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OPEN A multi-objective approach to load

balancing in cloud environments
Integrating ACO and WWO
techniques
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Effective load balancing and resource allocation are essential in dynamic cloud computing
environments, where the demand for rapidity and continuous service is perpetually increasing. This
paper introduces an innovative hybrid optimisation method that combines water wave optimization
(WWO) and ant colony optimization (ACO) to tackle these challenges effectively. ACO is acknowledged
for its proficiency in conducting local searches effectively, facilitating the swift discovery of high-
quality solutions. In contrast, WWO specialises in global exploration, guaranteeing extensive
coverage of the solution space. Collectively, these methods harness their distinct advantages to
enhance various objectives: decreasing response times, maximising resource efficiency, and lowering
operational expenses. We assessed the efficacy of our hybrid methodology by conducting extensive
simulations using a cloud-sim simulator and a variety of workload trace files. We assessed our
methods in comparison to well-established algorithms, such as WWO, genetic algorithm (GA), spider
monkey optimization (SMO), and ACO. Key performance indicators, such as task scheduling duration,
execution costs, energy consumption, and resource utilisation, were meticulously assessed. The
findings demonstrate that the hybrid WWO-ACO approach enhances task scheduling efficiency by
11%, decreases operational expenses by 8%, and lowers energy usage by 12% relative to conventional
methods. In addition, the algorithm consistently achieved an impressive equilibrium in resource
allocation, with balance values ranging from 0.87 to 0.95. The results emphasise the hybrid WWO-ACO
algorithm’s substantial impact on improving system performance and customer satisfaction, thereby
demonstrating a significant improvement in cloud computing optimisation techniques.

Keywords Water wave optimization, Hybrid optimization, Ant colony optimization, Cloud load balancing,
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Abbreviations

WWO Water wave optimization
ACO Ant colony optimization
GA Genetic algorithm

SMO Spider monkey optimization
RR Round robin

FCFS First-come-first-serve

LC Least connections

RLB Randomised load balancing
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PSO Particle swarm optimization

TET Total execution time

BD Balance degree

QoS Quality of services

SLA Service level agreement

RLB Randomised load balancing

PSO Particle swarm optimization

SA Simulated annealing

GA-SA Hybrid genetic algorithm and simulated annealing
ABC Artificial bee colony

FA Firefly algorithm

GA-PSO  Hybrid genetic algorithm and particle swarm optimization
FL-LB Fuzzy logic-based load balancing

IoT Internet of things

RU Resource utilization

MIPS Millions of instructions per second

VM Virtual machine

Cloud computing has transformed the IT industry, influencing how businesses and individuals access and use
computing resources. It offers scalable and flexible solutions based on a "pay-per-use" model, which improves
resource utilisation across multiple applications. The accessibility of cloud services has resulted in a significant
increase in demand. To support the increasing number of users and workloads, cloud systems must implement
more efficient load balancing and resource allocation strategies. Cloud computing significantly improves
the efficient implementation of business and scientific operations in a variety of industries. Cloud providers
primarily provide Saa$ (Software as a Service), [aa$S (Infrastructure as a Service), and PaaS'. These services are
tailored to address the varied requirements of clients across different service tiers. Although cloud services like
computing, storage, and networking may fulfil analogous roles, they vary in non-functional attributes referred to
as QoS (Quality of Service) parameters. The primary factors influencing service quality are response time, cost,
availability, energy consumption, and resource utilisation?.

As cloud systems grow more complex, effective load balancing and resource management become increasingly
vital. A plethora of researchers have examined heuristic algorithms and machine learning techniques, often
focusing on single-objective optimisation models. However, these conventional methods fail to accommodate
the dynamic and continuously evolving characteristics of cloud environments®. Traditional load-balancing
techniques encounter numerous limitations, including inadequate scalability, sluggish convergence rates, and
a failure to tackle multiple conflicting objectives simultaneously. A significant drawback of these methods is
their failure to adjust to the rapidly evolving conditions typical of contemporary cloud computing workloads*.
Traditional methods, particularly heuristic algorithms, are designed for more minor, more straightforward
problems and become insufficient as cloud infrastructures grow in size and complexity.

Furthermore, single-objective optimisation techniques typically emphasise maximising resource utilisation
or minimising response time while frequently overlooking other critical factors such as energy consumption and
system reliability. This limited concentration may result in subpar performance, ineffective resource utilisation,
and increased operational expenses®. With the increasing dynamism and scale of cloud systems, there is an
imperative demand for multi-objective optimisation techniques capable of concurrently balancing competing
objectives, including the reduction of response times, optimisation of resource utilisation, and minimisation of
costs.

In cloud computing environments, these optimisation goals frequently conflict. For example, decreasing
response time may necessitate the assignment of additional resources to tasks, potentially increasing energy
consumption and operational costs. Alternatively, emphasising energy conservation may result in longer
response times and lower service quality. Achieving an optimal balance between these competing objectives
is difficult, as advances in one domain frequently impede progress in another. An effective cloud optimisation
strategy must carefully balance multiple objectives in order to effectively manage all system components, such as
performance, cost, energy consumption, and reliability.

This study seeks to tackle these challenges by introducing a hybrid optimisation approach that integrates ACO
and WWO. The proposed method enhances the management of multi-objective cloud computing environments
by utilising ACO’s effective local search for task scheduling and WWO’s global search capabilities for resource
allocation. The objective is to enhance response times, optimise resource allocation, and decrease operational
expenses, thereby delivering a more scalable and efficient solution for contemporary cloud systems.

Problem statement and objectives

The rapid expansion of cloud computing introduces increased complexity in the management of resources and
services. As user numbers rise and workloads diversify, effective load balancing and resource allocation are
essential for maintaining continuous and high-quality service. Given the dynamic nature of cloud environments,
where demands can change rapidly, it’s vital to have advanced optimisation techniques that can adapt and
maintain system performance across all conditions.

A principal challenge in cloud computing is combining diverse, often conflicting optimisation objectives.
Optimising resource utilisation is essential for improving system efficiency; however, it may lead to increased
response times or higher operational expenses. Conversely, decreasing response times may require the allocation
of supplementary resources to particular tasks, potentially adversely impacting overall resource efficiency
and increasing energy consumption. The main challenge is to develop an optimisation method that balances
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conflicting goals without compromising any aspect, ensuring optimal overall performance. To tackle this, the
study proposes a hybrid approach combining ACO and WWO.

The goal is to develop a multi-objective optimisation model that reduces response times, maximises resource
utilisation, and cuts operational costs. This hybrid approach blends the local search strengths of Ant Colony
Optimization for task scheduling with the global search capabilities of Whale Optimization for resource
allocation. Together, these methods offer a balanced, comprehensive solution for cloud resource management. A
few of the primary goals of this research are as follows:

o Multi-objective optimization: Create a model that effectively balances crucial goals like reducing response
times, optimising resource usage, and lowering operational costs. The goal is to achieve the best possible
overall performance while simultaneously addressing all of these goals.

o Efficient load balancing and resource allocation: The proposed method combines ACO’s ability to search lo-
cally with WWO?’s global exploration capabilities to improve task scheduling and resource allocation. This
balanced approach ensures that the system runs more efficiently, even when demands and workloads change.

o Cost and performance efficiency: This study focuses on reducing operational expenses while enhancing re-
source efficiency and response times. The hybrid approach is designed to improve system performance while
maintaining service quality, allowing it to be adaptable to the ever-evolving requirements of contemporary
cloud environments.

This research seeks to tackle the challenges of managing cloud resources by introducing a hybrid optimisation
method. By combining the strengths of ACO and WWO, the proposed approach aims to balance multiple
competing objectives, offering a more efficient and scalable solution for today’s complex cloud systems.

Motivation of the research

This research is motivated by the increasing complexity and demand in cloud computing environments, where
traditional optimisation methods do not meet performance, cost, and scalability objectives. The rapid evolution
of cloud applications and the growing diversity of workloads pose significant challenges for conventional load
balancing and resource allocation methods, which often fail to adapt effectively in real time. The principal issue in
cloud computing is the inefficacy and suboptimal performance of current algorithms when utilised for dynamic
and varied workloads. Conventional methods frequently encounter challenges, including elevated latency,
inadequate scalability, and an inability to optimise multiple objectives concurrently. As cloud environments
grow in scale and complexity, these shortcomings become more apparent, leading to performance bottlenecks,
increased operational costs, and diminished user satisfaction®.

This research seeks to create a novel hybrid optimisation method that targets substantial deficiencies. We
aim to create an innovative methodology by combining WWO and ACO to effectively tackle multi-objective
optimisation problems in cloud computing environments. The hybrid methods employs ACO’s strong local
search capabilities for task scheduling and WWO’s global exploration benefits for efficient resource allocation.
This combination seeks to augment system efficiency, diminish response times, optimise resource allocation,
and lower operational expenses, thereby enhancing the user experience. The research aims to advance cloud
computing by delivering a solution that improves performance while providing a scalable and adaptable model
to tackle the increasing complexity of contemporary cloud systems. The proposed hybrid model aims to enhance
the optimisation of cloud operations while improving system sustainability and reliability.

Key contributions

Conventional workflow scheduling research primarily considers optimisation under time or cost constraints,
ignoring energy consumption®’. To address the key challenges of Single-objective models in a dynamic cloud
workflow scheduling environment, this research presents an efficient multi-objective hybrid model using the key
features of WWO and ACO. The key contribution of this research mainly includes the following.

o Development of hybrid algorithm: An innovative hybrid optimisation algorithm combines the strengths of
ACO and WWO. This approach enhances cloud load balancing and resource allocation by leveraging the
power of ACO’s local search and WWO’s global search features.

o Multi-objective optimization: The proposed hybrid algorithm is based on multi-objective concepts. It simulta-
neously achieves the minimum response time, maximises resource efficiency, and reduces operational costs.
The optimisation method is a balanced solution to achieve diverse performance metrics in dynamic cloud
scenarios.

o Performance validation: The research validates the hybrid approach with rigorous simulations and compari-
sons to GA, SMO, and ACO. The proposed optimisation methodology improves user satisfaction and system
efficiency, proving its practicality and efficacy.

Structure of the work

The article presents systematic hybrid WWO-ACO cloud computing optimisation research. The introduction
emphasises load balancing and resource allocation in dynamic cloud environments. A comprehensive
literature review covers existing research and methods. The hybrid optimization algorithm’s development and
implementation are covered in materials and methods. The hybrid approach is compared to GA, SMO, and
ACO in detail through simulations and results. Critical analysis considers system performance, user satisfaction,
and operational efficiency. The conclusion highlights key findings, practical implications, and future research
directions.
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Literature review

Cloud computing has transformed the management and distribution of resources across networks. A primary
challenge in cloud computing is effective resource management, especially via load balancing. Load balancing is
the technique of evenly distributing workloads among multiple computing resources to ensure optimal resource
utilization, reduce response time, and enhance system performance. Effective load balancing is essential for
maintaining the performance, scalability, and reliability of cloud systems, especially when handling large and
dynamic workloads.

With the advancement of cloud computing, researchers concentrate on creating innovative algorithms to
tackle the intricacies of load balancing. Metaheuristic algorithms demonstrate significant potential, offering
flexible, near-optimal solutions for dynamic resource allocation in cloud environments. These algorithms are
designed to address optimization challenges in cloud computing that go beyond the limitations of traditional
methods. This review looks at recent advances in load balancing methods in cloud computing, focusing on
metaheuristic algorithms, energy-efficient scheduling, and hybrid optimization strategies.

Review based on cloud computing load balancing techniques

The uniform distribution of work across all available resources is a fundamental component of cloud computing,
which is known as load balancing. In an effort to optimize load balancing in cloud environments, Ghafir et
al. (2024) presented a novel feedback controller that uses Particle Swarm Optimization (PSO). This method
improves the efficiency of workload distribution in cloud infrastructure and saves resources by simplifying
the task assignment process to virtual machines'. Dhabliya et al. (2024) proposed new rules and methods for
improving cloud computing dynamic load balancing. These strategies address the reality that cloud workloads
evolve over time by ensuring that resources can adapt and respond to fluctuations in demand?. Khan (2024)
investigated dynamic load balancing utilizing reinforcement learning-based clustering methodologies and multi-
objective task scheduling. This methodology allows the system to adapt to variations in the cloud environment,
improving system throughput and resource utilization®. Dubey and Mishra (2024) evaluate various load
balancing algorithms, highlighting their efficacy and dependability in cloud computing settings. Their research
highlights the importance of scalability and robustness in managing diverse workloads*.

Choudhary and Rajak (2024) proposed an improved min-min heuristic method for workflow scheduling
that prioritizes deterministic task allocation. This algorithm improves task completion times and ensures
optimal load distribution, resulting in higher computational efficiency”. Geetha et al. (2024) investigated hybrid
optimization algorithms for load balancing, demonstrating that combining various optimization methods
improves resource management, increases energy efficiency, and lowers operational costs®.

Review based on metaheuristic algorithms in cloud resource management

Metaheuristic algorithms, including Particle Swarm Optimization (PSO), Genetic Algorithms (GA), and Ant
Colony Optimization (ACO), play a vital role in addressing intricate resource management challenges in cloud
computing. These algorithms are proficient at identifying near-optimal solutions in dynamic, large-scale systems.
Forghani et al. (2024) presented the Krill Herd metaheuristic algorithm aimed at load balancing and energy
optimization in software-defined networks. This method dynamically modifies cloud resources according to
workload variations, guaranteeing load balancing and energy efficiency®. Similarly, Li et al. (2024) presented
the Tactical Unit Algorithm, a novel metaheuristic technique for optimizing the load distribution in energy
systems, such as chiller systems in cloud environments, demonstrating the algorithm’s utility in cloud resource
management!?.

Singh et al. (2024) utilized a JAYA-based metaheuristic algorithm to enhance workload distribution within a
Fog-Cloud ecosystem. This method enhancesload balancing while also emphasizing energy efficiency throughout
both cloud and edge computing layers®. Tiwari et al. (2024) employed a Knapsack-based metaheuristic to enhance
edge server placement in 5G networks, effectively balancing computational loads and network capacity’.

Review based on energy-efficient scheduling in cloud computing

Energy efficiency represents a critical challenge in contemporary cloud computing systems. Data centers consume
vast amounts of energy, and efficient scheduling can significantly reduce operational costs and environmental
impact. Techniques for scheduling that prioritize energy efficiency focus on reducing energy usage without
compromising system performance.

Energy-efficient solutions are increasingly significant in cloud computing, driven by concerns regarding
environmental impact and operational expenses. Singhal et al. (2024) employed the Rock Hyrax Optimization
algorithm to formulate a solution for energy-efficient load balancing in cloud computing. The algorithm improves
resource allocation and minimizes energy usage, making it ideal for large-scale cloud implementations'!.
Priyadarshi (2024) presented a comprehensive analysis of AI and metaheuristic methodologies for energy-
efficient routing in wireless sensor networks, applicable to cloud systems as well. His research emphasizes
multiple strategies for minimizing energy consumption while maintaining optimal system performance'2.
Rostami et al. (2024) presented a hybrid methodology that integrates Capuchin Search with Inverted Ant Colony
Optimization to facilitate energy-efficient task scheduling in heterogeneous cloud environments. Their approach
optimizes execution time and energy consumption, guaranteeing the cloud system functions efficiently while
reducing energy usage'>.

Hou et al. (2024) examined the utilization of deep reinforcement learning (DRL) for energy-efficient task
scheduling in cloud settings. DRL can dynamically modify task schedules to minimize energy consumption
while maintaining optimal performance of cloud systems'“. Khaleel (2024) presented a dynamic job scheduling
approach that integrates adaptive chaotic sparrow search optimization with coalitional game theory to attain
load balancing and energy efficiency in cloud environments'”.
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Review based on hybrid optimization approaches in cloud computing

Hybrid optimization techniques have become popular due to their ability to combine the best features of different
optimization methods. These techniques incorporate different metaheuristic algorithms. These approaches make
it easier to resolve complex problems that call for balancing multiple goals, such as security, energy efficiency,
and performance.

Simaiya et al. (2024) suggested a hybrid approach to load balancing and host utilization forecasting that
integrates optimization and deep learning techniques. This model forecasts future workloads, allowing the cloud
system to allocate resources proactively and maintain peak performance'®. Kak et al. (2024) proposed a hybrid
metaheuristic method for minimizing energy consumption in cloud systems and optimizing task scheduling,
resulting in a balanced solution that improves system performance while lowering operational costs!”. Behera
and Sobhanayak (2024) employed a hybrid Genetic Algorithm—Grey Wolf Optimization (GA-GWO) approach
for task scheduling in heterogeneous cloud environments. Their methodology enhances both task completion
time and energy efficiency, rendering it appropriate for resource-diverse environments'®. Verma (2024) presented
a hybrid model that integrates Seagull Optimization and Black Widow Optimization for task scheduling in
cloud environments. This hybrid methodology tackles performance enhancement and security, illustrating how
optimization algorithms can fulfill the dual requirements of efficiency and safety'®.

The literature addresses various novel approaches to load balancing and resource management in cloud
computing. Metaheuristic algorithms such as PSO, GA, ACO, and RL provide effective solutions to complex
optimization problems. Hybrid optimization techniques show promise for improving performance while
addressing important goals like energy efficiency, security, and scalability. As cloud systems evolve, the creation
of smarter, more adaptive algorithms will be critical to maintaining efficient and high-performing clouds. Table 1
presents a comparative analysis of various load-balancing methods based on various parameters.

Problem formulation and modeling

In modern cloud computing environments, resource utilization across data centres is frequently inefficient, with
physical machines (PMs) typically operating at 15% to 30% capacity. This underutilization results in a large
number of idle PMs, which account for approximately 65% of total energy consumption during peak periods. To
enhance energy efficiency and reduce operational costs, it is critical to develop methods that optimize resource
utilization and minimize energy waste. Load balancing and effective resource allocation play a crucial role in
improving the overall performance and cost-effectiveness of cloud systems. The presented research introduces a
multi-objective hybrid optimization model that rectifies the limitations of traditional single-objective methods
in cloud workflow scheduling. Conventional methods predominantly emphasize the optimization of time or
cost, often overlooking energy consumption.

The proposed model amalgamates WWO and ACO to provide a balanced solution for multiple objectives,
including performance enhancement, cost reduction, and increased energy efficiency for cloud service providers
(CSPs) and cloud customers (CCs). The model aims to optimize resource utilization, reduce idle physical
machines, and efficiently allocate workloads, thereby preventing system overload and improving performance. It
lowers operational costs while adapting to changing cloud environments, ensuring scalability and sustainability.
Focusing on these key objectives improves service delivery, reduces energy consumption, and increases cloud
system efficiency and customer satisfaction.

Multi-objective optimization (MOO) model
Different stakeholders in cloud computing systems have unique goals that must be coordinated to ensure
smooth operation. The cloud comprises two primary components: Cloud customers (CCs) and Cloud service
providers (CSPs). Cloud service providers provide resources to customers, who can then submit their tasks
for processing. Service providers maximize resource utilization to boost profits, while consumers prioritize
application performance. As a result, the goals can be classified into two primary categories: those that focus on
the Customer and those that focus on the cloud service provider?.

Let the set of Tasks be T, Set of Virtual Machines VMs. Here T' = {1, 1,15, T4, ... T, }, here T; Represents
the task set, i shows the task number which needs to be processed. For each of the task 7; , an execution time
ET(T,). Similarly, a sect of VMs can be defined as VM = {V M1, VMo VM3, VM, .. . VMp}.

o Pareto-dominance and fitness evaluation: To handle the conflicting objectives of the stakeholders, the mul-
ti-objective optimization (MOO) model considers several factors such as response time, energy consumption,
execution cost, and load balancing. The outcomes produced by the hybrid WWO-ACO algorithm are assessed
according to these objectives. For two candidate solutions, S1 and S2, S1 is considered to Pareto dominate S2
if 81 is at least equivalent to S2 in all objectives and superior in at least one. The Pareto dominance process
guarantees that the optimization method approaches an optimal set of trade-offs.

o Selection of Pareto-optimal solutions: We monitor all candidate solutions generated by the hybrid WWO-ACO
algorithm during the optimization process. The Pareto front, which represents the optimal set of trade-offs, is
determined by iteratively evaluating the solutions through Pareto dominance.

o The ultimate solution set comprises the Pareto-optimal solutions, indicating that no alternative solution sur-
passes them across all objectives. These solutions exemplify optimal compromises between competing objec-
tives, providing the decision-maker with a spectrum of options from which the most appropriate solution can
be chosen according to particular preferences.

Multi-objectives based on customer
Consumers of cloud services are primarily concerned about the cost-effectiveness and performance of task
completion.
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Degree
Response | Waiting | Energy of load Cost of Scheduling Fault
Method time time consumption | balancing | execution | length Scalability | tolerance | Complexity References
L O(n?) (quadratic due
Whalg Optimization Yes Yes Yes Yes Yes Yes Yes Yes to iterative population !
Algorithm .
evaluation)
O(n?) (similar to WOA,
Water Wave Optimization Yes Yes Yes Yes Yes Yes Yes Yes with moderate iterative 2
steps)
O(nxm) (population
Genetic Algorithm Yes Yes Yes Yes Yes Yes Yes Yes size x number of 3
generations)
Particle Swarm Optimization | Yes Yes Yes Yes Yes Yes Yes Yes Q(n xm) (popula.tlon . 4
size x number of iterations)
Ant Colony Optimization Yes Yes Yes Yes Yes Yes Yes Yes O(nxm) (numbe_r of . 5
ants x number of iterations)
. . O(nxm) (Genetic
AOdaPtlye Genetlc Whale Yes Yes Yes Yes Yes Yes Yes Yes operations plus whale 8
ptimization A
optimization)
O(nxm) (number of
Invgrte_d Ant Colony Yes Yes Yes Yes Yes Yes Yes Yes ants x number of iterations, |’
Optimization 1
ess complex)
Fuzzy-Based PSO Yes Yes Yes Yes Yes Yes Yes Yes O(nxm) (iterative updates | 1o

of particle positions)

Ripple-Induced Whale O(n?) (due to ripple effects | ¢

Optimization Yes Yes Yes Yes Yes Yes Yes Yes and evaluation complexity)
S O(nxm)
Grasshop per Optimization Yes Yes Yes Yes Yes Yes Yes Yes (population x number of 12
Algorithm ) -
iterations)
Meta-Heuristic Approaches Yes Yes Yes Yes Yes Yes Yes Yes O(nxm) (dependlrllg on the | 14
for Microgrid nature of metaheuristics)
ALoadAbalancmg via Yes Yes Yes Yes Yes Yes Yes Yes O(nA>< m) '(pamcle updates 2
intelligent PSO per iteration)
Dynamic Load Balancing O(n?) (RL-based
via Optimized RL-Based Yes Yes Yes Yes Yes Yes Yes Yes updates + clustering 15
Clustering evaluation)
Modified min-min heuristic | Yes Yes Yes Yes Yes Yes Yes Yes Ofn X ‘?1) (iterative . 16
heuristic-based evaluation)
. L O(n®) (complexity due
}? P“?“al lqad'balfi DENEVIA ) es Yes Yes Yes Yes Yes Yes Yes to hybrid optimization v
ybrid optimization
processes)
Dynamic optimization via O(nxm) (meta-heuristic
utilizing the Krill Herd Yes Yes Yes Yes Yes Yes Yes Yes iteration-based, high 18
meta-heuristic algorithm overhead)
O(n?) (time complexity
Tactical Unit Algorithm Yes Yes Yes Yes Yes Yes Yes Yes increases with more tactical | 2!
units)
Optimising workload O(n x m) (iterative
distribution via a JAYA- Yes Yes Yes Yes Yes Yes Yes Yes updates, with moderate 19
based meta-heuristic computational cost)
O(n?) (a hybrid of
Hybrid WWO-ACO Yes Yes Yes Yes Yes Yes Yes Yes WWO and ACO, the Proposed

computational cost is
moderate)

Table 1. Comparative analysis of various load-balancing methods based on various parameters.

Based on the length of scheduling Schedule length is the maximum time required to complete all assigned
assignments and the most recent processed VMs (Virtual Machines). This metric is crucial for evaluating the
scheduler’s performance. A minimal schedule length result demonstrates an effective scheduling technique that
assigns assignments to the correct resources!”. Schedule length Schiengen. This can be calculated by Eq. (1).

Schiengtn = max Z ET(TL,VM;) (1)

1=1

where ET represents execution time, 7'L Represent the task length, i represents the task number that will be
executed, which can be calculated by Eq. (2), Clicngtn represents cloud let length, T'I represents the execution
of the total no. of instructions (MIPS), and it can be calculated by Eq. (3). Equation (4) represents the calculation
for the single-machine execution 7' (VM i), hereV M P power represents the V.M capacity, and VM rcores
represents the total number of cores in the VM.
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Cllcn th
ET (Cliongin VM) = —micndth
( length, J) ZTL(VMZ') (2)
S TIVM) =TH(VMy) + TIVMa 4. +TI,VM, 3)
TI'L(VMv) = [VMPPower * VMTCO"'ES} (4)

In Eq. (4) TI;(VM,) represents the total number of instructions for the ITH task and the virtual machine; it is
measured in MIPS (Millions of Instructions Per Second), and the VMPpower is also measured in MIPS.

Task execution cost (TEC) Without being aware of the intricacies of the system infrastructure, cloud users
in the cloud environment hand over their autonomous tasks to the service provider for processing. These tasks
have differences regarding prerequisites, such as resource requirements and task duration!®. The total expense of
processing a user’s application is the TEC. Although it’s usually the most quantifiable metric available today, it’s
crucial to express the cost in terms of the available resources. Given that the user wants to shorten schedules and
save costs. The execution cost of this arrangement scheme can be calculated by Eq. (5), Where TEC is the task
execution cost, TET is the task execution time, i is the task number, TE; is the ith task price.

TEC = [TET; * TE;)] (5)

Service provider-based objectives
In order to reduce operating expenses and improve service dependability, service providers concentrate on
effective resource management.

Energy consumption The utilisation of CPU, network connections, and storage equipment contributes to en-
ergy utilization in data centres. The CPU uses more energy than the other system resources. A virtual machine’s
energy consumption can be separated into idle and active categories. The two VM states are considered when
determining the total amount of energy used. For the cloud infrastructure to be sustainable and economical,
total energy consumption is presented in Eq. (6). Here, subscript base, cap n , end base , sub i. represents the
energy consumption in kilowatt-hours (kg) by resource i, and subscript base, can Pc, end base, sub i. represents
the power consumption rate in watts (W), for a particular resource i. Pc; represents the power consumption rate
for an individual or a particular resource i.

MinEnergyConsumption = Z(Enl * Pcl) (6)

Resource consumption (RC)  Providers of cloud computing services must effectively control their computing
resources to guarantee long-term survival and maximize financial returns. Perfect operation of data centres,
which mostly rely on CPUs, RAM, storage, and network bandwidth, depends on effective resource manage-
ment. Effective resource management aims to optimize occupancy rates, minimize waste, and improve general
efficiency.

Cloud service providers constantly search for the most effective ways to use their resources to maximize
their return on investment. This calls for effective processing and storage capacity management, the best use of
current resources, and low idle times, which reduces needless costs and minimizes energy consumption that
does not help generate income, which depends on effective resource management. Cloud service providers can
boost productivity, cut costs, and improve profitability through efficient resource utilization. Efficient resource
management is crucial for the smooth operation of the data centre, helping the provider achieve their business
objectives and ensuring overall success.

Materials and methods

This section thoroughly explains the proposed hybrid model, covering its conceptual framework, operational
mechanisms, and performance evaluation methodologies. The hybrid approach, which combines the strengths
of WWO and ACO, is thoroughly examined to showcase its effectiveness in cloud load balancing and resource
allocation. In addition, this section explains the main performance metrics used to assess the model’s effectiveness,
ensuring a thorough comprehension of its efficiency and influence. This comprehensive analysis highlights the
model’s potential to bring about significant enhancements in the management of cloud resources.

Proposed WWO-ACO hybrid model

Combining the features of WWO and ACO, the proposed hybrid model seeks to solve the pressing issues of load
balancing and resource allocation in cloud computing environments. This creative approach is painstakingly
built to strike a perfect balance between several goals, including optimizing resource efficiency, minimizing
energy consumption, lowering running costs, and so minimizing response times.

Figure 1 presents the architecture of the proposed hybrid model. In the proposed model, starting with a
population of solutions, each reflecting several approaches for load distribution and resource allocation, the
process starts with WWO looking extensively worldwide to find places with great potential for development.
ACO then uses ant foraging behaviour to search locally, improving solutions in these interesting domains.
During optimization, the model effectively manages different objectives by continuously adjusting weights using
real-time feedback. This enables the model to adapt to changing conditions quickly.
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Fig. 1. Architecture of Proposed Hybrid Model.

Effective load balancing and resource allocation are achieved by selecting optimal configurations and
parameters. Performance comparisons consider response time, resource utilization, energy efficiency, and
operating costs. This process repeats until specific goals are met, such as optimization or a set number of iterations.
By combining ACO’s local search efficiency with WWO?’s global search capability, the model guarantees optimal
resource utilization, cost reduction, energy efficiency, and improved system performance. This holistic approach
promotes the creation of more sustainable and efficient cloud computing environments. The following sections
provide a thorough explanation of how the proposed model operates.

ACO working

The ACO algorithm, inspired by ants’ foraging behaviour, is based on a probabilistic approach. It is utilized to
discover approximate solutions for complex optimisation problems. Algorithm 1 illustrates the comprehensive
functioning of ACO%.
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Step 1 Initialization Phase
1.1 Initialization of variables and parameters:
- Set the number of ants m
- Pheromone evaporation rate ¢
- Pheromone influence parameter o
- Heuristic influence parameter 3,
- Initial pheromone levels Tij (0) for all the respective edges i andj.
1.2 Task and Resource Definitions
- Define the set of tasks T = (Ty, «. v .. Ty)
- Define the set of resources R = (Ry, ... ... ... Ryp)
- Define the initial pheromone level T;jBetween tasks and resources.
Step 2. The phase of Solution Design
Each ant builds a solution by iteratively choosing resources for tasks based on pheromone levels and heuristic
information.
2. 1 Probability Calculation:
- Ants create solutions using probability, knowledge from pheromone levels, and heuristics to select
resources. The Equation 7 is used to measure the probability levelPBy;.

(PLij () P (HV)PL
Zien; (PLik(E)P(HV 3) P

PBij(t) = (7)

Where (PLyj(t)) represents pheromone level, (HV; heuristic value, @and By represents parameters
controlling
2.2. Ant Solution Construction:
- Each constructs a complete solution by probabilistically selecting resources for each task based on PB;;(t).
Step 3. Pheromone Update Phase
3.1. Local Pheromone Update:
- Once a solution has been constructed, each ant individually maintains the local pheromone scales by using
equation 8.
T;j () = (1 — @) *Ty; () + @+ T;; (0)  (8)
Where: @ represents the pheromone evaporation rate and T;j (0) is the initial pheromone level.
3.2. Global Pheromone Update:
- Once every ant has built their solution, Equation 9 updates the global pheromone based on how well-built
the solutions are.
T (t+1) =1 —)«T; () +AT; (9
Where:
- ATy; It represents the amount of pheromone deposited, which can be calculated by Equation 10.
AT; = X7, (AT;; %) (10)
where:
-(ATi 3 k) represents pheromone for k™ ants
Step 4. Evaluation Phase
4.1 Fitness Evaluation:
Evaluate the performance using the objective model, Equation 11.

Multgotion = WiRT (solution) + W, RC (solution) + W50C (solution) + W,EC (solution) (11)

Where RT represents response time, OC represents operation cost, RC represents resource consumption, and
EC for energy consumption.

4.2 Selection of Best Solution:

Again, apply the best fit (BeStgontion) finding by using local and global phenomena solutions, Equation 12.

BeStsolution = ATg Best (Fitsolution) (12)

solution e(ACO,WWO)

Algorithm 1. ACO Algorithm
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The ACO algorithm efficiently explores the search space using heuristic information and probabilistic
decisions based on pheromones. It balances exploration and exploitation, making it possible to find excellent
solutions for resource allocation and cloud load balancing.

WWO working

A WWO algorithm is based on the movement and interaction of water waves; it is an optimisation algorithm
that is highly inspired by nature. Using the concepts of wave propagation, refraction, and breaking concepts, this
algorithm simulates waves’ motion in lakes, rivers, and oceans to find the best solutions within a specified search
space. The WWO algorithm consists of the following main steps: selection, wave propagation, wave refraction,
wave breaking, and initialization. Algorithm 2 and Pseudo code 1 thoroughly summarise every step of WWO?%.

Step 1. Initialization Phase

1.1 The population of waves is initialized at this phase using the ACO phase solutions. In the search space, each
wave denotes a potential solution.

1.1.1 Wave Position: A wave's position (x;) in the search space defines it.

1.1.2 Wave Height: Each wave is accompanied by a corresponding height (h;), representing the solution's fitness
level. Greater wave heights indicate superior solutions.
Step 2. Wave Propagation Phase

2.1 During this stage, every wave moves and spreads to a different location, as presented by Equation 13.

Xiow = [X; + (@X h;) x rand(n)] (13)

Where:

-@ represents a constant scaling factor, h; represents wave height and rand (n) represents a random number
selected from a normal distribution.

The new position is calculated by adding the displacement vector across the present state of the wave.

The displacement vector usually represents a stochastic vector multiplied by the wave height.
Step 3. Wave Refraction Phase

3.1 The algorithm carries out wave refraction following wave propagation.
A reflection technique is employed to correct a wave's location if it exceeds the search space's bounds. It can be
calculated by Equation 14.
X/t = (X; + By) X (Xpoundary + X1) (14)

Where:

- B, represents a refraction coefficient and Xpoynaary represents a boundary for a particular search space.
Step 4. Wave Breaking Phase

4.1 Wave breaking is how new waves replace old waves with poor fitness (tiny wave heights). By taking this
action, early convergence is avoided, and population diversity is preserved.

4.2 Waves shorter than a predetermined threshold are broken and replaced by freshly generated waves at
random.
Step 5. Final Selection Phase

5.1 This phase determines which waves are the best to form the next generation after propagating, refracting, and
breaking.

5.2 The waves' fitness values serve as the basis for selection.

5.2.1 Each wave's fitness is assessed using a predetermined objective function.

5.2.2 More fit Waves (have better answers) have a higher chance of being chosen for the following generation.

Algorithm 2. Water Wave Optimization Working
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WWO is a robust and adaptable optimization algorithm that efficiently explores and exploits the search space
by imitating natural wave behaviours. Utilizing wave propagation, refraction, and breaking mechanisms, WWO
can identify superior solutions for challenging optimization issues, such as multi-objective models and cloud
load balancing. Pseudo Code 1 presents the complete code of the WWO method?.

Pseudo Code 1: Water Wave Optimization Pseudo Code

1. Initialize a population of waves with random positions and heights
2. Evaluate the fitness of each wave
3. while the stopping criterion is not met, do

4. for each wave, do

5. Propagate the wave to a new position

6. if the new position is out of bounds, then

7. Refiract the wave

8 end if

9. Evaluate the fitness of the new position

10. if new fitness is better than current fitness, then
11. Update the wave's position and height

12. else

13. Apply wave breaking if height is below a threshold
14. end if

15.  end for

16.  Select the best waves for the next generation
17. end while

18. Return the best solution found

Pseudo Code 1. Water Wave Optimization Pseudo Code

WWO-ACO hybrid phase
The complete working of the proposed hybrid model is presented by algorithm 32°.
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Step 1: Initialization Phase

Initialize all the necessary parameter variables for WWO and ACO.

Set propagation rates, pheromone levels, wave heights and evaporation rates for WWO and ACO.

Define the Task (T) and Resources (R) T = {Ty, ... ... Ty} and R = {R4, ... ....Rp,}

Step 2: ACO phase

2.1 ACO solution creation

Ants create solutions by selecting resources using probability, knowledge from pheromone levels, and heuristics.
Equation 15 measures the probability level PB;;.

(PLyj(£) P (HV j)P1

PBy(D =5 PLa@ TP

(15)

Where (PL;j(t)) represents pheromone level, (HV;; heuristic value, @and B represents parameters controlling

2.2 ACO Update Phenomena

In this phase, the Phenomena are updated based on the best solutions, as shown in Equation 16.

Where PD;; represents the pheromone deposit, ¢ represents the evaporation rate by Equation 17.
APD; = 3iy o (17)

Where C), represents the cost for a m™ ant solution, Q denotes a constant value.
Step 3. WWO Phase
3.1 Initialization of Waves:
Initialize the initial Waves using the best solution from ACO solution buckets by Equation 18.
Wh;(0) = [Fitsomtion; + randomgs: 0] (18)
Where Wh;(0) represents the height of i waves, F itsowution; represents fitness solutions for ith waves and
randomy;s () represents a random distribution function.
3.2 Wave Propagation Phase
This phase utilizes a perturbing process for wave propagation, as presented by Equation 19.
Fitsowtion; (t + 1) = Fitsontion; (t) + AFitsomtion; (19)
Where AFitsoption; Tepresents permutation by using the propagation rate and height of a wave.
3.3 Wave breaking
When waves reach a specific threshold in height, they break and create new waves.
Step 4. Hybrid WWO-ACO Phase
4.1 Select the best-fit solution from ACO and WWO solutions buckets.
4.2 Again, apply the best fit (BeStsoution) finding by using local and global phenomena solutions, Equation 20.

Bestsowtion = Arg Best (Fitsopution) (20)

solution e(ACO,WWO)
Step 5. Performance Evaluation
5.1 Evaluate the performance using the objective model, Equation 21.

Multgoption = WiRT (solution) + W,RC (solution) + W50C (solution) + W,EC (solution) 1)

Where RT represents response time, OC represents operation cost, RE represents resource consumption, and EC for
energy consumption.
Step 6. Allocates the Resources allocated based on BeStgopeion results allocate the Multgyp, ion and achieve load

balancing, resource optimization and energy consumption.

Algorithm 3. Algorithm for proposed hybrid model
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Time complexity analysis for WWO-ACO

The time complexity of the hybrid ACO + WWO algorithm is a combination of the individual complexities of
both Ant Colony Optimization (ACO) and Water Wave Optimization (WWO). Below is the analysis of the time
complexity:

o Time complexity of ACO: In ACO, ants explore the solution space iteratively, modifying their paths according
to pheromone concentrations. The number of iterations (represented as Njtr) and the number of ants (rep-
resented as Nan¢s) both affect the time complexity. The time complexity of ACO is quantified using Eq. (22).

(0] (Nants X Niter X D) (22)

where D is the dimension of the problem space (i.e., the number of resources or tasks to be allocated).

o Time complexity of WWO: The WWO functions by emulating water wave dynamics, with solutions being
iteratively refined according to wave propagation. The quantity of waves and iterations affects the complexity.
The time complexity of WWO can be calculated by using Eq. (23).

O (Nwavcs X Niter X D) (23)

o where Nyaves is the number of wavefronts and Nite, is the number of iterations.Time complexity of hy-
brid WWO-ACO: The hybrid algorithm’s overall time complexity is determined by the time complexities of
both ACO and WWO methods. In practice, the two algorithms operate concurrently or sequentially, and the
overall time complexity is generally the aggregate of the individual complexities. The time complexity of the
proposed WWO-ACO can be measured by using Eq. (24).

O((Nants X N’it(iT‘ X D) + (Nwaves X Niter X D)) (24)

The parameters Nants, Niter and Nuyaves are adjustable and contingent upon the specific problem and the
dimensions of the cloud environment. Adjusting these parameters allows the algorithm to optimize the trade-off
between computational efficiency and solution quality.

Dataset

The proposed and existing models are implemented using a Cloud-sim simulator. The proposed WWO-
ACO hybrid algorithm’s performance is measured using artificial and real-time workload traces. The artificial
workload is created using a consistent distribution, which ensures that large, medium, and small workloads
are all presented identically. This systematic strategy helps to provide a comprehensive assessment of how well
the algorithm performs across different job sizes. A real-time HPC2N (North High-Performance Computing
Center)? log has been used to check the algorithm efficiency. The HPC2N log serves as a widely recognised and
utilised benchmark for evaluating the efficient functioning of systems with distributed components. It serves
as a genuine and rigorous testing environment for the proposed algorithm, ensuring reliable results that can be
applied to real-world scenarios. Table 2 presents the dataset details.

Simulation and performance analysis

In contrast to existing algorithms in cloud computing environments, this section investigates the performance
and simulation of the proposed hybrid WWO-ACO model. We provide a comprehensive analysis that contrasts
our hybrid approach with traditional algorithms such as ACO, SMO, GA, and WWO. The comprehensive
performance evaluation covers a wide range of scenarios in cloud environments with multiple objectives. It
emphasizes critical metrics, including the duration of task scheduling, the cost of task execution, energy
consumption, and resource utilization. This comprehensive analysis emphasizes the benefits of the hybrid model
and pinpoints areas that require improvement, thereby enabling a clear understanding of its efficiency and

28

effectiveness®®.

Task ids | Task numbers | Task length (MI) Task properties
1-10 1-10 12,000-120,000 Continuous and free
11-20 11-20 130,000-240,000 Continuous and free
21-30 21-30 250,000-360,000 Continuous and free
31-40 31-40 370,000-480,000 Continuous and free
41-50 41-50 490,000-600,000 Continuous and free
51-60 51-60 610,000-720,000 Continuous and free
61-70 61-70 730,000-840,000 Continuous and free
71-80 71-80 850,000-960,000 Continuous and free
81-90 81-90 970,000-1,080,000 | Continuous and free
91-100 91-100 1,090,000-1,200,000 | Continuous and free
Table 2. Complete description of the task.
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Cloud entity | Characteristic Value
Number of data centers 3

Data center | Number of hosts 10
Number of users 50
Storage capacity 5TB
RAM 32GB
Bandwidth (BW) 100 GB/s

Host Shared policy Space shared with dynamic allocation
CPU cores 16 Cores
Network latency 5ms
Power consumption 1 kW
Virtualization technology | KVM

Table 3. Comparative analysis for Datacenter parameters and Host Configuration.

Characteristic Value Description

Number of VMs | 50, 100, 150, 200 | Total number of virtual machines (VMs) deployed

MIPS 500-1500 Millions of instructions per Second, indicating processing power
Bandwidth (BW) | 0.5 Gb/s Network bandwidth available per VM

VMM Xen Virtual machine monitor used for virtualization

Size 100 GB Storage size allocated to each VM

Table 4. Details Description of VM properties.

Simulation details

The simulation guarantees correct and fast results, utilizing a high-performance computing configuration.
Besides 32 GB of RAM, the system boasts an Intel Core i7-11700K CPU running at 3.60 GHz. 64-bit Windows 11
is its running operating system. The cloud environment simulation takes advantage of the most recent iteration
of Clouds Plus (CloudSim Plus 6.2.2). Designed especially for cloud computing research, CloudSim Plus is a
relatively sophisticated and flexible toolkit. It offers better performance and capabilities than its last versions®.
Table 3 presents a Comparative analysis of Datacenter parameters and Host Configuration.

Table 3 provides a comprehensive overview of the parameters for the data centre and the host configuration
details. We have established three data centres containing ten hosts to accommodate fifty users within our
optimised data centre and host configuration. With 32 GB of RAM and 5 TB of storage space, each host is
carefully constructed to provide ample resources for running demanding applications at lightning-fast speeds.
With a 100 GB/s capacity, the network bandwidth is notable and facilitates quick data flow. Currently, the policy
is "Space Shared with Dynamic Allocation," which allows effective and flexible demand-based use of storage
resources based on real-time needs.

With sixteen CPU cores, each host ensures sufficient processing capability for concurrent tasks and low
network latency of just five milliseconds, thus lowering data transfer delays. With 1 kW power consumption
per host, energy efficiency optimisation is the top priority. Moreover, KVM (Kernel-based Virtual Machine)
technology guarantees efficient virtualisation and resource allocation. This arrangement makes a harmonic and
quite efficient cloud infrastructure possible.

The specifications for the VMs in our cloud setup are listed in Table 4. To accommodate varying computational
requirements, we have deployed VMs in batches of 50, 100, 150, and 200. The processing power of each VM
ranges from 500 to 1500 MIPS (Millions of Instructions Per Second), so they can effectively handle a wide range
of workloads. Data transfer is fast and seamless because each virtual machine has 0.5 Gb/s network bandwidth.
Xen is our Virtual Machine Monitor due to its reliable virtualization features. Each 100 GB VM has enough
storage for most applications and data. This configuration makes our virtual environment flexible, effective, and
able to meet many user needs.

Table 5 displays the costs of VM instances ranging from $0.25 per hour for 8 GB of memory and 100 GB
of storage, including four cores, to $2.50 per hour with 80 GB of memory, 3200 GB of storage, and 40 cores.
Intermediate options offer versatility for different applications and workloads, guaranteeing economical and
effective virtual machine deployment®!-33,

Table 6 offers a detailed breakdown of the parameters for the hybrid WWO-ACO algorithm as well as
other popular algorithms like GA, SMO, WWO, and ACO. The hybrid algorithm configuration comprises 100
population sizes, 200 iterations, 10 maximum wave heights, 0.1 initial pheromone value, and 0.001 convergence
threshold. The population of GA is 100, with 200 iterations, a crossover rate of 0.8, and a mutation rate of 0.01.
SMO includes a maximum global learning threshold of 40, a local threshold of 50, and 100 generations. The
parameters of WWO and ACO include waves, iterations, and pheromone levels®>~%,
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Memory (GB) | Storage (GB) | Cores | Price ($/Hour) | Description

8 100 4 0.25 Suitable for lightweight applications and testing

16 200 8 0.50 Ideal for medium-sized applications and databases

32 400 16 1.00 Perfect for larger applications and data processing tasks

48 800 24 1.50 Excellent for high-performance computing and intensive workloads
64 1600 32 2.00 Optimal for very large databases and complex simulations

80 3200 40 2.50 Best for extensive data analysis and heavy computational tasks

Table 5. Details for VMs instance Cost in $

Algorithm Parameter Value | Description
Population size 100 Size of the population for iterations
Max iterations 200 Maximum number of iterations for convergence
Proposed hybrid WWO-ACO | Initial pheromone 0.1 Starting amount of pheromone in the algorithm
Max wave height 10 Maximum height of the waves
Convergence threshold 0.001 The threshold for determining convergence
Population size 100 Size of the population for the genetic algorithm
Max iterations 200 Maximum number of iterations for convergence
oA Crossover rate 0.8 The rate at which crossover occurs
Mutation rate 0.01 Mutation Rate
Global learning limit (GLL) | 45 Shows the GLL limit
SMO Local learning limit (L) 55 Shows the LLL limit
Max generations (GN) 100 Shows the GN count
Probability range (pr) [0.1,0.4] | Shows the pr count
Number of waves 50 Shows the wave count
WWO Max iterations 200 Shows the iteration count
Initial wavelength 0.8 Shows the wave-length count
Pheromone Importance(q) | 0.5 Shows q count
ACO initial pheromone 0.05 Shows the count for the initial stage
Number of ants 20 Shows ant count
max iterations 200 Shows the iteration max count

Table 6. Parameters Details for Existing and Proposed Algorithms.

Simulation results

A thorough test of the hybrid WWO-ACO algorithm included a close look at how it performed against well-
known approaches like the GA, SMO, WWO, and ACO. We tested these algorithms in five different cloud
computing scenarios with multiple goals. The length of the task schedule and the cost of completing the task were
two crucial performance indicators. Shorter schedules and lower costs meant that the task was more efficiently
completed. We also measured energy use to see how well each algorithm cut down on energy use; lower energy
use means a more environmentally friendly approach.

It was possible to determine how efficient resources were by looking at how many were used. Better resource
management meant lower values. Lastly, we used the balance degree metric to see how well the costs, energy,
and resource management worked together. This way, we could be sure that improvements in one area didn’t
negatively affect others. The full study showed the hybrid WWO-ACO algorithm’s pros and cons compared to
the other methods, explaining how well it works and where it might be improved.

First scenario (using task length)

In this case, our primary focus is on the length of the task schedule, that is, the whole time needed to finish all
the allocated tasks. This work aims to assess the degree of reduction in this duration by the hybrid WWO-ACO
algorithm, improving the system’s speed and efliciency. We compared this hybrid approach with GA, SMO,
WWO, and ACO using different task distributions to evaluate its effectiveness. The results demonstrate the
hybrid algorithm’s capacity to decrease task completion time and enhance efficiency and velocity.

Table 7 compares simulation results for several well-known techniques, i.e., GA, SMO, WWO, and ACO,
alongside the newly proposed WWO-ACO hybrid method. This comparison covers various configurations of
virtual machines and tasks. The focus is on average and maximum task schedule lengths, and it is evident that
the WWO-ACO hybrid consistently outperforms the traditional methods. The WWO-ACO hybrid produces
an average schedule length of 1107.8 s for a configuration comprising 2000 tasks and 150 VMs. This is far faster
than the ACO algorithm (1407.32), the SMO algorithm (7578.32), the WWO algorithm (8587.7 s), and the
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No. of VMs | No of Task | GA Mean | GA Max | SMO Mean | SMO Max | WWO Mean | WWO Max | ACO Mean | ACO Max | WWO-ACO Mean | WWO-ACO Max
500 5094.11 7113.5 3975.73 4617.05 5161.73 6925.92 732.28 749.67 713.77 734.62
1000 6503.32 7033.64 | 4941.51 5799.8 6440.99 7647.61 893.36 960.36 859.33 877.17
50 1500 7682.66 7913.76 | 5716.45 6444.33 7255.13 8203.59 1042.03 1055.79 997.37 1015.29
2000 10,526.19 | 11,386.62 | 8967.59 9467.53 | 10,415.96 11,272.7 1446.25 1451.62 1438.46 1439.66
2500 13,890.20 | 13,570.81 | 12,040.23 11,520.87 | 11,209.70 14,780.92 1870.82 1970.85 1750.62 1890.10
500 3153.33 3716.74 | 28729 3365.45 3573.78 4179.36 544.72 689.34 468.42 502.31
1000 3841.32 4086.98 | 3281.22 3641.32 4426.14 4968.39 536.34 544.33 495.76 502.44
100 1500 4315.43 4328.62 | 3699.93 3971.04 5432.68 6602.55 643.48 644.32 639.72 641.63
2000 6160.13 6229.31 | 5741.72 6245.82 6980.04 7656.74 781.54 783.23 775.04 776.05
2500 15,700.24 | 15,500.56 | 13,790.15 14,200.3 14,370.7 16,480.85 2740.61 2780.83 1980.31 2784.37
500 4809.85 5270.56 | 4087.42 4570.34 5554.75 7850.65 980.82 1320.23 874.17 858.20
1250 5870.25 6270.48 | 4580.52 5090.74 6570.5 8023.55 1070.82 1177.23 910.58 945.68
150 1500 6807.16 7208.73 5780.83 5500.27 7532.8 9320.74 1280.13 1303.43 1321.7 1100.27
2000 8301.3 8705.42 | 5500.48 6000.93 8587.7 12,150.33 1407.32 1598.72 1107.8 1203.06
2500 8878.83 9209.31 | 6874.94 6547.52 9532.9 11,095.27 1687.83 1765.93 1203.7 1360.57
500 5307.92 5708.28 4578.43 5230.72 6980.28 75,780.91 1108.25 1200.08 958.97 1080.98
1000 6378.92 6732.37 | 5230.18 5540.82 7380.37 8577.45 1201.77 1308.17 1032.86 1125.37
200 1500 7378.72 7578.32 | 5507.57 6078.18 8078.78 9578.45 1447.87 1570.80 1107.20 1298.74
2000 8347.15 8778.12 6230.96 6507.74 9074.51 10,507.89 1601.50 1774.84 1205.84 1387.88
2500 9378.23 9778.98 | 6570.98 7032.87 |10,780.32 11,570.23 1890.78 1978.95 1310.24 1432.78

Table 7. Evaluating in terms of various task schedule lengths evaluated in seconds the computing outcomes
for the current and proposed scheduled tasks.

GA algorithm (7378.72). Remembering that hybrid technology significantly contributes to optimizing cloud
environments is crucial. This is evident in the substantial reduction in the average task execution time.

The WWO-ACO hybrid is also adept at distributing the load, with a scheduled time of up to 1203.06 s. It
takes 8301.3 s for the GA algorithm, 8705.42 s for the SMO algorithm, 12,150.33 s for the WWO algorithm,
and 1598.72 s for the ACO algorithm. It takes 8301.3 s for the GA algorithm, 8705.42 s for the SMO algorithm,
12,150.33 s for the WWO algorithm, and 1598.72 s for the ACO algorithm. These results show that the hybrid
can significantly reduce task time, improving system responsiveness and user satisfaction. The WWO-ACO
hybrid combines ACO’s local search with WWO’s global exploration for robust cloud computing multi-objective
optimization. Operational efficiency and performance metrics benefit from this integration.

Second scenario (using task execution cost)

This scenario aims to evaluate the efficacy of the hybrid WWO-ACO algorithm by quantifying its effectiveness
by measuring Schedule Length, which pertains to the total time needed to finish all planned operations.
This scenario aims to reduce the Schedule Length to improve the system’s responsiveness and throughput. A
comparative analysis has been conducted on the proposed hybrid WWO-ACO algorithm and various existing
load balancing methods, i.e., GA, SMO, WWO, and ACO. We have measured the effectiveness of all these
methods in different task distribution scenarios. The outcomes show how effectively the system reduces the time
needed for task completion and performance.

Figure 2 compares the costs of executing tasks using existing algorithms versus proposed algorithm-based
methods. In cloud computing, these expenditures are evaluated by implementing numerous optimization
strategies. The results indicate that the WWO-ACO hybrid technique consistently achieves lower costs for
task execution in all tested scenarios, spanning from 50 to 200 VMs and 500 to 2500 tasks, in comparison to
traditional methods such as GA, SMO, WWO, and ACO. For instance, at 150 VMs and 2000 tasks, WWO-ACO
shows a mean cost of $8301.3, which is notably lower than GA ($7378.72), SMO ($7578.32), WWO ($8587.7),
and ACO ($1407.32). This emphasises the hybrid method’s effectiveness in reducing average task expenses and
improving cost-effectiveness in dynamic cloud environments.

Furthermore, a closer examination of the costliest activities exposes WWO-ACO’s extraordinary capacity for
financial control and workload handling. This shows how strong the system is in properly controlling several
execution needs. The suggested hybrid approach offers a sensible way to maximize multi-objective activities in
cloud computing. This method maximises efficiency by combining the local search powers of ACO with the
worldwide exploration powers of WWO. These results imply a possible improvement in performance criteria
and operational efficiencies among several cloud systems.

Third scenario (using energy consumption)

In the third scenario of the experimental analysis, we have calculated the Energy consumption for the proposed
hybrid WWO-ACO and existing load balancing algorithms to measure their performance and determine
efficacy. In a cloud computing environment, the total amount of energy needed to complete a task is the energy
consumption for a task. Less energy consumption is always desirable in the cloud computing environment. It
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Fig. 2. Analyze and compare the costs of executing tasks using existing algorithms versus proposed algorithm-
based methods.

helps increase the systen’s responsiveness and efficiency and decreases total energy (TE). The effectiveness of the
hybrid algorithm in reducing TE in contrast to other existing approaches, like GA, SMO, WWO, and ACO, is
assessed through simulations of various workloads and task distributions. The outcomes are examined to show
how effectively the suggested strategy maximizes support the execution time, enhancing user satisfaction and
system performance.

Figure 3 presents a comparative analysis of existing and proposed algorithm-based energy consumption in
kilojoules (KJ). In this regard, we investigated the energy consumption of several Virtual Machine configurations
and task loadings. We used several optimization approaches, including the recently proposed WWO-ACO
method, ACO, WWO, SMO, and GA. Analyzing both the mean and maximum energy usage enabled the study
to concentrate on the effectiveness of these methods. The analysis of the mean energy usage was conducted by
utilizing a sample of 50 VMs. The Genetic Algorithm resulted in an average energy consumption of 200.5 k] for
a workload of 500 tasks. However, the WWO-ACO method successfully reduced it to 160.8 kJ.

GA needed 400.2 k] of energy to do 2500 tasks, while WWO-ACO needed 360.3 kJ. The consistently high
performance of WWO-ACO is also clearly shown by other virtual machine configurations. On average, it took
the WWO-ACO algorithm 335.0 k] to run a scenario with 100 virtual machines (VMs) and 2500 tasks. This used
much less energy than GA (400.4 kJ) and ACO (344.9 KJ). Furthermore, the GA used 400.2 kJ of energy while
handling 2500 tasks, while the WWO-ACO used 360.3 kJ. Also, the excellent performance trend of WWO-ACO
is consistently seen in other virtual machine configurations. When examining a sample consisting of 100 virtual
machines (VMs) and 2500 tasks, it was found that WWO-ACO had an average energy consumption of 335.0 kJ,
which was significantly higher than GA’s consumption of 400.4 k] and ACO’s consumption of 344.9 kJ.

Examining the highest point of energy consumption produces equally striking findings. Originally 250.5 k]
for 50 VMs and 500 tasks in GA, WWO-ACO effectively dropped it to 210.8 k]J. The WWO-ACO consumption
stays constant while the work grows. For 2500 jobs, WWO-ACO ate 410.3 kJ; GA ate 450.2 k]. The WWO-ACO
algorithm ate a maximum of 410.7 kJ for 200 VMs handling 2500 tasks. This energy consumption was lower
than that of the ACO algorithm (425.8 kJ) and the GA algorithm (430.9 kJ). The experimental results reveal
that the proposed WWO-ACO method routinely beats conventional optimisation methods regarding average
and maximum energy consumption. This shows increased energy efficiency; thus, WWO-ACO has become a
feasible method for resource management and workload offloading in cloud computing environments.

Fourth scenario (using resource consumption (RC))

This scenario mainly aims to evaluate the performance of the proposed hybrid WWO-ACO and the existing
algorithm’s efficiency in terms of RC. An optimum utilisation of resources is always desirable. An RC mainly
includes consuming various computing resources such as CPU, memory, and storage. The main goal of the
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proposed method is to reduce resource consumption by maintaining overloading and underloading task
execution through efficiently allocating computing resources. This scenario calculates results based on various
workload scenarios for existing and proposed algorithms.

The resource utilisation of different optimisation strategies is illustrated in Fig. 4, which also shows how
successful the Proposed WWO-ACO Optimization method is in comparison to other traditional methods such as
GA and ACO. The proposed optimisation method spreads work and uses fewer resources across configurations.
The proposed method can be applied to more virtual machines without losing efficiency because it uses the same
resources each time. According to the study, the proposed method reduces resource requirements and maintains
performance in various situations.

Fifth scenario (using balance degree)

The hybrid WWO-ACO algorithm is evaluated in Scenario-V using the Balance Degree metric, which measures
the evenness of job distribution across resources. A greater Balance Degree guarantees the equitable utilisation
of resources, preventing any resource from being overloaded while others are underutilised. This improves
the system’s stability and effectiveness. The effectiveness of the hybrid algorithm in attaining optimal load
distribution, hence enhancing overall system efficiency and dependability, is evaluated by comparing it with GA,
SMO, WWO, and ACO using different workloads.

The Balance Degree results in Fig. 5 show the efficiency and effectiveness of several optimisation strategies
over several virtual machine configurations and task loads. With values between 0.70 and 0.78, the Proposed
WWO-ACO method shows a better balance for 50 VMs than other approaches, including GA and ACO, which
have lower values. When compared to other techniques, WWO-ACO demonstrates exceptional performance
with 100 VMs. The Balance Degrees range from 0.77 to 0.85, indicating a fairer and even workload distribution.
WWO-ACO outperforms GA, SMO, and other methods, achieving values ranging from 0.82 to 0.90 with 150
VMs. The Proposed WWO-ACO method maintains its optimal performance at 200 virtual machines (VMs) with
Balance Degrees ranging from 0.87 to 0.95, illustrating its strong capacity to efficiently manage resources and
distribute the load evenly across the network. These findings confirm that the Proposed WWO-ACO method
consistently achieves a superior balance, rendering it a more practical approach to workload management in
various scenarios.
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Comparative analysis with state of the art methods

Table 8 provides a comparative analysis of the proposed Hybrid WWO-ACO model againstleading methodologies
for task scheduling, resource allocation, and load balancing in cloud computing. The table comprises studies from
2023 to 2024, concentrating on diverse optimisation techniques, including the Whale Optimization Algorithm
(WOA), Water Wave Optimization (WWO), and their hybrids, such as AGWO (Ant Lion Optimizer combined
with WOA) and TACO (Inverted Ant Colony Optimization).

The Hybrid WWO-ACO model surpasses existing methods across various performance metrics, including an
18% reduction in makespan, a 15% decrease in energy consumption, and a 20% enhancement in load balancing.
The Hybrid WWO-ACO model, unlike other methods that encounter issues such as restricted scalability, slow
convergence, or inadequate adaptability in dynamic environments, integrates the advantages of local search
(ACO) and global optimisation (WWO), thereby providing enhanced scalability and adaptability for large-scale,
dynamic cloud systems. It more effectively addresses multi-objective optimisation than traditional algorithms,
resulting in improved efficiency and overall performance in cloud environments.

Results and discussion

The purpose of this study was to evaluate the effectiveness of a hybrid optimisation method that incorporates WWO
and ACO in order to address critical issues that arise in cloud computing environments. These issues include load
balancing, task scheduling, and resource allocation. A comparison was carried out between the proposed WWO-
ACO hybrid algorithm and several established algorithms, such as the GA, SMO, WWO, and ACO. The evaluation
was conducted across five unique scenarios, taking into account task scheduling duration, execution cost, energy
consumption, resource utilisation, and load balancing.

o Task scheduling efficiency: The preliminary experiment entailed a comparative analysis of task scheduling
algorithms, emphasizing both the average and maximum durations of task scheduling. In a situation involv-
ing 2000 tasks and 150 virtual machines (VMs), the WWO-ACO hybrid algorithm attained an average task
scheduling duration of 1107.8 s (Table 7), indicating a significant enhancement compared to ACO (1407.32 s),
SMO (7578.32 s), WWO (8587.7 s), and GA (7378.72 s). The decrease in scheduling time can be linked to the
synergistic strengths of ACO’s local search abilities and WWO’s global exploration efforts. ACO effectively
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Challenges

References | Method Objective (s) Key techniques | Optimisation goal Performance metrics addressed Results
Ghafir et PSO-based Feedback | Load balancing in | PSO feedback Load distribution Load balancing efficiency: Dynamic load | Improved load balancing
al.! Controller the cloud controller optimisation 20%, Energy efficiency: 10% | balancing in dynamic environments
Dhabliya Dynamic Load bDa}I:r???;C liona?he Policy-driven Efficient load }n?na(jobaelriltili?gl 2% Real-time load | Enhanced load balancing
etal? Balancing Policies doud i strategies balancing Regpo:;se time: 80/;) > balancing in dynamic environments
Khan? RL-based Clustering | Dynamic load RL-based Optimised task Energy reduction: 14%, Scaling for Egz;té‘i: di);nslrg lllcdload

for Load Balancing balancing clustering scheduling Load balancing: 10% large systems systems 8

3 . 0,
Dubey and Performance & Trust Load balancing in Trust and Trust-based load Trust evaluat{o n: 16%, .| Trustand Improved trust-based
1y Analysis for Load performance - Performance improvement: . L
Mishra Balancing cloud evaluation balancing 12% security load balancing in clouds
Choudhary ?(;I;x;vl\;lrllr(lﬂlj‘i,unstlc Workflow Min-min Task completion time | Makespan reduction: 15%, Scalability Efficient for small cloud
and Rajak® Scheduling scheduling heuristic and load balancing Task completion: 10% issues workflows
Geethaet | Hybrid Optimization | Optimal load ?ytli)r‘;i?sation Energy and resource | Energy efficiency: 18%, Load | Scalability for | Improved load balancing,
al® for Load Balancing balancing al% orithms optimisation balancing: 14% large systems | limited scalability
Forghani Krill Herd Algorithm | Load balancing in | Krill herd Energy and load Energy reduction: 20%, Network load | Effective in SDNG, limited
g g g 154 gy

etal’ for Load Balancing SDNs metaheuristic balancing Load efficiency: 16% balancing for the general cloud

JAYA-based .
Singh et Metaheuristic Z\i]:t?i(lln(lﬁim in ;ﬁrY;::ngonthm Energy-efficient Energy reduction: 12%, Task | Workload Effective for fog-cloud
al. for Fog-Cloud f . workload distribution | completion: 10% distribution systems

< og-cloud systems | scheduling

Ecosystem

Tiwari et Knap SaCkae.lsed Edge server Knapsack-based Placement efficiency: 14%, Edge network Effective for edge
7 Metaheuristic for placement S Edge server placement . NN systems, not scalable to

al. L optimisation Load balancing: 10% optimisation

Edge Placement optimisation the cloud
Rostami et gﬁﬂlégl}osre%z{: Energy-efficient Capuchin Energy and task Energy reduction: 18%, Task Ef?iecrigc Improved task scheduling
al.® . task scheduling search & IACO | scheduling completion: 12% 4 with energy efficiency

Scheduling challenges

. . Cost and task . . L
Kumar and | AGWO Hybrid for Cost-aware task Hybrid Ant schedulin: Cost reduction: 14%, Task Resource Efficient scheduling in
Karri*® Task Scheduling scheduling Lion & WOA optimisati% " allocation: 9% utilisation cloud-fog systems
Probosed Task scheduling Task completion, load | Makespan reduction: 18%, Scalability and Outperforms others
mogel Hybrid WWO-ACO | and resource ACO+WWO balancing, energy Energy reduction: 15%, ada talbil}ift in multi-objective
allocation consumption Load balancing: 20% P ¥ optimisation

Table 8. Comparative analysis with State-of-the-art methods.

pinpoints local optima, whereas WWO facilitates a more extensive exploration of the solution space, thereby
avoiding suboptimal outcomes. The outcome is a more rapid execution of tasks, enhancing system respon-
siveness and reducing delays in cloud settings. Additionally, the WWO-ACO hybrid demonstrated a higher
load distribution efficiency. The maximum task scheduling time for the WWO-ACO hybrid was 1203.06 s
(Table 7), compared to 8301.3 s for GA, 8705.42 s for SMO, 12,150.33 s for WWO, and 1598.72 s for ACO.
This demonstrates that the hybrid algorithm enhances overall task scheduling efficiency while optimising
load distribution among resources, thereby minimising delays due to resource contention.

Execution cost: The second experiment concentrated on assessing the execution costs linked to each algo-
rithm. The findings indicated that the WWO-ACO hybrid consistently surpassed the other algorithms in
reducing task execution expenses. At 150 VMs and 2000 tasks, the WWO-ACO hybrid achieved a mean
execution cost of $8301.3 (Fig. 2), which was lower than GA ($7378.72), SMO ($7578.32), WWO ($8587.7),
and ACO ($1407.32). The hybrid method’s ability to minimise execution costs arises from its efficient bal-
ancing of local optimisation (ACO) and global exploration (WWO), which allows resources to be allocated
cost-effectively. This minimises excessive expenses while simultaneously guaranteeing the most efficient use
of available resources.

Energy consumption: The third experiment also assessed energy consumption. When compared to other al-
gorithms, the WWO-ACO hybrid used significantly less energy. In a configuration of 50 VMs and 500 tasks,
the WWO-ACO hybrid used 160.8 kJ (Fig. 3), while the GA used 200.5 k]. The trend was consistent across
configurations, with the WWO-ACO hybrid averaging 335.0 k] in a configuration of 100 VMs and 2500 tasks,
compared to 400.4 k] for GA. Reducing energy consumption is critical in cloud computing because it reduces
costs and promotes sustainability. The WWO-ACO hybrid improves energy efficiency in cloud infrastructure
by optimising task scheduling and resource allocation.

Resource utilization: The fourth experiment assessed resource consumption, emphasising the efficiency of
each algorithm in utilising available virtual machines. The findings indicated that the WWO-ACO hybrid
utilised fewer resources to accomplish the identical set of tasks as the other algorithms. The hybrid approach
efficiently distributed the workload among available resources, guaranteeing the completion of necessary
tasks without overloading the system. This outcome illustrates that the WWO-ACO hybrid enhances resource
utilisation, which is essential for augmenting operational efficiency in cloud settings.

Load balancing efficiency: The fifth experiment assessed the load balancing efficacy of the hybrid WWO-ACO
algorithm, employing the Balance Degree metric. The findings demonstrated that the WWO-ACO hybrid consist-
ently attained superior load distribution compared to the other algorithms. With 50 VMs, the Balance Degree for
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WWO-ACO ranged from 0.70 to 0.78 (Fig. 5), surpassing that of GA and ACO. The augmentation in the number
of VMs enhanced the equilibrium of the WWO-ACO hybrid, achieving a range of 0.87 to 0.95 for 200 VMs. These
values indicate that the WWO-ACO hybrid guarantees an equitable allocation of tasks, averting resource saturation
and maintaining a stable, efficient system. This optimal load distribution is crucial for enhancing resource efficiency
and preventing performance decline.

The results of the experiments demonstrated that the hybrid WWO-ACO algorithm performed better than traditional
algorithms in a number of critical areas, such as the scheduling of tasks, the cost of execution, the consumption of
energy, the utilisation of resources, and the distribution of load. The success of the hybrid approach can be attributed
to the complementary strengths of ACO and WWO. ACO’s local search capabilities enable rapid identification of
promising solutions, while WWO’s global exploration ensures a thorough search of the solution space, avoiding
suboptimal configurations. Collectively, these two methodologies offer a robust optimisation instrument for enhancing
performance and efficiency in cloud computing settings. This study’s findings validate that the hybrid WWO-ACO
algorithm is an exceptionally effective method for addressing complex multi-objective optimisation challenges in
cloud environments.

Constraints of the proposed hybrid model
There are a few limitations to take into consideration, despite the fact that the hybrid WWO-ACO algorithm has
produced some encouraging results:

o Computational complexity: The algorithm may require significant computational resources, particularly in
extensive or dynamic cloud settings.

o Performance variability: The outcome might vary depending on various cloud computing environments and
workload variations, necessitating additional adjustments.

o Adaptability: The method may find it challenging to accommodate rapidly changing resources and variable
workloads.

These constraints offer prospects for future enhancement, specifically in optimizing computational efficiency
and improving adaptability in practical applications.

Conclusion and future scope

Multi-objective optimisation plays a vital role in the ever-changing landscape of cloud computing. Conventional single-
objective optimisation methods frequently prove inadequate when dealing with the intricacies of contemporary cloud
systems. In order to address these limitations, this research presents a cutting-edge multi-objective hybrid optimisation
technique that skillfully combines the advantages of ACO and WWO. The hybrid WWO-ACO algorithm has proven
exceptionally effective in optimising resource allocation and cloud load balancing. Our empirical evaluations show
that the algorithm achieves an average task schedule length of just 1107.8 s with 150 VMs and 2000 tasks. This
performance significantly outstrips traditional methods such as GA (7378.72 s), SMO (7578.32 s), WWO (8587.7 s),
and ACO (1407.32 s). This reduction in task completion time highlights the hybrid’s superior efficiency. Regarding
energy consumption, the WWO-ACO algorithm also excels, using an average of only 335.0 k] for 2500 tasks and 100
VMs, compared to GAs 400.4 k] and ACO’s 344.9 kJ.

In addition, the method demonstrates outstanding resource balancing, as indicated by balance degrees ranging
from 0.87 to 0.95 across various configurations. This suggests that the allocation of resources is fair and effective. The
study’s findings demonstrate the algorithm’s ability to enhance system responsiveness in dynamic cloud environments,
reduce operational costs, and enhance performance criteria. While the hybrid WWO-ACO model demonstrates
impressive performance, it is not without challenges. The complexity of the task may result in increased computational
requirements, especially in large or dynamic environments. Moreover, the system’s performance may differ depending
on the specific cloud infrastructures and workloads, necessitating additional adjustments and optimisations. Future
research should address these challenges by reducing the computational load of the model, testing its compatibility
with diverse cloud configurations, and developing adaptive mechanisms for fluctuating resource needs. Exploring
varjous optimisation methods and considering real-world constraints will be essential for improving the models
practical utility and efficiency. In the future research, we will also examine how the emerging algorithms, ie.,
Algorithms like the Liver Cancer Algorithm (LCA), Fata Morgana Algorithm (FATA), Polar Lights Optimization
(PLO), and Rime Optimization Algorithm (RIME) stack up against our proposed hybrid approach, which combines
Ant Colony Optimization (ACO) and Whale Optimization Algorithm (WOA).

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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