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Every new material needs to be assessed and qualified for an envisaged application. A steadily 
increasing number of new alloys, designed to address challenges in terms of reliability and 
sustainability, poses significant demands on well-known analysis methods in terms of their efficiency, 
e.g., in X-ray diffraction analysis. Particularly in laboratory measurements, where the intensities in 
diffraction experiments tend to be low, a possibility to adapt the exposure time to the prevailing 
boundary conditions, i.e., the investigated microstructure, is seen to be a very effective approach. 
The counting time is decisive for, e.g., complex texture, phase, and residual stress measurements. 
Traditionally, more measurement points and, thus, longer data collection times lead to more accurate 
information. Here, too short counting times result in poor signal-to-background ratios and dominant 
signal noise, respectively, rendering subsequent evaluation more difficult or even impossible. Then, it is 
necessary to repeat experiments with adjusted, usually significantly longer counting time. To prevent 
redundant measurements, it is state-of-the-art to always consider the entire measurement range, 
regardless of whether the investigated points are relevant and contribute to the subsequent materials 
characterization, respectively. Obviously, this kind of approach is extremely time-consuming and, 
eventually, not efficient. The present study highlights that specific selection strategies, taking into 
account the prevailing microstructure of the alloy in focus, can decrease counting times in X-ray energy 
dispersive diffraction experiments without any detrimental effect on data quality for the subsequent 
analysis. All relevant data, including the code, are carefully assessed and will be the basis for a widely 
adapted strategy enabling efficient measurements not only in lab environments but also in large-scale 
facilities.

It is well-known that the microstructure of any material dominates its macroscopic behavior. In addition to its 
basic structure, the periodicity of the arrangement of atoms, preferred grain orientation, residual stress fields, 
and local phase composition play an essential role in terms of the strength and lifetime of real components. 
Especially for reducing the emission of CO2, advanced alloys need to be developed and analyzed. Here, 
promising candidates are lightweight components, e.g., made of high-strength steel. In a number of novel steel 
concepts, the stress- and strain-induced transformation of metastable austenite into martensite is an essential 
factor contributing to the final mechanical properties under a given external load. This transformation promotes 
local hardening and, eventually, leads to a delay of necking and overload failure. Thus, the interplay of the 
elementary deformation mechanisms prevailing in these steels contributes to high ductility and high tensile 
strength simultaneously, known as transformation-induced plasticity (TRIP) effect1. Quench and Partitioning 
(QP) steels represent the most recent generation of high-strength steels combining high strength and good 
ductility. The concept is essentially based on two steps, i.e., quenching to set a defined martensite content, 
followed by a heat treatment step to stabilize the retained austenite through targeted carbon partitioning between 
martensite and austenite. A predominantly martensitic structure with retained austenite and minor fractions 
of bainite/ferrite is obtained after the QP heat treatment. Due to their outstanding mechanical properties at 
comparatively low costs, QP steels are of particular interest to the automotive industry, where high strength in 
combination with sufficient ductility and low component weight are desired to enable maximum safety under the 
consideration of maximum resource efficiency. Another advantage is the ease of integration of the heat treatment 
strategy into existing production lines, making the use of QP steels even more sustainable2. It has already been 
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discussed that the complex microstructures and material behavior, respectively, require a tremendous increase 
in characterization efforts to fully understand the corresponding properties and derive process-microstructure-
property relationships3. This understanding will also promote further advances in additive manufacturing 
of microstructurally graded TRIP steels and other metallic alloys, where only an increase in efficiency of the 
applied methods will allow the intended direct design of form and function4.

High-resolution strain or texture mappings using X-ray diffraction (XRD), local hardness tests, non-
destructive analysis of steep residual stress gradients by energy dispersive XRD, and in situ stress or phase 
analysis, i.e., conditions probed under external mechanical load, represent possible analytic methods5,6.

Because of the wide range of different microstructures in novel high-strength materials, there is great interest in 
the availability of fast, phase-selective, reliable, and non-destructive methods such as XRD-enabled assessments. 
Considering diffraction techniques, analysis of the crystallographic structure of a crystalline material, its 
crystallographic orientation, and the phase content is feasible7. Based on specific scanning strategies, texture 
and lattice strain measurements can be conducted. Here, one possibility is to analyze the maximum intensity of a 
prevailing interference peak with respect to the sample orientation; another approach is to determine the lattice 
strains based on the exact position of the peak, from which the residual stress states are calculated using elastic 
theory and suitable elastic constants7. When using such strategies, sufficiently accurate peak profile analysis is 
necessary to obtain reliable results. Depth-resolved measurements can be conducted either by angle dispersive 
or energy dispersive XRD methods to assess the properties of the surface regions5. Here, for the angle dispersive 
approach layer removal is needed, eventually increasing the efforts needed for assessing in-depth profiles.

Novel materials like QP steels, as well as novel manufacturing processes like additive manufacturing, are 
often characterized by the presence of graded sample conditions. Complex and time-consuming XRD mapping 
strategies are then applied to probe local measurement positions across given component regions. Here, an 
online data refinement would be highly beneficial to realize laboratory measurements without investing too 
much experimental time, while still providing sufficient exposure time to achieve sufficient signal intensity.

Breidenstein et al.6 performed an analysis, where they tried to identify a sufficient exposure time based on an 
asymptotic approximation, taking into account data scatter. Here, a complex series of measurements and follow-
up evaluations had to be carried out to find a suitable exposure time for the material under examination. This 
strategy is rather time-consuming and requires repetition for each new alloy under investigation. The results of 
the mentioned study point to the fact that constantly repeating evaluation steps, which only serve as a simple 
observation of defined target variables, do not always have to be carried out by the operator himself. Typically, 
such target variable observations are carried out after an experimental phase, where the experiment often is even 
conducted with not optimally selected exposure times.

Intelligent experimental design intends to counteract this by integrating data evaluation procedures into 
the experimentation process, also known as closed-loop experimentation. The field of materials science 
experimentation is currently witnessing a surge in research efforts toward this direction8–11. Active learning 
strategies, in particular, have shown to be very effective for closing the experimentation loop and saving 
experimentation time by querying the most promising sample next12. Yet, many other techniques such as statistical 
inference13, sequential learning14, co-design approaches15, or uncertainties from machine learning models16 can 
be used to enhance experimentation. There are hardly any limits for applying intelligent experimentation, e.g., 
using machine learning for additive manufacturing17, alloy deployment18, or X-ray scattering19. Especially deep 
learning methods20, due to their rapid inference capabilities, harbor great potential to advance several aspects 
of experimentation.

In the present article, we aim to demonstrate the effectiveness of integrating immediate data evaluation into 
the experimental process using the application case of XRD-based retained austenite analysis. Utilizing the data 
collected up to a specific experimentation iteration, we demonstrate how different selection strategies in terms 
of the energy-interval in the experimentally determined spectra affect the next experiment iterations and the 
required time to accurately characterize key intensity peak characteristics, namely the position of the diffraction 
line, peak height, peak area, and integral width. The experiments were conducted using a low alloy 42CrSi QP 
steel. Precisely, we compare the state-of-the-art so far, namely sequential acquisition, with two new and more 
intelligent selection strategies, where we (1) use the regions-of-interest (ROI) within the energy range or (2) 
investigate the next relevant energy interval using the minimum volume of the intensity peaks so far acquired. 
Using these selection strategies and extending a recent article21, we endeavor to provide preliminary answers to 
the following questions:

•	 How can we intelligently select exposure times and energy ranges, respectively, for investigation?
•	 When is it appropriate to terminate an ongoing experiment?

To shed light on the procedures applied, we introduce the utilized materials and methods, discuss results and 
advantages when using the proposed data selection strategies, and provide an outlook on the effects these 
strategies will have for energy-dispersive XRD experimentation in general.

Materials and methods
High strength QP steel with metastable retained austenite
In the present work, we used a low-alloy 42CrSi steel to study a complex microstructure, including a metastable 
phase. In a previous study, we already investigated and characterized the material in depth by means of in 
situ XRD experiments3. There, it was revealed that laboratory-based XRD methods show high potential for 
reliable assessment, but rather are time-consuming. In follow-up work, we could reveal that a higher retained 
austenite content promotes an increased fatigue strength. In all cases, assessment of localized phenomena was 
the key to finally rationalize global properties and, thus, provide statements on the integrity and reliability of the 
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component. These examples point to the important role of local measurements, i.a., to assess the stability of the 
retained austenite and the phase-selective residual stress states after or during application of an external load.

A miniature sample with the dimension of 8 × 8 × 25 mm3 was austenitized at a temperature of 950 ◦C, 
quenched to 170 ◦C in liquid salt, and – before cooling down to room temperature – a partitioning procedure 
was carried out at 400  ◦C for 10  min. Afterward, dog-bone-shaped tensile test samples with gauge section 
dimensions of 18 × 3 × 1 mm3 were manufactured by electrical discharge machining (EDM). Figure 1a shows 
the summed spectra (15 × 900  sec exposure time) highlighting the analyzed diffraction peaks of the body-
centered cubic (bcc) ferrite and the face-centered cubic (fcc) austenite. The inset shows a detailed view of a peak 
of the 200-lattice plane from the ferrite phase. The electron back-scattered diffraction (EBSD) image in Fig. 1b 
shows the needle-like appearance of the retained austenite, colored in yellow, in a matrix of ferrite, colored in 
blue. The effort to experimentally determine such a spectrum is described in more detail in the following.

The dog-bone-shaped sample was loaded for the in situ test using a Kammrath and Weiss stress rig; for 
details, see3. Preliminary XRD investigations revealed that for this specific condition of the QP steel, the RA 
content decreases from around 14% within the clamping section to around 2.5% at the point of fracture.

Physical basics of energy-dispersive X-ray diffraction
Applying XRD methods to characterize the microstructure of crystalline materials is common in the field of non-
destructive methods. Here, it is feasible to study the stability and/or the change of microstructures and residual 
stress states, depending on thermal and mechanical loads. These experiments are based on the diffraction of 
X-rays within the atomic structure of crystalline materials described by the Miller indices, also known as hkl 
lattice planes. The correlation between the constructive interference of the diffracted X-rays, characterized by 
the used wavelength λ, under a specific angle θ with the distance D of the studied hkl lattice planes (being 
characteristic for the probed material) is described by Bragg’s law:

	 nλ = 2D sin θ.� (1)

Every crystalline structure, represented by the stacking order of the atoms and the corresponding hkl lattice 
planes, has its own specific diffraction line profile. This can be rationalized by the fact that Bragg’s law is only 
fulfilled in specific positions corresponding to these atomic positions, eventually related to the distance D of the 
atomic lattice planes. If D needs to be determined experimentally for assessment, Eq. 1 allows for two different 
strategies. Either λ is kept constant, while the integer multiple n is equal to one and θ needs to be determined 
experimentally, or θ is constant, and λ will be considered in the experiment. In both cases, the diffracted intensity 
is in focus. In laboratory applications, the angle dispersive mode is preferred. The wavelength λ of the X-ray tube 
is fixed, whereas the diffraction angle θ is varied to scan the intensity of a peak profile step-wise and calculate 
the exact angle θ for the corresponding value D of the hkl-lattice plane in focus afterward. This procedure is 
schematically shown in the left part of Fig.  2. In the energy dispersive mode, the diffraction angle θ is fixed and 
a variable primary wavelength (white spectrum) is analyzed continuously by an energy-resolved semiconductor 
detector. In this case, the complete spectrum of the used X-ray source, the so-called white beam linked to the 

Figure 1.  (a) Integrated spectra profile from 42CrSi steel with austenite and ferrite peaks obtained using a 
white X-ray beam of a tungsten tube and an exposure time of 15 times 900 sec during a diffraction experiment 
at one specific measurement point. The peak positions from the austenitic phase are marked with an “x”; 
ferrite/martensite peaks are marked with an “o”, (b) EBSD phase map superimposed to the quality map of 
the same sample with the retained austenite colored in yellow and the ferrite/martensite in blue. Recompiled 
from3.
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Bremsstrahlung, can be used and a step-wise scanning procedure is not necessary5. This strategy is shown in 
Fig. 2 to the right.

In both approaches, the focus is on analyzing the characteristics of the peaks for different hkl diffraction 
lines, e.g., the peak width, integral area, height, and exact position. The main target of the specific analysis 
strategy has always to be considered at this point. In the energy-dispersive mode, the information of the spectral 
profile is increasing continuously for every prevailing hkl peak. At least under laboratory conditions, the scan 
profile in the angle dispersive mode follows a step-wise approach with a constant exposure time per step. To 
analyze a full interference profile, it is necessary to finish a scan before starting the next step in the procedure. 
Both methods can be applied in reflection geometry (incident X-ray beam diffracted in the surface area of the 
sample) and transmission geometry (incident X-ray beam penetrates a relatively thin sample). The reflection 
mode is the common use case for laboratory conditions. In the case of an XRD mapping, a fixed 2θ angle is 
a beneficial boundary condition. This is due to the fact that the shape of the illuminated spot on the sample 
surface remains constant. The constantly growing spectrum during an energy dispersive measurement enables 
the use of the already collected peak profile data from an energy interval ∆λ to intelligently choose the next 
exposure time. This can be done continuously, while the quality measures focus on accurately analyzing the 
specific peak characteristics. If the quality is good enough, the running measurement sequence can be stopped 
immediately without losing too much time at this measuring point (MP). This is only possible in the case of 
continuous data recording and, thus, the energy dispersive approach is excellently suited at this point. The focus 
of the present study is not on the quality standards of the energy dispersive structure, stress, phase, or texture 
analysis, but rather on pathways to reduce the scanning time, eventually enabling faster measurements without 
losing necessary information. It is shown that by simply implementing different data selection strategies into the 
measurement script, intelligent closed-loop experimentation becomes feasible.

Setup and data processing
The measurements were performed on an energy-resolved X-ray diffractometer using the Bremsspektrum of a 
conventional laboratory X-ray source with tungsten anode22. The white beam was generated with an acceleration 
voltage of 60 kV and a current of 40 mA and collimated by a 0.5 mm pinhole collimator with a length of 200 mm. 
The X-ray tube and the Si-drift detector AXAS-M of KETEK were positioned symmetrically at a distance of 
340 mm to the sample with a diffraction angle 2θ of 20◦. In the present work, we used a dog-bone-shaped tensile 
sample of the QP steel detailed before. This sample was probed by a line scan with a step size of 2 mm, starting 
close to the fracture region (MP1 = 0 mm) and ending within the clamping area (MP8 = 14 mm). Using this 
strategy, eight measurement points were analyzed along the sample. Continuous spectra were acquired for 4 h at 
each of these eight MPs at the sample surface, as highlighted on the X-axis in Fig. 3. An exemplary spectrum of 
measurement point 6, i.e., at a position 10 mm away from the crack surface of the sample (cf Fig. 3), is depicted 
in Fig. 1a. Data of each spectrum are saved in a two-column table file containing detector channels (first column) 
and intensity (second column [absolute counts]) with a preceding five-line header. For further data processing, 
we converted the detector channels to energies using an earlier recorded energy calibration function. We used a 
measurement on a certified ENSAM Fe powder (with the same measurement setup) to elaborate the calibration 
function. In the experiment shown here, the energy-resolved intensity of each spectrum increases over 900 s. 
This corresponds to 16 individual spectra for each of these 8 MPs. According to this procedure, 128 spectra were 
available for further data processing in the form of text files (intensity in absolute counts over energy in keV), 
exemplarily depicted in Fig. 1a. Table 1 provides an overview of all available data. To analyze the phase fractions 
or the retained austenite (RA) content in the eight MPs, the areas of the phase-specific peaks are weighted and 
evaluated following the strategy detailed in3. Figure 3 shows the normalized peak areas in relation to the largest 
peak and the volume fraction of RA determined from the data, for each of the eight probed MPs.

In the specific MPs probed here, the RA content varies from a maximum volume content of 14  % to a 
minimum of around 2%, in line with the results already published3. The first measuring point (MP1 position 
0 mm) could not be clearly evaluated due to the fact that severe plastic deformation occured in direct vicinity of 
the fracture surface.

Simulation of in situ experiments
The major goal of the present study is to determine the potential of the approach for reducing the time necessary 
to perform an experiment that captures the peak width w, the integral area a, the peak height h, and the exact peak 

Figure 2.  Schematic principle of the angle-dispersive approach with a constant beam energy of 6.93 keV of 
Co Kα radiation (left) and the energy-dispersive measurement mode with an applicable energy range (white 
beam) from 1 to 60 keV (right)5.
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position p of Bragg peaks. The main idea is to focus on peaks that are not entirely evident in these characteristics 
and select specific energy intervals to increase accuracy concerning the Bragg peaks.

As evaluating such a strategy in an in situ experiment is time-consuming and expensive, we decided to sim-
ulate the experimentation process using the aforementioned data. Algorithm 1 schematically shows the steps 
that need to be performed during experimentation. This procedure is straightforwardly transferable to a real 
experiment. The individual steps will be discussed in more detail below. 

Measurement point (.txt file) Position [mm] # Spectra Measurement Duration / Spectrum [s]

mcaData_MP1_combined.txt 0 16 900

mcaData_MP2_combined.txt 2 16 900

mcaData_MP3_combined.txt 4 16 900

mcaData_MP4_combined.txt 6 16 900

mcaData_MP5_combined.txt 8 16 900

mcaData_MP6_combined.txt 10 16 900

mcaData_MP7_combined.txt 12 16 900

mcaData_MP8_combined.txt 14 16 900

Table 1.  Overview of the available data corresponding to the plotted results shown in Fig. 3.

 

Figure 3.  Intensities of the hkl lattice planes normalized to the 110 lattice plane (left axis) and estimated 
volume of the retained austenite content (right axis) plotted as a function of the corresponding measurement 
position.  The sketched sample is shown below the graph schematically.
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Algorithm 1.  Overview of the simulated energy dispersive XRD experimentation procedure using multiple 
selection strategies.

Identifying seed peaks: We identified so-called seed positions Êi for the Bragg peaks based on the material 
properties given in Table 2. Every seed position defines an interval Ii = [Êi − w

2 , Êi + w
2 ], with a pre-defined 

width parameter w = 3 keV. To find the seed peaks, we averaged all measurements (4 hours, 8 experiments). 
After smoothing the curves further, we used the first and second derivatives to identify the maximum value in 
that smoothed curve. Next, we identified the number of peaks that we want to consider (here 10) and used the 
extracted maximum values as the seed peaks for further investigation. It must be emphasized that the seed peaks 
1 and 9 (cf. Table 2) consist of a superposition of two Bragg peaks. Evaluation strategies are known, in which this 
superposition can also be separated, however, this is not the focus of the present study. The results elaborated 
here are provided in Fig. 4. Clearly, these seed peaks are not accurate, but they will be refined in the upcoming 
experiments.

Initializing the experiment: Regardless of the chosen selection strategy, the initialization of each experiment 
is done by measuring 900 s throughout the whole energy range (iteration 0 in Fig. 5). Then, a selection strategy 
decides which energy interval is to be probed next. To simplify the comparison, we only allow the selection of 
an energy interval or the whole energy range. If one interval is selected, we add the intensities of the selected 
interval (for the consecutive measurement period) from the original experiment. As, in the present study, the 
whole measurement was 4 h with a period time of 900 s, we have 16 periods to get data from. By normalizing 
the measured intensities by time for every energy level, we yield comparable characteristics independent from 
the total measurement time.

Determining peak characteristics: To determine the peak width w, the integral area a, the peak height h, and 
the exact peak position p, we fit a Gaussian function with height ĥ and bias ̂b parameters as given in Eq. 2 using 
a non-linear least-squares optimizer.

	
f(x) = ĥ · exp

(
− (x − µ)2

2 · σ2

)
+ b̂� (2)

We use the intensities measured over the complete time of 4 hours to identify the ground truth information. 
Based on the seed peaks, we fit the function in Eq. 2 to describe the target position µ∗, variance σ∗, height h∗

i 1 2 3 4 5 6 7 8 9 10

hkl 111+110 200 200 220 211 311 220 400 331+222 321

structure fcc+bcc fcc bcc fcc bcc fcc bcc fcc fcc+bcc bcc

Êi  [keV] 17.602 19.738 24.881 27.992 30.498 32.81 35.235 39.351 43.119 46.573

Table 2.  Crystal structure hkl lattice planes and Êi seed positions for Bragg peaks used in the experiments.
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Figure 5.  Visualization of all investigated selection strategies (a) full, (b) roi, and (c) min_vol for the dataset 
mcaData_MP6_combined.txt. The iteration determines the order of the performed measurements for 
the exemplary used QP steel.

 

Figure 4.  Identified seed positions for the Bragg peaks based on the specific spectrum of the QP steel, 
additionally provided in Table 2.
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, and bias b∗ for every peak. For each of the eight measurement points, we provide the results of this estimation 
method in Supplementary Figures 1–3 (Appendix A).

Selection strategy requirements: To estimate the peak parameter, we assume to be able to acquire intensities 
for different intervals [Êl, Êr] from each of the 16 × 900  s measurements. All methods start with one full 
sequence of 900 s. Then, each selection strategy successively chooses a specific interval (to acquire the data from) 
for the other 15 measurements.

Selection strategy full: Sequential acquisition This method builds the baseline, i.e., the state-of-the-art so far. 
It consists of capturing data for the whole energy range [1 keV, 60 keV]. As each measurement in our experiment 
is divided into 16 blocks of 900 s length, the whole measurement period takes 4 h, eventually consisting of 16 
estimates that should improve with more time. A visualization of the selection strategy can be seen in Fig. 5a.

Selection strategy roi: Sequential ROI acquisition Knowing seed positions, we can omit all measurements 
that are probably not helping when estimating the peak parameters. Therefore, we use the above-mentioned 
energy intervals Ii as regions of interest (ROI). In this baseline, we ask for all intervals in one of the 900  s 
measurements at once. Hence, determining the peak parameters should be faster compared to sequential 
acquisition without reducing their accuracy. A visualization of the selection strategy can be found in Fig. 5b.

Selection strategy min_vol: Minimum volume acquisition While using the intensities per measurement 
time to fit the peak parameters, we use simple (non-normalized) intensity counts for this selection strategy. 
Our main assumption is that the reliability of the estimated parameters is strongly affected by and correlated 
with the measurement noise. While characteristics from peaks with large volumes can be reliably estimated, 
small peaks are much more difficult to characterize. Hence, we propose to select the peak with the smallest 
(non-normalized) intensity and volume, respectively, for the next measurement. Note that we usually normalize 
the data by the local (with respect to the energies) measurement time. If we would do this here, we would only 
select the smallest peak. Instead, we want to select the peak with the lowest intensities. Hence, we use the non-
normalized volume. A visualization of the selection strategy can be found in Fig. 5c.

Stopping the experiment: In the present study, the stopping criterion is defined by the limitation of available 
data, namely 16 × 900 s measurements per file. This means that data acquisition stops if all available data have 
been requested. Therefore, the last iteration in each data selection strategy consists of requesting all remaining 
data as there is no further informative energy interval.

Results
In this experiment, we exemplary use a dual-phase material with locally different contents of retained austenite, 
i.e., the low-alloy 42CrSi QP steel, and investigate the estimation error of each parameter over time for every 
selection strategy. It is important to mention at this point that this procedure generally applies to any other 
material of interest. In Fig. 6, we use the mean absolute relative error (MAE) across all relevant peak values (peak 
position p, integral width w, peak height h, and integral area a) for every phase-specific spectrum line (thin lines) 
and present their average (bold line).

Best strategy
To compare the performance of the strategies, we use all available measurement data to determine the Bragg 
peak characteristics p, w, h, and a, which we assume to be the ground truth. Therefore, all selection strategies 
converge to zero error after the whole energy range for every measurement period has been acquired. This 
convergence is used for validation and allows for giving an estimate of how well each selection strategy performs. 
In practical applications, convergence to the smallest possible R2 values or against user-specific limits would 
be necessary. These can vary depending on the application. For example, the accuracy of the peak position p is 
key for residual stress measurements, while the peak height h is most important during texture measurements.

For the selection strategy full, we see an MAE drop every 15 minutes (= 900 s); for roi, this MAE drop is 
every ≈ 400  s as the non-informative energy ranges are excluded by only investigating the energy intervals 
enveloping every seed peak. In the min_vol selection strategy, we can ask for each peak individually. Hence, the 
adaptability is improved compared to the strategy roi. Especially for spatially resolved residual stress, phase, or 
texture analysis, the min_vol strategy can be of great potential since a diffraction peak with the lowest intensity in 
one spectrum does not necessarily have the lowest intensity in another spectrum. With each interpolation point 
of a mapping on a component or sample surface to be examined, this time advantage will even be multiplied. 
This is also confirmed by the following observation from the results plotted in Fig. 6. The average MAE (bold 
line) when using the min_vol selection strategy is always below full and mostly below roi. Especially the min_vol 
selection strategy is suitable to stop even before reaching the MAE 0.0 mark (orange line in Fig. 6) in case a 
suitable stopping criterion, such as a predefined MAE threshold, is provided.

Time-saving possibilities
Figure 7 shows the potential time savings with respect to the acceptable MAE. This relationship shows that the 
saved time is up to 62% for min_vol and up to 55% for roi. We also see the benefits of intelligently selecting the 
intervals using min_vol. Still, it needs to be considered that some peaks of specific phases are only found at times 
below the baseline. Here, the curve fitting algorithm was not robust enough and the peak was not successfully 
detected. This occurs especially in case of measurements close to the resolution limit of the setup, which in some 
cases can still be compensated by smoothing the background noise. In some cases, such an erroneous peak fit 
must be removed from the subsequent evaluation chain. In the case considered here, values falling below the 
baseline could be interpreted as a quality feature, which can already be evaluated or classified by an algorithm 
during a measurement. This would have the consequence that this peak is either excluded from the following 
data processing, or the specific counting time is extended until this effect no longer appears.
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Especially for continuous measurements like those considered here, i.e., using an energy dispersive setup 
or, in the case of a line or area detector, the integration of an online data evaluation component is of extreme 
advantage. Since complex measurement sequences are often created by means of programmed scripts in 
large research facilities and also laboratory devices, the integration of the min_vol strategy is quite promising, 
especially since the subsequent process of data processing is often a standardized procedure. In some cases, large 
amounts of experimental data are first generated in the TeraByte range and then analyzed step by step in a time-
consuming process. Particularly in the case of studies conducted at large research facilities, this means that the 
time required for data analysis is significantly higher than the time required for data acquisition.

Discussion and outlook
In the present study, we investigated different selection strategies to perform faster XRD measurements without 
reducing accuracy. We used experimentally determined, periodically measured diffraction profiles as a basis 
for simulating a real-time measurement and integrated the selection strategies proposed in the present work, 
eventually showing the potential of including immediate data evaluation pipelines into the experimentation 
loop. A similar approach, however, only focusing on large research facilities, has already been published in 
23. In the aforementioned study  23, it is detailed how to build on the experience gained from comparable 
measurements from a global database during the ongoing experiment. Eventually, this should help the user 
to make an immediate decision on how experimental parameters could be adjusted. However, this requires a 
standardized and error-free database. In the example considered in the present work, this kind of database is not 
required. From the findings presented here, the following conclusions can be drawn:

Comparability through standardization
Since the experimentally determined intensities and count rates, respectively, can also be displayed and evaluated 
in a standardized way over the exposure time (counts per second), the strategy proposed and elaborated can be 
applied to different spectra from different MPs. The same holds true for measurement sequences with different 
optimized measuring times, which still can be compared and evaluated in a joint approach.

Figure 6.  Relative error averaged over all estimated peaks (12 peaks in total) for every dataset (plus mean 
in bold) with respect to the measuring time. 1.81 hours (orange dotted line) of measurement time would be 
enough to reach an MAE of 0.0 according to the selection strategies roi and min_vol.
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Outlook for mappings and grid sizes
The new algorithms proposed can even act as a basis for more complex and, therefore, more powerful algorithms 
inspired by the field of intelligent experimentation or active experimental design. Here, not only the measurement 
time can be shortened and utilized more efficiently, but also the next measurement position within the specimen 
volume or the density and number of measurement points in an iteration can be chosen and assessed during an 
ongoing measurement series.

Extending selection strategies
The selection strategy min_vol can be further improved using insights from active learning24. In active learning, 
the idea is to select samples such that the model, i.e., the data selector, is improved. Depending on the target 
parameter, we could develop individual selection strategies that directly optimize these.

Stopping criterion
In the present study, we have not yet introduced an early stopping criterion. Introducing such a criterion bears 
the potential to increase the experimentation time savings even further. This can range from defining simple 
thresholds, e.g., using uncertainties of peak characteristics, to using active learning strategies in combination 
with automated stopping criteria24.

Intelligent methods
We could apply intelligent methods to use a more sophisticated parameter estimation method instead of fitting 
a normal distribution model, i.e., Gaussian profiles.

Overlapping peak evaluation
In addition to the previously used variables for describing a peak profile, the termination conditions or required 
exposure times can also be linked to allow for a successful evaluation of two overlapping peaks, cf peaks 1 and 9 in 
present work. The target function that has to be fitted to the spectrum basically consists of a number of different 
sub-functions. In the simplest case, different Gaussian functions add up for a specific crystalline material. These 

Figure 7.  Relative error averaged over all estimated peaks (12 peaks in total) for every dataset (plus mean in 
bold) with respect to the measuring time.
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are supplemented by a background function, which considers the used setup. This function can be characterized 
in a reference measurement. If polymers are examined, a non-linear polynomial background of a higher order is 
added to the individual Gaussian functions. Since the target function is always the sum of individual functions, 
our here-proposed algorithms also offer the possibility to adapt these to the required spectrum. This approach 
needs to be validated experimentally in future work. Additionally, the use of Mexican-Hat wavelets is a feasible 
option for peak search and profile analysis. Due to their symmetrical nature, these could be used to identify non-
symmetrical peaks and, therefore, to identify potential overlapping peaks. This approach is subject of ongoing 
work, first promising results obtained for a polyamide specimen are available.

Human-in-the-loop
In itself, the algorithm is suitable for automated experimentation. Even if automated experiments (without 
human intervention) are desirable in most cases, integration of a human into the experiment cycle can be useful. 
Especially in areas where a Bragg peak intensity drops below a certain threshold, human-in-the-loop techniques 
can be applied. This way, the human could help to optimize the experiment by, e.g., assessing whether a specific 
measurement point or range requires further investigation.

Usability
Due to the simplicity of the selection strategies, integrating these into the experimentation loop is thought to 
be straightforward. Thus, the results and approaches presented in present work bear the potential to become an 
important standard part of any energy-dispersive XRD experiments. Especially for systems that can communicate 
with the programming language Python, the code can be used ad-hoc. No previous learning strategy is necessary.

Transfer to large-scale research facilities
The selection strategies introduced are of highest benefit for laboratory applications, however,can also be applied 
at large-scale research facilities, such as synchrotrons or high-energy laboratory sources like a liquid metal jet 
tube, for in situ studies23,25.

Other applications
The data selection strategies within this article can certainly be applied to other experimentation methods. The 
prerequisites are prior knowledge with respect to the data structure, e.g., the seed peaks for the diffraction profile 
in our use case. In addition, the exploitation area must be scannable in a flexible manner. Of course, applying 
these selection strategies is only meaningful for experiments that can be terminated at an earlier point in time.

Data availability
The datasets generated and/or analysed in the present study are available using the corresponding DOI ( ​h​t​t​p​s​:​/​
/​d​o​i​.​o​r​g​/​1​0​.​4​8​6​6​2​/​d​a​k​s​-​7​8 )from the repository of the University of Kassel. 

Code availability
The codes generated in the present study are available using the corresponding DOI ​(​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​4​8​6​6​2​/​
d​a​k​s​-​7​8​) from the repository of the University of Kassel. 
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