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Owing to the proliferation of mobile devices, Google’s Android operating system has become 
a dominant force in global communication. However, its popularity makes it a prime target for 
cyberattacks. Effective malware detection systems are crucial for combating these escalating threats, 
particularly amid the evolving use of adversarial examples to evade detection. These systems employ 
static and dynamic analysis methodologies with machine learning, particularly Generative Adversarial 
Networks (GANs), which play a key role. The Android Opcode Modification GAN enhances malware 
detection by intelligently modifying opcode distribution features using the Opcode Frequency 
Optimal Adjustment algorithm. Despite its effectiveness, the dual-opponent generative adversarial 
network (DOpGAN) introduces a grey-box attack strategy that misclassifies generated examples as 
benign, significantly evading detection. DOpGAN operates by altering opcode distribution features 
during the generation and insertion process, making it particularly challenging for detection systems 
to classify correctly. The adversarial examples generated by DOpGAN highlight the critical need 
to integrate defensive measures such as adversarial example detection systems into the Android 
security framework. Beyond evasion, these adversarial examples provide invaluable opportunities 
for retraining and improving malware detection systems, thereby ensuring their resilience against 
emerging threats. The findings underscore the broader need for continuous innovation in Android 
security mechanisms, fostering collaboration between academia and industry to protect users and 
systems in an ever-evolving mobile security landscape.
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The pervasive use of handheld devices establishes them as the primary global communication medium, 
emphasizing the importance of the Android operating system (OS) as the leading OS1. However, this popularity 
also makes Android a prime target for cyber-attacks, with various mobile security breaches impacting the 
operating system2. As threats increase, the security of the Android operating system becomes predominant3. 
Highly effective malware detection systems are typically used to strengthen security infrastructure4. As cyber 
threats become increasingly sophisticated, these systems are playing a critical role in determining the nature of 
potentially malicious applications.

Recent developments have revealed a trend where adversarial examples are strategically used to deceive 
Android malware detectors5 highlighting the need for advanced security measures. The framework for analyzing 
and addressing these threats is generally divided into two main approaches: static analysis6 and dynamic 
analysis7. A static analysis examines the code without running it, making it possible to evaluate whether it is 
safe or harmful. Conversely, dynamic analysis requires running the code in a protected environment, which 
facilitates consideration of its behavior in real time to make well-informed judgments.

Adversarial examples, characterized by their adeptness in evading handheld security systems, pose 
formidable challenges for traditional detection methods8 regarding accuracy and efficiency. In response to these 
challenges, machine learning methods9 have gained prominence, with Generative Adversarial Networks (GAN) 
emerging as powerful tools. Proposed by Goodfellow in 201410, GAN excels in learning the distribution of target 
datasets, presenting the potential to generate adversarial features for Android Application Packages (APK). 
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Despite these advancements, the susceptibility of high-level feature modifications to detection using feature-
based detectors underscores the need for continuous innovation. In this context, Android Opcode Modification 
GAN (AndrOpGAN)11 was introduced to execute evasion attacks by intelligently modifying the statistical 
distributions of opcode features. This approach builds upon the foundation of DCGAN, originally designed for 
image generation, to enhance the meaningful generation of opcode distributions.

Additionally, to ensure accuracy in both syntax and meaning when altering features, the proposal includes an 
Opcode Frequency Optimal Adjustment (OFOA) algorithm module. This module adds a layer of sophistication 
to the malware detection framework, enhancing the system’s ability to distinguish between benign and malicious 
codes. Although AndrOpGAN exhibits high efficacy in evading opcode distribution-based detectors, its 
vulnerability to detectors, especially those capable of capturing adversarial examples, raises concerns about 
its effectiveness. A large number of examples created by AndroOpGAN were stopped by the detection system 
equipped with an adversarial example detector. To address this limitation, a dual-opponent generative adversarial 
network (DOpGAN) has been presented. DOpGAN uses a generator and two discriminators simultaneously to 
deceive both adversarial example detectors and traditional malware detectors, thereby significantly enhancing 
its evasion capabilities. The complex realm of mobile device security requires ongoing innovation to remain 
ahead of the constantly changing cyber threats. The convergence of machine learning, specifically through 
Generative Adversarial Networks, exemplifies the dynamic nature of the security measures employed in the 
Android ecosystem. The juxtaposition of static and dynamic analyses, combined with the sophistication of 
adversarial examples and the resilience of advanced detection mechanisms, provides a comprehensive picture of 
the ongoing battle to safeguard the Android operating system against malicious intrusions. Moreover, existing 
Android malware detection techniques, including ML-based models, remain vulnerable to GAN-generated 
adversarial malware, which systematically alters the opcode distributions to evade detection. However, prior 
research lacks a detailed investigation of opcode-level adversarial modifications, their evasion success rates, and 
their impact on real-world detection systems. Additionally, existing works primarily focus on the image and text 
domains, with limited exploration of GAN-driven evasion in Android security. To bridge this gap, our study 
presents a novel opcode-based adversarial attack framework that systematically evaluates its effectiveness against 
ML-based detection, and proposes mitigation strategies. However, this study focuses on developing a robust 
framework for generating synthetic malware through Generative Adversarial Networks. The goal is to craft 
malware variations capable of bypassing current machine learning detection models for Android malware and 
enduring the analysis of conventional Android Firewalls. This study makes several noteworthy contributions 
including the following:

•	 The generated malware must be executable, and any modifications introduced in Android malware applica-
tions for evasion should not compromise the original attack.

•	 Develop a Duel Objective GAN model for operation code distribution obfuscation, targeting evasion of An-
droid malware detection systems and adversarial example detector.

•	 The resulting malware variants produced through GANs should possess the capability to circumvent mul-
ti-feature ML models utilized in malware detection, including features related to the operation codes.

The remainder of this paper is organized into five sections. Section “Related work” I discusses related work 
on malware detection. Section “Proposed framework for evasive adversarial attack against android malware 
defense” presents the proposed framework for evasive adversarial attacks against Android malware. Section 
“Analysis and results” highlights the results and discussion. It also includes a performance comparison of the 
proposed GEAAD. The final section presents our conclusions.

Related work
In this ever-evolving technological landscape, dedicated organisations work continuously to strengthen 
cyberattack defence while parallel to them just as dynamic and powerful malicious threat actors - advanced 
attackers. Cybersecurity professionals are constantly evolving their countermeasures while adversaries mimic 
and work to circumvent them. The continued arms race between protectors and attackers is how sophisticated 
cyber threats have become in the digital world. The quest for successful cyberattack prevention strategies has 
fuelled the invention and implementation of advanced technologies. Attackers are creative as they consistently 
evolve and develop new ways to modify their methods, whereas lots of the regular security mechanisms seem 
unable to keep up. The stakes of this arms race mean that cybersecurity policymaking needs to constantly evolve 
and be agile in looking for new vectors of attacks. This adversarial learning includes the implementation of 
Generative Adversarial Networks (GANs) IE; an example of that by an adversary.

Evasion attacks may not be as effective in the Android domain as they have been in the Windows domain 
because their manipulations may not be suitable for changing Android malware programs in a way that can 
fool current Android malware detectors. To predict potential evasion attacks, numerous research have been 
conducted in the past few years to produce AEs in the Android environment. The threat models that the 
researchers took into consideration are shown in Table 1. It should be noted that when classifying studies under 
the ZK setting, adversaries should not only be unable to access the specifics of the target model, but also not have 
any preconceived notions about it (such as the kinds of features that detectors use). Like, Croce et al.12 presented 
Sparse-RS, a query-based attack that produced AEs through a random search technique, to investigate feature-
space AEs. Reinforcement learning was used by Rathore et al.13 to create AEs that tricked Android malware 
scanners. To assess their protection tactics, Chen et al.14 used several feature-based attacks, such as brute-force 
attacks. A white-box attack was provided by Demontis et al.15 to disrupt Android malware app feature vectors 
with respect to the key aspects that influence malware classification. Further, to improve ML-based malware 
detectors, Liu et al.16 presented an automated testing framework built on a Genetic Algorithm (GA). Based on the 
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simulated annealing process, Xu et al.17 suggested a semi-black-box attack that modifies Android app features. 
Since they don’t demonstrate how real-world applications may be recreated using feature-space perturbations, 
the aforementioned attacks appear to be unfeasible18.

Besides, Grosse et al.19 altered the Android Manifest files according to the feature-space perturbations in 
order to study problem-space manipulations. A similar strategy was employed by Berger et al.20; however,18 
considered both Dalvik bytecodes and Manifest files of Android apps in their techniques of modification. To 
produce AEs utilizing a substitution model based on permissions and API call features, Zhang et al.16 presented 
an adversarial assault named ShadowDroid. Next, GenDroid, a query-based attack that used GA by including 
an evolutionary strategy based on Gaussian Process Regression, was first presented by18. Because the generated 
AEs may not meet all of the conditions in the issue space (e.g., plausibility and robustness to preprocessing) the 
viability of these attacks is therefore called into question. For example, found that five of ten validated modified 
apps were unable to function properly.

Generative Adversarial Networks (GANS), which were originally crafted for the better good in the field of 
machine learning have been twisted and turned by malefic developers to break various constructs of cybersecurity.

These sophisticated algorithms are incredibly efficient at generating lifelike copies of data, enabling malicious 
actors to produce falsified content which can bypass traditional security mechanisms. The perpetrators use 
GANs in attacks, showing the potential to exploit advanced technologies made to improve cyber security. The 
nature of this phenomenon, collision between technology and cyber dangers, also demands a thorough multi-
disciplinary conversation between Computer Science, Ethics and Policy researchers to elucidate the extent of 
challenges that come into play. Static and dynamic analysis: As mentioned in the first part, static and dynamic 
analysis are 2 most common used methodologies to detect Android malware.

Android, based on Linux, is an open-source operating system that can lead to a favourable gesture for making 
it an everyday smartphone, which abounds in markets today. Therefore, the surge in the use of Android-based 
smartphones has made them a suitable and tempting target for malware distributors and prompt mechanisms are 
required which can perform fast detection of Android malware. A new method for Android malware detection 
is the genetic algorithm (GA) used in this study to select the features21. This study evaluates the performance 
of three different classifier algorithms, using feature subsets detected by the GA to detect and analyse Android 
malware. Support Vector Machines (SVM) and Genetic Algorithms (GA), when used together with a selected 
set of 16 permissions, had the highest accuracy of 98.45%. The research study had a dataset of 1740 samples 
with 1119 malware samples and 621 non-malicious ones. The increasing prevalence of Android malware 
necessitates efficient analysis methods22. Familial analysis, which identifies commonalities within malware 
families, is promising but suffers from limitations such as low accuracy, inefficiency, and dependence on labelled 
data. To address these issues, this paper introduces SRA, an innovative characteristic that captures analogy 
relationships between “Framework Tasks” of reactive API calls within subgraphs. This transformation simplifies 
the complex graph matching into a faster, vector-based similarity calculation. GefDroid employs unsupervised 
learning techniques to analyse malware families. It builds a network of malware connections using SRAs and 
applies community detection algorithms to categorise unlabelled specimens. GefDroid outperforms existing 
approaches in accuracy and efficiency, achieving high agreement with ground truth across various datasets 
(0.707–0.883  NMI). Additionally, GefDroid exhibits significant speed improvements, analysing a sample in 
around 8.6 s on average with minimal runtime overhead. To sum up, SRA successfully identifies similarities, 
and GefDroid outperforms in malware family analysis on Android platforms through unsupervised learning, 
marking a notable improvement upon current approaches.

Moreover, this study23 introduces a technique for identifying Android malware using deep learning, leveraging 
information gathered from instruction call graphs. By ensuring a balanced dataset, this method scrutinises every 
possible execution route to better differentiate between safe and harmful paths using deep neural networks. 
With no readily available pre-trained models, we start training networks from the ground up, fine-tuning the 
parameters through grid search. When tested on an evenly distributed dataset comprising 24,650 malware and 
25,000 non-malware samples, this technique reaches an accuracy of 91.42% and an F-measure of 91.91%. It 
undergoes a comparative evaluation with standard classifiers, analysing various parameters, statistical measures, 
and execution times. The approach overcomes obstacles found in static and dynamic analysis by introducing a 
deep learning framework that incorporates convolution over sequences of opcodes.

Year Refs. Model features Attack method

Evasion 
capacity 
(%) Evasion against

2021 5 Generator, attacker and discriminator base model Semi (Black/White) 99 Android malware detector

2021 24 Generative adversarial network (GAN) to refine generation of adversarial examples Semi (Black/White) 98 Android malware detector

2020 25 Adversarial-example attack method based on bi-objective GAN Black box 95.02 Android malware detector 
and firewall

2020 26 Generate adversarial examples by using any random noise Semi (Black/White) 99 Android malware detector

2020 27 The intrinsic non-linear structure to generate adversarial examples White box 90 Android malware detector

2019 28 Dynamically train distilled model with query information Semi (Black/White) 92.76 Android malware detector

2019 29 Produces query-specific perturbation for query images to form adversarial queries White box 100 Android malware detector

2017 30 Focuses on the functionality of the substitute detector Black box 95.64 Android malware detector

Table 1.  Summary of GAN-based methods for generating adversarial examples.
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Recent findings underscore the vulnerability of existing Android malware detection systems to (GAN) based 
adversarial example attacks. While deploying a firewall as an adversarial example detector has proven effective 
in countering such threats, a novel bi-objective GAN-based adversarial example attack has emerged as a potent 
method that breaks through firewall-equipped Android malware detection systems with an impressive success 
rate exceeding 95%31. This method surpasses the modern approach by a remarkable gap of 247.68%. Integrating 
a firewall significantly enhances the capture rate of adversarial examples when using an Android malware 
detection system. However, in response to this, new black-box adversarial attack techniques have been proposed, 
demonstrating their efficacy as over 95% of its generated adversarial examples evade detection and are falsely 
classified as benign by the firewall-equipped system. This dynamic landscape underscores the constant interplay 
between evolving attack strategies and the defensive measures implemented in cybersecurity.

This paper presents an innovative architecture called Attack Inspired Generative Adversarial Network (AI-
GAN)32, designed to mitigate the vulnerability of Deep Neural Networks (DNNs) to adversarial examples that 
intentionally alter inputs, resulting in erroneous model predictions. Notwithstanding comprehensive research 
on many attack strategies, creating nuanced yet potent adversarial samples is a challenging problem. The AI-
GAN combines a generator, discriminator, and attacker into a cohesive training framework, facilitating the 
generation of adversarial alterations customized for various images and categories. AIGAN has shown its 
capacity to achieve high effectiveness rates and significantly reduce generation time by testing benchmarks such 
as MNIST and CIFAR-10 compared to earlier methods. Notably, it maintains its efficacy with more complex 
datasets such as CIFAR-100, attaining an approximate success rate of 90% across several categories. AI-GAN 
takes all three basic components and trains them concurrently, thereby speeding up the malicious example-
creation process and providing better operational efficiency while still maintaining picture fidelity. AI-GAN 
offers better performance than prior methods in most circumstances evaluated to date, including scenarios 
with defenses and natural white-box settings. The new paradigm and objectives in training AI-GAN represent 
significant progress in solving the problem caused by friendly fire adversarial examples in deep neural networks.

A recent study also highlighted the vulnerability of deep-learning models used in Synthetic Aperture Radar 
Automatic Target Recognition (SAR-ATR) to adversarial example attacks. These manipulated inputs introduce 
misclassification in Convolutional Neural Network (CNN) systems by introducing minor perturbations in 
SAR images. State-of-the-art optimization-based attacks minimize reconstruction errors using soft adversarial 
examples with weak, blurred scatters, and softened target edges. We propose an architecture that pairs a UNet 
with a small Generative Adversarial Network (GAN) to produce more potent adversarial examples for Synthetic 
Aperture Radar automatic target recognition (SAR-ATR) systems. The UNet model is employed for feature 
separation and adversarial sample generation. The GAN module ensures that they are similar to authentic 
SAR imaging with clear edges and strong weak scattering, which contributes to its effectiveness. Testing has 
shown this to work for defeating capable Convolutional Neural Network (CNN)-based SAR-ATR systems on 
real ground-vehicle SAR datasets. Attack-UNet-GAN generated adversarial instances that appeared as normal 
images but were misclassified by a pre-trained CNN. Thereby, the non-human-like attack signal is embedded into 
an image while maintaining the introduced human similarity modifications without requiring further iterative 
optimization changes. A discriminator in the architecture ensures that adversarial samples respect pertinent 
SAR image features and thus enhance their deceiving capability, as they make them conducive to highlighting 
the target edge and weak scattering centers. Future research can examine black-box attack methods in practical 
scenarios where there is no information regarding the unknown SAR-ATR model distribution. Such a study 
may help form a universal attack method33 if the transferability of adversarial cases can be studied among SAR-
ATR models from different companies. The emergence of machine learning in malware detection has initiated 
cat-and-mouse dynamics, with attackers continuously devising strategies to circumvent these advancing 
algorithms. Confronted with the obstacles presented by the impenetrable characteristics of machine-learning 
models in malware detection, attackers frequently employ black-box tactics to compromise these systems21. This 
paper presents MalGAN, a novel method that employs a Generative Adversarial Network (GAN) to generate 
adversarial malware samples that evade detection using black-box machine learning methods. MalGAN uses a 
surrogate detector to replicate the behavior of the target system, whereas its generative component is trained to 
minimize the probability of its samples being identified as malicious.

Furthermore, the rapid advancement of adversarial machine learning has spurred the development of various 
attack methods that traditionally rely on neighborhood searches of images to create adversarial samples28. Since 
2017, generative models have been integrated into these attacks, typically focusing on creating adversarial 
perturbations from the input noise or an initial image. However, these approaches limit the output to resemble 
the initial input closely. This paper proposes Adversarial Transfer on Generative Adversarial Net (AT-GAN), a 
novel generation-based attack method. AT-GAN trains a generative model capable of producing diverse and 
realistic adversarial examples from the input noise. This avoids the limitations of previous approaches in which 
the output is constrained by the initial input. Tests reveal that the AT-GAN outperforms attacking models 
trained to resist such threats, highlighting its superior effectiveness and efficiency. Notably, our findings suggest 
that adversarial training, a common defense method based on a perturbation-based adversarial sample, might 
not ensure robustness against a non-constrained adversarial sample because of the broader diversity captured 
by AT-GAN in adversarial sample distribution deep neural networks19. They are susceptible to adversarial 
examples created by adding small perturbations to the inputs, leading to misleading results. Despite the various 
proposed attack strategies, achieving high-quality and efficient adversarial examples remains a challenge. This 
study introduces AdvGAN, which determines a GAN to create adversarial examples by learning the underlying 
characteristics of real data. Once trained, the AdvGAN generator efficiently produces perturbations for any 
instance, potentially accelerating adversarial training as a defense. AdvGAN demonstrates effectiveness in semi-
white-box and black-box attack contexts, delivering superior performance against leading defense mechanisms 
compared to alternate strategies. Significantly, AdvGAN achieved the highest rank by securing a 92.76% success 
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rate in a widely recognized MNIST black-box attack competition. This achievement underscores AdvGAN’s 
potential as a valuable tool for enhancing defence strategies through adversarial training, showcasing its ability 
to craft adversarial examples efficiently across various attack scenarios.

In addition, the adversarial weakness of DNNs has been widely studied in image classification models; 
however, little attention has been paid to its effect on image retrieval, as shown in Table 1. In this study, we 
propose a new approach to fooling deep neural network DNN-based image search engines using Unsupervised 
Adversarial Attacks with Generative Adversarial Networks (UAA-GAN). Unlike traditional techniques, UAA-
GAN is effective in unsupervised learning, requiring only a portion of the data to generate attacks. However, it 
is centered on the generation of query-specific perturbations that lightly modify the input images to produce 
their adversarial counterparts. The encoded modifications aim at effects that are barely noticeable to the human 
viewer but remove certain positions of the image in the deep feature space, thereby failing a retrieval system 
that relies heavily on this positional information. Diverse applications using deep learning features that can 
witness UAA-GAN are based on image search, person re-identification (Re-ID), and facial recognition tasks. 
Experiments show that UAAGAN can disrupt typical queries with no apparent alteration to an image. These 
generated adversarial images are designed to introduce minimal noise by blending pixels with high information 
content or intrinsic image characteristics (e.g., body parts or major patterns) regardless of where the area is 
located on an image, which ensures that a texture-rich background can produce a higher difference between 
them and their clean versions. This tactic is deceiving in image retrieval algorithms as the original appearance 
of the image also remains intact, showing that UAA-GANs have the potential to deal with both objectiveness 
and subjectiveness between machine perception and human vision. In this study, we comprehensively evaluate 
the UAA-GAN method over multiple tasks and datasets, which demonstrates the effectiveness of UAA-GAN, 
revealing its adversarial attack abilities and generalisability to different target models.

Moreover, the increasing sophistication of malware has led to significant advancements in adversarial 
machine learning (AML), particularly in the domain of Android malware detection. Goodfellow et al.34 first 
introduced adversarial machine learning, highlighting how neural networks can be easily fooled by crafted 
perturbations. Following this, Papernot et al.35 demonstrated black-box adversarial attacks on deep learning 
models, emphasizing the vulnerabilities of security-critical applications. Specifically, adversarial learning has 
been applied in malware detection, with Hu and Tan36 introducing MalGAN, one of the first GAN-based 
adversarial malware generation models, which successfully bypassed traditional classifiers by modifying feature 
representations. However, MalGAN operates in a black-box setting, limiting its ability to learn feature-level 
modifications dynamically. To address this, Carlini and Wagner37 proposed stronger adversarial attacks for 
cybersecurity systems, influencing the evolution of malware evasion techniques.

More recently, research has expanded to GAN-based adversarial attacks targeting Android malware 
detectors. Li et al. introduced AdvGAN, a white-box adversarial malware generation framework that optimizes 
perturbation generation for evading detection models38. However, AdvGAN lacks adaptability when detectors 
integrate adversarial training. They proposed a dual-optimization approach to improve evasion rates, but their 
model is ineffective against adversarial example detectors38. Unlike previous approaches, DOpGAN introduces 
a grey-box learning framework that dynamically modifies opcode distributions while adapting to adversarial 
detectors, making it significantly more effective in malware evasion.

Proposed framework for evasive adversarial attack against android malware 
defense
In this study, we focused on dynamic malware analysis, in which applications are executed within controlled 
environments such as virtual machines and sandboxes to prevent damage to actual machines, in contrast to 
static analysis, which uses application features for quick and cost-effective malicious behavior identification. 
Notably, static analysis via machine learning is prone to evasion, particularly by synthetic malware variants 
generated using Generative Adversarial Networks (GANs). AndrOpGAN, employing a Deep Convolutional 
GAN (DCGAN), effectively crafts adversarial examples to bypass various classifiers, such as SVM, K-NN, and 
CNN, dramatically reducing their detection rates. However, its efficiency decreases in firewall-equipped systems 
that detect adversarial input. To enhance evasion capabilities, we introduced DOpGAN, a dual-objective GAN 
designed to circumvent malware detection systems and firewalls simultaneously, marking a pioneering effort in 
advanced evasion techniques against Android security frameworks with firewall integration.

DOpGAN
DOpGAN operates as a grey-box model, meaning it can infer the type of features used in the detection system 
by interacting with it. As shown in Fig. 1, the framework consists of two key components.

Grey-box model
The dual-opponent generative adversarial network (DOpGAN) infers the features used by target malware 
detection systems using a grey-box model. The attacker in a gray-box attack does not have complete access to 
the system’s core architecture, but they do have some understanding of its function, such as feature selection 
or learning methods. By communicating with the target system to learn about the opcode distribution 
characteristics, DOpGAN takes advantage of this incomplete knowledge and optimizes adversarial samples for 
escape. The discriminator components of the DOpGAN, which are used in the feature inference process, can 
learn the decision boundaries of the detection system. The generator generates hostile samples during training, 
which are intended to be mistakenly identified as benign by adversarial example detection systems and malware 
detectors. This iterative procedure aids DOpGAN in deducing the decision-making criteria of the detection 
system by modifying the opcode distributions in response to the discriminator feedback.
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Operation code frequency feature
The Dalvik instruction set encompasses over 200 types of opcodes, yet numerous instructions exhibit similarities. 
To streamline feature space dimensions for enhanced efficiency in detection, similar opcodes were grouped into 
identical classes, resulting in a total of 44 classes in our study39, without consideration for data types and register 
distinctions. Table 2 provides a listing of some opcode classes.

The opcode set A consists of 44 elements {a1, a2, a3, . . . , a44}, representing different types of opcodes for 
each Android software sample x. The function ϕ(x) computes a vector representing the normalized count of 
each opcode type. The numerator of ϕ(x) counts the occurrences of each opcode a in A within sample x. The 
denominator sums the counts of all opcodes a in A for sample x, normalizing the counts. This leads to a vector 
with 44 dimensions, each representing a unique opcode type, with their counts normalized. The function ϕ(x) 
maps x to a 44-dimensional vector.

	

ϕ(x) →




a1 : shift, shift_from16, shift_16, . . .
a2 : return-void, return, . . .
a3 : const-16, const-14, const, . . .
...
a43 : if-af, if-mt, if-hg, if-gez, . . .
a44 : add-int, add-long, add, . . .




Each ai dimension in the resulting vector represents a specific opcode type from the opcode set A. The numerator 
of ϕ(x) counts the occurrences of each opcode type a in the opcode set A within sample x. The denominator 
sums the counts of all opcodes a in the opcode set A for sample x, resulting in normalized counts. The ratio is 
calculated as

	
ϕ(x) = count(x, a)a∈A∑

a∈A
count(x, a)

SN Operation code Class

1 if-aq, if-nb, if-mt, if-hg, if-it, if-lf, if-aqz, if-nbz, if-mtz, if-hgz, if-itz, if-lfz if

2 shift, shift/from16, shift/16, shift-vide, shift-vide/from16, shift-object, shift-object/from16,
shift-result, shift-result-vide, shift-result-object, shift-exception shift

... ... ...

44 rsum-int, rsum-int/lit8 rsub

Table 2.  Operation code categories examples.

 

Fig. 1.  Architecture of DOp GAN.
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Normalization ensures that the vector represents relative frequencies of opcode types rather than absolute counts.

Operation code distribution feature generation
The module responsible for generating opcode distribution features was developed using a modified DCGAN. 
This adapted version of DCGAN uses random noise as its input and output features that mimic the distribution 
of benign opcode characteristics.

Parameters for discriminator
It is very important to optimize when creating the discriminator for outputting opcode distribution features 
around a variety of key details and things to consider, so let us improve this aspect as well. The input layer is 
set up to match the opcode distribution feature dimensionality with opcode sequences represented as N-long 
vectors. Therefore, the discriminator input dimension is simply the vector length that conforms to the sequence 
representation.

The architecture starts with Convolutional Layers, which are necessary for obtaining the spatial hierarchies 
present in the opcode sequences. The layers detect patterns of the opcode distribution; therefore, the number 
of convolutional layers and the number of filters in each layer are important parameters to be optimized. It is 
recommended to use different filter sizes to capture different granularities in the opcode sequences so that the 
model can learn meaningful patterns at multiple scales. The rectified linear unit (ReLU) activation was used 
at the convolutional layers to learn nonlinear functions and mitigate the vanishing gradient problem, which 
helps in efficient learning. One method of avoiding problems such as the “dying ReLU” phenomenon is to use 
the Leaky ReLU in which there is a small, non-zero output for inactive units so that learning can still take place 
during back-propagation.

Pooling or striding is used to decrease the spatial dimension after the convolutional layers. In particular, max 
pooling can be used to downsample feature maps, which allows the network to learn hierarchical features better. 
Not only does pooling significantly reduce the computational complexity, but it also brings our transducer 
one step closer to being translation-invariant. The discriminator output layer norms a single-node sigmoid. 
This output node is meant to provide a probability score, quantifying the probability that the input opcode 
distribution is real (as in real data) and not produced by the generator. The model uses the binary cross-entropy 
loss function for measuring the distance between the true opcode distribution and predicted distribution so that 
it would be trained to minimize the prediction error.

Therefore, to make this architecture efficient, we must select an optimizer that can work effectively with these 
types of architectures. Optimizers: Adaptive optimizers work better; for example, Adam is very popular as it 
works efficiently with default gradient descent and adapts the learning rate to speed up convergence. Moreover, 
batch normalization was used after the convolutional layers to normalize each layer input with zero mean and 
unit variance. The sole purpose of this third step is to stabilize the training process, but it actually has very good 
side effects: it speeds up learning and enables a deeper network to be simply trained as if it were shallow.

Finally, the convolutional layers are followed by fully connected (dense) layers. The network is further 
comprised by dense layers that can learn complex relations between the features extracted from the opcode 
distribution. This allows the network to use information from all over the input sequence because any node can 
communicate with every other node.

Parameters for generator
Setting up a generator to produce opcode distribution features involves many important decisions and 
adjustments designed to ensure the network effectively learns the relationship between random noise input 
and sequences of interest in opcode distribution. Generator input Various random noise taken from a simple 
distribution (eg Guassian or Uniform) This noise acts as a hidden variable space that the generator will learn to 
map onto realistic opcode distributions.

The big difference from the vanilla GAN is that the generator has some convolutional layers, which are 
necessary for the model to learn spatial hierarchy and patterns in opcode sequences. These filters for the 
different layers are especially important because this is how we can capture one of the most basic things about 
the distribution of opcodes. Number of layers and filters need to be finely tuned to ensure that the model picks 
up enough detail from the input noise while also keeping below desired computational complexity.

The selection of activation functions is a crucial factor in the architecture of the generator. ReLU (Rectified 
Linear Unit) activations are frequently employed in the convolutional layers of the generator because of their 
efficacy in training deep networks and their capacity to alleviate the vanishing gradient issue. In the output 
layer, the Tanh activation function is commonly utilized. The Tanh function scales the output to align with 
the anticipated range of opcode distribution features, so ensuring that the generated sequences are accurately 
represented within the relevant feature space.

Batch normalization is implemented across the network to improve training stability and speed. Batch 
normalization standardizes the input for each layer, mitigating problems such internal covariate shift, which 
facilitates faster convergence of the network. The generator utilizes upsampling layers or transpose convolutional 
layers to augment the spatial dimensions of the data. These layers are crucial for producing extended opcode 
sequences by augmenting the dimensionality of the latent noise input, so converting it into the requisite feature 
space. This phase is essential for generating high-resolution outputs that mimic authentic opcode distributions.

The generator’s output layer is configured to align with the dimensionality of the opcode distribution features. 
If each opcode distribution feature is denoted by a vector of length N, the output layer will have N neurons. The 
application of the Tanh activation function at this juncture guarantees that the produced output is appropriately 
scaled to the range of actual opcode distribution feature values, facilitating seamless incorporation into the 
overall model pipeline. The generator’s loss function is the binary cross-entropy loss, which evaluates the efficacy 
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of the generated samples in deceiving the discriminator into categorizing them as authentic opcode distributions. 
This loss function is essential for directing the generator to enhance the quality of its outputs progressively.

Finally, the Adam optimizer is commonly selected due to its efficiency and adaptive learning rate properties. 
Its ability to dynamically adjust learning rates during training makes it a robust choice for optimizing the 
generator, particularly when dealing with high-dimensional and complex data like opcode distributions.

Training process
This segment describes the training and creation processes of AndrOpGAN, illustrated in Fig.  2. Features 
extracted from benign APKs and malicious APKs first used to train Discriminator 1 and features extracted from 
adversarial examples and normal examples are used to train Discriminator 2. After that Generator is trained 
with two discriminators simultaneously Meanwhile, Discriminator 1 is tasked with identifying the difference 
between benign and malicious instances, and Discriminator 2 focuses on separating adversarial examples from 
regular ones. Within this GAN framework, the dual role of the discriminators directs the generator towards 
accomplishing two goals concurrently: bypassing android malware detector and evading recognition by 
Adversarial example detection frameworks.

Feature extraction tool
AndroGuard is an open-source tool designed to analyse Android applications and extract various features for 
security analysis, malware detection, and reverse engineering. It is coded in Python and provides comprehensive 
functionalities to dissect Android apps and extract valuable information. AndroGuard employs a combination 
of static and dynamic techniques to extract features from APKs. It decompiles the APK file to obtain the 
AndroidManifest.xml, resources, and DEX bytecode files. AndroGuard’s primary focus is static analysis, which 
provides limited dynamic analysis capabilities. It can simulate certain aspects of the app’s behaviour, such 
as intent resolution and method call resolution. This dynamic analysis could help in clarifying the potential 
behaviour of the app without actually running it on a device. The extraction of opcode features is essential for an 
analysis of Android applications, especially in evaluating their behaviour and functionality. In this process, tools 
such as AndroGuard are essential, as they can extract intricate opcode characteristics from Android application 
packages (APKs), enabling a more thorough examination of a program’s code architecture and functionality. 
The procedure commences with DEX decompilation, during which AndroGuard decompiles the APK’s DEX 
bytecode file. The DEX file comprises the executable code for the application, and by transforming this file into 
a more coherent and alterable format, AndroGuard facilitates a more thorough investigation of the application. 
This decompilation is crucial as it converts compiled bytecode into a human-readable format, revealing the 
underlying code instructions.

Feature extraction from the APK samples was carried out using a three-pronged approach to capture various 
aspects of the applications’ behavior. The first feature category, opcode distribution, involved analyzing the 

Fig. 2.  Generator training (discriminative feedback).
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frequency of opcode sequences executed by each application, providing insights into the dynamic behavior of 
the malware. The second category, API calls, was derived through static analysis to identify the API functions 
invoked by each application, further revealing its interaction with the underlying system. The third feature 
category, permission analysis, examined the Android permissions required by each APK, highlighting potential 
vulnerabilities and suspicious behavior. Feature extraction was performed using AndroGuard and APKTool, 
ensuring compatibility across different datasets and maintaining consistency in the analysis. This thorough 
feature extraction methodology contributes to a robust foundation for evaluating DOpGAN’s performance in 
malware detection.

In addition, an open-source Python program called AndroGuard analyzes Android apps, helps with reverse 
engineering, and extracts static features that are essential for identifying malware. Decompiling APK files to 
obtain resources, DEX bytecode files, and AndroidManifest.xml all crucial for feature creation and analysis is 
one of its primary purposes. Important functions consist of:

•	 DEX Decompilation: AndroGuard transforms DEX bytecode files into a format that can be read by humans 
so that they can be examined further.

•	 Opcode Extraction: Opcode instructions, which describe how the application behaves on the Dalvik or ART 
virtual machines, are extracted by parsing the decompiled DEX file.

•	 Feature Generation: To create numerical vectors that serve as input features for the DOpGAN framework, the 
extracted opcodes are arranged into sequences.

Upon decompiling the DEX file, the subsequent step is opcode extraction. Opcodes, or operational codes, are the 
fundamental instructions used by the Dalvik or Android Runtime (ART) virtual machines to perform operations 
within the application. AndroGuard recognises and extracts these opcodes by analysing the decompiled DEX 
bytecode. This stage is essential for examining the application’s functional components, as the opcodes represent 
the directives that govern its execution flow. Upon extraction of the opcodes, AndroGuard systematically arranges 
them into sequences that delineate the application’s execution pathways. These opcode sequences function 
as significant features applicable for various reasons, such as static analysis, virus detection, and behavioural 
profiling. Using opcode sequences, researchers and analysts can acquire insights into the underlying operations 
of the application and detect potential security vulnerabilities or anomalous behaviour patterns.

DCGAN based model structure
In Fig. 3 illustrates that generator uses input in the form of 200-dimensional random noise and is built with 
convolutional layers, layers for up-sampling, fully connected layers, and processes for reshaping. The output from 
the generator is a 44-dimensional feature vector, with each dimension representing the occurrence frequency of 
a distinct opcode category.

OFOA module
The OFOA module is designed to determine the number of opcodes to be inserted and then integrated back into 
the APK, as shown in Fig. 4. It was crucial to process the generated data meticulously to ensure it conformed 
precisely to the specifications associated with the opcode distribution characteristic of the Data Transformation 
Post-Generation Process. To eliminate negative values, an absolute operation is applied to the generated vectors. 
For cost-effective modifications, vectors exhibiting infeasible distributions are removed. Subsequently, the 
remaining vectors undergo normalization, culminating in the formation of a feature database. It was crucial 
to conduct comprehensive back-end data execution on the created data to ensure that the distribution of 
operation code features strictly adhered to the required specifications. This meticulous data processing involved 
intricate adjustments and manipulations to align the opcode distribution features with the desired standards and 
constraints. By processing the data on the back end, we meticulously tailored the opcode distribution features to 
precisely meet the specified requirements, ensuring accuracy and compliance with the desired criteria.

Fig. 3.  Key model components: generator and discriminator.
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Algorithm 1.  Procedure for Modifying Generated Data

The deconstruction of malware is a crucial initial phase in the AOFA (Android Opcode Frequency Analysis) 
module, intended to extract vital characteristics from Android malware specimens. This procedure entails 
transforming the executable code of the malware into a human-readable format by deconstructing it into Dalvik 
bytecode. The retrieved bytecode comprises opcodes and other essential attributes, offering significant insights 
into the malware’s behaviour and operation. Through the analysis of opcode sequences and their frequency, the 
module can gain insights into the fundamental operations of the virus. The program concurrently extracts benign 
features from an established feature library to ascertain a comparative baseline. These innocuous characteristics 
signify standard application behaviour and are crucial for differentiating between authentic and possibly 
harmful acts. Comparing benign and malware characteristics facilitates the detection of behavioural differences 
that may signify harmful activiy Upon acquisition of both malware and benign properties, the module executes 
comparative calculations to assess their similarities and discrepancies. Metrics like Jaccard similarity and cosine 
similarity are used to assess the overlap or divergence of feature sets. These calculations assist in identifying 
variations from typical behaviour, which frequently signify suspicious or harmful activities. The AOFA module 
employs a systematic analysis to facilitate malware identification by concentrating on opcode-level behaviour. 
Opcode insertion is a crucial procedure in obfuscating Android malware, aimed at adding complexity to the 
executable code while maintaining its functionality.

Fig. 4.  OFOA: feature processing, correction, insertion.
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Algorithm 2.  Procedure for Selecting Features via OFOA

Upon recognizing substantial disparities between malware and benign apps, the module readies itself to 
strategically incorporate more opcodes into the malware’s opcode sequences. The meticulous choice of insertion 
places guarantees that the supplementary opcodes obfuscate detection mechanisms while maintaining the 
functional integrity of the malware. The opcode insertion function is employed, systematically incorporating the 
chosen opcodes into the malware’s sequences. This function is intended to position the opcodes at strategically 
recognized areas established during the analysis step. The insertion procedure modifies the executable code’s 
structure by adding new layers of complexity, hence complicating the detection of malicious intent by static 
and dynamic analysis tools. By altering the code, the module efficiently readies the virus for obfuscation. Upon 
completion of the opcode insertion process, the module advances to reconstruct the malware into a new APK file. 
This phase guarantees that the obfuscated malware, now embedded with the inserted opcodes, is appropriately 
packed in a format suitable for deployment and execution on Android devices. Reconstructing the APK is an 
essential concluding step, as it ensures that the alterations do not compromise the malware’s operation and that 
the file is prepared for additional testing against detection systems. This method enables the concealed malware 
to circumvent detection systems while preserving its inherent functionality.

Target detection models
To thoroughly evaluate the efficacy of DOpGAN, the current method for improving malware detection, a set 
of four sophisticated malware detection systems, was used. These systems, characterised by their dependence 
on opcode distribution properties, encompass a wide range of machine learning and pattern recognition 
techniques. The comprehensive assessment procedure is depicted in Fig. 5 and involves the following specific 
detection frameworks:

CNN-based detector: This advanced detector uses Convolutional Neural Networks (CNNs) for feature 
extraction using one-dimensional convolutional layers. The employment of CNNs facilitates the automatic 
recognition of complex patterns in opcode distributions, demonstrating the detector’s sophisticated capacity to 
capture the subtle intricacies of malware signatures

Kaggle-RF detector: Originating from a highly regarded machine learning competition platform, this detector 
employs a Random Forest (RF) algorithm. Known for its ensemble learning technique, the Random Forest 
framework combines multiple decision trees to improve classification accuracy and prevent overfitting, making 
it a robust choice for malware detection.

SVM-based detector: This detection system employs a support vector machine technique with a linear 
kernel function. Renowned for its efficacy in high-dimensional domains, SVMs excel in classification tasks by 
identifying and constructing an ideal separating hyperplane. This hyperplane differentiates between classes with 
the maximum achievable margin, enabling precise malware detection.

KNN-based detector: This detector uses the K-Neighbours Classifier from the Scikit-learn library, employing a 
straightforward yet successful methodology. The KNN-based detector identifies new instances by calculating the 
distance between sample points, identifies the nearest neighbours using majority voting among these neighbours, 
and offers a straightforward method for malware detection. Additionally, VirusTotal, which encompasses many 
malware detection techniques, was employed to evaluate the effects of DOpGAN.

Analysis and results
In this section, we assess the efficacy of our model by calculating and analysing its recall, precision, and accuracy 
metrics. We now show the experimental results for our proposed method. This empirical assessment forms the 
basis for drawing analytical conclusions about the effectiveness of our malware creation method.
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Implementation of proposed framework
The proposed framework consists of two main components: a Deep Convolutional GAN (DCGAN) and an 
Opcode Feature Alteration (OFOA) module. Initially, the DCGAN is employed to learn and generate faked 
benign APK opcode distribution features, which are then refined through the OFOA module by incorporating 
supplementary opcodes into the original APK before repackaging the file. The DCGAN model is trained using 
a 200-dimensional random noise vector as input, leveraging the Adam optimizer with a learning rate of 0.0002 
and beta1 set to 0.5. The generator employs ReLU and Tanh activation functions, while the discriminator utilizes 
Leaky ReLU. The training process, conducted on an AMD Ryzen 7 CPU with an NVIDIA RTX 3050Ti GPU 
and 16 GB of RAM, spans 200 epochs with a batch size of 64. Two discriminators are iteratively trained: one 
to distinguish between benign and malicious samples, and another to differentiate adversarial from regular 
examples. The evaluation of the framework involves multiple metrics, including Modification Success Rate 
(MSR), Average Success Rate (ASR), Amount of Opcode Insertions (AMC), and Concluded Success Rate (CSR), 
in addition to precision, recall, and F-score. Furthermore, dataset-specific details are incorporated to address 
potential biases, utilizing benign samples from the XiaoMi app store and malicious samples from the VirusShare 
database.

Opcode distribution feature generation module
The module assigned for producing opcode distribution features was developed by adapting a modified Deep 
Convolutional Generative Adversarial Network (DCGAN). This modified architecture uses random noise 
as input to produce synthetic characteristics of benign opcode distributions and their results. This approach 
entails complex neural network architectures designed specifically for generating features, enabling the correct 
depiction of benign opcode distributions.

OFOA module
The initial input consists of a disassembled malware file, which furnishes features such as opcodes and API calls. 
Using an “Opcode insert function,” these features are harnessed to construct novel, obfuscated malware variants, 
enhancing their resistance to detection. To ascertain the realism of the generated malware, a comparison is 
conducted with a “Feature library” containing known malicious samples. Once a satisfactory degree of similarity 
is achieved, opcodes are integrated, and the code is reconstructed into an APK file. Through disassembly, features 
are extracted from both the original and generated malware, facilitating the evaluation of their disparities.

Dataset
In this study, we utilized a comprehensive dataset to evaluate the performance of DOpGAN, ensuring a robust 
and representative evaluation of its capabilities in malware detection. The dataset comprises malware samples 
collected from three widely-used repositories, each contributing to the diversity and reliability of the dataset. 
The first source, VirusTotal, is a large-scale malware detection service that provides a wealth of labeled malware 
samples, facilitating extensive analysis of different malware variants. The second source, the Drebin dataset, 
serves as a benchmark for Android malware detection and includes over 5,000 malware samples, offering 

Fig. 5.  Attacking target detectors.
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valuable insight into the Android malware landscape. Lastly, the AndroZoo dataset, a continuously updated 
repository of Android applications, includes both benign and malicious APKs, further enriching the dataset 
with diverse real-world samples.

The dataset consists of 10,000 APK samples, categorized into two main classes: malicious and benign. The 
malicious samples account for 6500 APKs and are further divided into four malware families: Trojans (2,500 
samples), which inject malicious code into legitimate applications; Ransomware (1500 samples), which encrypts 
user data and demands payment for its release; Spyware (1500 samples), which monitors user activity and 
exfiltrates sensitive information; and Adware (1000 samples), which generates intrusive advertisements to 
monetize the application. The benign samples, totaling 3500, were collected from trusted sources, including the 
Google Play Store and F-Droid, ensuring a representative set of legitimate applications for comparison.

Evaluation method
In the DOpGAN dataset, all malware samples are solely designated for testing purposes. The samples are 
processed by DOpGAN prior to being reintegrated into target attack models for additional analysis. The 
assessment of the model includes four essential parameters. The evaluation metrics in the manuscript are 
designed to assess DOpGAN’s evasion performance. The percentage of malware samples that have been altered 
while still functioning is known as the Modification Success Rate, or MSR. The mean evasion success among 
classifiers is determined by the Average Success Rate (ASR). The alterations performed to guarantee that there 
are as few disruptions as possible for stealth are measured by the Amount of Opcode Modifications (AMC). MSR 
and ASR are used to create the Concluded Success Rate (CSR), which assesses overall evasion. The detection 
model’s performance is measured by precision, recall, and F1-score. We measured the time complexity of 
creating adversarial samples to gauge practical application, and DOpGAN achieved an efficient rate of 2.1 ms/
sample. Analysis of resource usage further demonstrated that DOpGAN works well on computers with moderate 
processing power, making practical implementation possible.

	
MSR = Samples successfully altered

Samples to be altered

	
ASR = Samples successfully evaded

Samples sent to detector

	
AMC = Opcode insertions

Samples amount × Categories

	 CSR = MSR × ASR

The study employed four detection models and conducted ten-fold cross-validation to evaluate the efficacy of 
evasion. The results are presented in Table 3. The findings indicate that each detection model effectively identifies 
malware, suggesting the attack system’s efficacy when a substantial fraction of modified malware is erroneously 
classified as benign APKs.

The Modification Success Rate is a measure that indicates DOpGAN’s effectiveness in altering malware 
across different sizes of benign feature databases. Secondly, the Average Success Rate offers insight into the 
probability of modified malware successfully circumventing detectors, assessing the system’s resilience. Thirdly, 
the Amount of Opcode implantation parameter measures the degree of implantation within the virus, providing 
critical insights into the level of manipulation accomplished by DOpGAN. Finally, the Concluded Success Rate 
encompasses the ultimate evasion success rate of DOpGAN across several detection systems, indicating its 
overall efficacy.

Furthermore, the assessment is augmented using metrics like Precision, Recall, F-score, and False Negative 
Rate, providing a comprehensive analysis of the model’s performance and efficacy.

The entirety of the test dataset, comprising 5017 malware samples, is submitted to DOpGAN for alteration. 
The Modification Success Rate is recorded in Table 4. The modified AndrOpGAN APK samples are subsequently 
forwarded to detectors for analysis. The resulting Evasion Success Rate is displayed in Table 5. The comprehensive 
evaluation of 5017 malware samples through the lens of DOpGAN modification and subsequent detector analysis 
yields profound insights into the adaptive capabilities of modern malware against defensive mechanisms. The 
modification success rates, as captured in Table 4, demonstrate a remarkable progression, with the success rate 
escalating significantly alongside the increase in database size, ultimately achieving a perfect success rate of 
100% for databases sized at 10,000 samples and beyond. Further analysis of the modified AndrOpGAN APK 
samples against various detectors unveils nuanced evasion capabilities, as detailed in Table 5

Model Precision (%) Recall (%) FNR (%) F-score (%)

CNN 0.9696 0.9697 0.0303 0.9698

Kaggle-RF 0.9983 0.9928 0.0072 0.9956

KNN 0.9774 0.9881 0.0116 0.9830

SVM 0.8632 0.9907 0.0102 0.9224

Table 3.  Rates of evasion.
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Here, the evasion success rates exhibit a marked increase with the expansion of the dataset, peaking at a 
100% evasion rate for databases with 10,000 to 13,000 samples across multiple detection models, including 
MSR, KNN, SVM, Kaggle-RF, and CNN. This indicates a high degree of adaptability and sophistication in the 
modified samples, enabling them to circumvent traditional detection mechanisms with considerable success. 
The modified DOpGAN APK samples are forwarded to detectors for analysis. The resulting Evasion Success 
Rate is displayed in Table 6. This analysis of DOpGAN-modified APK samples showcases even more striking 
evasion success rates, with nearly all models achieving or approaching a 100% evasion rate for database sizes 
of 3,000 samples and upwards. This underscores the potent challenge that such modified malware presents to 
current detection frameworks, highlighting the urgent need for cybersecurity measures to counteract advanced 
threats effectively.

In Fig. 6, the Modified Success Rate is presented across varying dataset sizes. The figure illustrates the success 
rates with different detection models, demonstrating the beneficial impact of dataset size on the evasion success 
rate.

In Fig. 7 Comparison of Evasion Success Rates with AndrOpGAN. With the continual expansion of the size 
of the database, the bypassing success rates for numerous systems are observed to increase.

In Fig. 8 Comparison of Evasion Success Rates with DOpGAN. With the continual expansion of the size of 
database, the bypassing success rates for numerous models are observed to increase.

In our endeavor to thoroughly comprehend the superiority of DOpGAN over AndrOpGAN, we delve into the 
intricacies of their respective training methodologies. It is imperative to recall that the success of an attack method 
hinges on its ability to achieve two pivotal objectives: breaching firewalls and outwitting malware detectors. 
Upon closer scrutiny, a distinct disparity emerges between AndrOpGAN and DOpGAN. AndrOpGAN, it 

Size of database MSR (%) KNN (%) SVM (%) Kaggle-RF (%) CNN (%) CSR (%)

1000 37.43 99.99 100.00 99.83 100.00 18.69

3000 60.76 100.00 100.00 99.42 99.88 30.08

5000 93.02 99.92 100.00 100.00 100.00 46.15

7000 95.74 99.73 100.00 99.96 100.00 47.67

9000 99.88 99.80 100.00 98.83 99.94 49.47

10000 100.00 99.24 100.00 98.18 100.00 49.81

11000 100.00 99.85 100.00 99.37 100.00 49.59

13000 100.00 99.96 100.00 98.58 100.00 49.84

Table 6.  Rates of evasion.

 

Size of database MSR (%) KNN (%) SVM (%) Kaggle-RF (%) CNN (%) CSR (%)

1000 37.48 58.93 28.19 47.82 64.87 37.34

3000 60.78 59.00 28.19 47.43 63.89 60.63

5000 93.08 58.97 27.69 48.00 64.00 93.00

7000 95.74 58.72 28.70 47.38 64.00 95.71

9000 99.76 58.44 28.48 47.20 62.90 99.25

10000 100.00 59.29 28.00 48.12 64.10 99.35

11000 100.00 58.87 27.53 48.22 64.50 93.59

13000 100.00 58.95 28.00 48.54 64.00 99.47

Table 5.  Rates of evasion.

 

Database size Altered success number Altered success rate (%)

1000 1873 37.21

3000 3045 60.78

5000 4663 93.06

7000 4809 95.72

9000 5015 99.83

10000 5011 100.00

11000 5013 100.00

13000 5010 100.00

Table 4.  Altering success rates.
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Fig. 8.  Modify success rate.

 

Fig. 7.  Success rate.

 

Fig. 6.  Modify success rate.
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appears, tends to concentrate on fulfilling one objective at the expense of the other. This becomes apparent when 
we analyze the outcomes of AndrOpGAN when applied to detectors, as depicted in Fig. 6.

Upon scrutinizing the examples generated by AndrOpGAN, a discernible pattern emerges: many of these 
examples indeed manage to deceive the adversarial example detector, but they are just as swiftly identified by the 
malware detector. Consequently, it becomes evident that AndrOpGAN struggles when confronted with the task 
of simultaneously addressing both objectives. This characteristic renders AndrOpGAN more suitable for single-
objective tasks where the focus is more specialized.

In stark contrast, DOpGAN showcases a remarkable ability to adeptly handle these dual objectives and strike 
a balance between them. To provide clarity, we present the results of DOpGAN when applied to detectors in 
Fig. 8. Here, the majority of the generated examples exhibit the remarkable ability to evade detection from both 
adversarial example detectors and malware detectors. The superiority of DOpGAN over AndrOpGAN can be 
attributed to a pivotal design choice - the incorporation of two Discriminators. This strategic inclusion acts as a 
potent motivator for the Generator, pushing it to tackle both objectives simultaneously throughout the rigorous 
training process.

State-of-the-art comparison of android malware detection methods
A dual-objective GAN model called DOpGAN was created to avoid adversarial example and malware detection. 
With a low false positive rate of 4.8% and a high evasion success rate of 95.4%, it is an extremely powerful tool 
for detecting hostile malware. MalGAN36, a black-box evasion model, by contrast, has a 92.3% success rate but 
a little lower detection accuracy. Though it has a slower real-time feasibility and a higher false positive rate of 
12.7%, Defensive Distillation uses knowledge distillation for robust models.

Models are retrained using adversarial examples in Adversarial Training, which provides balanced 
performance but still has slower processing times and 10.4% false positives. Optimization-based adversarial 
detection is used in recent techniques such as PAD40, which achieve 90.9% detection accuracy with enhanced 
real-time feasibility of 2.5 milliseconds per sample. MalPurifier41 maintains evasion success at 90.9% while 
improving detection accuracy to 92.0%. Graph-based models are the focus of BagAmmo14, which achieves 
87.0% evasion success and 85.0% detection accuracy.

AndrOpGAN, while effective in altering opcode distributions, focuses on evading static malware detectors. 
However, it often fails when faced with adversarial example detectors, as it lacks a dual-objective design. In 
contrast, DOpGAN integrates a dual-discriminator architecture, allowing it to effectively target both malware 
detection systems and adversarial example detectors. This makes it significantly more robust in real-world 
applications. Alos, Despite its dual-discriminator framework, DOpGAN achieves comparable computational 
efficiency to AndrOpGAN by leveraging an optimized DCGAN structure and the Adam optimizer with an 
adaptive learning rate. Training on a database of 13,000 samples, DOpGAN demonstrates efficient convergence 
within 200 epochs, highlighting its feasibility for large-scale applications. Furthermore, DOpGAN is designed to 
handle large datasets without performance degradation. For instance, it maintains a consistent evasion success 
rate of nearly 100% even with datasets exceeding 10,000 samples. Its Opcode Feature Optimization Algorithm 
(OFOA) dynamically adjusts opcode modifications, ensuring adaptability across varying dataset sizes and 
complexities.

Ethical implications of evasive malware generation
The framework is designed to enhance malware detection by generating adversarial examples, we acknowledge 
the potential misuse of such techniques by attackers. To mitigate this risk, all experiments were conducted in 
isolated environments, and the generated adversarial APKs are intended solely for retraining and improving 
malware detection systems. The results are shared exclusively for academic and research purposes to ensure 
responsible usage. Furthermore, we emphasize the importance of collaborating with industry stakeholders to 
align defensive advancements with emerging adversarial threats. By leveraging adversarial samples to identify 
vulnerabilities in existing systems, we aim to strengthen the resilience of malware detection frameworks.

Discussion, limitations, and future work
This study illustrates how adversarial instances produced by DOpGAN might avoid detection and draws attention 
to flaws in malware detection systems. The work addresses how these hostile examples can reinforce defensive 
mechanisms by retraining current detection models, enhancing their capacity to recognize comparable evasive 
attempts, even when the focus is on evasion strategies. The scalability and resource requirements of DOpGAN 
were extensively examined in relation to real-world application. Datasets of different sizes were used to test the 

Defense method Evasion success rate (%) Detection accuracy (%) False positive rate (%) Real-time feasibility (ms/sample)

DOpGAN (Proposed) 95.4 89.6 4.8 2.1

MalGAN36 92.3 86.2 6.1 2.8

Defensive distillation42 85.1 78.3 12.7 3.5

PAD40 83.5 90.9 5.2 2.5

MalPurifier41 90.9 92.0 4.5 2.3

BagAmmo14 87.0 85.0 7.0 2.7

Table 7.  Comparison of android malware detection methods.
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system, and Tables 4, 5, and 6 present performance parameters including false positives, detection accuracy, and 
evasion success rates. These findings demonstrate that DOpGAN continues to perform well even when dealing 
with bigger datasets. To further elucidate DOpGAN’s viability in practical settings, the book now includes the 
resource needs for training and deploying the system. lthough DOpGAN is good at avoiding static analysis by 
adjusting opcode distributions, it is not as effective against systems that use dynamic information, such execution 
traces and API call sequences, which are not the focus of DOpGAN’s current methodology. This is a result of the 
generator’s emphasis on static features rather than runtime behavior. To increase resistance to hybrid detection, 
future updates can incorporate behavior simulation into the adversarial example generation procedure.

Moreover, DOpGAN can handle larger datasets while still performing well, it trumps AndrOpGAN in terms 
of scalability. Even while AndrOpGAN is good at avoiding conventional malware detectors, its versatility to 
various dataset sizes is limited by the fact that it is made for single-objective tasks. On the other hand, DOpGAN 
has a dual-discriminator design that, even with growing datasets, strikes a balance between evasion for both 
malware and hostile example detectors. Table 4 demonstrates that DOpGAN outperforms AndrOpGAN in terms 
of evasion success rates on datasets with 10,000–13,000 samples, achieving nearly 100% success rates. To avoid 
detection without compromising scalability, DOpGAN’s design dynamically modifies opcode distributions by 
utilizing the Opcode Feature Optimization Algorithm (OFOA). These findings show that DOpGAN is more 
appropriate for practical uses involving huge datasets, guaranteeing excellent effectiveness and versatility.

Extension to other platforms and attack types
DOpGAN can be extended to different platforms, including Windows or Linux-based systems, by changing the 
feature extraction and generating procedures to conform to platform-specific requirements. For instance, the 
framework might target control-flow graphs or API call sequences frequently utilized in malware detection for 
other platforms rather than opcode manipulation.

Furthermore, the dual-objective architecture of DOpGAN can be modified to accommodate various attack 
types, such circumventing spam detection systems by changing email text or avoiding network intrusion 
detection systems (NIDS) by changing network traffic patterns.

Use of transformer models
We recognize that transformer-based systems have demonstrated remarkable efficacy across a range of fields, 
including as virus detection and natural language processing. By utilizing their contextual knowledge of opcode 
sequences and API call patterns, transformer models like BERT or comparable variations could improve 
DOpGAN’s capacity to produce adversarial samples.

Conclusion
DOpGAN presents a novel grey-box attack strategy that effectively alters opcode distribution features, enabling 
malware to bypass advanced Android malware detection systems. By generating adversarial examples that are 
misclassified as benign, DOpGAN showcases its ability to evade traditional detection mechanisms, posing a 
significant challenge to contemporary mobile security frameworks. This highlights the importance of integrating 
defensive strategies, such as adversarial example detection systems, to enhance the resilience of Android 
platforms against increasingly sophisticated threats. The evaluation of DOpGAN using multiple classification 
models and VirusTotal demonstrates its capacity to evade detection at a concerning rate, underscoring the 
vulnerability of current systems. However, the adversarial APKs generated by DOpGAN offer a valuable 
resource for retraining detectors, strengthening their ability to identify and counteract this class of malware. This 
continuous improvement of detection systems is vital in ensuring the long-term security of Android platforms 
as new and evolving threats emerge.

While DOpGAN demonstrates high evasion success against static feature-based detectors, its reliance 
on specific datasets, such as VirusShare for malware and XiaoMi for benign samples, may introduce biases, 
potentially limiting the generalizability of the results. The feature distributions in these datasets may not fully 
reflect real-world scenarios, necessitating future evaluations with diverse datasets like AndroZoo and Google 
Play Store. Additionally, integrating hybrid static-dynamic datasets and real-time behavioral analysis will provide 
a more comprehensive assessment of DOpGAN’s effectiveness against advanced detection systems employing 
behavioral analysis, hybrid methodologies, or ensemble approaches. These future directions will enhance the 
framework’s applicability in practical cybersecurity environments.

Data availability
The data produced or analysed in this study can be obtained from the corresponding author upon a reasonable 
request.
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