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Effective load balancing and resource allocation are essential in dynamic cloud computing 
environments, where the demand for rapidity and continuous service is perpetually increasing. This 
paper introduces an innovative hybrid optimisation method that combines water wave optimization 
(WWO) and ant colony optimization (ACO) to tackle these challenges effectively. ACO is acknowledged 
for its proficiency in conducting local searches effectively, facilitating the swift discovery of high-
quality solutions. In contrast, WWO specialises in global exploration, guaranteeing extensive 
coverage of the solution space. Collectively, these methods harness their distinct advantages to 
enhance various objectives: decreasing response times, maximising resource efficiency, and lowering 
operational expenses. We assessed the efficacy of our hybrid methodology by conducting extensive 
simulations using a cloud-sim simulator and a variety of workload trace files. We assessed our 
methods in comparison to well-established algorithms, such as WWO, genetic algorithm (GA), spider 
monkey optimization (SMO), and ACO. Key performance indicators, such as task scheduling duration, 
execution costs, energy consumption, and resource utilisation, were meticulously assessed. The 
findings demonstrate that the hybrid WWO-ACO approach enhances task scheduling efficiency by 
11%, decreases operational expenses by 8%, and lowers energy usage by 12% relative to conventional 
methods. In addition, the algorithm consistently achieved an impressive equilibrium in resource 
allocation, with balance values ranging from 0.87 to 0.95. The results emphasise the hybrid WWO-ACO 
algorithm’s substantial impact on improving system performance and customer satisfaction, thereby 
demonstrating a significant improvement in cloud computing optimisation techniques.
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PSO	� Particle swarm optimization
TET	� Total execution time
BD	� Balance degree
QoS	� Quality of services
SLA	� Service level agreement
RLB	� Randomised load balancing
PSO	� Particle swarm optimization
SA	� Simulated annealing
GA-SA	� Hybrid genetic algorithm and simulated annealing
ABC	� Artificial bee colony
FA	� Firefly algorithm
GA-PSO	� Hybrid genetic algorithm and particle swarm optimization
FL-LB	� Fuzzy logic-based load balancing
IoT	� Internet of things
RU	� Resource utilization
MIPS	� Millions of instructions per second
VM	� Virtual machine

Cloud computing has transformed the IT industry, influencing how businesses and individuals access and use 
computing resources. It offers scalable and flexible solutions based on a "pay-per-use" model, which improves 
resource utilisation across multiple applications. The accessibility of cloud services has resulted in a significant 
increase in demand. To support the increasing number of users and workloads, cloud systems must implement 
more efficient load balancing and resource allocation strategies. Cloud computing significantly improves 
the efficient implementation of business and scientific operations in a variety of industries. Cloud providers 
primarily provide SaaS (Software as a Service), IaaS (Infrastructure as a Service), and PaaS1. These services are 
tailored to address the varied requirements of clients across different service tiers. Although cloud services like 
computing, storage, and networking may fulfil analogous roles, they vary in non-functional attributes referred to 
as QoS (Quality of Service) parameters. The primary factors influencing service quality are response time, cost, 
availability, energy consumption, and resource utilisation2.

As cloud systems grow more complex, effective load balancing and resource management become increasingly 
vital. A plethora of researchers have examined heuristic algorithms and machine learning techniques, often 
focusing on single-objective optimisation models. However, these conventional methods fail to accommodate 
the dynamic and continuously evolving characteristics of cloud environments3. Traditional load-balancing 
techniques encounter numerous limitations, including inadequate scalability, sluggish convergence rates, and 
a failure to tackle multiple conflicting objectives simultaneously. A significant drawback of these methods is 
their failure to adjust to the rapidly evolving conditions typical of contemporary cloud computing workloads4. 
Traditional methods, particularly heuristic algorithms, are designed for more minor, more straightforward 
problems and become insufficient as cloud infrastructures grow in size and complexity.

Furthermore, single-objective optimisation techniques typically emphasise maximising resource utilisation 
or minimising response time while frequently overlooking other critical factors such as energy consumption and 
system reliability. This limited concentration may result in subpar performance, ineffective resource utilisation, 
and increased operational expenses5. With the increasing dynamism and scale of cloud systems, there is an 
imperative demand for multi-objective optimisation techniques capable of concurrently balancing competing 
objectives, including the reduction of response times, optimisation of resource utilisation, and minimisation of 
costs.

In cloud computing environments, these optimisation goals frequently conflict. For example, decreasing 
response time may necessitate the assignment of additional resources to tasks, potentially increasing energy 
consumption and operational costs. Alternatively, emphasising energy conservation may result in longer 
response times and lower service quality. Achieving an optimal balance between these competing objectives 
is difficult, as advances in one domain frequently impede progress in another. An effective cloud optimisation 
strategy must carefully balance multiple objectives in order to effectively manage all system components, such as 
performance, cost, energy consumption, and reliability.

This study seeks to tackle these challenges by introducing a hybrid optimisation approach that integrates ACO 
and WWO. The proposed method enhances the management of multi-objective cloud computing environments 
by utilising ACO’s effective local search for task scheduling and WWO’s global search capabilities for resource 
allocation. The objective is to enhance response times, optimise resource allocation, and decrease operational 
expenses, thereby delivering a more scalable and efficient solution for contemporary cloud systems.

Problem statement and objectives
The rapid expansion of cloud computing introduces increased complexity in the management of resources and 
services. As user numbers rise and workloads diversify, effective load balancing and resource allocation are 
essential for maintaining continuous and high-quality service. Given the dynamic nature of cloud environments, 
where demands can change rapidly, it’s vital to have advanced optimisation techniques that can adapt and 
maintain system performance across all conditions.

A principal challenge in cloud computing is combining diverse, often conflicting optimisation objectives. 
Optimising resource utilisation is essential for improving system efficiency; however, it may lead to increased 
response times or higher operational expenses. Conversely, decreasing response times may require the allocation 
of supplementary resources to particular tasks, potentially adversely impacting overall resource efficiency 
and increasing energy consumption. The main challenge is to develop an optimisation method that balances 
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conflicting goals without compromising any aspect, ensuring optimal overall performance. To tackle this, the 
study proposes a hybrid approach combining ACO and WWO.

The goal is to develop a multi-objective optimisation model that reduces response times, maximises resource 
utilisation, and cuts operational costs. This hybrid approach blends the local search strengths of Ant Colony 
Optimization for task scheduling with the global search capabilities of Whale Optimization for resource 
allocation. Together, these methods offer a balanced, comprehensive solution for cloud resource management. A 
few of the primary goals of this research are as follows:

•	 Multi-objective optimization: Create a model that effectively balances crucial goals like reducing response 
times, optimising resource usage, and lowering operational costs. The goal is to achieve the best possible 
overall performance while simultaneously addressing all of these goals.

•	 Efficient load balancing and resource allocation: The proposed method combines ACO’s ability to search lo-
cally with WWO’s global exploration capabilities to improve task scheduling and resource allocation. This 
balanced approach ensures that the system runs more efficiently, even when demands and workloads change.

•	 Cost and performance efficiency: This study focuses on reducing operational expenses while enhancing re-
source efficiency and response times. The hybrid approach is designed to improve system performance while 
maintaining service quality, allowing it to be adaptable to the ever-evolving requirements of contemporary 
cloud environments.

This research seeks to tackle the challenges of managing cloud resources by introducing a hybrid optimisation 
method. By combining the strengths of ACO and WWO, the proposed approach aims to balance multiple 
competing objectives, offering a more efficient and scalable solution for today’s complex cloud systems.

Motivation of the research
This research is motivated by the increasing complexity and demand in cloud computing environments, where 
traditional optimisation methods do not meet performance, cost, and scalability objectives. The rapid evolution 
of cloud applications and the growing diversity of workloads pose significant challenges for conventional load 
balancing and resource allocation methods, which often fail to adapt effectively in real time. The principal issue in 
cloud computing is the inefficacy and suboptimal performance of current algorithms when utilised for dynamic 
and varied workloads. Conventional methods frequently encounter challenges, including elevated latency, 
inadequate scalability, and an inability to optimise multiple objectives concurrently. As cloud environments 
grow in scale and complexity, these shortcomings become more apparent, leading to performance bottlenecks, 
increased operational costs, and diminished user satisfaction6.

This research seeks to create a novel hybrid optimisation method that targets substantial deficiencies. We 
aim to create an innovative methodology by combining WWO and ACO to effectively tackle multi-objective 
optimisation problems in cloud computing environments. The hybrid methods employs ACO’s strong local 
search capabilities for task scheduling and WWO’s global exploration benefits for efficient resource allocation. 
This combination seeks to augment system efficiency, diminish response times, optimise resource allocation, 
and lower operational expenses, thereby enhancing the user experience. The research aims to advance cloud 
computing by delivering a solution that improves performance while providing a scalable and adaptable model 
to tackle the increasing complexity of contemporary cloud systems. The proposed hybrid model aims to enhance 
the optimisation of cloud operations while improving system sustainability and reliability.

Key contributions
Conventional workflow scheduling research primarily considers optimisation under time or cost constraints, 
ignoring energy consumption6,7. To address the key challenges of Single-objective models in a dynamic cloud 
workflow scheduling environment, this research presents an efficient multi-objective hybrid model using the key 
features of WWO and ACO. The key contribution of this research mainly includes the following.

•	 Development of hybrid algorithm: An innovative hybrid optimisation algorithm combines the strengths of 
ACO and WWO. This approach enhances cloud load balancing and resource allocation by leveraging the 
power of ACO’s local search and WWO’s global search features.

•	 Multi-objective optimization: The proposed hybrid algorithm is based on multi-objective concepts. It simulta-
neously achieves the minimum response time, maximises resource efficiency, and reduces operational costs. 
The optimisation method is a balanced solution to achieve diverse performance metrics in dynamic cloud 
scenarios.

•	 Performance validation: The research validates the hybrid approach with rigorous simulations and compari-
sons to GA, SMO, and ACO. The proposed optimisation methodology improves user satisfaction and system 
efficiency, proving its practicality and efficacy.

Structure of the work
The article presents systematic hybrid WWO-ACO cloud computing optimisation research. The introduction 
emphasises load balancing and resource allocation in dynamic cloud environments. A comprehensive 
literature review covers existing research and methods. The hybrid optimization algorithm’s development and 
implementation are covered in materials and methods. The hybrid approach is compared to GA, SMO, and 
ACO in detail through simulations and results. Critical analysis considers system performance, user satisfaction, 
and operational efficiency. The conclusion highlights key findings, practical implications, and future research 
directions.
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Literature review
Cloud computing has transformed the management and distribution of resources across networks. A primary 
challenge in cloud computing is effective resource management, especially via load balancing. Load balancing is 
the technique of evenly distributing workloads among multiple computing resources to ensure optimal resource 
utilization, reduce response time, and enhance system performance. Effective load balancing is essential for 
maintaining the performance, scalability, and reliability of cloud systems, especially when handling large and 
dynamic workloads.

With the advancement of cloud computing, researchers concentrate on creating innovative algorithms to 
tackle the intricacies of load balancing. Metaheuristic algorithms demonstrate significant potential, offering 
flexible, near-optimal solutions for dynamic resource allocation in cloud environments. These algorithms are 
designed to address optimization challenges in cloud computing that go beyond the limitations of traditional 
methods. This review looks at recent advances in load balancing methods in cloud computing, focusing on 
metaheuristic algorithms, energy-efficient scheduling, and hybrid optimization strategies.

Review based on cloud computing load balancing techniques
The uniform distribution of work across all available resources is a fundamental component of cloud computing, 
which is known as load balancing. In an effort to optimize load balancing in cloud environments, Ghafir et 
al. (2024) presented a novel feedback controller that uses Particle Swarm Optimization (PSO). This method 
improves the efficiency of workload distribution in cloud infrastructure and saves resources by simplifying 
the task assignment process to virtual machines1. Dhabliya et al. (2024) proposed new rules and methods for 
improving cloud computing dynamic load balancing. These strategies address the reality that cloud workloads 
evolve over time by ensuring that resources can adapt and respond to fluctuations in demand2. Khan (2024) 
investigated dynamic load balancing utilizing reinforcement learning-based clustering methodologies and multi-
objective task scheduling. This methodology allows the system to adapt to variations in the cloud environment, 
improving system throughput and resource utilization3. Dubey and Mishra (2024) evaluate various load 
balancing algorithms, highlighting their efficacy and dependability in cloud computing settings. Their research 
highlights the importance of scalability and robustness in managing diverse workloads4.

Choudhary and Rajak (2024) proposed an improved min-min heuristic method for workflow scheduling 
that prioritizes deterministic task allocation. This algorithm improves task completion times and ensures 
optimal load distribution, resulting in higher computational efficiency5. Geetha et al. (2024) investigated hybrid 
optimization algorithms for load balancing, demonstrating that combining various optimization methods 
improves resource management, increases energy efficiency, and lowers operational costs8.

Review based on metaheuristic algorithms in cloud resource management
Metaheuristic algorithms, including Particle Swarm Optimization (PSO), Genetic Algorithms (GA), and Ant 
Colony Optimization (ACO), play a vital role in addressing intricate resource management challenges in cloud 
computing. These algorithms are proficient at identifying near-optimal solutions in dynamic, large-scale systems. 
Forghani et al. (2024) presented the Krill Herd metaheuristic algorithm aimed at load balancing and energy 
optimization in software-defined networks. This method dynamically modifies cloud resources according to 
workload variations, guaranteeing load balancing and energy efficiency9. Similarly, Li et al. (2024) presented 
the Tactical Unit Algorithm, a novel metaheuristic technique for optimizing the load distribution in energy 
systems, such as chiller systems in cloud environments, demonstrating the algorithm’s utility in cloud resource 
management10.

Singh et al. (2024) utilized a JAYA-based metaheuristic algorithm to enhance workload distribution within a 
Fog-Cloud ecosystem. This method enhances load balancing while also emphasizing energy efficiency throughout 
both cloud and edge computing layers6. Tiwari et al. (2024) employed a Knapsack-based metaheuristic to enhance 
edge server placement in 5G networks, effectively balancing computational loads and network capacity7.

Review based on energy-efficient scheduling in cloud computing
Energy efficiency represents a critical challenge in contemporary cloud computing systems. Data centers consume 
vast amounts of energy, and efficient scheduling can significantly reduce operational costs and environmental 
impact. Techniques for scheduling that prioritize energy efficiency focus on reducing energy usage without 
compromising system performance.

Energy-efficient solutions are increasingly significant in cloud computing, driven by concerns regarding 
environmental impact and operational expenses. Singhal et al. (2024) employed the Rock Hyrax Optimization 
algorithm to formulate a solution for energy-efficient load balancing in cloud computing. The algorithm improves 
resource allocation and minimizes energy usage, making it ideal for large-scale cloud implementations11. 
Priyadarshi (2024) presented a comprehensive analysis of AI and metaheuristic methodologies for energy-
efficient routing in wireless sensor networks, applicable to cloud systems as well. His research emphasizes 
multiple strategies for minimizing energy consumption while maintaining optimal system performance12. 
Rostami et al. (2024) presented a hybrid methodology that integrates Capuchin Search with Inverted Ant Colony 
Optimization to facilitate energy-efficient task scheduling in heterogeneous cloud environments. Their approach 
optimizes execution time and energy consumption, guaranteeing the cloud system functions efficiently while 
reducing energy usage13.

Hou et al. (2024) examined the utilization of deep reinforcement learning (DRL) for energy-efficient task 
scheduling in cloud settings. DRL can dynamically modify task schedules to minimize energy consumption 
while maintaining optimal performance of cloud systems14. Khaleel (2024) presented a dynamic job scheduling 
approach that integrates adaptive chaotic sparrow search optimization with coalitional game theory to attain 
load balancing and energy efficiency in cloud environments15.
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Review based on hybrid optimization approaches in cloud computing
Hybrid optimization techniques have become popular due to their ability to combine the best features of different 
optimization methods. These techniques incorporate different metaheuristic algorithms. These approaches make 
it easier to resolve complex problems that call for balancing multiple goals, such as security, energy efficiency, 
and performance.

Simaiya et al. (2024) suggested a hybrid approach to load balancing and host utilization forecasting that 
integrates optimization and deep learning techniques. This model forecasts future workloads, allowing the cloud 
system to allocate resources proactively and maintain peak performance16. Kak et al. (2024) proposed a hybrid 
metaheuristic method for minimizing energy consumption in cloud systems and optimizing task scheduling, 
resulting in a balanced solution that improves system performance while lowering operational costs17. Behera 
and Sobhanayak (2024) employed a hybrid Genetic Algorithm—Grey Wolf Optimization (GA-GWO) approach 
for task scheduling in heterogeneous cloud environments. Their methodology enhances both task completion 
time and energy efficiency, rendering it appropriate for resource-diverse environments18. Verma (2024) presented 
a hybrid model that integrates Seagull Optimization and Black Widow Optimization for task scheduling in 
cloud environments. This hybrid methodology tackles performance enhancement and security, illustrating how 
optimization algorithms can fulfill the dual requirements of efficiency and safety19.

The literature addresses various novel approaches to load balancing and resource management in cloud 
computing. Metaheuristic algorithms such as PSO, GA, ACO, and RL provide effective solutions to complex 
optimization problems. Hybrid optimization techniques show promise for improving performance while 
addressing important goals like energy efficiency, security, and scalability. As cloud systems evolve, the creation 
of smarter, more adaptive algorithms will be critical to maintaining efficient and high-performing clouds. Table 1 
presents a comparative analysis of various load-balancing methods based on various parameters.

Problem formulation and modeling
In modern cloud computing environments, resource utilization across data centres is frequently inefficient, with 
physical machines (PMs) typically operating at 15% to 30% capacity. This underutilization results in a large 
number of idle PMs, which account for approximately 65% of total energy consumption during peak periods. To 
enhance energy efficiency and reduce operational costs, it is critical to develop methods that optimize resource 
utilization and minimize energy waste. Load balancing and effective resource allocation play a crucial role in 
improving the overall performance and cost-effectiveness of cloud systems. The presented research introduces a 
multi-objective hybrid optimization model that rectifies the limitations of traditional single-objective methods 
in cloud workflow scheduling. Conventional methods predominantly emphasize the optimization of time or 
cost, often overlooking energy consumption.

The proposed model amalgamates WWO and ACO to provide a balanced solution for multiple objectives, 
including performance enhancement, cost reduction, and increased energy efficiency for cloud service providers 
(CSPs) and cloud customers (CCs). The model aims to optimize resource utilization, reduce idle physical 
machines, and efficiently allocate workloads, thereby preventing system overload and improving performance. It 
lowers operational costs while adapting to changing cloud environments, ensuring scalability and sustainability. 
Focusing on these key objectives improves service delivery, reduces energy consumption, and increases cloud 
system efficiency and customer satisfaction.

Multi-objective optimization (MOO) model
Different stakeholders in cloud computing systems have unique goals that must be coordinated to ensure 
smooth operation. The cloud comprises two primary components: Cloud customers (CCs) and Cloud service 
providers (CSPs). Cloud service providers provide resources to customers, who can then submit their tasks 
for processing. Service providers maximize resource utilization to boost profits, while consumers prioritize 
application performance. As a result, the goals can be classified into two primary categories: those that focus on 
the Customer and those that focus on the cloud service provider22.

Let the set of Tasks be T, Set of Virtual Machines VMs. Here T = {T1, T2,T3, T4,.......Tn}, here Ti Represents 
the task set, i shows the task number which needs to be processed. For each of the task Ti , an execution time 
ET (T i). Similarly, a sect of VMs can be defined as V M = {V M1, V M2,V M3, V M4,.......V Mm}.

•	 Pareto-dominance and fitness evaluation: To handle the conflicting objectives of the stakeholders, the mul-
ti-objective optimization (MOO) model considers several factors such as response time, energy consumption, 
execution cost, and load balancing. The outcomes produced by the hybrid WWO-ACO algorithm are assessed 
according to these objectives. For two candidate solutions, S1 and S2, S1 is considered to Pareto dominate S2 
if S1 is at least equivalent to S2 in all objectives and superior in at least one. The Pareto dominance process 
guarantees that the optimization method approaches an optimal set of trade-offs.

•	 Selection of Pareto-optimal solutions: We monitor all candidate solutions generated by the hybrid WWO-ACO 
algorithm during the optimization process. The Pareto front, which represents the optimal set of trade-offs, is 
determined by iteratively evaluating the solutions through Pareto dominance.

•	 The ultimate solution set comprises the Pareto-optimal solutions, indicating that no alternative solution sur-
passes them across all objectives. These solutions exemplify optimal compromises between competing objec-
tives, providing the decision-maker with a spectrum of options from which the most appropriate solution can 
be chosen according to particular preferences.

Multi-objectives based on customer
Consumers of cloud services are primarily concerned about the cost-effectiveness and performance of task 
completion16.
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Based on the length of scheduling  Schedule length is the maximum time required to complete all assigned 
assignments and the most recent processed VMs (Virtual Machines). This metric is crucial for evaluating the 
scheduler’s performance. A minimal schedule length result demonstrates an effective scheduling technique that 
assigns assignments to the correct resources17. Schedule length Schlength. This can be calculated by Eq. (1).

	
Schlength = max

[
n∑

i=1

ET (T L, V M i)

]
� (1)

where ET  represents execution time,  T L Represent the task length, i represents the task number that will be 
executed, which can be calculated by Eq. (2), Cllength represents cloud let length, T I  represents the execution 
of the total no. of instructions (MIPS), and it can be calculated by Eq. (3). Equation (4) represents the calculation 
for the single-machine execution T Ii(V M i), hereV MP P ower  represents the V M  capacity, and V MT cores 
represents the total number of cores in the VM.

Method
Response 
time

Waiting 
time

Energy 
consumption

Degree 
of load 
balancing

Cost of 
execution

Scheduling 
length Scalability

Fault 
tolerance Complexity References

Whale Optimization 
Algorithm Yes Yes Yes Yes Yes Yes Yes Yes

O(n2) (quadratic due 
to iterative population 
evaluation)

1

Water Wave Optimization Yes Yes Yes Yes Yes Yes Yes Yes
O(n2) (similar to WOA, 
with moderate iterative 
steps)

2

Genetic Algorithm Yes Yes Yes Yes Yes Yes Yes Yes
O(n × m) (population 
size × number of 
generations)

3

Particle Swarm Optimization Yes Yes Yes Yes Yes Yes Yes Yes O(n × m) (population 
size × number of iterations)

4

Ant Colony Optimization Yes Yes Yes Yes Yes Yes Yes Yes O(n × m) (number of 
ants × number of iterations)

5

Adaptive Genetic Whale 
Optimization Yes Yes Yes Yes Yes Yes Yes Yes

O(n × m) (Genetic 
operations plus whale 
optimization)

8

Inverted Ant Colony 
Optimization Yes Yes Yes Yes Yes Yes Yes Yes

O(n × m) (number of 
ants × number of iterations, 
less complex)

9

Fuzzy-Based PSO Yes Yes Yes Yes Yes Yes Yes Yes O(n × m) (iterative updates 
of particle positions)

10

Ripple-Induced Whale 
Optimization Yes Yes Yes Yes Yes Yes Yes Yes O(n2) (due to ripple effects 

and evaluation complexity)
6

Grasshopper Optimization 
Algorithm Yes Yes Yes Yes Yes Yes Yes Yes

O(n × m) 
(population × number of 
iterations)

12

Meta-Heuristic Approaches 
for Microgrid Yes Yes Yes Yes Yes Yes Yes Yes O(n × m) (depending on the 

nature of metaheuristics)
14

Load balancing via 
intelligent PSO Yes Yes Yes Yes Yes Yes Yes Yes O(n × m) (particle updates 

per iteration)
20

Dynamic Load Balancing 
via Optimized RL-Based 
Clustering

Yes Yes Yes Yes Yes Yes Yes Yes
O(n2) (RL-based 
updates + clustering 
evaluation)

15

Modified min-min heuristic Yes Yes Yes Yes Yes Yes Yes Yes O(n × m) (iterative 
heuristic-based evaluation)

16

Optimal load balancing via 
hybrid optimization Yes Yes Yes Yes Yes Yes Yes Yes

O(n3) (complexity due 
to hybrid optimization 
processes)

17

Dynamic optimization via 
utilizing the Krill Herd 
meta-heuristic algorithm

Yes Yes Yes Yes Yes Yes Yes Yes
O(n × m) (meta-heuristic 
iteration-based, high 
overhead)

18

Tactical Unit Algorithm Yes Yes Yes Yes Yes Yes Yes Yes
O(n2) (time complexity 
increases with more tactical 
units)

21

Optimising workload 
distribution via a JAYA-
based meta-heuristic

Yes Yes Yes Yes Yes Yes Yes Yes
O(n × m) (iterative 
updates, with moderate 
computational cost)

19

Hybrid WWO-ACO Yes Yes Yes Yes Yes Yes Yes Yes
O(n2) (a hybrid of 
WWO and ACO, the 
computational cost is 
moderate)

Proposed

Table 1.  Comparative analysis of various load-balancing methods based on various parameters.
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ET (Cllength,V M j) = Cllength∑

T L(V M i)
� (2)

	

∑
T I(V M i) = T I1(V M1) + T I2V M2 + . . . . . . . . . . . . .... + T InV Mn� (3)

	 T Ii(V M i) = [V MP P ower ∗ V MT cores]� (4)

In Eq. (4) TIi(VMi) represents the total number of instructions for the ITH task and the virtual machine; it is 
measured in MIPS (Millions of Instructions Per Second), and the VMPPower is also measured in MIPS. 

Task execution cost (TEC)  Without being aware of the intricacies of the system infrastructure, cloud users 
in the cloud environment hand over their autonomous tasks to the service provider for processing. These tasks 
have differences regarding prerequisites, such as resource requirements and task duration18. The total expense of 
processing a user’s application is the TEC. Although it’s usually the most quantifiable metric available today, it’s 
crucial to express the cost in terms of the available resources. Given that the user wants to shorten schedules and 
save costs. The execution cost of this arrangement scheme can be calculated by Eq. (5), Where TEC is the task 
execution cost, TET is the task execution time, i is the task number, TEi is the ith task price.

	 T EC = [T ET i ∗ T Ei]� (5)

Service provider-based objectives
In order to reduce operating expenses and improve service dependability, service providers concentrate on 
effective resource management.

Energy consumption  The utilisation of CPU, network connections, and storage equipment contributes to en-
ergy utilization in data centres. The CPU uses more energy than the other system resources. A virtual machine’s 
energy consumption can be separated into idle and active categories. The two VM states are considered when 
determining the total amount of energy used. For the cloud infrastructure to be sustainable and economical, 
total energy consumption is presented in Eq. (6). Here, subscript base, cap n , end base , sub i. represents the 
energy consumption in kilowatt-hours (kg) by resource i, and subscript base, can P c , end base, sub i. represents 
the power consumption rate in watts (W), for a particular resource i.P ci represents the power consumption rate 
for an individual or a particular resource i.

	
MinEnergyConsumption =

∑
(Eni ∗ P ci)� (6)

Resource consumption (RC)  Providers of cloud computing services must effectively control their computing 
resources to guarantee long-term survival and maximize financial returns. Perfect operation of data centres, 
which mostly rely on CPUs, RAM, storage, and network bandwidth, depends on effective resource manage-
ment. Effective resource management aims to optimize occupancy rates, minimize waste, and improve general 
efficiency.

Cloud service providers constantly search for the most effective ways to use their resources to maximize 
their return on investment. This calls for effective processing and storage capacity management, the best use of 
current resources, and low idle times, which reduces needless costs and minimizes energy consumption that 
does not help generate income, which depends on effective resource management. Cloud service providers can 
boost productivity, cut costs, and improve profitability through efficient resource utilization. Efficient resource 
management is crucial for the smooth operation of the data centre, helping the provider achieve their business 
objectives and ensuring overall success.

Materials and methods
This section thoroughly explains the proposed hybrid model, covering its conceptual framework, operational 
mechanisms, and performance evaluation methodologies. The hybrid approach, which combines the strengths 
of WWO and ACO, is thoroughly examined to showcase its effectiveness in cloud load balancing and resource 
allocation. In addition, this section explains the main performance metrics used to assess the model’s effectiveness, 
ensuring a thorough comprehension of its efficiency and influence. This comprehensive analysis highlights the 
model’s potential to bring about significant enhancements in the management of cloud resources.

Proposed WWO-ACO hybrid model
Combining the features of WWO and ACO, the proposed hybrid model seeks to solve the pressing issues of load 
balancing and resource allocation in cloud computing environments. This creative approach is painstakingly 
built to strike a perfect balance between several goals, including optimizing resource efficiency, minimizing 
energy consumption, lowering running costs, and so minimizing response times.

Figure 1 presents the architecture of the proposed hybrid model. In the proposed model, starting with a 
population of solutions, each reflecting several approaches for load distribution and resource allocation, the 
process starts with WWO looking extensively worldwide to find places with great potential for development. 
ACO then uses ant foraging behaviour to search locally, improving solutions in these interesting domains. 
During optimization, the model effectively manages different objectives by continuously adjusting weights using 
real-time feedback. This enables the model to adapt to changing conditions quickly.
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Effective load balancing and resource allocation are achieved by selecting optimal configurations and 
parameters. Performance comparisons consider response time, resource utilization, energy efficiency, and 
operating costs. This process repeats until specific goals are met, such as optimization or a set number of iterations. 
By combining ACO’s local search efficiency with WWO’s global search capability, the model guarantees optimal 
resource utilization, cost reduction, energy efficiency, and improved system performance. This holistic approach 
promotes the creation of more sustainable and efficient cloud computing environments. The following sections 
provide a thorough explanation of how the proposed model operates.

ACO working
The ACO algorithm, inspired by ants’ foraging behaviour, is based on a probabilistic approach. It is utilized to 
discover approximate solutions for complex optimisation problems. Algorithm 1 illustrates the comprehensive 
functioning of ACO23.

Fig. 1.  Architecture of Proposed Hybrid Model.
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Algorithm 1.  ACO Algorithm
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The ACO algorithm efficiently explores the search space using heuristic information and probabilistic 
decisions based on pheromones. It balances exploration and exploitation, making it possible to find excellent 
solutions for resource allocation and cloud load balancing.

WWO working
A WWO algorithm is based on the movement and interaction of water waves; it is an optimisation algorithm 
that is highly inspired by nature. Using the concepts of wave propagation, refraction, and breaking concepts, this 
algorithm simulates waves’ motion in lakes, rivers, and oceans to find the best solutions within a specified search 
space. The WWO algorithm consists of the following main steps: selection, wave propagation, wave refraction, 
wave breaking, and initialization. Algorithm 2 and Pseudo code 1 thoroughly summarise every step of WWO24.

Algorithm 2.  Water Wave Optimization Working
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WWO is a robust and adaptable optimization algorithm that efficiently explores and exploits the search space 
by imitating natural wave behaviours. Utilizing wave propagation, refraction, and breaking mechanisms, WWO 
can identify superior solutions for challenging optimization issues, such as multi-objective models and cloud 
load balancing. Pseudo Code 1 presents the complete code of the WWO method25.

Pseudo Code 1.  Water Wave Optimization Pseudo Code

WWO-ACO hybrid phase
The complete working of the proposed hybrid model is presented by algorithm 326.
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Algorithm 3.  Algorithm for proposed hybrid model
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Time complexity analysis for WWO-ACO
The time complexity of the hybrid ACO + WWO algorithm is a combination of the individual complexities of 
both Ant Colony Optimization (ACO) and Water Wave Optimization (WWO). Below is the analysis of the time 
complexity:

•	 Time complexity of ACO: In ACO, ants explore the solution space iteratively, modifying their paths according 
to pheromone concentrations. The number of iterations (represented as Niter) and the number of ants (rep-
resented as Nants) both affect the time complexity. The time complexity of ACO is quantified using Eq. (22).

	 O (Nants × Niter × D)� (22)

where D is the dimension of the problem space (i.e., the number of resources or tasks to be allocated).

•	 Time complexity of WWO: The WWO functions by emulating water wave dynamics, with solutions being 
iteratively refined according to wave propagation. The quantity of waves and iterations affects the complexity. 
T﻿he time complexity of WWO can be calculated by using Eq. (23).

	 O (Nwaves × Niter × D)� (23)

•	 where Nwaves is the number of wavefronts and Niter  is the number of iterations.Time complexity of hy-
brid WWO-ACO: The hybrid algorithm’s overall time complexity is determined by the time complexities of 
both ACO and WWO methods. In practice, the two algorithms operate concurrently or sequentially, and the 
overall time complexity is generally the aggregate of the individual complexities. The time complexity of the 
proposed WWO-ACO can be measured by using Eq. (24).

	 O((Nants × Niter × D) + (Nwaves × Niter × D))� (24)

The parameters Nants, Niter  and Nwaves are adjustable and contingent upon the specific problem and the 
dimensions of the cloud environment. Adjusting these parameters allows the algorithm to optimize the trade-off 
between computational efficiency and solution quality.

Dataset
The proposed and existing models are implemented using a Cloud-sim simulator. The proposed WWO-
ACO hybrid algorithm’s performance is measured using artificial and real-time workload traces. The artificial 
workload is created using a consistent distribution, which ensures that large, medium, and small workloads 
are all presented identically. This systematic strategy helps to provide a comprehensive assessment of how well 
the algorithm performs across different job sizes. A real-time HPC2N (North High-Performance Computing 
Center)27 log has been used to check the algorithm efficiency. The HPC2N log serves as a widely recognised and 
utilised benchmark for evaluating the efficient functioning of systems with distributed components. It serves 
as a genuine and rigorous testing environment for the proposed algorithm, ensuring reliable results that can be 
applied to real-world scenarios. Table 2 presents the dataset details.

Simulation and performance analysis
In contrast to existing algorithms in cloud computing environments, this section investigates the performance 
and simulation of the proposed hybrid WWO-ACO model. We provide a comprehensive analysis that contrasts 
our hybrid approach with traditional algorithms such as ACO, SMO, GA, and WWO. The comprehensive 
performance evaluation covers a wide range of scenarios in cloud environments with multiple objectives. It 
emphasizes critical metrics, including the duration of task scheduling, the cost of task execution, energy 
consumption, and resource utilization. This comprehensive analysis emphasizes the benefits of the hybrid model 
and pinpoints areas that require improvement, thereby enabling a clear understanding of its efficiency and 
effectiveness28.

Task ids Task numbers Task length (MI) Task properties

1–10 1–10 12,000–120,000 Continuous and free

11–20 11–20 130,000–240,000 Continuous and free

21–30 21–30 250,000–360,000 Continuous and free

31–40 31–40 370,000–480,000 Continuous and free

41–50 41–50 490,000–600,000 Continuous and free

51–60 51–60 610,000–720,000 Continuous and free

61–70 61–70 730,000–840,000 Continuous and free

71–80 71–80 850,000–960,000 Continuous and free

81–90 81–90 970,000–1,080,000 Continuous and free

91–100 91–100 1,090,000–1,200,000 Continuous and free

Table 2.  Complete description of the task.
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Simulation details
The simulation guarantees correct and fast results, utilizing a high-performance computing configuration. 
Besides 32 GB of RAM, the system boasts an Intel Core i7-11700K CPU running at 3.60 GHz. 64-bit Windows 11 
is its running operating system. The cloud environment simulation takes advantage of the most recent iteration 
of Clouds Plus (CloudSim Plus 6.2.2). Designed especially for cloud computing research, CloudSim Plus is a 
relatively sophisticated and flexible toolkit. It offers better performance and capabilities than its last versions29. 
Table 3 presents a Comparative analysis of Datacenter parameters and Host Configuration.

Table 3 provides a comprehensive overview of the parameters for the data centre and the host configuration 
details. We have established three data centres containing ten hosts to accommodate fifty users within our 
optimised data centre and host configuration. With 32  GB of RAM and 5  TB of storage space, each host is 
carefully constructed to provide ample resources for running demanding applications at lightning-fast speeds. 
With a 100 GB/s capacity, the network bandwidth is notable and facilitates quick data flow. Currently, the policy 
is "Space Shared with Dynamic Allocation," which allows effective and flexible demand-based use of storage 
resources based on real-time needs.

With sixteen CPU cores, each host ensures sufficient processing capability for concurrent tasks and low 
network latency of just five milliseconds, thus lowering data transfer delays. With 1 kW power consumption 
per host, energy efficiency optimisation is the top priority. Moreover, KVM (Kernel-based Virtual Machine) 
technology guarantees efficient virtualisation and resource allocation. This arrangement makes a harmonic and 
quite efficient cloud infrastructure possible.

The specifications for the VMs in our cloud setup are listed in Table 4. To accommodate varying computational 
requirements, we have deployed VMs in batches of 50, 100, 150, and 200. The processing power of each VM 
ranges from 500 to 1500 MIPS (Millions of Instructions Per Second), so they can effectively handle a wide range 
of workloads. Data transfer is fast and seamless because each virtual machine has 0.5 Gb/s network bandwidth. 
Xen is our Virtual Machine Monitor due to its reliable virtualization features. Each 100 GB VM has enough 
storage for most applications and data. This configuration makes our virtual environment flexible, effective, and 
able to meet many user needs30.

Table 5 displays the costs of VM instances ranging from $0.25 per hour for 8 GB of memory and 100 GB 
of storage, including four cores, to $2.50 per hour with 80 GB of memory, 3200 GB of storage, and 40 cores. 
Intermediate options offer versatility for different applications and workloads, guaranteeing economical and 
effective virtual machine deployment31–33.

Table 6 offers a detailed breakdown of the parameters for the hybrid WWO-ACO algorithm as well as 
other popular algorithms like GA, SMO, WWO, and ACO. The hybrid algorithm configuration comprises 100 
population sizes, 200 iterations, 10 maximum wave heights, 0.1 initial pheromone value, and 0.001 convergence 
threshold. The population of GA is 100, with 200 iterations, a crossover rate of 0.8, and a mutation rate of 0.01. 
SMO includes a maximum global learning threshold of 40, a local threshold of 50, and 100 generations. The 
parameters of WWO and ACO include waves, iterations, and pheromone levels33–35.

Characteristic Value Description

Number of VMs 50, 100, 150, 200 Total number of virtual machines (VMs) deployed

MIPS 500–1500 Millions of instructions per Second, indicating processing power

Bandwidth (BW) 0.5 Gb/s Network bandwidth available per VM

VMM Xen Virtual machine monitor used for virtualization

Size 100 GB Storage size allocated to each VM

Table 4.  Details Description of VM properties.

 

Cloud entity Characteristic Value

Data center

Number of data centers 3

Number of hosts 10

Number of users 50

Host

Storage capacity 5 TB

RAM 32 GB

Bandwidth (BW) 100 GB/s

Shared policy Space shared with dynamic allocation

CPU cores 16 Cores

Network latency 5 ms

Power consumption 1 kW

Virtualization technology KVM

Table 3.  Comparative analysis for Datacenter parameters and Host Configuration.
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Simulation results
A thorough test of the hybrid WWO-ACO algorithm included a close look at how it performed against well-
known approaches like the GA, SMO, WWO, and ACO. We tested these algorithms in five different cloud 
computing scenarios with multiple goals. The length of the task schedule and the cost of completing the task were 
two crucial performance indicators. Shorter schedules and lower costs meant that the task was more efficiently 
completed. We also measured energy use to see how well each algorithm cut down on energy use; lower energy 
use means a more environmentally friendly approach.

It was possible to determine how efficient resources were by looking at how many were used. Better resource 
management meant lower values. Lastly, we used the balance degree metric to see how well the costs, energy, 
and resource management worked together. This way, we could be sure that improvements in one area didn’t 
negatively affect others. The full study showed the hybrid WWO-ACO algorithm’s pros and cons compared to 
the other methods, explaining how well it works and where it might be improved.

First scenario (using task length)
In this case, our primary focus is on the length of the task schedule, that is, the whole time needed to finish all 
the allocated tasks. This work aims to assess the degree of reduction in this duration by the hybrid WWO-ACO 
algorithm, improving the system’s speed and efficiency. We compared this hybrid approach with GA, SMO, 
WWO, and ACO using different task distributions to evaluate its effectiveness. The results demonstrate the 
hybrid algorithm’s capacity to decrease task completion time and enhance efficiency and velocity.

Table 7 compares simulation results for several well-known techniques, i.e., GA, SMO, WWO, and ACO, 
alongside the newly proposed WWO-ACO hybrid method. This comparison covers various configurations of 
virtual machines and tasks. The focus is on average and maximum task schedule lengths, and it is evident that 
the WWO-ACO hybrid consistently outperforms the traditional methods. The WWO-ACO hybrid produces 
an average schedule length of 1107.8 s for a configuration comprising 2000 tasks and 150 VMs. This is far faster 
than the ACO algorithm (1407.32), the SMO algorithm (7578.32), the WWO algorithm (8587.7  s), and the 

Algorithm Parameter Value Description

Proposed hybrid WWO-ACO

Population size 100 Size of the population for iterations

Max iterations 200 Maximum number of iterations for convergence

Initial pheromone 0.1 Starting amount of pheromone in the algorithm

Max wave height 10 Maximum height of the waves

Convergence threshold 0.001 The threshold for determining convergence

GA

Population size 100 Size of the population for the genetic algorithm

Max iterations 200 Maximum number of iterations for convergence

Crossover rate 0.8 The rate at which crossover occurs

Mutation rate 0.01 Mutation Rate

SMO

Global learning limit (GLL) 45 Shows the GLL limit

Local learning limit (L) 55 Shows the LLL limit

Max generations (GN) 100 Shows the GN count

Probability range (pr) [0.1,0.4] Shows the pr count

WWO

Number of waves 50 Shows the wave count

Max iterations 200 Shows the iteration count

Initial wavelength 0.8 Shows the wave-length count

ACO

Pheromone Importance(q) 0.5 Shows q count

initial pheromone 0.05 Shows the count for the initial stage

Number of ants 20 Shows ant count

max iterations 200 Shows the iteration max count

Table 6.  Parameters Details for Existing and Proposed Algorithms.

 

Memory (GB) Storage (GB) Cores Price ($/Hour) Description

8 100 4 0.25 Suitable for lightweight applications and testing

16 200 8 0.50 Ideal for medium-sized applications and databases

32 400 16 1.00 Perfect for larger applications and data processing tasks

48 800 24 1.50 Excellent for high-performance computing and intensive workloads

64 1600 32 2.00 Optimal for very large databases and complex simulations

80 3200 40 2.50 Best for extensive data analysis and heavy computational tasks

Table 5.  Details for VMs instance Cost in $
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GA algorithm (7378.72). Remembering that hybrid technology significantly contributes to optimizing cloud 
environments is crucial. This is evident in the substantial reduction in the average task execution time.

The WWO-ACO hybrid is also adept at distributing the load, with a scheduled time of up to 1203.06 s. It 
takes 8301.3 s for the GA algorithm, 8705.42 s for the SMO algorithm, 12,150.33 s for the WWO algorithm, 
and 1598.72 s for the ACO algorithm. It takes 8301.3 s for the GA algorithm, 8705.42 s for the SMO algorithm, 
12,150.33 s for the WWO algorithm, and 1598.72 s for the ACO algorithm. These results show that the hybrid 
can significantly reduce task time, improving system responsiveness and user satisfaction. The WWO-ACO 
hybrid combines ACO’s local search with WWO’s global exploration for robust cloud computing multi-objective 
optimization. Operational efficiency and performance metrics benefit from this integration.

Second scenario (using task execution cost)
This scenario aims to evaluate the efficacy of the hybrid WWO-ACO algorithm by quantifying its effectiveness 
by measuring Schedule Length, which pertains to the total time needed to finish all planned operations. 
This scenario aims to reduce the Schedule Length to improve the system’s responsiveness and throughput. A 
comparative analysis has been conducted on the proposed hybrid WWO-ACO algorithm and various existing 
load balancing methods, i.e., GA, SMO, WWO, and ACO. We have measured the effectiveness of all these 
methods in different task distribution scenarios. The outcomes show how effectively the system reduces the time 
needed for task completion and performance.

Figure 2 compares the costs of executing tasks using existing algorithms versus proposed algorithm-based 
methods. In cloud computing, these expenditures are evaluated by implementing numerous optimization 
strategies. The results indicate that the WWO-ACO hybrid technique consistently achieves lower costs for 
task execution in all tested scenarios, spanning from 50 to 200 VMs and 500 to 2500 tasks, in comparison to 
traditional methods such as GA, SMO, WWO, and ACO. For instance, at 150 VMs and 2000 tasks, WWO-ACO 
shows a mean cost of $8301.3, which is notably lower than GA ($7378.72), SMO ($7578.32), WWO ($8587.7), 
and ACO ($1407.32). This emphasises the hybrid method’s effectiveness in reducing average task expenses and 
improving cost-effectiveness in dynamic cloud environments.

Furthermore, a closer examination of the costliest activities exposes WWO-ACO’s extraordinary capacity for 
financial control and workload handling. This shows how strong the system is in properly controlling several 
execution needs. The suggested hybrid approach offers a sensible way to maximize multi-objective activities in 
cloud computing. This method maximises efficiency by combining the local search powers of ACO with the 
worldwide exploration powers of WWO. These results imply a possible improvement in performance criteria 
and operational efficiencies among several cloud systems.

Third scenario (using energy consumption)
In the third scenario of the experimental analysis, we have calculated the Energy consumption for the proposed 
hybrid WWO-ACO and existing load balancing algorithms to measure their performance and determine 
efficacy. In a cloud computing environment, the total amount of energy needed to complete a task is the energy 
consumption for a task. Less energy consumption is always desirable in the cloud computing environment. It 

No. of VMs No of Task GA Mean GA Max SMO Mean SMO Max WWO Mean WWO Max ACO Mean ACO Max WWO-ACO Mean WWO-ACO Max

50

500 5094.11 7113.5 3975.73 4617.05 5161.73 6925.92 732.28 749.67 713.77 734.62

1000 6503.32 7033.64 4941.51 5799.8 6440.99 7647.61 893.36 960.36 859.33 877.17

1500 7682.66 7913.76 5716.45 6444.33 7255.13 8203.59 1042.03 1055.79 997.37 1015.29

2000 10,526.19 11,386.62 8967.59 9467.53 10,415.96 11,272.7 1446.25 1451.62 1438.46 1439.66

2500 13,890.20 13,570.81 12,040.23 11,520.87 11,209.70 14,780.92 1870.82 1970.85 1750.62 1890.10

100

500 3153.33 3716.74 2872.9 3365.45 3573.78 4179.36 544.72 689.34 468.42 502.31

1000 3841.32 4086.98 3281.22 3641.32 4426.14 4968.39 536.34 544.33 495.76 502.44

1500 4315.43 4328.62 3699.93 3971.04 5432.68 6602.55 643.48 644.32 639.72 641.63

2000 6160.13 6229.31 5741.72 6245.82 6980.04 7656.74 781.54 783.23 775.04 776.05

2500 15,700.24 15,500.56 13,790.15 14,200.3 14,370.7 16,480.85 2740.61 2780.83 1980.31 2784.37

150

500 4809.85 5270.56 4087.42 4570.34 5554.75 7850.65 980.82 1320.23 874.17 858.20

1250 5870.25 6270.48 4580.52 5090.74 6570.5 8023.55 1070.82 1177.23 910.58 945.68

1500 6807.16 7208.73 5780.83 5500.27 7532.8 9320.74 1280.13 1303.43 1321.7 1100.27

2000 8301.3 8705.42 5500.48 6000.93 8587.7 12,150.33 1407.32 1598.72 1107.8 1203.06

2500 8878.83 9209.31 6874.94 6547.52 9532.9 11,095.27 1687.83 1765.93 1203.7 1360.57

200

500 5307.92 5708.28 4578.43 5230.72 6980.28 75,780.91 1108.25 1200.08 958.97 1080.98

1000 6378.92 6732.37 5230.18 5540.82 7380.37 8577.45 1201.77 1308.17 1032.86 1125.37

1500 7378.72 7578.32 5507.57 6078.18 8078.78 9578.45 1447.87 1570.80 1107.20 1298.74

2000 8347.15 8778.12 6230.96 6507.74 9074.51 10,507.89 1601.50 1774.84 1205.84 1387.88

2500 9378.23 9778.98 6570.98 7032.87 10,780.32 11,570.23 1890.78 1978.95 1310.24 1432.78

Table 7.  Evaluating in terms of various task schedule lengths evaluated in seconds the computing outcomes 
for the current and proposed scheduled tasks.
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helps increase the system’s responsiveness and efficiency and decreases total energy (TE). The effectiveness of the 
hybrid algorithm in reducing TE in contrast to other existing approaches, like GA, SMO, WWO, and ACO, is 
assessed through simulations of various workloads and task distributions. The outcomes are examined to show 
how effectively the suggested strategy maximizes support the execution time, enhancing user satisfaction and 
system performance.

Figure 3 presents a comparative analysis of existing and proposed algorithm-based energy consumption in 
kilojoules (KJ). In this regard, we investigated the energy consumption of several Virtual Machine configurations 
and task loadings. We used several optimization approaches, including the recently proposed WWO-ACO 
method, ACO, WWO, SMO, and GA. Analyzing both the mean and maximum energy usage enabled the study 
to concentrate on the effectiveness of these methods. The analysis of the mean energy usage was conducted by 
utilizing a sample of 50 VMs. The Genetic Algorithm resulted in an average energy consumption of 200.5 kJ for 
a workload of 500 tasks. However, the WWO-ACO method successfully reduced it to 160.8 kJ.

GA needed 400.2 kJ of energy to do 2500 tasks, while WWO-ACO needed 360.3 kJ. The consistently high 
performance of WWO-ACO is also clearly shown by other virtual machine configurations. On average, it took 
the WWO-ACO algorithm 335.0 kJ to run a scenario with 100 virtual machines (VMs) and 2500 tasks. This used 
much less energy than GA (400.4 kJ) and ACO (344.9 kJ). Furthermore, the GA used 400.2 kJ of energy while 
handling 2500 tasks, while the WWO-ACO used 360.3 kJ. Also, the excellent performance trend of WWO-ACO 
is consistently seen in other virtual machine configurations. When examining a sample consisting of 100 virtual 
machines (VMs) and 2500 tasks, it was found that WWO-ACO had an average energy consumption of 335.0 kJ, 
which was significantly higher than GA’s consumption of 400.4 kJ and ACO’s consumption of 344.9 kJ.

Examining the highest point of energy consumption produces equally striking findings. Originally 250.5 kJ 
for 50 VMs and 500 tasks in GA, WWO-ACO effectively dropped it to 210.8 kJ. The WWO-ACO consumption 
stays constant while the work grows. For 2500 jobs, WWO-ACO ate 410.3 kJ; GA ate 450.2 kJ. The WWO-ACO 
algorithm ate a maximum of 410.7 kJ for 200 VMs handling 2500 tasks. This energy consumption was lower 
than that of the ACO algorithm (425.8 kJ) and the GA algorithm (430.9 kJ). The experimental results reveal 
that the proposed WWO-ACO method routinely beats conventional optimisation methods regarding average 
and maximum energy consumption. This shows increased energy efficiency; thus, WWO-ACO has become a 
feasible method for resource management and workload offloading in cloud computing environments.

Fourth scenario (using resource consumption (RC))
This scenario mainly aims to evaluate the performance of the proposed hybrid WWO-ACO and the existing 
algorithm’s efficiency in terms of RC. An optimum utilisation of resources is always desirable. An RC mainly 
includes consuming various computing resources such as CPU, memory, and storage. The main goal of the 

Fig. 2.  Analyze and compare the costs of executing tasks using existing algorithms versus proposed algorithm-
based methods.
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Fig. 3.  Comparative analysis of existing and proposed algorithm-based energy consumption (KJ).
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proposed method is to reduce resource consumption by maintaining overloading and underloading task 
execution through efficiently allocating computing resources. This scenario calculates results based on various 
workload scenarios for existing and proposed algorithms.

The resource utilisation of different optimisation strategies is illustrated in Fig.  4, which also shows how 
successful the Proposed WWO-ACO Optimization method is in comparison to other traditional methods such as 
GA and ACO. The proposed optimisation method spreads work and uses fewer resources across configurations. 
The proposed method can be applied to more virtual machines without losing efficiency because it uses the same 
resources each time. According to the study, the proposed method reduces resource requirements and maintains 
performance in various situations.

Fifth scenario (using balance degree)
The hybrid WWO-ACO algorithm is evaluated in Scenario-V using the Balance Degree metric, which measures 
the evenness of job distribution across resources. A greater Balance Degree guarantees the equitable utilisation 
of resources, preventing any resource from being overloaded while others are underutilised. This improves 
the system’s stability and effectiveness. The effectiveness of the hybrid algorithm in attaining optimal load 
distribution, hence enhancing overall system efficiency and dependability, is evaluated by comparing it with GA, 
SMO, WWO, and ACO using different workloads.

The Balance Degree results in Fig. 5 show the efficiency and effectiveness of several optimisation strategies 
over several virtual machine configurations and task loads. With values between 0.70 and 0.78, the Proposed 
WWO-ACO method shows a better balance for 50 VMs than other approaches, including GA and ACO, which 
have lower values. When compared to other techniques, WWO-ACO demonstrates exceptional performance 
with 100 VMs. The Balance Degrees range from 0.77 to 0.85, indicating a fairer and even workload distribution. 
WWO-ACO outperforms GA, SMO, and other methods, achieving values ranging from 0.82 to 0.90 with 150 
VMs. The Proposed WWO-ACO method maintains its optimal performance at 200 virtual machines (VMs) with 
Balance Degrees ranging from 0.87 to 0.95, illustrating its strong capacity to efficiently manage resources and 
distribute the load evenly across the network. These findings confirm that the Proposed WWO-ACO method 
consistently achieves a superior balance, rendering it a more practical approach to workload management in 
various scenarios.

Fig. 4.  Comparative analysis of existing and proposed algorithm-based Resource Consumption %
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Comparative analysis with state of the art methods
Table 8 provides a comparative analysis of the proposed Hybrid WWO-ACO model against leading methodologies 
for task scheduling, resource allocation, and load balancing in cloud computing. The table comprises studies from 
2023 to 2024, concentrating on diverse optimisation techniques, including the Whale Optimization Algorithm 
(WOA), Water Wave Optimization (WWO), and their hybrids, such as AGWO (Ant Lion Optimizer combined 
with WOA) and IACO (Inverted Ant Colony Optimization).

The Hybrid WWO-ACO model surpasses existing methods across various performance metrics, including an 
18% reduction in makespan, a 15% decrease in energy consumption, and a 20% enhancement in load balancing. 
The Hybrid WWO-ACO model, unlike other methods that encounter issues such as restricted scalability, slow 
convergence, or inadequate adaptability in dynamic environments, integrates the advantages of local search 
(ACO) and global optimisation (WWO), thereby providing enhanced scalability and adaptability for large-scale, 
dynamic cloud systems. It more effectively addresses multi-objective optimisation than traditional algorithms, 
resulting in improved efficiency and overall performance in cloud environments.

Results and discussion
The purpose of this study was to evaluate the effectiveness of a hybrid optimisation method that incorporates WWO 
and ACO in order to address critical issues that arise in cloud computing environments. These issues include load 
balancing, task scheduling, and resource allocation. A comparison was carried out between the proposed WWO-
ACO hybrid algorithm and several established algorithms, such as the GA, SMO, WWO, and ACO. The evaluation 
was conducted across five unique scenarios, taking into account task scheduling duration, execution cost, energy 
consumption, resource utilisation, and load balancing.

•	 Task scheduling efficiency: The preliminary experiment entailed a comparative analysis of task scheduling 
algorithms, emphasizing both the average and maximum durations of task scheduling. In a situation involv-
ing 2000 tasks and 150 virtual machines (VMs), the WWO-ACO hybrid algorithm attained an average task 
scheduling duration of 1107.8 s (Table 7), indicating a significant enhancement compared to ACO (1407.32 s), 
SMO (7578.32 s), WWO (8587.7 s), and GA (7378.72 s). The decrease in scheduling time can be linked to the 
synergistic strengths of ACO’s local search abilities and WWO’s global exploration efforts. ACO effectively 

Fig. 5.  Comparative analysis of existing and proposed algorithm based on balance degree.
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pinpoints local optima, whereas WWO facilitates a more extensive exploration of the solution space, thereby 
avoiding suboptimal outcomes. The outcome is a more rapid execution of tasks, enhancing system respon-
siveness and reducing delays in cloud settings. Additionally, the WWO-ACO hybrid demonstrated a higher 
load distribution efficiency. The maximum task scheduling time for the WWO-ACO hybrid was 1203.06 s 
(Table 7), compared to 8301.3 s for GA, 8705.42 s for SMO, 12,150.33 s for WWO, and 1598.72 s for ACO. 
This demonstrates that the hybrid algorithm enhances overall task scheduling efficiency while optimising 
load distribution among resources, thereby minimising delays due to resource contention.

•	 Execution cost: The second experiment concentrated on assessing the execution costs linked to each algo-
rithm. The findings indicated that the WWO-ACO hybrid consistently surpassed the other algorithms in 
reducing task execution expenses. At 150 VMs and 2000 tasks, the WWO-ACO hybrid achieved a mean 
execution cost of $8301.3 (Fig. 2), which was lower than GA ($7378.72), SMO ($7578.32), WWO ($8587.7), 
and ACO ($1407.32). The hybrid method’s ability to minimise execution costs arises from its efficient bal-
ancing of local optimisation (ACO) and global exploration (WWO), which allows resources to be allocated 
cost-effectively. This minimises excessive expenses while simultaneously guaranteeing the most efficient use 
of available resources.

•	 Energy consumption: The third experiment also assessed energy consumption. When compared to other al-
gorithms, the WWO-ACO hybrid used significantly less energy. In a configuration of 50 VMs and 500 tasks, 
the WWO-ACO hybrid used 160.8 kJ (Fig. 3), while the GA used 200.5 kJ. The trend was consistent across 
configurations, with the WWO-ACO hybrid averaging 335.0 kJ in a configuration of 100 VMs and 2500 tasks, 
compared to 400.4 kJ for GA. Reducing energy consumption is critical in cloud computing because it reduces 
costs and promotes sustainability. The WWO-ACO hybrid improves energy efficiency in cloud infrastructure 
by optimising task scheduling and resource allocation.

•	 Resource utilization: The fourth experiment assessed resource consumption, emphasising the efficiency of 
each algorithm in utilising available virtual machines. The findings indicated that the WWO-ACO hybrid 
utilised fewer resources to accomplish the identical set of tasks as the other algorithms. The hybrid approach 
efficiently distributed the workload among available resources, guaranteeing the completion of necessary 
tasks without overloading the system. This outcome illustrates that the WWO-ACO hybrid enhances resource 
utilisation, which is essential for augmenting operational efficiency in cloud settings.

•	 Load balancing efficiency: The fifth experiment assessed the load balancing efficacy of the hybrid WWO-ACO 
algorithm, employing the Balance Degree metric. The findings demonstrated that the WWO-ACO hybrid consist-
ently attained superior load distribution compared to the other algorithms. With 50 VMs, the Balance Degree for 

References Method Objective (s) Key techniques Optimisation goal Performance metrics
Challenges 
addressed Results

Ghafir et 
al.1

PSO-based Feedback 
Controller

Load balancing in 
the cloud

PSO feedback 
controller

Load distribution 
optimisation

Load balancing efficiency: 
20%, Energy efficiency: 10%

Dynamic load 
balancing

Improved load balancing 
in dynamic environments

Dhabliya 
et al.2

Dynamic Load 
Balancing Policies

Dynamic load 
balancing in the 
cloud

Policy-driven 
strategies

Efficient load 
balancing

Load balancing 
improvement: 12%, 
Response time: 8%

Real-time load 
balancing

Enhanced load balancing 
in dynamic environments

Khan3 RL-based Clustering 
for Load Balancing

Dynamic load 
balancing

RL-based 
clustering

Optimised task 
scheduling

Energy reduction: 14%, 
Load balancing: 10%

Scaling for 
large systems

Effective dynamic load 
balancing in cloud 
systems

Dubey and 
Mishra4

Performance & Trust 
Analysis for Load 
Balancing

Load balancing in 
cloud

Trust and 
performance 
evaluation

Trust-based load 
balancing

Trust evaluation: 16%, 
Performance improvement: 
12%

Trust and 
security

Improved trust-based 
load balancing in clouds

Choudhary 
and Rajak5

Min-Min Heuristic 
for Workflow 
Scheduling

Workflow 
scheduling

Min-min 
heuristic

Task completion time 
and load balancing

Makespan reduction: 15%, 
Task completion: 10%

Scalability 
issues

Efficient for small cloud 
workflows

Geetha et 
al.8

Hybrid Optimization 
for Load Balancing

Optimal load 
balancing

Hybrid 
optimisation 
algorithms

Energy and resource 
optimisation

Energy efficiency: 18%, Load 
balancing: 14%

Scalability for 
large systems

Improved load balancing, 
limited scalability

Forghani 
et al.9

Krill Herd Algorithm 
for Load Balancing

Load balancing in 
SDNs

Krill herd 
metaheuristic

Energy and load 
balancing

Energy reduction: 20%, 
Load efficiency: 16%

Network load 
balancing

Effective in SDNs, limited 
for the general cloud

Singh et 
al.6

JAYA-based 
Metaheuristic 
for Fog-Cloud 
Ecosystem

Workload 
distribution in 
fog-cloud systems

JAYA algorithm 
for task 
scheduling

Energy-efficient 
workload distribution

Energy reduction: 12%, Task 
completion: 10%

Workload 
distribution

Effective for fog-cloud 
systems

Tiwari et 
al.7

Knapsack-based 
Metaheuristic for 
Edge Placement

Edge server 
placement 
optimisation

Knapsack-based 
optimisation Edge server placement Placement efficiency: 14%, 

Load balancing: 10%
Edge network 
optimisation

Effective for edge 
systems, not scalable to 
the cloud

Rostami et 
al.13

Capuchin Search 
& IACO for Task 
Scheduling

Energy-efficient 
task scheduling

Capuchin 
search & IACO

Energy and task 
scheduling

Energy reduction: 18%, Task 
completion: 12%

Energy 
efficiency 
challenges

Improved task scheduling 
with energy efficiency

Kumar and 
Karri36

AGWO Hybrid for 
Task Scheduling

Cost-aware task 
scheduling

Hybrid Ant 
Lion & WOA

Cost and task 
scheduling 
optimisation

Cost reduction: 14%, Task 
allocation: 9%

Resource 
utilisation

Efficient scheduling in 
cloud-fog systems

Proposed 
model Hybrid WWO-ACO

Task scheduling 
and resource 
allocation

ACO + WWO
Task completion, load 
balancing, energy 
consumption

Makespan reduction: 18%, 
Energy reduction: 15%, 
Load balancing: 20%

Scalability and 
adaptability

Outperforms others 
in multi-objective 
optimisation

Table 8.  Comparative analysis with State-of-the-art methods.
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WWO-ACO ranged from 0.70 to 0.78 (Fig. 5), surpassing that of GA and ACO. The augmentation in the number 
of VMs enhanced the equilibrium of the WWO-ACO hybrid, achieving a range of 0.87 to 0.95 for 200 VMs. These 
values indicate that the WWO-ACO hybrid guarantees an equitable allocation of tasks, averting resource saturation 
and maintaining a stable, efficient system. This optimal load distribution is crucial for enhancing resource efficiency 
and preventing performance decline.

The results of the experiments demonstrated that the hybrid WWO-ACO algorithm performed better than traditional 
algorithms in a number of critical areas, such as the scheduling of tasks, the cost of execution, the consumption of 
energy, the utilisation of resources, and the distribution of load. The success of the hybrid approach can be attributed 
to the complementary strengths of ACO and WWO. ACO’s local search capabilities enable rapid identification of 
promising solutions, while WWO’s global exploration ensures a thorough search of the solution space, avoiding 
suboptimal configurations. Collectively, these two methodologies offer a robust optimisation instrument for enhancing 
performance and efficiency in cloud computing settings. This study’s findings validate that the hybrid WWO-ACO 
algorithm is an exceptionally effective method for addressing complex multi-objective optimisation challenges in 
cloud environments.

Constraints of the proposed hybrid model
There are a few limitations to take into consideration, despite the fact that the hybrid WWO-ACO algorithm has 
produced some encouraging results:

•	 Computational complexity: The algorithm may require significant computational resources, particularly in 
extensive or dynamic cloud settings.

•	 Performance variability: The outcome might vary depending on various cloud computing environments and 
workload variations, necessitating additional adjustments.

•	 Adaptability: The method may find it challenging to accommodate rapidly changing resources and variable 
workloads.

These constraints offer prospects for future enhancement, specifically in optimizing computational efficiency 
and improving adaptability in practical applications.

Conclusion and future scope
Multi-objective optimisation plays a vital role in the ever-changing landscape of cloud computing. Conventional single-
objective optimisation methods frequently prove inadequate when dealing with the intricacies of contemporary cloud 
systems. In order to address these limitations, this research presents a cutting-edge multi-objective hybrid optimisation 
technique that skillfully combines the advantages of ACO and WWO. The hybrid WWO-ACO algorithm has proven 
exceptionally effective in optimising resource allocation and cloud load balancing. Our empirical evaluations show 
that the algorithm achieves an average task schedule length of just 1107.8  s with 150 VMs and 2000 tasks. This 
performance significantly outstrips traditional methods such as GA (7378.72 s), SMO (7578.32 s), WWO (8587.7 s), 
and ACO (1407.32 s). This reduction in task completion time highlights the hybrid’s superior efficiency. Regarding 
energy consumption, the WWO-ACO algorithm also excels, using an average of only 335.0 kJ for 2500 tasks and 100 
VMs, compared to GA’s 400.4 kJ and ACO’s 344.9 kJ.

In addition, the method demonstrates outstanding resource balancing, as indicated by balance degrees ranging 
from 0.87 to 0.95 across various configurations. This suggests that the allocation of resources is fair and effective. The 
study’s findings demonstrate the algorithm’s ability to enhance system responsiveness in dynamic cloud environments, 
reduce operational costs, and enhance performance criteria. While the hybrid WWO-ACO model demonstrates 
impressive performance, it is not without challenges. The complexity of the task may result in increased computational 
requirements, especially in large or dynamic environments. Moreover, the system’s performance may differ depending 
on the specific cloud infrastructures and workloads, necessitating additional adjustments and optimisations. Future 
research should address these challenges by reducing the computational load of the model, testing its compatibility 
with diverse cloud configurations, and developing adaptive mechanisms for fluctuating resource needs. Exploring 
various optimisation methods and considering real-world constraints will be essential for improving the model’s 
practical utility and efficiency. In the future research, we will also examine how the emerging algorithms, i.e., 
Algorithms like the Liver Cancer Algorithm (LCA), Fata Morgana Algorithm (FATA), Polar Lights Optimization 
(PLO), and Rime Optimization Algorithm (RIME) stack up against our proposed hybrid approach, which combines 
Ant Colony Optimization (ACO) and Whale Optimization Algorithm (WOA).

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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