that combines the strengths of L1 (lasso) and 
L2 (ridge) penalties for feature selection and model optimization. It addresses limitations such as multicollinearity 
and overfitting by balancing feature selection and coefficient shrinkage. The ElasticNet classifier is particularly 
effective when dealing with high-dimensional datasets where predictors may be highly correlated29. The model 
introduces two hyperparameters: alpha, which controls the overall strength of regularization, and the mixing 
ratio (lambda) that determines the weight between L1 and L2 penalties. By tuning these parameters, ElasticNet 
finds an optimal solution that benefit from both sparse feature selection (due to L1) and smooth coefficient 
adjustment (due to L2). ElasticNet is widely used in applications where interpretability and performance are 
critical, such as text classification, bioinformatics, and predictive analytics involving complex feature sets. Its 
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flexibility and robustness make it a versatile choice for both classification and regression tasks. Particularly, it is 
useful when features are correlated. The objective function:

	
β

min 1
2n

∑
n
i=1(yi − β 0 − Xτ

i β )2 + λ
(

∝ ∥β ∥1 + 1− ∝
2 ∥β ∥2

2

)
� (6)

∥β ∥1 : L1 norm (lasso penalty). ∥β ∥2
2 : L2 norm (ridge penalty). λ : Regularization parameter. ∝ : 

Mixing parameter (0 ≤ α ≤ 1). Elastic Net uses coordinate descent to optimize the coefficients β.

Correlated Nystrom views (XNV)
Correlated Nyström Views (XNV) is a machine learning technique that extends the traditional Nyström method 
by incorporating multi-view learning to enhance the approximation of large kernel matrices. The Nyström 
method is commonly used for efficient kernel learning by selecting a subset of data points to approximate the full 
kernel matrix, reducing computational complexity. XNV improves this process by leveraging correlated views, 
where different subsets of features or data perspectives provide complementary information30. By integrating 
these views, XNV captures richer data patterns and relationships, leading to more accurate approximations and 
improved model performance. This approach is particularly valuable in applications with heterogeneous data 
sources, such as multimedia analysis, sensor fusion, and bioinformatics, where correlated information from 
multiple feature sets can significantly enhance learning outcomes. Using linked embeddings, it integrates several 
data views (such as feature sets). Nystrom Approximation for Kernel Matrix K:

	
∼
K= CW †Cτ � (7)

Where: C: Submatrix of K (columns corresponding to sampled points). W: Submatrix of K (intersection of rows 
and columns of sampled points). W † Pseudoinverse of W. Correlated Nystrom Views combines the embeddings 
from different views using a correlation matrix R:

	 Z = concat (Z1, Z2, . ., Zm) R� (8)

Where: Zi​: Embedding from the i-th view, R: Correlation matrix learned during training. The embeddings Z are 
fed into a classifier (e.g., SVM or logistic regression).

Decision table (DT)
A Decision Table (DT) is a simple, rule-based machine learning model used for classification and decision-
making tasks. It organizes input features and corresponding outcomes in a tabular format, where each row 
represents a unique combination of conditions that lead to a specific decision or prediction27. The table 
explicitly lists all possible conditions and their associated actions, making it highly interpretable. DT models are 
particularly useful when the decision-making process can be clearly defined by straightforward rules31. They are 
efficient in scenarios with limited feature interactions and well-structured datasets. However, they may struggle 
with complex or noisy data where advanced models such as decision trees or ensemble methods often perform 
better. Despite their simplicity, DTs are valued for their transparency, ease of implementation, and suitability for 
explainable AI applications. Each row in the decision table corresponds to a rule: If A1 = v1 and A2 = v2 and 
… then Class = c. When multiple rows match, the class is determined by majority voting:

	
Class (x) = c

argmax
∑

n
i=1 ∥ (Rowi = c)� (9)

Where: ∥  is the indicator function.

Performance evaluation
The accuracies of developed models were evaluated by comparing SSE, MAE, MSE, RMSE, Error %, Accuracy % 
and R2, R, WI, NSE, KGE and SMAPE between predicted and calculated bearing capacity values. The definition 
of each used measurement is presented in Eq. 10 to 20.

MAE
Mean Absolute Error (MAE) is a metric used to measure the average magnitude of errors between predicted 
and actual values in regression models. It calculates the absolute difference between the predicted and observed 
values, providing a straightforward assessment of model accuracy. MAE is defined by the formula:

	
MAE = 1

N

∑
N
i=1 |yi − xi|� (10)

Where: yi represents the actual values, xi denotes the predicted values, and N is the total number of observations. 
MAE is easy to interpret as it retains the same units as the target variable and directly indicates the average error 
per prediction. It is less sensitive to outliers compared to metrics like Mean Squared Error (MSE) since it does 
not square the error terms. However, it treats all errors equally, regardless of their size or direction.

MSE
Mean Squared Error (MSE) is a widely used metric for evaluating the accuracy of regression models by measuring 
the average of the squared differences between predicted and actual values. It is defined by the formula:
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MSE = 1

N

∑
N
i=1(yi − xi)2� (11)

MSE penalizes larger errors more heavily due to the squaring of error terms, making it particularly sensitive 
to outliers. It provides a comprehensive measure of model accuracy by emphasizing significant deviations. 
However, since it uses squared units, its interpretation may be less intuitive compared to other metrics like MAE. 
MSE is commonly minimized during model training to improve prediction accuracy.

RMSE
Root Mean Squared Error (RMSE) is a performance metric used in regression analysis to measure the standard 
deviation of prediction errors. It represents the square root of the Mean Squared Error (MSE) and is calculated 
as:

	 RMSE =
√

MSE� (12)

RMSE provides an intuitive measure of how much the predictions deviate from the actual values on average 
and retains the same units as the target variable. Its sensitivity to large errors makes it useful for emphasizing 
significant deviations. While RMSE offers a more interpretable measure compared to MSE, it is susceptible to 
outliers due to the squaring of error terms.

Error
Error in machine learning refers to the difference between the predicted value generated by a model and the 
actual observed value. It quantifies the accuracy of a model by indicating how far off the predictions are from 
the true outcomes. The error can be positive or negative depending on whether the prediction overestimates or 
underestimates the target. It is represented by:

	
Error (%) = RMSE

−
x

� (13)

Minimizing errors is the primary objective during model training to improve prediction accuracy.

Accuracy
Accuracy is a performance metric used in classification tasks to measure the proportion of correctly predicted 
instances out of the total number of predictions. It is calculated as:

	 Accuracy (%) = 1 − Error (%)� (14)

Accuracy is straightforward and provides a general sense of model performance. However, it may be misleading 
for imbalanced datasets where one class dominates, as it does not account for the distribution of errors across 
classes. In such cases, metrics like precision, recall, or F1-score may be more appropriate.

Coefficient of determination (R2)
The coefficient of determination (R2) is a statistical measure used in regression analysis to indicate how well the 
independent variables explain the variance in the dependent variable. It is calculated as:

	

R2 = 1 −

∑ (
yi−

−
x
)2

∑ (
yi−

−
y
)2 � (15)

The value of R2 ranges from 0 to 1, where 1 indicates a perfect fit and 0 implies that the model explains none of 
the variance in the data. Negative values can occur when the model performs worse than simply predicting the 
mean of the dependent variable. R2 provides insight into the goodness of fit but does not assess the accuracy of 
individual predictions or model complexity.

Coefficient of correlation (R)
The coefficient of correlation (R) measures the strength and direction of the linear relationship between two 
variables. It is calculated as:

	

R =

∑ (
xi−

−
x
) (

yi−
−
y
)

√∑ (
xi−

−
x
)2

.
∑ (

yi−
−
y
)2 � (16)

A higher magnitude of R suggests a stronger correlation, while its sign indicates whether the relationship is 
direct or inverse.

Scientific Reports |        (2025) 15:11051 8| https://doi.org/10.1038/s41598-025-96186-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


WI
The Willmott Index of Agreement (WI) is a statistical metric used to assess the accuracy of model predictions 
compared to observed values. It quantifies the degree to which predictions match observations and ranges from 
0 to 1, where 1 indicates a perfect match and 0 signifies complete disagreement. WI is computed as:

	

W I = 1 −
∑

(yi − xi)2

∑ [(
xi−

−
x
)

+
(

yi−
−
x
)]2 � (17)

WI accounts for both the magnitude and direction of errors, making it a robust indicator for evaluating model 
performance. Unlike traditional metrics such as RMSE, it is less sensitive to large errors and provides a more 
balanced evaluation of prediction accuracy.

NSE
The Nash-Sutcliffe Efficiency (NSE) is a statistical metric used to assess the predictive accuracy of hydrological 
models by comparing observed and predicted values. It is defined as:

	

NSE = 1 −
∑

(xi − yi)2

∑ (
xi−

−
x
)2 � (18)

NSE ranges from −∞ to 1, with 1 indicating a perfect match between predictions and observations. A value of 0 
implies that the model predictions are as accurate as using the mean of the observed data, while negative values 
indicate that the model performs worse than the mean. NSE is widely used in environmental and hydrological 
studies to evaluate model efficiency and performance.

10 KGE
The Kling-Gupta Efficiency (KGE) is a performance metric used to assess the accuracy of model predictions, 
particularly in hydrology and environmental modeling. It provides a balanced evaluation by combining 
correlation, bias, and variability components. KGE is defined as:

	
KGE = 1 −

√√√√(R − 1)2 +

( −
y
−
x

− 1

)2

+

(
σ y

−
y

−
x

σ x
− 1

)2

� (19)

KGE ranges from −∞ to 1, with 1 indicating perfect agreement between predictions and observations. It 
improves upon traditional metrics like NSE by addressing limitations related to bias and variability, offering a 
comprehensive evaluation of model performance.

11 SMAPE
Symmetric Mean Absolute Percentage Error (SMAPE) is a metric used to measure the accuracy of forecasts by 
calculating the percentage difference between predicted and actual values. It is defined as:

	
SMAPE = 100

N

∑
N
i=1

2 |yi − xi|
|yi + xi|

� (20)

SMAPE provides a normalized error percentage, making it useful for comparing performance across different 
datasets. It treats overestimations and underestimations symmetrically, hence the “symmetric” aspect of the 
metric31,32. SMAPE values range from 0% (perfect prediction) to 200%, with lower values indicating better 
model performance. It is particularly suited for cases where both small and large magnitudes are important.

Sensitivity analyses
Hoffman and Gardener’s method evaluates the sensitivity of input factors by directly perturbing each variable 
within its range and measuring the resulting changes in the model’s output. It provides a straightforward and 
quantitative assessment of the contribution of each factor to variations in the output. This method often highlights 
linear relationships and assumes independence among factors, making it effective for simple systems but less 
suited for capturing complex, nonlinear interactions33. Conversely, SHAP (Shapley Additive Explanations) is a 
game-theoretic approach that calculates the marginal contribution of each input factor by considering all possible 
combinations of inputs34. Unlike Hoffman and Gardener’s method, SHAP accounts for variable interactions 
and dependencies, providing a comprehensive view of how input factors influence the model’s predictions. By 
distributing the total prediction difference among the input factors, SHAP assigns a fair importance value to each 
variable, offering a more nuanced and interpretable sensitivity analysis for complex machine learning models. 
A preliminary sensitivity analysis was carried out on the collected database to estimate the impact of each input 
on the (Y) values. “Single variable per time” technique is used to determine the “Sensitivity Index” (SI) for each 
input using both the Hoffman & Gardener’s33 and SHAP’s34,35 methods formula as follows:

	
SI (Xn) = Y (Xmax) − Y (Xmin)

Y (Xmax) � (21)
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A sensitivity index of 1.0 indicates complete sensitivity, a sensitivity index less than 0.01 indicates that the model 
is insensitive to changes in the parameter34.

Results presentation and analysis
Kstar models
The KStar model hyperparameters (see Fig. 3) displayed in the image control various aspects of its behavior, 
influencing its performance and predictive accuracy. The batchSize is set to 100, meaning the model processes 
data in batches of 100 instances at a time, which can affect computational efficiency and memory usage. The 
debug parameter is set to False, indicating that debugging messages are not enabled, leading to a cleaner output 
but potentially making it harder to diagnose issues during execution. The doNotCheckCapabilities parameter 
is also set to False, meaning the model will verify its capabilities before execution, ensuring compatibility with 
the dataset. The entropicAutoBlend parameter is set to False, meaning entropy-based automatic blending is 
disabled, which may impact how the model determines similarity between instances. The globalBlend value 
is set to 20, meaning the model will apply a global blending factor of 20 to influence the similarity measure, 
which can affect classification accuracy. The missingMode parameter is set to “Average column entropy curves,” 
suggesting that missing values will be handled using entropy-based averaging, which is an advanced technique 
for managing missing data. Finally, numDecimalPlaces is set to 2, meaning numerical results will be rounded to 
two decimal places, ensuring consistency in output formatting. The best fit plot for the Kstar model demonstrates 
a strong correlation between the predicted and experimental values in both training and validation datasets. The 
regression equations for training (y = 0.97x + 27.95) and validation (y = 0.99x + 20.31) indicate a nearly perfect 
linear relationship between predicted and actual values, with slopes close to 1 (see Fig. 4). The coefficient of 
determination (R² = 0.98) in both cases further confirms the high predictive accuracy of the model. When 
compared with the Kstar performance data in the table, the statistical indices align with the observations from 
the best fit plot. The model has the lowest Sum of Squared Errors (SSE), Mean Absolute Error (MAE), and Root 
Mean Squared Error (RMSE), reinforcing its precision. The low error percentage (4%) and high accuracy (96%) 
indicate minimal deviations between predictions and actual values. The model’s strong performance is further 
supported by high values of R², correlation coefficient (R = 0.99), Willmott’s Index (WI = 1.00 in training and 0.99 

Fig. 4.  Relation between predicted and calculated capacity using (Kstar).

 

Fig. 3.  The considered hyper-parameters of (Kstar) model.
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in validation), Nash-Sutcliffe Efficiency (NSE), and Kling-Gupta Efficiency (KGE), all reflecting near-optimal 
predictive capability. The best fit plot also shows that most predicted values lie within the ± 15% error margins, 
signifying the model’s robustness and reliability in predicting pile bearing capacity. The experimental and 
predicted values align closely along the red best-fit line, with minimal scatter, further validating the consistency 
of the Kstar model.

M5Rules models
The M5Rules model hyperparameters (see Fig. 5) in the image influence rule-based regression tree behavior. 
The batchSize is set to 100, meaning the model processes data in chunks of 100 instances at a time, affecting 
efficiency and memory use. The buildRegressionTree parameter is set to False, indicating that the model will 
not construct a full regression tree but will instead generate rule-based models. The debug parameter is False, 
meaning debugging messages are disabled for a cleaner output. The doNotCheckCapabilities parameter is also 
False, ensuring the model checks its capabilities before execution to prevent errors. The minNumInstances is 
set to 4.0, meaning each rule must have at least four instances in the dataset to be considered valid, preventing 
overfitting by ensuring rules are based on sufficient data. The numDecimalPlaces is set to 4, ensuring output 
values are rounded to four decimal places for precision. The unpruned parameter is set to False, meaning pruning 
is enabled, reducing model complexity by eliminating less significant rules. The useUnsmoothed parameter is 
False, indicating that smoothing techniques are applied to improve the accuracy of numeric predictions by 
avoiding abrupt changes in rule values. The best fit plot for the M5Rules model shows a strong but slightly lower 
correlation between predicted and experimental values compared to the Kstar model. The regression equations 
for training (y = 0.92x + 78.63) and validation (y = 0.93x + 75.82) indicate a slight underestimation of higher 
values (see Figs. 6 and 7). The coefficient of determination (R²) values of 0.94 for training and 0.93 for validation 
confirm a high predictive performance but with more deviation compared to Kstar. The table data supports these 
observations. The M5Rules model has higher SSE, MAE, and RMSE values than Kstar, indicating greater error 
in predictions. The error percentage (8%) and accuracy (92%) suggest a reliable but less precise performance. 
The correlation coefficient (R = 0.97) and high Willmott’s Index (WI = 0.98) signify strong predictive capability, 
although slightly lower than Kstar. The Nash-Sutcliffe Efficiency (NSE) and Kling-Gupta Efficiency (KGE) 
values also indicate good performance but with more deviation. The best fit plot shows a wider spread of data 

Fig. 6.  M5Rules model optimization rules.

 

Fig. 5.  The considered hyper-parameters of (M5Rules) model.
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points compared to Kstar, meaning some predictions deviate more from the experimental values. While most 
predictions fall within the ± 15% error range, the larger scatter and higher intercept values suggest that the model 
may introduce bias, particularly for lower values. Overall, M5Rules is a strong model but exhibits slightly higher 
errors and more variation in predictions compared to Kstar.

ElasticNet models
The ElasticNet model hyperparameters (see Fig. 8) in the image influence the balance between L1 (lasso) and L2 
(ridge) regularization, along with model optimization settings. The alpha parameter is set to 0.001, controlling 
the regularization strength, where smaller values allow more flexibility in fitting the data. The batchSize is 100, 
meaning data is processed in chunks of 100 instances, affecting efficiency. The custom_lambda_sequence field is 

Fig. 8.  The considered hyper-parameters of (ElasticNet) model.

 

Fig. 7.  Relation between predicted and calculated capacity using (M5Rules).
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empty, indicating that the model uses default lambda values rather than a custom sequence. The debug parameter 
is False, disabling debugging messages. The doNotCheckCapabilities is False, ensuring the model checks its 
capabilities before execution to prevent errors. The epsilon value is 1.0E-4, setting the precision threshold for 
convergence, meaning the model stops iterating when improvements become smaller than this value. The 
maxIt parameter is 10,000,000, defining the maximum number of iterations, ensuring the model does not stop 
prematurely before converging. The numDecimalPlaces is set to 2, meaning output values will be rounded to 
two decimal places. The numInnerFolds is 10, indicating that 10-fold cross-validation is applied internally for 
model tuning. The numModels parameter is 100, meaning the model evaluates 100 different sub-models during 
the learning process. The sparse parameter is False, meaning a dense representation is used instead of sparse 
matrices, which can impact memory usage and efficiency. The threshold is set to 1.0E-7, defining a numerical 
stability limit to handle very small values during computation. The use_method2 is True, indicating an alternative 
method is applied for optimization. The use_stderr_rule is False, meaning the model does not rely on the 
standard error rule for model selection, instead choosing based on direct performance metrics. The best fit plot 
for the ElasticNet model shows a weaker correlation between predicted and experimental values compared to 
Kstar and M5Rules. The regression equations for training (y = 0.74x + 269.57) and validation (y = 0.70x + 339.19) 
indicate significant underestimation, as both slopes are much lower than 1, and the intercept values are high (see 
Fig. 9). The coefficient of determination (R²) values of 0.80 for training and 0.78 for validation confirm lower 
predictive performance, meaning the model struggles with accurately capturing the relationship between input 
and output variables. The table data aligns with these observations. ElasticNet exhibits the highest SSE, MAE, 
MSE, and RMSE values, signifying larger prediction errors. The error percentage is 13% for training and 14% 
for validation, making it the least accurate model in comparison. The accuracy of 87% in training and 86% in 
validation is lower than the other models. The correlation coefficient (R = 0.89 in training and 0.88 in validation) 
further confirms the weaker relationship between predicted and actual values. Willmott’s Index (WI = 0.94) and 
Nash-Sutcliffe Efficiency (NSE = 0.80) also indicate reduced predictive reliability. The best fit plot shows a more 
dispersed distribution of points, especially at higher experimental values, where predictions seem to saturate and 
cluster. Many points fall outside the ± 15% error range, reinforcing that the model struggles with generalization. 
The high intercept values suggest that ElasticNet tends to introduce a systematic bias, consistently over-predicting 
lower values and under-predicting higher values. The Kling-Gupta Efficiency (KGE = 0.80) and SMAPE (12.71 
in training and 11.61 in validation) further support that the model has difficulty producing accurate predictions. 
Overall, the ElasticNet model demonstrates the weakest predictive performance among the evaluated models, 
with substantial errors, lower accuracy, and a clear trend of underestimation. It may require further tuning or an 
alternative approach to improve prediction quality.

Pu = 4.209D + 9.34DSE1 + 23.7 DSE2 + −1.35 DSE3 −8.48 PTE + 0.332 Ge + 6.63 EPTE + 23.13 Pe + 30.75 
SPTs + 5.49SPTt − 1401.3 (22).

XNV model
The XNV model hyperparameters (see Fig. 10) in the image indicate the configuration of a kernel-based machine 
learning approach. The regularization parameter gamma is set to 0.01, which controls the influence of each 
training example in a radial basis function (RBF) kernel. A sample size for the Nyström method of 100 suggests 
that an approximation technique is used to speed up kernel computations by sampling a subset of the data. The 
kernel function chosen is RBFKernel, with additional parameters (-C 250007 -G 0.01), where C likely represents 
the regularization parameter and G represents gamma for the kernel function. The do not apply standardization 
parameter is set to False, meaning data preprocessing includes standardization. The batchSize is set to 100, 
indicating that data is processed in chunks of 100 instances at a time. The debug parameter is False, disabling 
debugging messages. The doNotCheckCapabilities is False, ensuring that the model verifies its compatibility 
with the dataset before execution. The numDecimalPlaces is set to 2, meaning numerical results are rounded to 
two decimal places. The seed value is 1, ensuring reproducibility by initializing the random number generator 
with a fixed value. The best fit plot for the XNV model indicates a strong correlation between predicted and 

Fig. 9.  Relation between predicted and calculated capacity using (ElasticNet).
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experimental values, but with slight underestimation. The regression equations for training (y = 0.91x + 89.49) 
and validation (y = 0.92x + 91.77) suggest that the model tends to predict slightly lower values than the actual 
experimental results, as the slopes are marginally below 1 (see Fig. 11). The coefficient of determination (R²) 
values of 0.93 for training and 0.91 for validation confirm a high level of predictive accuracy, though not as strong 
as Kstar. The table data supports this analysis. The sum of squared errors (SSE) for training is 1,496,549 and for 
validation is 469,551, which are considerably lower than those of ElasticNet but higher than those of Kstar. The 
mean absolute error (MAE) values of 77.71 kN in training and 79.16 kN in validation indicate moderate error 
levels. The mean squared error (MSE) and root mean squared error (RMSE) values are also relatively high, 
showing that the model has some degree of deviation from the actual values. Despite these errors, the model 
maintains an overall accuracy of 92% for training and 91% for validation. The correlation coefficient (R) values 
of 0.96 further indicate a strong relationship between predicted and actual values. Willmott’s Index (WI = 0.98) 
and Nash-Sutcliffe Efficiency (NSE = 0.93) confirm that the model performs well in predicting bearing capacity. 
The Kling-Gupta Efficiency (KGE = 0.94) further suggests that the model has a reliable predictive ability. The 
symmetric mean absolute percentage error (SMAPE) values of 7.79 for training and 7.02 for validation show 
that the model maintains reasonable accuracy, with better performance in validation. The best fit plot visually 
confirms that the predictions align closely with the experimental values, with most data points falling within 
the ± 15% error range. However, there is still some scatter at higher values, indicating that the model slightly 
underestimates larger pile bearing capacities. The relatively small intercept values suggest that the model does 
not introduce significant bias. Overall, the XNV model demonstrates solid predictive performance, ranking 
below Kstar but performing better than ElasticNet and M5Rules. While it slightly underestimates the bearing 
capacity, its strong correlation metrics and low error rates make it a reliable choice for predictions.

Fig. 11.  Relation between predicted and calculated strength using (XNV).

 

Fig. 10.  The considered hyper-parameters of (XNV) model.
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DT models
The DT model hyperparameters (see Fig. 12) indicate a decision tree-based approach with specific configurations. 
The batchSize is set to 100, meaning the model processes data in batches of 100 instances at a time. The crossVal 
parameter is set to 2, indicating a two-fold cross-validation strategy for model evaluation. The debug parameter 
is False, meaning debugging messages are disabled. The displayRules parameter is set to True, enabling the 
display of decision rules derived from the model. The doNotCheckCapabilities parameter is False, ensuring 
the model checks for compatibility with the dataset before execution. The evaluationMeasure defaults to 
accuracy for discrete class problems and RMSE (Root Mean Square Error) for numerical class problems, which 
determines how model performance is measured. The numDecimalPlaces is set to 2, meaning numerical results 
are rounded to two decimal places. The search parameter is set to BestFirst with options -D 1 -N 5, indicating a 
best-first search strategy for feature selection, with D 1 likely specifying the direction and N 5 setting a limit on 
the number of consecutive non-improving nodes before termination. The useIBk parameter is False, meaning 
that the IBk instance-based learning algorithm is not used in this configuration. The DT model framework (see 
Fig. 13) is structured to evaluate classification or regression performance using key statistical measures. The 
table consists of multiple metrics such as DESIR, PTIK, SPITs, and Fn, each representing different aspects of 
model evaluation. The DESIR values indicate decision tree stability and performance across different conditions, 
while PTIK represents probabilistic tree information, helping assess uncertainty and accuracy in classification. 
SPITs provide a statistical breakdown of the tree’s split effectiveness, showcasing how well the model partitions 
the dataset into meaningful subsets. Fn appears to be a performance percentage, likely reflecting accuracy, 
precision, or recall depending on the specific context. The table values suggest a comparative approach where 
different configurations or datasets are analyzed to determine optimal decision tree efficiency. The best fit plot 
for the DT (Decision Tree) model shown in Fig. 14, demonstrates a strong correlation between the predicted 
and experimental values, with the regression equations indicating a slight underestimation of the pile bearing 
capacity. The training equation, y = 0.93x + 67.10, and the validation equation, y = 0.94x + 77.52, show that the 
model’s predictions closely follow the experimental values, though the slopes slightly deviate from 1, suggesting 
minor underestimation. The R² values of 0.94 for training and 0.91 for validation confirm that the DT model 
has a strong predictive ability, though it performs slightly worse in validation. The table data further supports 
this conclusion. The SSE values for training (1,180,235) and validation (469,016) are relatively low, indicating a 
good fit. The MAE values of 66.65 kN in training and 78.16 kN in validation suggest that the model maintains 
a reasonable error level, with slightly higher errors in validation. The MSE and RMSE values also align with 
the graphical observation, showing that while the model’s error is moderate, it remains within an acceptable 
range. The overall accuracy of 93% in training and 91% in validation further reinforces the model’s strong 
predictive capability. The correlation coefficient (R = 0.97 for training, 0.96 for validation) indicates a strong 
linear relationship between experimental and predicted values. Willmott’s Index (WI = 0.98), Nash-Sutcliffe 
Efficiency (NSE = 0.94 for training, 0.91 for validation), and Kling-Gupta Efficiency (KGE = 0.95) all confirm 
that the model performs well in predicting pile bearing capacity. The SMAPE values of 6.98 in training and 
6.94 in validation indicate a relatively low percentage error, making it one of the better-performing models. The 
best fit plot visually confirms these statistical findings. Most of the data points fall within the ± 15% error range, 
showing that the DT model provides predictions that are generally accurate with minimal deviation. However, 
as seen in the plot, some scatter exists at higher values, similar to other models like XNV. The relatively small 
intercept values (67.10 for training and 77.52 for validation) suggest that the model introduces only a minimal 
bias. Overall, the DT model shows excellent predictive performance, ranking slightly below Kstar but competing 
well with XNV. While it slightly underestimates higher pile bearing capacities, its strong correlation metrics, 
high accuracy, and low error rates make it a reliable model for predicting pile capacity.

Fig. 12.  The considered hyper-parameters of (DT) model.
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Comparative analysis
The overall performance evaluation of models in predicting the bearing capacity of piles is analyzed based 
on several statistical indices, measuring accuracy, error, and reliability. Kstar outperforms other models with 
the lowest Sum of Squared Errors (SSE), indicating minimal deviation between predicted and actual values is 
shown in Table 2. Its Mean Absolute Error (MAE) and Mean Squared Error (MSE) are also the lowest among 
all models, reinforcing its accuracy. The Root Mean Squared Error (RMSE) for Kstar remains the lowest at 
40.02 kN in training and 49.33 kN in validation, confirming its strong predictive ability. Kstar also achieves 
the lowest percentage error (4%) and the highest accuracy (96%), demonstrating superior model performance. 
Its Coefficient of Determination (R²) is 0.98, indicating a near-perfect fit, with a correlation coefficient (R) of 
0.99. Willmott’s Index (WI) reaches 1.00 in training and 0.99 in validation, further supporting Kstar’s predictive 
consistency. Nash-Sutcliffe Efficiency (NSE) and Kling-Gupta Efficiency (KGE) values remain high at 0.98–0.99, 
while the Symmetric Mean Absolute Percentage Error (SMAPE) is the lowest at 3.02–3.34 kN, further proving 
its reliability. M5Rules shows a moderate performance with significantly higher SSE, MAE, and MSE values than 
Kstar. Its RMSE values are 81.29 kN for training and 85.66 kN for validation, indicating larger errors. The model 

Fig. 14.  Relation between predicted and calculated strengths using (DT).

 

Fig. 13.  DT model framework structured to evaluate classification or regression performance using key 
statistical measures.
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exhibits an 8% error and 92% accuracy, which, while decent, falls behind Kstar. R² is lower at 0.93–0.94, and R is 
slightly lower at 0.97. WI, NSE, and KGE remain around 0.93–0.95, showing a moderate fit. The SMAPE values 
of 6.22–7.27 kN indicate a higher level of error than Kstar. Elastic Net performs the worst among all models, 
exhibiting the highest SSE, MAE, and MSE values. Its RMSE is significantly higher at 143.56 kN in training and 
156.62 kN in validation, reflecting substantial prediction errors. The model’s error percentage is the highest at 
13–14%, while accuracy is the lowest at 86–87%. R² is relatively weak at 0.78–0.80, and R values remain lower 
at 0.88–0.89. WI and NSE decline to 0.77–0.80, showing a weaker predictive fit. KGE values also remain the 
lowest, while SMAPE at 11.61–12.71 kN confirms its high relative error, making it the least effective model for 
pile capacity prediction. XNV performs comparably to M5Rules but exhibits higher errors. SSE, MAE, and MSE 
are higher, while RMSE values stand at 86.50 kN for training and 96.91 kN for validation. Prediction error is 
8–9%, with an accuracy of 91–92%. R² and R remain strong at 0.91–0.93 and 0.96, respectively. WI, NSE, and 
KGE are slightly lower than M5Rules, indicating a moderate model fit. SMAPE values at 7.02–7.79 kN suggest 
slightly higher relative error. DT presents a slightly better performance than XNV with lower RMSE (76.82 kN 
for training and 96.85 kN for validation) and lower prediction errors at 7–9%. Accuracy is slightly higher at 91–
93%. R² and R values remain strong at 0.91–0.94 and 0.96–0.97, respectively. WI, NSE, and KGE are marginally 
better than XNV, showing that DT provides relatively reliable predictions. The SMAPE values of 6.94–6.98 kN 
indicate moderate error levels. Overall, Kstar is the most effective model for predicting pile bearing capacity, 
with the highest accuracy, lowest errors, and strongest statistical indices. DT follows closely behind, showing 
better performance than XNV and M5Rules. XNV and M5Rules provide moderate predictive abilities, while 
Elastic Net performs the worst, exhibiting the highest error rates and lowest accuracy. The Taylor charts for 
both training and validation phases presented in Fig. 15 illustrate the comparative performance of the predictive 
models using three statistical metrics: standard deviation, correlation coefficient, and root mean square error 

Fig. 15.  Comparison of the accuracies of the developed models using Taylor charts.

 

Model Dataset
SSE MAE MSE RMSE Error Acc R2 R WI NSE KGE SMAPE

- kN kN kN % % - - - - - kN

Kstar
Training 320,264 29.57 1601.32 40.02 4 96 0.98 0.99 1.00 0.98 0.98 3.34

Validation 121,678 32.43 2433.57 49.33 4 96 0.98 0.99 0.99 0.98 0.99 3.02

M5
Rules

Training 1,321,458 70.58 6607.29 81.29 8 92 0.94 0.97 0.98 0.93 0.94 7.27

Validation 366,859 68.68 7337.18 85.66 8 92 0.93 0.97 0.98 0.93 0.95 6.22

Elastic
Net

Training 4,121,650 131.00 20608.25 143.56 13 87 0.80 0.89 0.94 0.80 0.80 12.71

Validation 1,226,539 131.06 24530.78 156.62 14 86 0.78 0.88 0.93 0.77 0.77 11.61

XNV
Training 1,496,549 77.71 7482.74 86.50 8 92 0.93 0.96 0.98 0.93 0.94 7.79

Validation 469,551 79.16 9391.03 96.91 9 91 0.91 0.96 0.98 0.91 0.94 7.02

DT
Training 1,180,235 66.65 5901.18 76.82 7 93 0.94 0.97 0.98 0.94 0.95 6.98

Validation 469,016 78.16 9391.03 96.85 9 91 0.91 0.96 0.98 0.91 0.95 6.94

Table 2.  Performance measurements of developed models.
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(RMSE). The measured values are represented at the reference point, and the models are plotted based on their 
respective standard deviations and correlation coefficients. In the training phase, models such as M5Rules, 
XNV, and DT exhibit higher correlation coefficients (closer to 0.95–0.99), indicating strong agreement with the 
measured data. These models also have relatively low RMSE values, as seen by their positioning closer to the 
reference point. ElasticNet, however, shows lower performance with a reduced correlation coefficient and higher 
RMSE, suggesting it is less effective in capturing the variability of the dataset. For the validation phase, the trend 
remains consistent, with M5Rules, XNV, and DT maintaining their strong correlation coefficients and relatively 
low RMSE values, confirming their robustness in generalizing to unseen data. KStar and ElasticNet demonstrate 
weaker correlation coefficients and higher RMSE values, suggesting they struggle more with predictive accuracy 
and reliability. Overall, the Taylor charts confirm that M5Rules, XNV, and DT are the best-performing models 
in both training and validation, with high correlation to measured data and lower prediction errors. ElasticNet 
performs the worst, as indicated by its lower correlation and higher RMSE. These findings reinforce the reliability 
of advanced machine learning techniques in predicting pile bearing capacity on rock.

The present research work demonstrates the effectiveness of data-driven methodologies in predicting the 
bearing capacity of piles on rock, aligning with and expanding upon the findings in the reviewed literature. 
Previous studies, such as those by Shahin20, Alkroosh and Nikraz21, and Zhang et al.22, established the potential 
of machine learning models, including artificial neural networks (ANNs), support vector machines (SVMs), 
and ensemble learning approaches, in geotechnical predictions. These studies highlighted the superior accuracy 
of ML models compared to empirical and analytical methods, particularly in capturing complex pile-rock 
interactions and reducing uncertainties associated with variability in rock properties36,37. The present research 
confirms these advantages by applying multiple ML models to a comprehensive dataset and assessing their 
predictive performance. Similar to the findings of Zhang et al.22, who demonstrated the accuracy and reliability 
of ensemble learning models, this study also validates the effectiveness of different machine learning techniques, 
showing high R² values across training and validation datasets. Compared to conventional methods, such as 
those proposed by Rowe and Armitage14 and Kulhawy and Goodman15, which rely on empirical correlations 
and theoretical assumptions, the ML-based models in the present research achieve significantly improved 
prediction accuracy, reducing dependence on costly and time-consuming in-situ testing. Additionally, while 
Zhang and Xu19 introduced a hybrid approach that combined analytical and data-driven methods for enhanced 
interpretability and accuracy, the present research builds upon this concept by validating ML models using real-
world case studies, demonstrating their robustness and practical applicability. Studies such as Park et al.24 and 
Fattah et al.25 showed that ML models can achieve prediction accuracies exceeding 90%, which is consistent with 
the present research findings, confirming that advanced ML techniques can provide reliable estimations of pile 
bearing capacity with reduced computational and experimental effort38,39. Overall, while the reviewed literature 
established the potential of machine learning in geotechnical applications, the present research extends these 
findings by systematically comparing multiple ML models, validating their effectiveness, and demonstrating 
their superiority over traditional methods. This work not only corroborates previous studies but also advances 
the field by providing a more comprehensive evaluation of data-driven approaches for pile capacity prediction.

Sensitivity analyses
Figures 16 and 17 show the sensitivity analyses with respect to Pu. The sensitivity analysis results from Hoffman 
and Gardener’s method and SHAP analysis reveal significant insights into the key factors influencing pile bearing 
capacity on rock. In Hoffman and Gardener’s analysis, Pe (13%), SPTs (13%), and SPTt (13%) are identified as 
the most influential parameters, followed closely by DSE2 (12%) and DSE3 (12%) (see Fig. 16). These results 
highlight that penetration resistance, soil strength indices, and dynamic soil parameters play a crucial role in 
determining pile capacity. In contrast, SHAP sensitivity analysis indicates a stronger dominance of Pe (0.24), SPTs 

Fig. 16.  Hoffman and Gardener’s sensitivity analysis.
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(0.19), and SPTt (0.13) in driving model predictions. Interestingly, while DSE2 maintains its importance (0.12), 
DSE3 is negligible (0.00), suggesting that its contribution in a data-driven setting is not as impactful as in the 
traditional sensitivity analysis (see Fig. 17). Both methods agree on the significance of penetration resistance and 
standard penetration test values, reinforcing their critical role in estimating pile capacity. However, discrepancies 
between the methods indicate that while empirical sensitivity analysis attributes more weight to broader soil 
dynamic properties, SHAP highlights the direct influence of specific geotechnical features on model predictions.

Conclusions
The findings of this research highlight the effectiveness of advanced data-driven frameworks in predicting the 
bearing capacity of piles on rock with improved accuracy and reliability compared to traditional empirical and 
analytical approaches. The application of machine learning models demonstrates their ability to capture complex 
interactions between geotechnical parameters, thereby addressing the limitations of conventional methods that 
rely on simplified assumptions and site-specific data. The following are the important remarks;

•	 The performance evaluation of multiple machine learning models, including XNV and DT, reveals that these 
models exhibit high predictive accuracy in both training and validation phases. The best-fit plots indicate a 
strong correlation between experimental and predicted values, with determination coefficients (R²) of 0.93 
for XNV in training and 0.91 in validation, while DT achieves R² values of 0.94 and 0.91, respectively. These 
results confirm that the models effectively generalize to new data while minimizing prediction errors, making 
them viable alternatives to conventional pile capacity estimation methods.

•	 The Taylor charts further validate the robustness of the proposed models, demonstrating their strong corre-
lation with measured values and relatively low RMSE values. The comparative analysis shows that the models 
achieve a balance between bias and variance, ensuring reliable predictions across different datasets. The distri-
bution of standard deviation and correlation coefficients highlights that XNV and DT models maintain stable 
predictive performance, reinforcing their applicability in geotechnical engineering.

•	 Sensitivity analysis using Hoffman and Gardener’s method and SHAP values provides crucial insights into the 
most influential factors affecting pile bearing capacity on rock. Both methods identify penetration resistance 
(Pe), standard penetration test values (SPTs, SPTt), and dynamic soil parameters (DSE2) as the dominant fac-
tors governing pile behavior. While Hoffman and Gardener’s analysis attributes significant weight to broader 
soil dynamic properties, SHAP analysis underscores the direct impact of penetration resistance and SPT 
values in driving model predictions. This dual approach enhances the interpretability of machine learning 
models and ensures that the identified parameters align with geotechnical engineering principles.

•	 A comparison with existing literature further validates the advantages of data-driven approaches. Traditional 
methods, as reviewed in previous studies, often suffer from oversimplified assumptions, high variability in 
rock properties, and expensive field-testing requirements. The incorporation of machine learning into pile 
capacity prediction effectively addresses these challenges by leveraging large datasets, optimizing feature se-
lection, and improving prediction efficiency. Studies by Zhang et al.22, Goh et al.23, and Alkroosh and Nikraz21 
have demonstrated the superiority of machine learning techniques over conventional methods, aligning with 
the findings of this research.

•	 Overall, the research confirms that developing an advanced data-driven framework significantly enhances the 
precision, efficiency, and reliability of pile bearing capacity predictions. The proposed models not only out-
perform conventional methods but also provide a scalable and cost-effective solution for large-scale geotech-
nical applications. By integrating sensitivity analysis and robust validation techniques, this study ensures that 
machine learning-based approaches remain interpretable and practically viable for engineering professionals. 
Future research should focus on further refining these models by incorporating real-time monitoring data 

Fig. 17.  SHAP sensitivity analysis.
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and hybridizing data-driven techniques with physical-based analytical models to enhance their predictive 
capabilities.

Practical application of research
The practical application of this research lies in its ability to enhance the efficiency, accuracy, and cost-effectiveness 
of predicting the bearing capacity of piles on rock in geotechnical engineering. By leveraging advanced data-
driven frameworks, engineers and construction professionals can make more informed design decisions, 
reducing reliance on costly and time-consuming field testing methods. The developed machine learning models 
provide a reliable alternative to traditional empirical and analytical approaches, enabling faster and more precise 
evaluations of pile capacity. This is particularly beneficial for large-scale infrastructure projects, such as bridges, 
high-rise buildings, and offshore structures, where accurate foundation design is critical for structural stability. 
By incorporating real-time site investigation data, these models can be continuously updated and refined, 
ensuring adaptability to different geological conditions. Another significant application is the optimization of 
foundation design, leading to material savings and improved safety margins. The sensitivity analysis results 
highlight key influencing factors, allowing engineers to prioritize critical geotechnical parameters during site 
assessments. This targeted approach helps in minimizing design uncertainties and enhances the overall efficiency 
of foundation engineering. Additionally, integrating these predictive models into geotechnical software and 
automated decision-making systems can streamline the planning and approval processes for construction 
projects. Governments, engineering firms, and contractors can utilize these models to conduct preliminary 
assessments, reducing project delays and enhancing regulatory compliance. In disaster-prone regions or areas 
with highly variable rock formations, the ability to quickly and accurately estimate pile capacity ensures resilient 
infrastructure development. This research lays the foundation for future advancements in AI-driven geotechnical 
engineering, potentially incorporating real-time sensor data and hybrid modeling techniques to further refine 
predictions and optimize construction practices.

Recommendation for future research
Future research should focus on refining the accuracy and generalizability of data-driven models by 
incorporating larger and more diverse datasets that capture a wider range of geological conditions and pile 
design parameters. The integration of real-time monitoring systems, such as Internet of Things (IoT) sensors 
and remote sensing technologies, can enhance model adaptability and predictive performance by providing 
continuous updates on site conditions. Further investigation into hybrid modeling approaches that combine 
traditional analytical methods with machine learning techniques can improve interpretability and reliability, 
ensuring that the models align with established engineering principles. The exploration of deep learning 
techniques, including convolutional neural networks (CNNs) and recurrent neural networks (RNNs), may 
lead to more advanced feature extraction capabilities, allowing the models to better capture complex pile-rock 
interactions. Additionally, explainable artificial intelligence (XAI) methods should be incorporated to enhance 
the transparency of predictions, enabling engineers to understand the reasoning behind model outputs. Cross-
validation with extensive field load test data from diverse geographical locations can further strengthen the 
robustness of the developed framework. Future studies should also assess the environmental and economic 
implications of AI-driven pile capacity predictions, ensuring their practical feasibility in real-world construction 
projects. Collaborative efforts between academia, industry, and regulatory bodies will be crucial in establishing 
standardized methodologies for implementing AI in geotechnical engineering.

Data availability
The data supporting this research work will be made available upon reasonable request from the corresponding 
author.
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