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Every new material needs to be assessed and qualified for an envisaged application. A steadily
increasing number of new alloys, designed to address challenges in terms of reliability and
sustainability, poses significant demands on well-known analysis methods in terms of their efficiency,
e.g., in X-ray diffraction analysis. Particularly in laboratory measurements, where the intensities in
diffraction experiments tend to be low, a possibility to adapt the exposure time to the prevailing
boundary conditions, i.e., the investigated microstructure, is seen to be a very effective approach.

The counting time is decisive for, e.g., complex texture, phase, and residual stress measurements.
Traditionally, more measurement points and, thus, longer data collection times lead to more accurate
information. Here, too short counting times result in poor signal-to-background ratios and dominant
signal noise, respectively, rendering subsequent evaluation more difficult or even impossible. Then, it is
necessary to repeat experiments with adjusted, usually significantly longer counting time. To prevent
redundant measurements, it is state-of-the-art to always consider the entire measurement range,
regardless of whether the investigated points are relevant and contribute to the subsequent materials
characterization, respectively. Obviously, this kind of approach is extremely time-consuming and,
eventually, not efficient. The present study highlights that specific selection strategies, taking into
account the prevailing microstructure of the alloy in focus, can decrease counting times in X-ray energy
dispersive diffraction experiments without any detrimental effect on data quality for the subsequent
analysis. All relevant data, including the code, are carefully assessed and will be the basis for a widely
adapted strategy enabling efficient measurements not only in lab environments but also in large-scale
facilities.

It is well-known that the microstructure of any material dominates its macroscopic behavior. In addition to its
basic structure, the periodicity of the arrangement of atoms, preferred grain orientation, residual stress fields,
and local phase composition play an essential role in terms of the strength and lifetime of real components.
Especially for reducing the emission of C'O2, advanced alloys need to be developed and analyzed. Here,
promising candidates are lightweight components, e.g., made of high-strength steel. In a number of novel steel
concepts, the stress- and strain-induced transformation of metastable austenite into martensite is an essential
factor contributing to the final mechanical properties under a given external load. This transformation promotes
local hardening and, eventually, leads to a delay of necking and overload failure. Thus, the interplay of the
elementary deformation mechanisms prevailing in these steels contributes to high ductility and high tensile
strength simultaneously, known as transformation-induced plasticity (TRIP) effect!. Quench and Partitioning
(QP) steels represent the most recent generation of high-strength steels combining high strength and good
ductility. The concept is essentially based on two steps, i.e., quenching to set a defined martensite content,
followed by a heat treatment step to stabilize the retained austenite through targeted carbon partitioning between
martensite and austenite. A predominantly martensitic structure with retained austenite and minor fractions
of bainite/ferrite is obtained after the QP heat treatment. Due to their outstanding mechanical properties at
comparatively low costs, QP steels are of particular interest to the automotive industry, where high strength in
combination with sufficient ductility and low component weight are desired to enable maximum safety under the
consideration of maximum resource efficiency. Another advantage is the ease of integration of the heat treatment
strategy into existing production lines, making the use of QP steels even more sustainable?. It has already been
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discussed that the complex microstructures and material behavior, respectively, require a tremendous increase
in characterization efforts to fully understand the corresponding properties and derive process-microstructure-
property relationships®. This understanding will also promote further advances in additive manufacturing
of microstructurally graded TRIP steels and other metallic alloys, where only an increase in efficiency of the
applied methods will allow the intended direct design of form and function®.

High-resolution strain or texture mappings using X-ray diffraction (XRD), local hardness tests, non-
destructive analysis of steep residual stress gradients by energy dispersive XRD, and in situ stress or phase
analysis, i.e., conditions probed under external mechanical load, represent possible analytic methods>®.

Because of the wide range of different microstructures in novel high-strength materials, there is great interest in
the availability of fast, phase-selective, reliable, and non-destructive methods such as XRD-enabled assessments.
Considering diffraction techniques, analysis of the crystallographic structure of a crystalline material, its
crystallographic orientation, and the phase content is feasible’. Based on specific scanning strategies, texture
and lattice strain measurements can be conducted. Here, one possibility is to analyze the maximum intensity of a
prevailing interference peak with respect to the sample orientation; another approach is to determine the lattice
strains based on the exact position of the peak, from which the residual stress states are calculated using elastic
theory and suitable elastic constants’. When using such strategies, sufficiently accurate peak profile analysis is
necessary to obtain reliable results. Depth-resolved measurements can be conducted either by angle dispersive
or energy dispersive XRD methods to assess the properties of the surface regions®. Here, for the angle dispersive
approach layer removal is needed, eventually increasing the efforts needed for assessing in-depth profiles.

Novel materials like QP steels, as well as novel manufacturing processes like additive manufacturing, are
often characterized by the presence of graded sample conditions. Complex and time-consuming XRD mapping
strategies are then applied to probe local measurement positions across given component regions. Here, an
online data refinement would be highly beneficial to realize laboratory measurements without investing too
much experimental time, while still providing sufficient exposure time to achieve sufficient signal intensity.

Breidenstein et al.° performed an analysis, where they tried to identify a sufficient exposure time based on an
asymptotic approximation, taking into account data scatter. Here, a complex series of measurements and follow-
up evaluations had to be carried out to find a suitable exposure time for the material under examination. This
strategy is rather time-consuming and requires repetition for each new alloy under investigation. The results of
the mentioned study point to the fact that constantly repeating evaluation steps, which only serve as a simple
observation of defined target variables, do not always have to be carried out by the operator himself. Typically,
such target variable observations are carried out after an experimental phase, where the experiment often is even
conducted with not optimally selected exposure times.

Intelligent experimental design intends to counteract this by integrating data evaluation procedures into
the experimentation process, also known as closed-loop experimentation. The field of materials science
experimentation is currently witnessing a surge in research efforts toward this direction®!!. Active learning
strategies, in particular, have shown to be very effective for closing the experimentation loop and saving
experimentation time by querying the most promising sample next'2. Yet, many other techniques such as statistical
inference'?, sequential learning!*, co-design approaches!®, or uncertainties from machine learning models!® can
be used to enhance experimentation. There are hardly any limits for applying intelligent experimentation, e.g.,
using machine learning for additive manufacturing'’, alloy deployment!®, or X-ray scattering'®. Especially deep
learning methods®, due to their rapid inference capabilities, harbor great potential to advance several aspects
of experimentation.

In the present article, we aim to demonstrate the effectiveness of integrating immediate data evaluation into
the experimental process using the application case of XRD-based retained austenite analysis. Utilizing the data
collected up to a specific experimentation iteration, we demonstrate how different selection strategies in terms
of the energy-interval in the experimentally determined spectra affect the next experiment iterations and the
required time to accurately characterize key intensity peak characteristics, namely the position of the diffraction
line, peak height, peak area, and integral width. The experiments were conducted using a low alloy 42CrSi QP
steel. Precisely, we compare the state-of-the-art so far, namely sequential acquisition, with two new and more
intelligent selection strategies, where we (1) use the regions-of-interest (ROI) within the energy range or (2)
investigate the next relevant energy interval using the minimum volume of the intensity peaks so far acquired.
Using these selection strategies and extending a recent article?!, we endeavor to provide preliminary answers to
the following questions:

o How can we intelligently select exposure times and energy ranges, respectively, for investigation?
« When is it appropriate to terminate an ongoing experiment?

To shed light on the procedures applied, we introduce the utilized materials and methods, discuss results and
advantages when using the proposed data selection strategies, and provide an outlook on the effects these
strategies will have for energy-dispersive XRD experimentation in general.

Materials and methods

High strength QP steel with metastable retained austenite

In the present work, we used a low-alloy 42CrSi steel to study a complex microstructure, including a metastable
phase. In a previous study, we already investigated and characterized the material in depth by means of in
situ XRD experiments®. There, it was revealed that laboratory-based XRD methods show high potential for
reliable assessment, but rather are time-consuming. In follow-up work, we could reveal that a higher retained
austenite content promotes an increased fatigue strength. In all cases, assessment of localized phenomena was
the key to finally rationalize global properties and, thus, provide statements on the integrity and reliability of the
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component. These examples point to the important role of local measurements, i.a., to assess the stability of the
retained austenite and the phase-selective residual stress states after or during application of an external load.

A miniature sample with the dimension of 8 x 8 x 25 mm3 was austenitized at a temperature of 950 °C,
quenched to 170 °C in liquid salt, and - before cooling down to room temperature — a partitioning procedure
was carried out at 400 °C for 10 min. Afterward, dog-bone-shaped tensile test samples with gauge section
dimensions of 18 x 3 x 1 mm?® were manufactured by electrical discharge machining (EDM). Figure la shows
the summed spectra (15 X 900 sec exposure time) highlighting the analyzed diffraction peaks of the body-
centered cubic (bcc) ferrite and the face-centered cubic (fcc) austenite. The inset shows a detailed view of a peak
of the 200-lattice plane from the ferrite phase. The electron back-scattered diffraction (EBSD) image in Fig. 1b
shows the needle-like appearance of the retained austenite, colored in yellow, in a matrix of ferrite, colored in
blue. The effort to experimentally determine such a spectrum is described in more detail in the following.

The dog-bone-shaped sample was loaded for the in situ test using a Kammrath and Weiss stress rig; for
details, see’. Preliminary XRD investigations revealed that for this specific condition of the QP steel, the RA
content decreases from around 14% within the clamping section to around 2.5% at the point of fracture.

Physical basics of energy-dispersive X-ray diffraction

Applying XRD methods to characterize the microstructure of crystalline materials is common in the field of non-
destructive methods. Here, it is feasible to study the stability and/or the change of microstructures and residual
stress states, depending on thermal and mechanical loads. These experiments are based on the diffraction of
X-rays within the atomic structure of crystalline materials described by the Miller indices, also known as hkl
lattice planes. The correlation between the constructive interference of the diffracted X-rays, characterized by
the used wavelength A, under a specific angle 6 with the distance D of the studied hkl lattice planes (being
characteristic for the probed material) is described by Bragg’s law:

nA = 2Dsin6. (1)

Every crystalline structure, represented by the stacking order of the atoms and the corresponding hkl lattice
planes, has its own specific diffraction line profile. This can be rationalized by the fact that Bragg’s law is only
fulfilled in specific positions corresponding to these atomic positions, eventually related to the distance D of the
atomic lattice planes. If D needs to be determined experimentally for assessment, Eq. 1 allows for two different
strategies. Either ) is kept constant, while the integer multiple # is equal to one and € needs to be determined
experimentally, or 6 is constant, and A\ will be considered in the experiment. In both cases, the diffracted intensity
is in focus. In laboratory applications, the angle dispersive mode is preferred. The wavelength X of the X-ray tube
is fixed, whereas the diffraction angle 6 is varied to scan the intensity of a peak profile step-wise and calculate
the exact angle 6 for the corresponding value D of the hkl-lattice plane in focus afterward. This procedure is
schematically shown in the left part of Fig. 2. In the energy dispersive mode, the diffraction angle 6 is fixed and
a variable primary wavelength (white spectrum) is analyzed continuously by an energy-resolved semiconductor
detector. In this case, the complete spectrum of the used X-ray source, the so-called white beam linked to the
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Figure 1. (a) Integrated spectra profile from 42CrSi steel with austenite and ferrite peaks obtained using a
white X-ray beam of a tungsten tube and an exposure time of 15 times 900 sec during a diffraction experiment

« »,

at one specific measurement point. The peak positions from the austenitic phase are marked with an “x”;
ferrite/martensite peaks are marked with an “o0”, (b) EBSD phase map superimposed to the quality map of
the same sample with the retained austenite colored in yellow and the ferrite/martensite in blue. Recompiled

from>.
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Figure 2. Schematic principle of the angle-dispersive approach with a constant beam energy of 6.93 keV of
Co Ka radiation (left) and the energy-dispersive measurement mode with an applicable energy range (white
beam) from 1 to 60 keV (right)°.

Bremsstrahlung, can be used and a step-wise scanning procedure is not necessary’. This strategy is shown in
Fig. 2 to the right.

In both approaches, the focus is on analyzing the characteristics of the peaks for different hkl diffraction
lines, e.g., the peak width, integral area, height, and exact position. The main target of the specific analysis
strategy has always to be considered at this point. In the energy-dispersive mode, the information of the spectral
profile is increasing continuously for every prevailing hkl peak. At least under laboratory conditions, the scan
profile in the angle dispersive mode follows a step-wise approach with a constant exposure time per step. To
analyze a full interference profile, it is necessary to finish a scan before starting the next step in the procedure.
Both methods can be applied in reflection geometry (incident X-ray beam diffracted in the surface area of the
sample) and transmission geometry (incident X-ray beam penetrates a relatively thin sample). The reflection
mode is the common use case for laboratory conditions. In the case of an XRD mapping, a fixed 26 angle is
a beneficial boundary condition. This is due to the fact that the shape of the illuminated spot on the sample
surface remains constant. The constantly growing spectrum during an energy dispersive measurement enables
the use of the already collected peak profile data from an energy interval A\ to intelligently choose the next
exposure time. This can be done continuously, while the quality measures focus on accurately analyzing the
specific peak characteristics. If the quality is good enough, the running measurement sequence can be stopped
immediately without losing too much time at this measuring point (MP). This is only possible in the case of
continuous data recording and, thus, the energy dispersive approach is excellently suited at this point. The focus
of the present study is not on the quality standards of the energy dispersive structure, stress, phase, or texture
analysis, but rather on pathways to reduce the scanning time, eventually enabling faster measurements without
losing necessary information. It is shown that by simply implementing different data selection strategies into the
measurement script, intelligent closed-loop experimentation becomes feasible.

Setup and data processing

The measurements were performed on an energy-resolved X-ray diffractometer using the Bremsspektrum of a
conventional laboratory X-ray source with tungsten anode??. The white beam was generated with an acceleration
voltage of 60 kV and a current of 40 mA and collimated by a 0.5 mm pinhole collimator with a length of 200 mm.
The X-ray tube and the Si-drift detector AXAS-M of KETEK were positioned symmetrically at a distance of
340 mm to the sample with a diffraction angle 260 of 20°. In the present work, we used a dog-bone-shaped tensile
sample of the QP steel detailed before. This sample was probed by a line scan with a step size of 2 mm, starting
close to the fracture region (MP1 = 0 mm) and ending within the clamping area (MP8 = 14 mm). Using this
strategy, eight measurement points were analyzed along the sample. Continuous spectra were acquired for 4 h at
each of these eight MPs at the sample surface, as highlighted on the X-axis in Fig. 3. An exemplary spectrum of
measurement point 6, i.e., at a position 10 mm away from the crack surface of the sample (cf Fig. 3), is depicted
in Fig. 1a. Data of each spectrum are saved in a two-column table file containing detector channels (first column)
and intensity (second column [absolute counts]) with a preceding five-line header. For further data processing,
we converted the detector channels to energies using an earlier recorded energy calibration function. We used a
measurement on a certified ENSAM Fe powder (with the same measurement setup) to elaborate the calibration
function. In the experiment shown here, the energy-resolved intensity of each spectrum increases over 900 s.
This corresponds to 16 individual spectra for each of these 8 MPs. According to this procedure, 128 spectra were
available for further data processing in the form of text files (intensity in absolute counts over energy in keV),
exemplarily depicted in Fig. 1a. Table 1 provides an overview of all available data. To analyze the phase fractions
or the retained austenite (RA) content in the eight MPs, the areas of the phase-specific peaks are weighted and
evaluated following the strategy detailed in’. Figure 3 shows the normalized peak areas in relation to the largest
peak and the volume fraction of RA determined from the data, for each of the eight probed MPs.

In the specific MPs probed here, the RA content varies from a maximum volume content of 14 % to a
minimum of around 2%, in line with the results already published®. The first measuring point (MP1 position
0 mm) could not be clearly evaluated due to the fact that severe plastic deformation occured in direct vicinity of
the fracture surface.

Simulation of in situ experiments
The major goal of the present study is to determine the potential of the approach for reducing the time necessary
to perform an experiment that captures the peak width w, the integral area a, the peak height 4, and the exact peak
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Figure 3. Intensities of the ikl lattice planes normalized to the 110 lattice plane (left axis) and estimated

volume of the retained austenite content (right axis) plotted as a function of the corresponding measurement

position. The sketched sample is shown below the graph schematically.

Measurement point (.txt file) Position [mm] | # Spectra | Measurement Duration / Spectrum [s]
mcaData_ MP1 combined.txt |0 16 900
mcaData MP2 combined.txt |2 16 900
mcaData_ MP3_combined.txt |4 16 900
mcaData_MP4_ combined.txt |6 16 900
mcaData MP5 combined.txt |8 16 900
mcaData MP6 combined.txt |10 16 900
mcaData MP7 combined.txt |12 16 900
mcaData_ MP8_ combined.txt |14 16 900

Table 1. Overview of the available data corresponding to the plotted results shown in Fig. 3.

position p of Bragg peaks. The main idea is to focus on peaks that are not entirely evident in these characteristics

and select specific energy intervals to increase accuracy concerning the Bragg peaks.

As evaluating such a strategy in an in situ experiment is time-consuming and expensive, we decided to sim-
ulate the experimentation process using the aforementioned data. Algorithm 1 schematically shows the steps
that need to be performed during experimentation. This procedure is straightforwardly transferable to a real

experiment. The individual steps will be discussed in more detail below.
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Requirement: K seed peaks are known in advance.
Output: K peak characteristics & = {p; e Ry, w; e Ry ,h; € Ry,a; € Ry ,i=1,...,K} with position p, width w, height

h, and integral area a.

1:
2
3
4:
5:
6:
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

procedure EXPERIMENTROUTINE(seed_peaks, .#) > A <+ {full,roi,min_vol}
current_measurement <— per form_measurement (energy_range = full) > Full sequence of 900 s.
roi_areas < 0 > Required for selection strategy roi.
do
if .# is full then

current_measurement <— current_measurement + per form_measurement (energy_range = full)
end if
if ./ is roi then
if first_iteration then
roi_areas < get_rois (seed_peaks)
end if
current_measurement <— current_measurement + per form_measurement (energy_range = roi_areas)
end if
if . is min_vol then
min_vol_roi <~ get_smallest_volume (seed_peaks)
current_measurement <— current_measurement + perform_measurement (energy_range = min_vol_roi )
end if
P + fit_gaussians(current_measurement, seed_peaks)
while check_stopping_criterion () is False
return &

21: end procedure

Algorithm 1. Overview of the simulated energy dispersive XRD experimentation procedure using multiple
selection strategies.

Identifying seed peaks: We identified so-called seed positions £; for the Bragg peaks based on the material
properties given in Table 2. Every seed position defines an interval I; = [I; — ¥, E; 4 ], with a pre-defined
width parameter w = 3 keV. To find the seed peaks, we averaged all measurements (4 hours, 8 experiments).
After smoothing the curves further, we used the first and second derivatives to identify the maximum value in
that smoothed curve. Next, we identified the number of peaks that we want to consider (here 10) and used the
extracted maximum values as the seed peaks for further investigation. It must be emphasized that the seed peaks
1 and 9 (cf. Table 2) consist of a superposition of two Bragg peaks. Evaluation strategies are known, in which this
superposition can also be separated, however, this is not the focus of the present study. The results elaborated
here are provided in Fig. 4. Clearly, these seed peaks are not accurate, but they will be refined in the upcoming
experiments.

Initializing the experiment: Regardless of the chosen selection strategy, the initialization of each experiment
is done by measuring 900 s throughout the whole energy range (iteration 0 in Fig. 5). Then, a selection strategy
decides which energy interval is to be probed next. To simplify the comparison, we only allow the selection of
an energy interval or the whole energy range. If one interval is selected, we add the intensities of the selected
interval (for the consecutive measurement period) from the original experiment. As, in the present study, the
whole measurement was 4 h with a period time of 900 s, we have 16 periods to get data from. By normalizing
the measured intensities by time for every energy level, we yield comparable characteristics independent from
the total measurement time.

Determining peak characteristics: To determine the peak width w, the integral area a, the peak height h, and
the exact peak position p, we fit a Gaussian function with height A and bias b parameters as given in Eq. 2 using
a non-linear least-squares optimizer.

f(z) =h-exp (—W) +b (2)

We use the intensities measured over the complete time of 4 hours to identify the ground truth information.
Based on the seed peaks, we fit the function in Eq. 2 to describe the target position p*, variance o*, height h*

i 1 2 3 4 5 6 7 8 9 10
hkl 111+110 | 200 200 220 211 311 220 400 3314222 | 321
structure | fcctbee | fec bec fec bee fee bec fec fcc+bee | bec

E; [keV] | 17.602 19.738 | 24.881 | 27.992 | 30.498 | 32.81 | 35.235 | 39.351 | 43.119 46.573

Table 2. Crystal structure hkl lattice planes and E; seed positions for Bragg peaks used in the experiments.
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Figure 4. Identified seed positions for the Bragg peaks based on the specific spectrum of the QP steel,

additionally provided in Table 2.
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Figure 5. Visualization of all investigated selection strategies (a) full, (b) roi, and (c) min_vol for the dataset
mcaData MP6 combined.txt. The iteration determines the order of the performed measurements for

the exemplary used QP steel.
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, and bias b* for every peak. For each of the eight measurement points, we provide the results of this estimation
method in Supplementary Figures 1-3 (Appendix A).

Selection strategy requirements: To estimate the peak parameter, we assume to be able to acquire intensities
for different intervals [E;, E] from each of the 16 x 900 s measurements. All methods start with one full
sequence of 900 s. Then, each selection strategy successively chooses a specific interval (to acquire the data from)
for the other 15 measurements.

Selection strategy full: Sequential acquisition This method builds the baseline, i.e., the state-of-the-art so far.
It consists of capturing data for the whole energy range [1 keV, 60 keV]. As each measurement in our experiment
is divided into 16 blocks of 900 s length, the whole measurement period takes 4 h, eventually consisting of 16
estimates that should improve with more time. A visualization of the selection strategy can be seen in Fig. 5a.

Selection strategy roi: Sequential ROI acquisition Knowing seed positions, we can omit all measurements
that are probably not helping when estimating the peak parameters. Therefore, we use the above-mentioned
energy intervals I; as regions of interest (ROI). In this baseline, we ask for all intervals in one of the 900 s
measurements at once. Hence, determining the peak parameters should be faster compared to sequential
acquisition without reducing their accuracy. A visualization of the selection strategy can be found in Fig. 5b.

Selection strategy min_vol: Minimum volume acquisition While using the intensities per measurement
time to fit the peak parameters, we use simple (non-normalized) intensity counts for this selection strategy.
Our main assumption is that the reliability of the estimated parameters is strongly affected by and correlated
with the measurement noise. While characteristics from peaks with large volumes can be reliably estimated,
small peaks are much more difficult to characterize. Hence, we propose to select the peak with the smallest
(non-normalized) intensity and volume, respectively, for the next measurement. Note that we usually normalize
the data by the local (with respect to the energies) measurement time. If we would do this here, we would only
select the smallest peak. Instead, we want to select the peak with the lowest intensities. Hence, we use the non-
normalized volume. A visualization of the selection strategy can be found in Fig. 5c.

Stopping the experiment: In the present study, the stopping criterion is defined by the limitation of available
data, namely 16 x 900 s measurements per file. This means that data acquisition stops if all available data have
been requested. Therefore, the last iteration in each data selection strategy consists of requesting all remaining
data as there is no further informative energy interval.

Results

In this experiment, we exemplary use a dual-phase material with locally different contents of retained austenite,
i.e., the low-alloy 42CrSi QP steel, and investigate the estimation error of each parameter over time for every
selection strategy. It is important to mention at this point that this procedure generally applies to any other
material of interest. In Fig. 6, we use the mean absolute relative error (MAE) across all relevant peak values (peak
position p, integral width w, peak height s, and integral area a) for every phase-specific spectrum line (thin lines)
and present their average (bold line).

Best strategy
To compare the performance of the strategies, we use all available measurement data to determine the Bragg
peak characteristics p, w, h, and a, which we assume to be the ground truth. Therefore, all selection strategies
converge to zero error after the whole energy range for every measurement period has been acquired. This
convergence is used for validation and allows for giving an estimate of how well each selection strategy performs.
In practical applications, convergence to the smallest possible R? values or against user-specific limits would
be necessary. These can vary depending on the application. For example, the accuracy of the peak position p is
key for residual stress measurements, while the peak height & is most important during texture measurements.
For the selection strategy full, we see an MAE drop every 15 minutes (= 900 s); for roi, this MAE drop is
every =~ 400 s as the non-informative energy ranges are excluded by only investigating the energy intervals
enveloping every seed peak. In the min_vol selection strategy, we can ask for each peak individually. Hence, the
adaptability is improved compared to the strategy roi. Especially for spatially resolved residual stress, phase, or
texture analysis, the min_vol strategy can be of great potential since a diffraction peak with the lowest intensity in
one spectrum does not necessarily have the lowest intensity in another spectrum. With each interpolation point
of a mapping on a component or sample surface to be examined, this time advantage will even be multiplied.
This is also confirmed by the following observation from the results plotted in Fig. 6. The average MAE (bold
line) when using the min_vol selection strategy is always below full and mostly below roi. Especially the min_vol
selection strategy is suitable to stop even before reaching the MAE 0.0 mark (orange line in Fig. 6) in case a
suitable stopping criterion, such as a predefined MAE threshold, is provided.

Time-saving possibilities

Figure 7 shows the potential time savings with respect to the acceptable MAE. This relationship shows that the
saved time is up to 62% for min_vol and up to 55% for roi. We also see the benefits of intelligently selecting the
intervals using min_vol. Still, it needs to be considered that some peaks of specific phases are only found at times
below the baseline. Here, the curve fitting algorithm was not robust enough and the peak was not successfully
detected. This occurs especially in case of measurements close to the resolution limit of the setup, which in some
cases can still be compensated by smoothing the background noise. In some cases, such an erroneous peak fit
must be removed from the subsequent evaluation chain. In the case considered here, values falling below the
baseline could be interpreted as a quality feature, which can already be evaluated or classified by an algorithm
during a measurement. This would have the consequence that this peak is either excluded from the following
data processing, or the specific counting time is extended until this effect no longer appears.

Scientific Reports |

(2025) 15:15182 | https://doi.org/10.1038/s41598-025-96221-1 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

0.0012 -

o
o
(=]
=
o
T

o
o
o
o
@
T

o
=}
S
S
a
f

mean absolute relative error
o o
o o
o o
o [=]
N (<)}
' s

absolute relative error

0.5

Estimating MAE for peak height

Estimating MAE for peak position 0.14 -
= min_vol =—— full . zlin_vol ul
roi o 012~
—
(V]
.02) 0.10 -
=
3 0.08 -
o O
2
5 0.06 -
[=]
2
® 0.04 -
c
3 0.02 -
2o
0.00 L 1 1 1 1 1 1 1 1
1.0 15 20 25 3.0 35 4.0 0.5 1.0 15 20 25 3.0 35 40
measuring time in hours measuring time in hours
Estimating MAE for integral width Estimating MAE for peak area
— minvol — full 0.25 - = min_vol —— full
i s roi
roi
g
i 0.20 -
- =il
o
[
Q
e
2
[=]
0
Kol
©
c
©
Q
£
1.0 15 20 25 30 35 40 0.5 1.0 15 20 25 3.0 35 4.0
measuring time in hours measuring time in hours

Figure 6. Relative error averaged over all estimated peaks (12 peaks in total) for every dataset (plus mean
in bold) with respect to the measuring time. 1.81 hours (orange dotted line) of measurement time would be
enough to reach an MAE of 0.0 according to the selection strategies roi and min_vol.

Especially for continuous measurements like those considered here, i.e., using an energy dispersive setup
or, in the case of a line or area detector, the integration of an online data evaluation component is of extreme
advantage. Since complex measurement sequences are often created by means of programmed scripts in
large research facilities and also laboratory devices, the integration of the min_vol strategy is quite promising,
especially since the subsequent process of data processing is often a standardized procedure. In some cases, large
amounts of experimental data are first generated in the TeraByte range and then analyzed step by step in a time-
consuming process. Particularly in the case of studies conducted at large research facilities, this means that the
time required for data analysis is significantly higher than the time required for data acquisition.

Discussion and outlook

In the present study, we investigated different selection strategies to perform faster XRD measurements without
reducing accuracy. We used experimentally determined, periodically measured diffraction profiles as a basis
for simulating a real-time measurement and integrated the selection strategies proposed in the present work,
eventually showing the potential of including immediate data evaluation pipelines into the experimentation
loop. A similar approach, however, only focusing on large research facilities, has already been published in
2, In the aforementioned study %, it is detailed how to build on the experience gained from comparable
measurements from a global database during the ongoing experiment. Eventually, this should help the user
to make an immediate decision on how experimental parameters could be adjusted. However, this requires a
standardized and error-free database. In the example considered in the present work, this kind of database is not
required. From the findings presented here, the following conclusions can be drawn:

Comparability through standardization

Since the experimentally determined intensities and count rates, respectively, can also be displayed and evaluated
in a standardized way over the exposure time (counts per second), the strategy proposed and elaborated can be
applied to different spectra from different MPs. The same holds true for measurement sequences with different
optimized measuring times, which still can be compared and evaluated in a joint approach.
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Figure 7. Relative error averaged over all estimated peaks (12 peaks in total) for every dataset (plus mean in
bold) with respect to the measuring time.

Outlook for mappings and grid sizes

The new algorithms proposed can even act as a basis for more complex and, therefore, more powerful algorithms
inspired by the field of intelligent experimentation or active experimental design. Here, not only the measurement
time can be shortened and utilized more efficiently, but also the next measurement position within the specimen

volume or the density and number of measurement points in an iteration can be chosen and assessed during an
ongoing measurement series.

Extending selection strategies

The selection strategy min_vol can be further improved using insights from active learning®*. In active learning,
the idea is to select samples such that the model, i.e., the data selector, is improved. Depending on the target
parameter, we could develop individual selection strategies that directly optimize these.

Stopping criterion

In the present study, we have not yet introduced an early stopping criterion. Introducing such a criterion bears
the potential to increase the experimentation time savings even further. This can range from defining simple
thresholds, e.g., using uncertainties of peak characteristics, to using active learning strategies in combination
with automated stopping criteria®*.

Intelligent methods

We could apply intelligent methods to use a more sophisticated parameter estimation method instead of fitting
a normal distribution model, i.e., Gaussian profiles.

Overlapping peak evaluation

In addition to the previously used variables for describing a peak profile, the termination conditions or required
exposure times can also be linked to allow for a successful evaluation of two overlapping peaks, cf peaks 1 and 9 in
present work. The target function that has to be fitted to the spectrum basically consists of a number of different
sub-functions. In the simplest case, different Gaussian functions add up for a specific crystalline material. These
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are supplemented by a background function, which considers the used setup. This function can be characterized
in a reference measurement. If polymers are examined, a non-linear polynomial background of a higher order is
added to the individual Gaussian functions. Since the target function is always the sum of individual functions,
our here-proposed algorithms also offer the possibility to adapt these to the required spectrum. This approach
needs to be validated experimentally in future work. Additionally, the use of Mexican-Hat wavelets is a feasible
option for peak search and profile analysis. Due to their symmetrical nature, these could be used to identify non-
symmetrical peaks and, therefore, to identify potential overlapping peaks. This approach is subject of ongoing
work, first promising results obtained for a polyamide specimen are available.

Human-in-the-loop

In itself, the algorithm is suitable for automated experimentation. Even if automated experiments (without
human intervention) are desirable in most cases, integration of a human into the experiment cycle can be useful.
Especially in areas where a Bragg peak intensity drops below a certain threshold, human-in-the-loop techniques
can be applied. This way, the human could help to optimize the experiment by, e.g., assessing whether a specific
measurement point or range requires further investigation.

Usability

Due to the simplicity of the selection strategies, integrating these into the experimentation loop is thought to
be straightforward. Thus, the results and approaches presented in present work bear the potential to become an
important standard part of any energy-dispersive XRD experiments. Especially for systems that can communicate
with the programming language Python, the code can be used ad-hoc. No previous learning strategy is necessary.

Transfer to large-scale research facilities

The selection strategies introduced are of highest benefit for laboratory applications, however,can also be applied
at large-scale research facilities, such as synchrotrons or high-energy laboratory sources like a liquid metal jet
tube, for in situ studies?>*.

Other applications

The data selection strategies within this article can certainly be applied to other experimentation methods. The
prerequisites are prior knowledge with respect to the data structure, e.g., the seed peaks for the diffraction profile
in our use case. In addition, the exploitation area must be scannable in a flexible manner. Of course, applying
these selection strategies is only meaningful for experiments that can be terminated at an earlier point in time.
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