www.nature.com/scientificreports

scientific reports

OPEN

W) Check for updates

GEAAD: generating evasive
adversarial attacks against android
malware defense

Naveed Ahmad®>*?, Amjad Saleem Rana?"“, Hassan Jalil Hadi*%*, Faisal Bashir Hussain?,
Prasun Chakrabarti?, Mohammed Ali Alshara? & Tulika Chakrabarti*

Owing to the proliferation of mobile devices, Google’s Android operating system has become

a dominant force in global communication. However, its popularity makes it a prime target for
cyberattacks. Effective malware detection systems are crucial for combating these escalating threats,
particularly amid the evolving use of adversarial examples to evade detection. These systems employ
static and dynamic analysis methodologies with machine learning, particularly Generative Adversarial
Networks (GANs), which play a key role. The Android Opcode Modification GAN enhances malware
detection by intelligently modifying opcode distribution features using the Opcode Frequency
Optimal Adjustment algorithm. Despite its effectiveness, the dual-opponent generative adversarial
network (DOpGAN) introduces a grey-box attack strategy that misclassifies generated examples as
benign, significantly evading detection. DOpGAN operates by altering opcode distribution features
during the generation and insertion process, making it particularly challenging for detection systems
to classify correctly. The adversarial examples generated by DOpGAN highlight the critical need

to integrate defensive measures such as adversarial example detection systems into the Android
security framework. Beyond evasion, these adversarial examples provide invaluable opportunities
for retraining and improving malware detection systems, thereby ensuring their resilience against
emerging threats. The findings underscore the broader need for continuous innovation in Android
security mechanisms, fostering collaboration between academia and industry to protect users and
systems in an ever-evolving mobile security landscape.

Keywords Android malware detection, AndrOpGAN, GAN, DOpGAN, Grey-box attack strategy

The pervasive use of handheld devices establishes them as the primary global communication medium,
emphasizing the importance of the Android operating system (OS) as the leading OS'. However, this popularity
also makes Android a prime target for cyber-attacks, with various mobile security breaches impacting the
operating system?. As threats increase, the security of the Android operating system becomes predominant®.
Highly effective malware detection systems are typically used to strengthen security infrastructure?. As cyber
threats become increasingly sophisticated, these systems are playing a critical role in determining the nature of
potentially malicious applications.

Recent developments have revealed a trend where adversarial examples are strategically used to deceive
Android malware detectors® highlighting the need for advanced security measures. The framework for analyzing
and addressing these threats is generally divided into two main approaches: static analysis® and dynamic
analysis’. A static analysis examines the code without running it, making it possible to evaluate whether it is
safe or harmful. Conversely, dynamic analysis requires running the code in a protected environment, which
facilitates consideration of its behavior in real time to make well-informed judgments.

Adversarial examples, characterized by their adeptness in evading handheld security systems, pose
formidable challenges for traditional detection methods® regarding accuracy and efficiency. In response to these
challenges, machine learning methods® have gained prominence, with Generative Adversarial Networks (GAN)
emerging as powerful tools. Proposed by Goodfellow in 2014!%, GAN excels in learning the distribution of target
datasets, presenting the potential to generate adversarial features for Android Application Packages (APK).

Prince Sultan University, Riyadh, Saudi Arabia. 2Department of Computer Science, Cyber Reconnaissance and
Combat Center, Bahria University Islamabad, Islamabad, Pakistan. 3Faculty of Computing and informatics, Sir
Padampat Singhania University, Udaipur, Rajasthan, India. “Faculty of Applied Sciences, Sir Padampat Singhania
University, Udaipur, Rajasthan, India. °Naveed Ahmed and Hassan Jalil Hadi contributed equally to this work.
*email: nahmed@psu.edu.sa; amjadsaleemranas4@gmail.com

Scientific Reports| (2025) 15:11867 | https://doi.org/10.1038/s41598-025-96392-x nature portfolio

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-96392-x&domain=pdf&date_stamp=2025-5-2

www.nature.com/scientificreports/

Despite these advancements, the susceptibility of high-level feature modifications to detection using feature-
based detectors underscores the need for continuous innovation. In this context, Android Opcode Modification
GAN (AndrOpGAN)'! was introduced to execute evasion attacks by intelligently modifying the statistical
distributions of opcode features. This approach builds upon the foundation of DCGAN, originally designed for
image generation, to enhance the meaningful generation of opcode distributions.

Additionally, to ensure accuracy in both syntax and meaning when altering features, the proposal includes an
Opcode Frequency Optimal Adjustment (OFOA) algorithm module. This module adds a layer of sophistication
to the malware detection framework, enhancing the system’s ability to distinguish between benign and malicious
codes. Although AndrOpGAN exhibits high efficacy in evading opcode distribution-based detectors, its
vulnerability to detectors, especially those capable of capturing adversarial examples, raises concerns about
its effectiveness. A large number of examples created by AndroOpGAN were stopped by the detection system
equipped with an adversarial example detector. To address this limitation, a dual-opponent generative adversarial
network (DOpGAN) has been presented. DOpGAN uses a generator and two discriminators simultaneously to
deceive both adversarial example detectors and traditional malware detectors, thereby significantly enhancing
its evasion capabilities. The complex realm of mobile device security requires ongoing innovation to remain
ahead of the constantly changing cyber threats. The convergence of machine learning, specifically through
Generative Adversarial Networks, exemplifies the dynamic nature of the security measures employed in the
Android ecosystem. The juxtaposition of static and dynamic analyses, combined with the sophistication of
adversarial examples and the resilience of advanced detection mechanisms, provides a comprehensive picture of
the ongoing battle to safeguard the Android operating system against malicious intrusions. Moreover, existing
Android malware detection techniques, including ML-based models, remain vulnerable to GAN-generated
adversarial malware, which systematically alters the opcode distributions to evade detection. However, prior
research lacks a detailed investigation of opcode-level adversarial modifications, their evasion success rates, and
their impact on real-world detection systems. Additionally, existing works primarily focus on the image and text
domains, with limited exploration of GAN-driven evasion in Android security. To bridge this gap, our study
presents a novel opcode-based adversarial attack framework that systematically evaluates its effectiveness against
ML-based detection, and proposes mitigation strategies. However, this study focuses on developing a robust
framework for generating synthetic malware through Generative Adversarial Networks. The goal is to craft
malware variations capable of bypassing current machine learning detection models for Android malware and
enduring the analysis of conventional Android Firewalls. This study makes several noteworthy contributions
including the following:

« The generated malware must be executable, and any modifications introduced in Android malware applica-
tions for evasion should not compromise the original attack.

+ Develop a Duel Objective GAN model for operation code distribution obfuscation, targeting evasion of An-
droid malware detection systems and adversarial example detector.

o The resulting malware variants produced through GANs should possess the capability to circumvent mul-
ti-feature ML models utilized in malware detection, including features related to the operation codes.

The remainder of this paper is organized into five sections. Section “Related work” I discusses related work
on malware detection. Section “Proposed framework for evasive adversarial attack against android malware
defense” presents the proposed framework for evasive adversarial attacks against Android malware. Section
“Analysis and results” highlights the results and discussion. It also includes a performance comparison of the
proposed GEAAD. The final section presents our conclusions.

Related work

In this ever-evolving technological landscape, dedicated organisations work continuously to strengthen
cyberattack defence while parallel to them just as dynamic and powerful malicious threat actors - advanced
attackers. Cybersecurity professionals are constantly evolving their countermeasures while adversaries mimic
and work to circumvent them. The continued arms race between protectors and attackers is how sophisticated
cyber threats have become in the digital world. The quest for successful cyberattack prevention strategies has
fuelled the invention and implementation of advanced technologies. Attackers are creative as they consistently
evolve and develop new ways to modify their methods, whereas lots of the regular security mechanisms seem
unable to keep up. The stakes of this arms race mean that cybersecurity policymaking needs to constantly evolve
and be agile in looking for new vectors of attacks. This adversarial learning includes the implementation of
Generative Adversarial Networks (GANs) IE; an example of that by an adversary.

Evasion attacks may not be as effective in the Android domain as they have been in the Windows domain
because their manipulations may not be suitable for changing Android malware programs in a way that can
fool current Android malware detectors. To predict potential evasion attacks, numerous research have been
conducted in the past few years to produce AEs in the Android environment. The threat models that the
researchers took into consideration are shown in Table 1. It should be noted that when classifying studies under
the ZK setting, adversaries should not only be unable to access the specifics of the target model, but also not have
any preconceived notions about it (such as the kinds of features that detectors use). Like, Croce et al.!? presented
Sparse-RS, a query-based attack that produced AEs through a random search technique, to investigate feature-
space AEs. Reinforcement learning was used by Rathore et al.!’ to create AEs that tricked Android malware
scanners. To assess their protection tactics, Chen et al.l* used several feature-based attacks, such as brute-force
attacks. A white-box attack was provided by Demontis et al.'® to disrupt Android malware app feature vectors
with respect to the key aspects that influence malware classification. Further, to improve ML-based malware
detectors, Liu et al.!® presented an automated testing framework built on a Genetic Algorithm (GA). Based on the

Scientific Reports |

(2025) 15:11867 | https://doi.org/10.1038/s41598-025-96392-x nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Evasion

capacity
Year | Refs. | Model features Attack method (%) Evasion against
2021 |° Generator, attacker and discriminator base model Semi (Black/White) | 99 Android malware detector
2021 | % Generative adversarial network (GAN) to refine generation of adversarial examples | Semi (Black/White) | 98 Android malware detector
2020 | Adversarial-example attack method based on bi-objective GAN Black box 95.02 Android malware detector

and firewall

2020 | % Generate adversarial examples by using any random noise Semi (Black/White) | 99 Android malware detector
2020 | %7 The intrinsic non-linear structure to generate adversarial examples White box 90 Android malware detector
2019 | %8 Dynamically train distilled model with query information Semi (Black/White) | 92.76 Android malware detector
2019 | ¥ Produces query-specific perturbation for query images to form adversarial queries | White box 100 Android malware detector
2017 | % Focuses on the functionality of the substitute detector Black box 95.64 Android malware detector

Table 1. Summary of GAN-based methods for generating adversarial examples.

simulated annealing process, Xu et al.'” suggested a semi-black-box attack that modifies Android app features.
Since they don't demonstrate how real-world applications may be recreated using feature-space perturbations,
the aforementioned attacks appear to be unfeasible!®.

Besides, Grosse et al.!” altered the Android Manifest files according to the feature-space perturbations in
order to study problem-space manipulations. A similar strategy was employed by Berger et al.2%; however,'
considered both Dalvik bytecodes and Manifest files of Android apps in their techniques of modification. To
produce AEs utilizing a substitution model based on permissions and API call features, Zhang et al.!® presented
an adversarial assault named ShadowDroid. Next, GenDroid, a query-based attack that used GA by including
an evolutionary strategy based on Gaussian Process Regression, was first presented by'®. Because the generated
AEs may not meet all of the conditions in the issue space (e.g., plausibility and robustness to preprocessing) the
viability of these attacks is therefore called into question. For example, found that five of ten validated modified
apps were unable to function properly.

Generative Adversarial Networks (GANS), which were originally crafted for the better good in the field of
machinelearning have been twisted and turned by malefic developers to break various constructs of cybersecurity.

These sophisticated algorithms are incredibly efficient at generating lifelike copies of data, enabling malicious
actors to produce falsified content which can bypass traditional security mechanisms. The perpetrators use
GAN:Ss in attacks, showing the potential to exploit advanced technologies made to improve cyber security. The
nature of this phenomenon, collision between technology and cyber dangers, also demands a thorough multi-
disciplinary conversation between Computer Science, Ethics and Policy researchers to elucidate the extent of
challenges that come into play. Static and dynamic analysis: As mentioned in the first part, static and dynamic
analysis are 2 most common used methodologies to detect Android malware.

Android, based on Linux, is an open-source operating system that can lead to a favourable gesture for making
it an everyday smartphone, which abounds in markets today. Therefore, the surge in the use of Android-based
smartphones has made them a suitable and tempting target for malware distributors and prompt mechanisms are
required which can perform fast detection of Android malware. A new method for Android malware detection
is the genetic algorithm (GA) used in this study to select the features?!. This study evaluates the performance
of three different classifier algorithms, using feature subsets detected by the GA to detect and analyse Android
malware. Support Vector Machines (SVM) and Genetic Algorithms (GA), when used together with a selected
set of 16 permissions, had the highest accuracy of 98.45%. The research study had a dataset of 1740 samples
with 1119 malware samples and 621 non-malicious ones. The increasing prevalence of Android malware
necessitates efficient analysis methods??. Familial analysis, which identifies commonalities within malware
families, is promising but suffers from limitations such as low accuracy, inefliciency, and dependence on labelled
data. To address these issues, this paper introduces SRA, an innovative characteristic that captures analogy
relationships between “Framework Tasks” of reactive API calls within subgraphs. This transformation simplifies
the complex graph matching into a faster, vector-based similarity calculation. GefDroid employs unsupervised
learning techniques to analyse malware families. It builds a network of malware connections using SRAs and
applies community detection algorithms to categorise unlabelled specimens. GefDroid outperforms existing
approaches in accuracy and efficiency, achieving high agreement with ground truth across various datasets
(0.707-0.883 NMI). Additionally, GefDroid exhibits significant speed improvements, analysing a sample in
around 8.6 s on average with minimal runtime overhead. To sum up, SRA successfully identifies similarities,
and GefDroid outperforms in malware family analysis on Android platforms through unsupervised learning,
marking a notable improvement upon current approaches.

Moreover, this study® introduces a technique for identifying Android malware using deep learning, leveraging
information gathered from instruction call graphs. By ensuring a balanced dataset, this method scrutinises every
possible execution route to better differentiate between safe and harmful paths using deep neural networks.
With no readily available pre-trained models, we start training networks from the ground up, fine-tuning the
parameters through grid search. When tested on an evenly distributed dataset comprising 24,650 malware and
25,000 non-malware samples, this technique reaches an accuracy of 91.42% and an F-measure of 91.91%. It
undergoes a comparative evaluation with standard classifiers, analysing various parameters, statistical measures,
and execution times. The approach overcomes obstacles found in static and dynamic analysis by introducing a
deep learning framework that incorporates convolution over sequences of opcodes.

Scientific Reports |

(2025) 15:11867 | https://doi.org/10.1038/s41598-025-96392-x nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Recent findings underscore the vulnerability of existing Android malware detection systems to (GAN) based
adversarial example attacks. While deploying a firewall as an adversarial example detector has proven effective
in countering such threats, a novel bi-objective GAN-based adversarial example attack has emerged as a potent
method that breaks through firewall-equipped Android malware detection systems with an impressive success
rate exceeding 95%?!. This method surpasses the modern approach by a remarkable gap of 247.68%. Integrating
a firewall significantly enhances the capture rate of adversarial examples when using an Android malware
detection system. However, in response to this, new black-box adversarial attack techniques have been proposed,
demonstrating their efficacy as over 95% of its generated adversarial examples evade detection and are falsely
classified as benign by the firewall-equipped system. This dynamic landscape underscores the constant interplay
between evolving attack strategies and the defensive measures implemented in cybersecurity.

This paper presents an innovative architecture called Attack Inspired Generative Adversarial Network (AI-
GAN)??, designed to mitigate the vulnerability of Deep Neural Networks (DNNs) to adversarial examples that
intentionally alter inputs, resulting in erroneous model predictions. Notwithstanding comprehensive research
on many attack strategies, creating nuanced yet potent adversarial samples is a challenging problem. The AI-
GAN combines a generator, discriminator, and attacker into a cohesive training framework, facilitating the
generation of adversarial alterations customized for various images and categories. AIGAN has shown its
capacity to achieve high effectiveness rates and significantly reduce generation time by testing benchmarks such
as MNIST and CIFAR-10 compared to earlier methods. Notably, it maintains its efficacy with more complex
datasets such as CIFAR-100, attaining an approximate success rate of 90% across several categories. AI-GAN
takes all three basic components and trains them concurrently, thereby speeding up the malicious example-
creation process and providing better operational efficiency while still maintaining picture fidelity. AI-GAN
offers better performance than prior methods in most circumstances evaluated to date, including scenarios
with defenses and natural white-box settings. The new paradigm and objectives in training AI-GAN represent
significant progress in solving the problem caused by friendly fire adversarial examples in deep neural networks.

A recent study also highlighted the vulnerability of deep-learning models used in Synthetic Aperture Radar
Automatic Target Recognition (SAR-ATR) to adversarial example attacks. These manipulated inputs introduce
misclassification in Convolutional Neural Network (CNN) systems by introducing minor perturbations in
SAR images. State-of-the-art optimization-based attacks minimize reconstruction errors using soft adversarial
examples with weak, blurred scatters, and softened target edges. We propose an architecture that pairs a UNet
with a small Generative Adversarial Network (GAN) to produce more potent adversarial examples for Synthetic
Aperture Radar automatic target recognition (SAR-ATR) systems. The UNet model is employed for feature
separation and adversarial sample generation. The GAN module ensures that they are similar to authentic
SAR imaging with clear edges and strong weak scattering, which contributes to its effectiveness. Testing has
shown this to work for defeating capable Convolutional Neural Network (CNN)-based SAR-ATR systems on
real ground-vehicle SAR datasets. Attack-UNet-GAN generated adversarial instances that appeared as normal
images but were misclassified by a pre-trained CNN. Thereby, the non-human-like attack signal is embedded into
an image while maintaining the introduced human similarity modifications without requiring further iterative
optimization changes. A discriminator in the architecture ensures that adversarial samples respect pertinent
SAR image features and thus enhance their deceiving capability, as they make them conducive to highlighting
the target edge and weak scattering centers. Future research can examine black-box attack methods in practical
scenarios where there is no information regarding the unknown SAR-ATR model distribution. Such a study
may help form a universal attack method*® if the transferability of adversarial cases can be studied among SAR-
ATR models from different companies. The emergence of machine learning in malware detection has initiated
cat-and-mouse dynamics, with attackers continuously devising strategies to circumvent these advancing
algorithms. Confronted with the obstacles presented by the impenetrable characteristics of machine-learning
models in malware detection, attackers frequently employ black-box tactics to compromise these systems?. This
paper presents MalGAN, a novel method that employs a Generative Adversarial Network (GAN) to generate
adversarial malware samples that evade detection using black-box machine learning methods. MalGAN uses a
surrogate detector to replicate the behavior of the target system, whereas its generative component is trained to
minimize the probability of its samples being identified as malicious.

Furthermore, the rapid advancement of adversarial machine learning has spurred the development of various
attack methods that traditionally rely on neighborhood searches of images to create adversarial samples?. Since
2017, generative models have been integrated into these attacks, typically focusing on creating adversarial
perturbations from the input noise or an initial image. However, these approaches limit the output to resemble
the initial input closely. This paper proposes Adversarial Transfer on Generative Adversarial Net (AT-GAN), a
novel generation-based attack method. AT-GAN trains a generative model capable of producing diverse and
realistic adversarial examples from the input noise. This avoids the limitations of previous approaches in which
the output is constrained by the initial input. Tests reveal that the AT-GAN outperforms attacking models
trained to resist such threats, highlighting its superior effectiveness and efficiency. Notably, our findings suggest
that adversarial training, a common defense method based on a perturbation-based adversarial sample, might
not ensure robustness against a non-constrained adversarial sample because of the broader diversity captured
by AT-GAN in adversarial sample distribution deep neural networks!®. They are susceptible to adversarial
examples created by adding small perturbations to the inputs, leading to misleading results. Despite the various
proposed attack strategies, achieving high-quality and efficient adversarial examples remains a challenge. This
study introduces AdvGAN, which determines a GAN to create adversarial examples by learning the underlying
characteristics of real data. Once trained, the AdvGAN generator efficiently produces perturbations for any
instance, potentially accelerating adversarial training as a defense. AdvGAN demonstrates effectiveness in semi-
white-box and black-box attack contexts, delivering superior performance against leading defense mechanisms
compared to alternate strategies. Significantly, AdvGAN achieved the highest rank by securing a 92.76% success

Scientific Reports |

(2025) 15:11867 | https://doi.org/10.1038/s41598-025-96392-x nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

rate in a widely recognized MNIST black-box attack competition. This achievement underscores AdvGAN’s
potential as a valuable tool for enhancing defence strategies through adversarial training, showcasing its ability
to craft adversarial examples efficiently across various attack scenarios.

In addition, the adversarial weakness of DNNs has been widely studied in image classification models;
however, little attention has been paid to its effect on image retrieval, as shown in Table 1. In this study, we
propose a new approach to fooling deep neural network DNN-based image search engines using Unsupervised
Adversarial Attacks with Generative Adversarial Networks (UAA-GAN). Unlike traditional techniques, UAA-
GAN is effective in unsupervised learning, requiring only a portion of the data to generate attacks. However, it
is centered on the generation of query-specific perturbations that lightly modify the input images to produce
their adversarial counterparts. The encoded modifications aim at effects that are barely noticeable to the human
viewer but remove certain positions of the image in the deep feature space, thereby failing a retrieval system
that relies heavily on this positional information. Diverse applications using deep learning features that can
witness UAA-GAN are based on image search, person re-identification (Re-ID), and facial recognition tasks.
Experiments show that UAAGAN can disrupt typical queries with no apparent alteration to an image. These
generated adversarial images are designed to introduce minimal noise by blending pixels with high information
content or intrinsic image characteristics (e.g., body parts or major patterns) regardless of where the area is
located on an image, which ensures that a texture-rich background can produce a higher difference between
them and their clean versions. This tactic is deceiving in image retrieval algorithms as the original appearance
of the image also remains intact, showing that UAA-GANs have the potential to deal with both objectiveness
and subjectiveness between machine perception and human vision. In this study, we comprehensively evaluate
the UAA-GAN method over multiple tasks and datasets, which demonstrates the effectiveness of UAA-GAN,
revealing its adversarial attack abilities and generalisability to different target models.

Moreover, the increasing sophistication of malware has led to significant advancements in adversarial
machine learning (AML), particularly in the domain of Android malware detection. Goodfellow et al.* first
introduced adversarial machine learning, highlighting how neural networks can be easily fooled by crafted
perturbations. Following this, Papernot et al.*®> demonstrated black-box adversarial attacks on deep learning
models, emphasizing the vulnerabilities of security-critical applications. Specifically, adversarial learning has
been applied in malware detection, with Hu and Tan* introducing MalGAN, one of the first GAN-based
adversarial malware generation models, which successfully bypassed traditional classifiers by modifying feature
representations. However, MalGAN operates in a black-box setting, limiting its ability to learn feature-level
modifications dynamically. To address this, Carlini and Wagner®” proposed stronger adversarial attacks for
cybersecurity systems, influencing the evolution of malware evasion techniques.

More recently, research has expanded to GAN-based adversarial attacks targeting Android malware
detectors. Li et al. introduced AdvGAN, a white-box adversarial malware generation framework that optimizes
perturbation generation for evading detection models®®. However, AdvGAN lacks adaptability when detectors
integrate adversarial training. They proposed a dual-optimization approach to improve evasion rates, but their
model is ineffective against adversarial example detectors®®. Unlike previous approaches, DOpGAN introduces
a grey-box learning framework that dynamically modifies opcode distributions while adapting to adversarial
detectors, making it significantly more effective in malware evasion.

Proposed framework for evasive adversarial attack against android malware
defense

In this study, we focused on dynamic malware analysis, in which applications are executed within controlled
environments such as virtual machines and sandboxes to prevent damage to actual machines, in contrast to
static analysis, which uses application features for quick and cost-effective malicious behavior identification.
Notably, static analysis via machine learning is prone to evasion, particularly by synthetic malware variants
generated using Generative Adversarial Networks (GANs). AndrOpGAN, employing a Deep Convolutional
GAN (DCGAN), effectively crafts adversarial examples to bypass various classifiers, such as SVM, K-NN, and
CNN, dramatically reducing their detection rates. However, its efficiency decreases in firewall-equipped systems
that detect adversarial input. To enhance evasion capabilities, we introduced DOpGAN, a dual-objective GAN
designed to circumvent malware detection systems and firewalls simultaneously, marking a pioneering effort in
advanced evasion techniques against Android security frameworks with firewall integration.

DOpGAN
DOpGAN operates as a grey-box model, meaning it can infer the type of features used in the detection system
by interacting with it. As shown in Fig. 1, the framework consists of two key components.

Grey-box model

The dual-opponent generative adversarial network (DOpGAN) infers the features used by target malware
detection systems using a grey-box model. The attacker in a gray-box attack does not have complete access to
the system’s core architecture, but they do have some understanding of its function, such as feature selection
or learning methods. By communicating with the target system to learn about the opcode distribution
characteristics, DOpGAN takes advantage of this incomplete knowledge and optimizes adversarial samples for
escape. The discriminator components of the DOpGAN, which are used in the feature inference process, can
learn the decision boundaries of the detection system. The generator generates hostile samples during training,
which are intended to be mistakenly identified as benign by adversarial example detection systems and malware
detectors. This iterative procedure aids DOpGAN in deducing the decision-making criteria of the detection
system by modifying the opcode distributions in response to the discriminator feedback.

Scientific Reports |

(2025) 15:11867 | https://doi.org/10.1038/s41598-025-96392-x nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Opcode Distribution Feature

| OFOA Module
Generation Module

Data set A Insert Moudle

v

Discriminator 1

vt

Generator Modified Calculation

tv

Discriminator 2

?

Data set B Feature Data Reshape

¥ t*

Benign Opcode Distribution Feature Library

Noise

Fig. 1. Architecture of DOp GAN.

SN | Operation code Class

1 if-aq, if-nb, if-mt, if-hg, if-it, if-1f, if-aqz, if-nbz, if-mtz, if-hgz, if-itz, if-1fz if

2 shift, shift/from16, shift/16, shift-vide, shift-vide/from16, shift-object, shift-object/from16, hift
shift-result, shift-result-vide, shift-result-object, shift-exception S

44 | rsum-int, rsum-int/lit8 rsub

Table 2. Operation code categories examples.

Operation code frequency feature

The Dalvik instruction set encompasses over 200 types of opcodes, yet numerous instructions exhibit similarities.
To streamline feature space dimensions for enhanced efficiency in detection, similar opcodes were grouped into
identical classes, resulting in a total of 44 classes in our study®, without consideration for data types and register
distinctions. Table 2 provides a listing of some opcode classes.

The opcode set A consists of 44 elements {a1, a2, as, . .., ass}, representing different types of opcodes for
each Android software sample x. The function ¢(x) computes a vector representing the normalized count of
each opcode type. The numerator of ¢(z) counts the occurrences of each opcode a in A within sample x. The
denominator sums the counts of all opcodes a in A for sample x, normalizing the counts. This leads to a vector
with 44 dimensions, each representing a unique opcode type, with their counts normalized. The function ¢(z)
maps x to a 44-dimensional vector.

a1 : shift,shift from16, shift 16,...
az: return-void, return, ...
a3 : const-16, const-14, const, . . .

¢(z) =

ass : if-af, if-mt, if-hg, if-gez, . ..
a4sa : add-int,add-long, add, ...

Each a; dimension in the resulting vector represents a specific opcode type from the opcode set A. The numerator
of ¢(z) counts the occurrences of each opcode type a in the opcode set A within sample x. The denominator
sums the counts of all opcodes a in the opcode set A for sample x, resulting in normalized counts. The ratio is
calculated as

count(z, a)gca

Y wea count(z, a)

¢(z) =

Scientific Reports| (2025) 15:11867 | https://doi.org/10.1038/s41598-025-96392-x nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Normalization ensures that the vector represents relative frequencies of opcode types rather than absolute counts.

Operation code distribution feature generation

The module responsible for generating opcode distribution features was developed using a modified DCGAN.
This adapted version of DCGAN uses random noise as its input and output features that mimic the distribution
of benign opcode characteristics.

Parameters for discriminator

It is very important to optimize when creating the discriminator for outputting opcode distribution features
around a variety of key details and things to consider, so let us improve this aspect as well. The input layer is
set up to match the opcode distribution feature dimensionality with opcode sequences represented as N-long
vectors. Therefore, the discriminator input dimension is simply the vector length that conforms to the sequence
representation.

The architecture starts with Convolutional Layers, which are necessary for obtaining the spatial hierarchies
present in the opcode sequences. The layers detect patterns of the opcode distribution; therefore, the number
of convolutional layers and the number of filters in each layer are important parameters to be optimized. It is
recommended to use different filter sizes to capture different granularities in the opcode sequences so that the
model can learn meaningful patterns at multiple scales. The rectified linear unit (ReLU) activation was used
at the convolutional layers to learn nonlinear functions and mitigate the vanishing gradient problem, which
helps in efficient learning. One method of avoiding problems such as the “dying ReLU” phenomenon is to use
the Leaky ReLU in which there is a small, non-zero output for inactive units so that learning can still take place
during back-propagation.

Pooling or striding is used to decrease the spatial dimension after the convolutional layers. In particular, max
pooling can be used to downsample feature maps, which allows the network to learn hierarchical features better.
Not only does pooling significantly reduce the computational complexity, but it also brings our transducer
one step closer to being translation-invariant. The discriminator output layer norms a single-node sigmoid.
This output node is meant to provide a probability score, quantifying the probability that the input opcode
distribution is real (as in real data) and not produced by the generator. The model uses the binary cross-entropy
loss function for measuring the distance between the true opcode distribution and predicted distribution so that
it would be trained to minimize the prediction error.

Therefore, to make this architecture efficient, we must select an optimizer that can work effectively with these
types of architectures. Optimizers: Adaptive optimizers work better; for example, Adam is very popular as it
works efficiently with default gradient descent and adapts the learning rate to speed up convergence. Moreover,
batch normalization was used after the convolutional layers to normalize each layer input with zero mean and
unit variance. The sole purpose of this third step is to stabilize the training process, but it actually has very good
side effects: it speeds up learning and enables a deeper network to be simply trained as if it were shallow.

Finally, the convolutional layers are followed by fully connected (dense) layers. The network is further
comprised by dense layers that can learn complex relations between the features extracted from the opcode
distribution. This allows the network to use information from all over the input sequence because any node can
communicate with every other node.

Parameters for generator

Setting up a generator to produce opcode distribution features involves many important decisions and
adjustments designed to ensure the network effectively learns the relationship between random noise input
and sequences of interest in opcode distribution. Generator input Various random noise taken from a simple
distribution (eg Guassian or Uniform) This noise acts as a hidden variable space that the generator will learn to
map onto realistic opcode distributions.

The big difference from the vanilla GAN is that the generator has some convolutional layers, which are
necessary for the model to learn spatial hierarchy and patterns in opcode sequences. These filters for the
different layers are especially important because this is how we can capture one of the most basic things about
the distribution of opcodes. Number of layers and filters need to be finely tuned to ensure that the model picks
up enough detail from the input noise while also keeping below desired computational complexity.

The selection of activation functions is a crucial factor in the architecture of the generator. ReLU (Rectified
Linear Unit) activations are frequently employed in the convolutional layers of the generator because of their
efficacy in training deep networks and their capacity to alleviate the vanishing gradient issue. In the output
layer, the Tanh activation function is commonly utilized. The Tanh function scales the output to align with
the anticipated range of opcode distribution features, so ensuring that the generated sequences are accurately
represented within the relevant feature space.

Batch normalization is implemented across the network to improve training stability and speed. Batch
normalization standardizes the input for each layer, mitigating problems such internal covariate shift, which
facilitates faster convergence of the network. The generator utilizes upsampling layers or transpose convolutional
layers to augment the spatial dimensions of the data. These layers are crucial for producing extended opcode
sequences by augmenting the dimensionality of the latent noise input, so converting it into the requisite feature
space. This phase is essential for generating high-resolution outputs that mimic authentic opcode distributions.

The generator’s output layer is configured to align with the dimensionality of the opcode distribution features.
If each opcode distribution feature is denoted by a vector of length N, the output layer will have N neurons. The
application of the Tanh activation function at this juncture guarantees that the produced output is appropriately
scaled to the range of actual opcode distribution feature values, facilitating seamless incorporation into the
overall model pipeline. The generator’s loss function is the binary cross-entropy loss, which evaluates the efficacy

Scientific Reports |

(2025) 15:11867 | https://doi.org/10.1038/s41598-025-96392-x nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

of the generated samples in deceiving the discriminator into categorizing them as authentic opcode distributions.
This loss function is essential for directing the generator to enhance the quality of its outputs progressively.
Finally, the Adam optimizer is commonly selected due to its efficiency and adaptive learning rate properties.
Its ability to dynamically adjust learning rates during training makes it a robust choice for optimizing the
generator, particularly when dealing with high-dimensional and complex data like opcode distributions.

Training process

This segment describes the training and creation processes of AndrOpGAN, illustrated in Fig. 2. Features
extracted from benign APKs and malicious APKs first used to train Discriminator 1 and features extracted from
adversarial examples and normal examples are used to train Discriminator 2. After that Generator is trained
with two discriminators simultaneously Meanwhile, Discriminator 1 is tasked with identifying the difference
between benign and malicious instances, and Discriminator 2 focuses on separating adversarial examples from
regular ones. Within this GAN framework, the dual role of the discriminators directs the generator towards
accomplishing two goals concurrently: bypassing android malware detector and evading recognition by
Adversarial example detection frameworks.

Feature extraction tool
AndroGuard is an open-source tool designed to analyse Android applications and extract various features for
security analysis, malware detection, and reverse engineering. It is coded in Python and provides comprehensive
functionalities to dissect Android apps and extract valuable information. AndroGuard employs a combination
of static and dynamic techniques to extract features from APKs. It decompiles the APK file to obtain the
AndroidManifest.xml, resources, and DEX bytecode files. AndroGuard’s primary focus is static analysis, which
provides limited dynamic analysis capabilities. It can simulate certain aspects of the apps behaviour, such
as intent resolution and method call resolution. This dynamic analysis could help in clarifying the potential
behaviour of the app without actually running it on a device. The extraction of opcode features is essential for an
analysis of Android applications, especially in evaluating their behaviour and functionality. In this process, tools
such as AndroGuard are essential, as they can extract intricate opcode characteristics from Android application
packages (APKs), enabling a more thorough examination of a program’s code architecture and functionality.
The procedure commences with DEX decompilation, during which AndroGuard decompiles the APK’s DEX
bytecode file. The DEX file comprises the executable code for the application, and by transforming this file into
a more coherent and alterable format, AndroGuard facilitates a more thorough investigation of the application.
This decompilation is crucial as it converts compiled bytecode into a human-readable format, revealing the
underlying code instructions.

Feature extraction from the APK samples was carried out using a three-pronged approach to capture various
aspects of the applications’ behavior. The first feature category, opcode distribution, involved analyzing the

| Train First |

Malicious
|
Samples

Discriminator 1 SBem?n | Feature
AIpes Library

e i

Vector 1
| Normal S Adversarial |
——— Discriminator 2 S
| - P | Vector 2
L — — — |
Vector 3
Vector 4
Discriminator 1
Generator >
Random
Noise Discriminator 2 Vector n

Fig. 2. Generator training (discriminative feedback).

Scientific Reports |

(2025) 15:11867 | https://doi.org/10.1038/s41598-025-96392-x nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Noise

frequency of opcode sequences executed by each application, providing insights into the dynamic behavior of
the malware. The second category, API calls, was derived through static analysis to identify the API functions
invoked by each application, further revealing its interaction with the underlying system. The third feature
category, permission analysis, examined the Android permissions required by each APK, highlighting potential
vulnerabilities and suspicious behavior. Feature extraction was performed using AndroGuard and APKTool,
ensuring compatibility across different datasets and maintaining consistency in the analysis. This thorough
feature extraction methodology contributes to a robust foundation for evaluating DOpGAN’s performance in
malware detection.

In addition, an open-source Python program called AndroGuard analyzes Android apps, helps with reverse
engineering, and extracts static features that are essential for identifying malware. Decompiling APK files to
obtain resources, DEX bytecode files, and AndroidManifest.xml all crucial for feature creation and analysis is
one of its primary purposes. Important functions consist of:

o DEX Decompilation: AndroGuard transforms DEX bytecode files into a format that can be read by humans
so that they can be examined further.

« Opcode Extraction: Opcode instructions, which describe how the application behaves on the Dalvik or ART
virtual machines, are extracted by parsing the decompiled DEX file.

« Feature Generation: To create numerical vectors that serve as input features for the DOpGAN framework, the
extracted opcodes are arranged into sequences.

Upon decompiling the DEX file, the subsequent step is opcode extraction. Opcodes, or operational codes, are the
fundamental instructions used by the Dalvik or Android Runtime (ART) virtual machines to perform operations
within the application. AndroGuard recognises and extracts these opcodes by analysing the decompiled DEX
bytecode. This stage is essential for examining the application’s functional components, as the opcodes represent
the directives that govern its execution flow. Upon extraction of the opcodes, AndroGuard systematically arranges
them into sequences that delineate the application’s execution pathways. These opcode sequences function
as significant features applicable for various reasons, such as static analysis, virus detection, and behavioural
profiling. Using opcode sequences, researchers and analysts can acquire insights into the underlying operations
of the application and detect potential security vulnerabilities or anomalous behaviour patterns.

DCGAN based model structure

In Fig. 3 illustrates that generator uses input in the form of 200-dimensional random noise and is built with
convolutional layers, layers for up-sampling, fully connected layers, and processes for reshaping. The output from
the generator is a 44-dimensional feature vector, with each dimension representing the occurrence frequency of
a distinct opcode category.

OFOA module

The OFOA module is designed to determine the number of opcodes to be inserted and then integrated back into
the APK, as shown in Fig. 4. It was crucial to process the generated data meticulously to ensure it conformed
precisely to the specifications associated with the opcode distribution characteristic of the Data Transformation
Post-Generation Process. To eliminate negative values, an absolute operation is applied to the generated vectors.
For cost-effective modifications, vectors exhibiting infeasible distributions are removed. Subsequently, the
remaining vectors undergo normalization, culminating in the formation of a feature database. It was crucial
to conduct comprehensive back-end data execution on the created data to ensure that the distribution of
operation code features strictly adhered to the required specifications. This meticulous data processing involved
intricate adjustments and manipulations to align the opcode distribution features with the desired standards and
constraints. By processing the data on the back end, we meticulously tailored the opcode distribution features to
precisely meet the specified requirements, ensuring accuracy and compliance with the desired criteria.

Conv

. Result

Reshape Upsample Reshape Conv Reshape

Generator Discriminator

Fig. 3. Key model components: generator and discriminator.

Scientific Reports| (2025) 15:11867 | https://doi.org/10.1038/s41598-025-96392-x nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Malware Generator Opcode .Insert
Function
v v

Feature Library —»

Matching = ‘
Y Calculation »| Insert Opcode |—| APKRebuild
Dlssars:islzmble »| Original Feature —

Fig. 4. OFOA: feature processing, correction, insertion.

1: procedure MODIFYDATA

2 Import dataset

3 for each index from dataset[start] to dataset[finish] do
4 dataset[index] <— abs(dataset[index])
5: if dataset[index] exceeds Limit then
6 Exclude dataset[index]

7 end if

8 end for

9: dataset <— dataset / total(dataset)

10: Record(dataset)

11: end procedure

Algorithm 1. Procedure for Modifying Generated Data

The deconstruction of malware is a crucial initial phase in the AOFA (Android Opcode Frequency Analysis)
module, intended to extract vital characteristics from Android malware specimens. This procedure entails
transforming the executable code of the malware into a human-readable format by deconstructing it into Dalvik
bytecode. The retrieved bytecode comprises opcodes and other essential attributes, offering significant insights
into the malware’s behaviour and operation. Through the analysis of opcode sequences and their frequency, the
module can gain insights into the fundamental operations of the virus. The program concurrently extracts benign
features from an established feature library to ascertain a comparative baseline. These innocuous characteristics
signify standard application behaviour and are crucial for differentiating between authentic and possibly
harmful acts. Comparing benign and malware characteristics facilitates the detection of behavioural differences
that may signify harmful activiy Upon acquisition of both malware and benign properties, the module executes
comparative calculations to assess their similarities and discrepancies. Metrics like Jaccard similarity and cosine
similarity are used to assess the overlap or divergence of feature sets. These calculations assist in identifying
variations from typical behaviour, which frequently signify suspicious or harmful activities. The AOFA module
employs a systematic analysis to facilitate malware identification by concentrating on opcode-level behaviour.
Opcode insertion is a crucial procedure in obfuscating Android malware, aimed at adding complexity to the
executable code while maintaining its functionality.

Scientific Reports |

(2025) 15:11867 | https://doi.org/10.1038/s41598-025-96392-x nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

1: procedure FEATUREOFOA

2 FeatureSet <— Load Feature Library

3 ApkDist +— Extract Opcode Distribution from APK

4 for index from FeatureSet[start] to FeatureSet[end] do

5 Comparison[index] < Calculate § (ApkDist, FeatureSet[index])
6: if Comparison[index] < O then

7 Eliminate Comparison[index]

8

9

end if
: if Comparison[index] < Comparison[index-1] then
10: Comparison[index-1] <— Comparison[index]
11: end if
12: end for
13: Optimal é < Comparison[index-1]

14: end procedure

Algorithm 2. Procedure for Selecting Features via OFOA

Upon recognizing substantial disparities between malware and benign apps, the module readies itself to
strategically incorporate more opcodes into the malware’s opcode sequences. The meticulous choice of insertion
places guarantees that the supplementary opcodes obfuscate detection mechanisms while maintaining the
functional integrity of the malware. The opcode insertion function is employed, systematically incorporating the
chosen opcodes into the malware’s sequences. This function is intended to position the opcodes at strategically
recognized areas established during the analysis step. The insertion procedure modifies the executable code’s
structure by adding new layers of complexity, hence complicating the detection of malicious intent by static
and dynamic analysis tools. By altering the code, the module efficiently readies the virus for obfuscation. Upon
completion of the opcode insertion process, the module advances to reconstruct the malware into a new APK file.
This phase guarantees that the obfuscated malware, now embedded with the inserted opcodes, is appropriately
packed in a format suitable for deployment and execution on Android devices. Reconstructing the APK is an
essential concluding step, as it ensures that the alterations do not compromise the malware’s operation and that
the file is prepared for additional testing against detection systems. This method enables the concealed malware
to circumvent detection systems while preserving its inherent functionality.

Target detection models

To thoroughly evaluate the efficacy of DOpGAN, the current method for improving malware detection, a set
of four sophisticated malware detection systems, was used. These systems, characterised by their dependence
on opcode distribution properties, encompass a wide range of machine learning and pattern recognition
techniques. The comprehensive assessment procedure is depicted in Fig. 5 and involves the following specific
detection frameworks:

CNN-based detector: This advanced detector uses Convolutional Neural Networks (CNNs) for feature
extraction using one-dimensional convolutional layers. The employment of CNNs facilitates the automatic
recognition of complex patterns in opcode distributions, demonstrating the detector’s sophisticated capacity to
capture the subtle intricacies of malware signatures

Kaggle-RF detector: Originating from a highly regarded machine learning competition platform, this detector
employs a Random Forest (RF) algorithm. Known for its ensemble learning technique, the Random Forest
framework combines multiple decision trees to improve classification accuracy and prevent overfitting, making
it a robust choice for malware detection.

SVM-based detector: This detection system employs a support vector machine technique with a linear
kernel function. Renowned for its efficacy in high-dimensional domains, SVMs excel in classification tasks by
identifying and constructing an ideal separating hyperplane. This hyperplane differentiates between classes with
the maximum achievable margin, enabling precise malware detection.

KNN-based detector: This detector uses the K-Neighbours Classifier from the Scikit-learn library, employing a
straightforward yet successful methodology. The KNN-based detector identifies new instances by calculating the
distance between sample points, identifies the nearest neighbours using majority voting among these neighbours,
and offers a straightforward method for malware detection. Additionally, VirusTotal, which encompasses many
malware detection techniques, was employed to evaluate the effects of DOpGAN.

Analysis and results

In this section, we assess the efficacy of our model by calculating and analysing its recall, precision, and accuracy
metrics. We now show the experimental results for our proposed method. This empirical assessment forms the
basis for drawing analytical conclusions about the effectiveness of our malware creation method.

Scientific Reports |

(2025) 15:11867 | https://doi.org/10.1038/s41598-025-96392-x nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

e

{ DopGan l

@ersarial @7
| I
I —>’ CNN Based Detector |<— !
| I
I I
I _b’ Kaggle-RF Detector |<— I
I I
I I
| —b’ SVM Based Detector |<— |
| I
| —b‘ KNN Based Detector ‘4— ‘
I I
I I
| —»’ Virus Total ‘4— |
I I

’ Result |

Fig. 5. Attacking target detectors.

Implementation of proposed framework

The proposed framework consists of two main components: a Deep Convolutional GAN (DCGAN) and an
Opcode Feature Alteration (OFOA) module. Initially, the DCGAN is employed to learn and generate faked
benign APK opcode distribution features, which are then refined through the OFOA module by incorporating
supplementary opcodes into the original APK before repackaging the file. The DCGAN model is trained using
a 200-dimensional random noise vector as input, leveraging the Adam optimizer with a learning rate of 0.0002
and betal set to 0.5. The generator employs ReLU and Tanh activation functions, while the discriminator utilizes
Leaky ReLU. The training process, conducted on an AMD Ryzen 7 CPU with an NVIDIA RTX 3050Ti GPU
and 16 GB of RAM, spans 200 epochs with a batch size of 64. Two discriminators are iteratively trained: one
to distinguish between benign and malicious samples, and another to differentiate adversarial from regular
examples. The evaluation of the framework involves multiple metrics, including Modification Success Rate
(MSR), Average Success Rate (ASR), Amount of Opcode Insertions (AMC), and Concluded Success Rate (CSR),
in addition to precision, recall, and F-score. Furthermore, dataset-specific details are incorporated to address
potential biases, utilizing benign samples from the XiaoMi app store and malicious samples from the VirusShare
database.

Opcode distribution feature generation module

The module assigned for producing opcode distribution features was developed by adapting a modified Deep
Convolutional Generative Adversarial Network (DCGAN). This modified architecture uses random noise
as input to produce synthetic characteristics of benign opcode distributions and their results. This approach
entails complex neural network architectures designed specifically for generating features, enabling the correct
depiction of benign opcode distributions.

OFOA module

The initial input consists of a disassembled malware file, which furnishes features such as opcodes and API calls.
Using an “Opcode insert function,” these features are harnessed to construct novel, obfuscated malware variants,
enhancing their resistance to detection. To ascertain the realism of the generated malware, a comparison is
conducted with a “Feature library” containing known malicious samples. Once a satisfactory degree of similarity
is achieved, opcodes are integrated, and the code is reconstructed into an APK file. Through disassembly, features
are extracted from both the original and generated malware, facilitating the evaluation of their disparities.

Dataset

In this study, we utilized a comprehensive dataset to evaluate the performance of DOpGAN, ensuring a robust
and representative evaluation of its capabilities in malware detection. The dataset comprises malware samples
collected from three widely-used repositories, each contributing to the diversity and reliability of the dataset.
The first source, VirusTotal, is a large-scale malware detection service that provides a wealth of labeled malware
samples, facilitating extensive analysis of different malware variants. The second source, the Drebin dataset,
serves as a benchmark for Android malware detection and includes over 5,000 malware samples, offering

Scientific Reports |

(2025) 15:11867 | https://doi.org/10.1038/s41598-025-96392-x nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

valuable insight into the Android malware landscape. Lastly, the AndroZoo dataset, a continuously updated
repository of Android applications, includes both benign and malicious APKs, further enriching the dataset
with diverse real-world samples.

The dataset consists of 10,000 APK samples, categorized into two main classes: malicious and benign. The
malicious samples account for 6500 APKs and are further divided into four malware families: Trojans (2,500
samples), which inject malicious code into legitimate applications; Ransomware (1500 samples), which encrypts
user data and demands payment for its release; Spyware (1500 samples), which monitors user activity and
exfiltrates sensitive information; and Adware (1000 samples), which generates intrusive advertisements to
monetize the application. The benign samples, totaling 3500, were collected from trusted sources, including the
Google Play Store and F-Droid, ensuring a representative set of legitimate applications for comparison.

Evaluation method

In the DOpGAN dataset, all malware samples are solely designated for testing purposes. The samples are
processed by DOpGAN prior to being reintegrated into target attack models for additional analysis. The
assessment of the model includes four essential parameters. The evaluation metrics in the manuscript are
designed to assess DOpGAN’s evasion performance. The percentage of malware samples that have been altered
while still functioning is known as the Modification Success Rate, or MSR. The mean evasion success among
classifiers is determined by the Average Success Rate (ASR). The alterations performed to guarantee that there
are as few disruptions as possible for stealth are measured by the Amount of Opcode Modifications (AMC). MSR
and ASR are used to create the Concluded Success Rate (CSR), which assesses overall evasion. The detection
model’s performance is measured by precision, recall, and Fl-score. We measured the time complexity of
creating adversarial samples to gauge practical application, and DOpGAN achieved an efficient rate of 2.1 ms/
sample. Analysis of resource usage further demonstrated that DOpGAN works well on computers with moderate
processing power, making practical implementation possible.

Samples successfully altered

M =
Sk Samples to be altered
ASR — Samples successfully evaded
Samples sent to detector
AMC — Opcode insertions

"~ Samples amount x Categories

CSR=MSR x ASR

The study employed four detection models and conducted ten-fold cross-validation to evaluate the efficacy of
evasion. The results are presented in Table 3. The findings indicate that each detection model effectively identifies
malware, suggesting the attack system’s efficacy when a substantial fraction of modified malware is erroneously
classified as benign APKs.

The Modification Success Rate is a measure that indicates DOpGAN’s effectiveness in altering malware
across different sizes of benign feature databases. Secondly, the Average Success Rate offers insight into the
probability of modified malware successfully circumventing detectors, assessing the system’s resilience. Thirdly,
the Amount of Opcode implantation parameter measures the degree of implantation within the virus, providing
critical insights into the level of manipulation accomplished by DOpGAN. Finally, the Concluded Success Rate
encompasses the ultimate evasion success rate of DOpGAN across several detection systems, indicating its
overall efficacy.

Furthermore, the assessment is augmented using metrics like Precision, Recall, F-score, and False Negative
Rate, providing a comprehensive analysis of the model’s performance and efficacy.

The entirety of the test dataset, comprising 5017 malware samples, is submitted to DOpGAN for alteration.
The Modification Success Rate is recorded in Table 4. The modified AndrOpGAN APK samples are subsequently
forwarded to detectors for analysis. The resulting Evasion Success Rate is displayed in Table 5. The comprehensive
evaluation of 5017 malware samples through the lens of DOpGAN modification and subsequent detector analysis
yields profound insights into the adaptive capabilities of modern malware against defensive mechanisms. The
modification success rates, as captured in Table 4, demonstrate a remarkable progression, with the success rate
escalating significantly alongside the increase in database size, ultimately achieving a perfect success rate of
100% for databases sized at 10,000 samples and beyond. Further analysis of the modified AndrOpGAN APK
samples against various detectors unveils nuanced evasion capabilities, as detailed in Table 5

Model Precision (%) | Recall (%) | FNR (%) | F-score (%)
CNN 0.9696 0.9697 0.0303 0.9698
Kaggle-RF | 0.9983 0.9928 0.0072 0.9956
KNN 0.9774 0.9881 0.0116 0.9830
SVM 0.8632 0.9907 0.0102 0.9224

Table 3. Rates of evasion.

Scientific Reports |

(2025) 15:11867 | https://doi.org/10.1038/s41598-025-96392-x nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Database size | Altered success number | Altered success rate (%)
1000 1873 37.21
3000 3045 60.78
5000 4663 93.06
7000 4809 95.72
9000 5015 99.83
10000 5011 100.00
11000 5013 100.00
13000 5010 100.00

Table 4. Altering success rates.

Size of database | MSR (%) | KNN (%) | SVM (%) | Kaggle-RF (%) | CNN (%) | CSR (%)
1000 3748 | 5893 28.19 47.82 64.87 37.34
3000 60.78 | 59.00 28.19 47.43 63.89 60.63
5000 9308 | 5897 27.69 48.00 64.00 93.00
7000 9574 | 58.72 28.70 47.38 64.00 95.71
9000 99.76 | 58.44 28.48 47.20 62.90 99.25
10000 100.00 | 59.29 28.00 48.12 64.10 99.35
11000 100.00 58.87 27.53 48.22 64.50 93.59
13000 100.00 | 58.95 28.00 48.54 64.00 99.47

Table 5. Rates of evasion.

Size of database | MSR (%) | KNN (%) | SVM (%) | Kaggle-RF (%) | CNN (%) | CSR (%)
1000 37.43 99.99 100.00 99.83 100.00 18.69
3000 60.76 |100.00 | 100.00 99.42 99.88 | 30.08
5000 93.02 9992 [100.00 | 100.00 100.00 | 46.15
7000 95.74 99.73 100.00 99.96 100.00 47.67
9000 99.88 99.80 | 100.00 98.83 9994 | 4947
10000 100.00 9924 | 100.00 98.18 100.00 | 49.81
11000 100.00 99.85 | 100.00 99.37 100.00 | 49.59
13000 100.00 99.96 | 100.00 98.58 100.00 | 49.84

Table 6. Rates of evasion.

Here, the evasion success rates exhibit a marked increase with the expansion of the dataset, peaking at a
100% evasion rate for databases with 10,000 to 13,000 samples across multiple detection models, including
MSR, KNN, SVM, Kaggle-RFE, and CNN. This indicates a high degree of adaptability and sophistication in the
modified samples, enabling them to circumvent traditional detection mechanisms with considerable success.
The modified DOpGAN APK samples are forwarded to detectors for analysis. The resulting Evasion Success
Rate is displayed in Table 6. This analysis of DOpGAN-modified APK samples showcases even more striking
evasion success rates, with nearly all models achieving or approaching a 100% evasion rate for database sizes
of 3,000 samples and upwards. This underscores the potent challenge that such modified malware presents to
current detection frameworks, highlighting the urgent need for cybersecurity measures to counteract advanced
threats effectively.

In Fig. 6, the Modified Success Rate is presented across varying dataset sizes. The figure illustrates the success
rates with different detection models, demonstrating the beneficial impact of dataset size on the evasion success
rate.

In Fig. 7 Comparison of Evasion Success Rates with AndrOpGAN. With the continual expansion of the size
of the database, the bypassing success rates for numerous systems are observed to increase.

In Fig. 8 Comparison of Evasion Success Rates with DOpGAN. With the continual expansion of the size of
database, the bypassing success rates for numerous models are observed to increase.

In our endeavor to thoroughly comprehend the superiority of DOpGAN over AndrOpGAN, we delve into the
intricacies of their respective training methodologies. It is imperative to recall that the success of an attack method
hinges on its ability to achieve two pivotal objectives: breaching firewalls and outwitting malware detectors.
Upon closer scrutiny, a distinct disparity emerges between AndrOpGAN and DOpGAN. AndrOpGAN, it

Scientific Reports |

(2025) 15:11867 | https://doi.org/10.1038/s41598-025-96392-x nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

120.00%
100.00%
80.00%

a

40.00%

Success Rate

20.00%

0.00%
1 2 3 4 5 6 7 8

Database Size

Fig. 6. Modify success rate.

120.00%
100.00%

80.00%

60.00% —4&—CSR

—&— MSR

Success Rate

40.00%

20.00%

0.00%
1 2 3 4 5 6 7 8

Database Size

Fig. 7. Success rate.

120.00%

100.00% ——8 4

80.00%

—&—CSR
—&— MSR

60.00%

Success Rate

40.00%

20.00%

0.00%
1 2 3 Rl 5 6 7 8

Database Size

Fig. 8. Modify success rate.

Scientific Reports| (2025) 15:11867 | https://doi.org/10.1038/s41598-025-96392-x nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Defense method Evasion success rate (%) | Detection accuracy (%) | False positive rate (%) | Real-time feasibility (ms/sample)
DOpGAN (Proposed) | 95.4 89.6 4.8 2.1
MalGAN?¢ 92.3 86.2 6.1 2.8
Defensive distillation? | 85.1 78.3 12.7 3.5
PAD® 83.5 90.9 5.2 2.5
MalPurifier! 90.9 92.0 4.5 23
BagAmmo'* 87.0 85.0 7.0 2.7

Table 7. Comparison of android malware detection methods.

appears, tends to concentrate on fulfilling one objective at the expense of the other. This becomes apparent when
we analyze the outcomes of AndrOpGAN when applied to detectors, as depicted in Fig. 6.

Upon scrutinizing the examples generated by AndrOpGAN, a discernible pattern emerges: many of these
examples indeed manage to deceive the adversarial example detector, but they are just as swiftly identified by the
malware detector. Consequently, it becomes evident that AndrOpGAN struggles when confronted with the task
of simultaneously addressing both objectives. This characteristic renders AndrOpGAN more suitable for single-
objective tasks where the focus is more specialized.

In stark contrast, DOpGAN showcases a remarkable ability to adeptly handle these dual objectives and strike
a balance between them. To provide clarity, we present the results of DOpGAN when applied to detectors in
Fig. 8. Here, the majority of the generated examples exhibit the remarkable ability to evade detection from both
adversarial example detectors and malware detectors. The superiority of DOpGAN over AndrOpGAN can be
attributed to a pivotal design choice - the incorporation of two Discriminators. This strategic inclusion acts as a
potent motivator for the Generator, pushing it to tackle both objectives simultaneously throughout the rigorous
training process.

State-of-the-art comparison of android malware detection methods

A dual-objective GAN model called DOpGAN was created to avoid adversarial example and malware detection.
With a low false positive rate of 4.8% and a high evasion success rate of 95.4%, it is an extremely powerful tool
for detecting hostile malware. MalGAN?¢, a black-box evasion model, by contrast, has a 92.3% success rate but
a little lower detection accuracy. Though it has a slower real-time feasibility and a higher false positive rate of
12.7%, Defensive Distillation uses knowledge distillation for robust models.

Models are retrained using adversarial examples in Adversarial Training, which provides balanced
performance but still has slower processing times and 10.4% false positives. Optimization-based adversarial
detection is used in recent techniques such as PAD*), which achieve 90.9% detection accuracy with enhanced
real-time feasibility of 2.5 milliseconds per sample. MalPurifier*! maintains evasion success at 90.9% while
improving detection accuracy to 92.0%. Graph-based models are the focus of BagAmmo!“, which achieves
87.0% evasion success and 85.0% detection accuracy.

AndrOpGAN, while effective in altering opcode distributions, focuses on evading static malware detectors.
However, it often fails when faced with adversarial example detectors, as it lacks a dual-objective design. In
contrast, DOpGAN integrates a dual-discriminator architecture, allowing it to effectively target both malware
detection systems and adversarial example detectors. This makes it significantly more robust in real-world
applications. Alos, Despite its dual-discriminator framework, DOpGAN achieves comparable computational
efficiency to AndrOpGAN by leveraging an optimized DCGAN structure and the Adam optimizer with an
adaptive learning rate. Training on a database of 13,000 samples, DOpGAN demonstrates efficient convergence
within 200 epochs, highlighting its feasibility for large-scale applications. Furthermore, DOpGAN is designed to
handle large datasets without performance degradation. For instance, it maintains a consistent evasion success
rate of nearly 100% even with datasets exceeding 10,000 samples. Its Opcode Feature Optimization Algorithm
(OFOA) dynamically adjusts opcode modifications, ensuring adaptability across varying dataset sizes and
complexities.

Ethical implications of evasive malware generation

The framework is designed to enhance malware detection by generating adversarial examples, we acknowledge
the potential misuse of such techniques by attackers. To mitigate this risk, all experiments were conducted in
isolated environments, and the generated adversarial APKs are intended solely for retraining and improving
malware detection systems. The results are shared exclusively for academic and research purposes to ensure
responsible usage. Furthermore, we emphasize the importance of collaborating with industry stakeholders to
align defensive advancements with emerging adversarial threats. By leveraging adversarial samples to identify
vulnerabilities in existing systems, we aim to strengthen the resilience of malware detection frameworks.

Discussion, limitations, and future work

This study illustrates how adversarial instances produced by DOpGAN might avoid detection and draws attention
to flaws in malware detection systems. The work addresses how these hostile examples can reinforce defensive
mechanisms by retraining current detection models, enhancing their capacity to recognize comparable evasive
attempts, even when the focus is on evasion strategies. The scalability and resource requirements of DOpGAN
were extensively examined in relation to real-world application. Datasets of different sizes were used to test the

Scientific Reports |

(2025) 15:11867 | https://doi.org/10.1038/s41598-025-96392-x nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

system, and Tables 4, 5, and 6 present performance parameters including false positives, detection accuracy, and
evasion success rates. These findings demonstrate that DOpGAN continues to perform well even when dealing
with bigger datasets. To further elucidate DOpGAN?’s viability in practical settings, the book now includes the
resource needs for training and deploying the system. Ithough DOpGAN is good at avoiding static analysis by
adjusting opcode distributions, it is not as effective against systems that use dynamic information, such execution
traces and API call sequences, which are not the focus of DOpGAN’s current methodology. This is a result of the
generator’s emphasis on static features rather than runtime behavior. To increase resistance to hybrid detection,
future updates can incorporate behavior simulation into the adversarial example generation procedure.
Moreover, DOpGAN can handle larger datasets while still performing well, it trumps AndrOpGAN in terms
of scalability. Even while AndrOpGAN is good at avoiding conventional malware detectors, its versatility to
various dataset sizes is limited by the fact that it is made for single-objective tasks. On the other hand, DOpGAN
has a dual-discriminator design that, even with growing datasets, strikes a balance between evasion for both
malware and hostile example detectors. Table 4 demonstrates that DOpGAN outperforms AndrOpGAN in terms
of evasion success rates on datasets with 10,000-13,000 samples, achieving nearly 100% success rates. To avoid
detection without compromising scalability, DOpGAN’s design dynamically modifies opcode distributions by
utilizing the Opcode Feature Optimization Algorithm (OFOA). These findings show that DOpGAN is more
appropriate for practical uses involving huge datasets, guaranteeing excellent effectiveness and versatility.

Extension to other platforms and attack types
DOpGAN can be extended to different platforms, including Windows or Linux-based systems, by changing the
feature extraction and generating procedures to conform to platform-specific requirements. For instance, the
framework might target control-flow graphs or API call sequences frequently utilized in malware detection for
other platforms rather than opcode manipulation.

Furthermore, the dual-objective architecture of DOpGAN can be modified to accommodate various attack
types, such circumventing spam detection systems by changing email text or avoiding network intrusion
detection systems (NIDS) by changing network traffic patterns.

Use of transformer models

We recognize that transformer-based systems have demonstrated remarkable efficacy across a range of fields,
including as virus detection and natural language processing. By utilizing their contextual knowledge of opcode
sequences and API call patterns, transformer models like BERT or comparable variations could improve
DOpGAN's capacity to produce adversarial samples.

Conclusion

DOpGAN presents a novel grey-box attack strategy that effectively alters opcode distribution features, enabling
malware to bypass advanced Android malware detection systems. By generating adversarial examples that are
misclassified as benign, DOpGAN showcases its ability to evade traditional detection mechanisms, posing a
significant challenge to contemporary mobile security frameworks. This highlights the importance of integrating
defensive strategies, such as adversarial example detection systems, to enhance the resilience of Android
platforms against increasingly sophisticated threats. The evaluation of DOpGAN using multiple classification
models and VirusTotal demonstrates its capacity to evade detection at a concerning rate, underscoring the
vulnerability of current systems. However, the adversarial APKs generated by DOpGAN offer a valuable
resource for retraining detectors, strengthening their ability to identify and counteract this class of malware. This
continuous improvement of detection systems is vital in ensuring the long-term security of Android platforms
as new and evolving threats emerge.

While DOpGAN demonstrates high evasion success against static feature-based detectors, its reliance
on specific datasets, such as VirusShare for malware and XiaoMi for benign samples, may introduce biases,
potentially limiting the generalizability of the results. The feature distributions in these datasets may not fully
reflect real-world scenarios, necessitating future evaluations with diverse datasets like AndroZoo and Google
Play Store. Additionally, integrating hybrid static-dynamic datasets and real-time behavioral analysis will provide
a more comprehensive assessment of DOpGAN’s effectiveness against advanced detection systems employing
behavioral analysis, hybrid methodologies, or ensemble approaches. These future directions will enhance the
frameworK’s applicability in practical cybersecurity environments.

Data availability
The data produced or analysed in this study can be obtained from the corresponding author upon a reasonable
request.

Received: 13 November 2024; Accepted: 27 March 2025
Published online: 07 April 2025

References
1. Adekotujo, A., Odumabo, A., Ademola, A. & Aiyeniko, O. A comparative study of operating systems: Case of windows, unix, linux,
mac, android and iOS. Int. J. Comput. Appl. 176, 16-23. https://doi.org/10.5120/ijca2020920494 (2020).
2. Alkahtani, H. & Aldhyani, T. H. Artificial intelligence algorithms for malware detection in android-operated mobile devices.
Sensors 22, 2268 (2022).
. Almomani, I., Ahmed, M. & El-Shafai, W. Android malware analysis in a nutshell. PLoS ONE 17, €0270647 (2022).
4. Almomani, I. M. & Al Khayer, A. A comprehensive analysis of the android permissions system. IEEE access 8, 216671-216688
(2020).

w

Scientific Reports |

(2025) 15:11867 | https://doi.org/10.1038/s41598-025-96392-x nature portfolio

https://doi.org/10.5120/ijca2020920494
http://www.nature.com/scientificreports

www.nature.com/scientificreports/

5. Bai, T. et al. Ai-gan: Attack-inspired generation of adversarial examples, in 2021 IEEE International Conference on Image Processing
(ICIP) 2543-2547. https://doi.org/10.1109/ICIP42928.2021.9506278 (2021).

6. Al Khayer, A., Almomani, I. & Elkawlak, K. Asaf: Android static analysis framework, in 2020 First International Conference of
Smart Systems and Emerging Technologies (SMARTTECH) 197-202 (IEEE, 2020).

7. ljaz, M., Durad, M. H. & Ismail, M. Static and dynamic malware analysis using machine learning, in 2019 16th International
Bhurban Conference on Applied Sciences and Technology (IBCAST) 687-691. https://doi.org/10.1109/IBCAST.2019.8667136
(2019).

8. Huang, S., Papernot, N., Goodfellow, I, Duan, Y. & Abbeel, P. Adversarial attacks on neural network policies. arXiv arXiv:1702.02284
(2017).

9. Kolter, J. Z. & Maloof, M. A. Learning to detect malicious executables in the wild, in Proceedings of the Tenth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining 470-478 (2004).

10. Mao, X. & Li, Q. Generative Adversarial Networks (gans) 1-7 (2021).

11. Zhang, X., Wang, J., Sun, M. & Feng, Y. Andropgan: An opcode gan for android malware obfuscations, in Machine Learning for
Cyber Security: Third International Conference, ML4CS 2020, Guangzhou, China, October 8-10, 2020, Proceedings, Part I 12-25
(Springer, 2020).

12. Croce, E, Andriushchenko, M., Singh, N. D., Flammarion, N. & Hein, M. Sparse-rs: A versatile framework for query-efficient
sparse black-box adversarial attacks, in Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 36, 6437-6445 (2022).

13. Rathore, H., Sahay, S. K., Nikam, P. & Sewak, M. Robust android malware detection system against adversarial attacks using
q-learning. Inf. Syst. Front. 23, 867-882 (2021).

14. Li, H. et al. Black-box adversarial example attack towards {FCG} based android malware detection under incomplete feature
information, in 32nd USENIX Security Symposium (USENIX Security 23) 1181-1198 (2023).

15. Maiorca, D., Demontis, A., Biggio, B., Roli, F. & Giacinto, G. Adversarial detection of flash malware: Limitations and open issues.
Comput. Secur. 96, 101901 (2020).

16. Zhang, J. et al. Shadowdroid: Practical black-box attack against ml-based android malware detection, in 2021 IEEE 27th
International Conference on Parallel and Distributed Systems (ICPADS) 629-636 (IEEE, 2021).

17. Xu, G. et al. Ofei: A semi-black-box android adversarial sample attack framework against dlaas. IEEE Trans. Comput. 73, 956-969
(2023).

18. Bostani, H. & Moonsamy, V. Evadedroid: A practical evasion attack on machine learning for black-box android malware detection.
Comput. Secur. 139, 103676 (2024).

19. Grosse, K., Papernot, N., Manoharan, P., Backes, M. & McDaniel, P. Adversarial examples for malware detection, in Computer
Security-ESORICS 2017: 22nd European Symposium on Research in Computer Security, Oslo, Norway, September 11-15, 2017,
Proceedings, Part IT 22 62-79 (Springer, 2017).

20. Berger, H., Hajaj, C. & Dvir, A. When the guard failed the droid: A case study of android malware. arXiv preprint arXiv:2003.14123
(2020).

21. Yildiz, O. & Dogru, I. A. Permission-based android malware detection system using feature selection with genetic algorithm. Int.
J. Software Eng. Knowl. Eng. 29, 245-262 (2019).

22. Radford, A., Metz, L. & Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks.
arXiv arXiv:1511.06434 (2016).

23. Hadiprakoso, R. B., Kabetta, H. & Buana, I. K. S. Hybrid-based malware analysis for effective and efficiency android malware
detection, in 2020 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS) 8-12. https://do
i.0org/10.1109/ICIMCIS51567.2020.9354315 (2020).

24. Du, C. & Zhang, L. Adversarial attack for SAR target recognition based on UNet-generative adversarial network. Remote Sens.
https://doi.org/10.3390/rs13214358 (2021).

25. Li, H,, Zhou, S., Yuan, W,, Li,]. & Leung, H. Adversarial-example attacks toward android malware detection system. IEEE Syst.].
14, 653-656. https://doi.org/10.1109/JSYST.2019.2906120 (2020).

26. Wang, X, He, K., Song, C., Wang, L. & Hopcroft, J. E. At-gan: An adversarial generative model for non-constrained adversarial
examples. IEEE Syst. J. (2021).

27. Chen, J., Zheng, H., Xiong, H., Shen, S. & Su, M. MAG-GAN: Massive attack generator via GAN. Inf. Sci. 536, 67-90. https://doi.
0rg/10.1016/j.ins.2020.04.019 (2020).

28. Xiao, C. et al. Generating adversarial examples with adversarial networks. arXiv arXiv:1801.02610 (2018).

29. Zhao, G., Zhang, M., Liu, J. & Wen, J.-R. Unsupervised adversarial attacks on deep feature-based retrieval with gan arXiv
arXiv:1907.05793 (2019).

30. Hu, W. & Tan, Y. Generating adversarial malware examples for black-box attacks based on gan. arXiv arXiv:1702.05983 (2017).

31. Nazemi, A. & Fieguth, P. Potential adversarial samples for white-box attacks. arXiv arXiv:1912.06409 (2019).

32. Narodytska, N. & Kasiviswanathan, S. P. Simple black-box adversarial attacks on deep neural networks, in CVPR Workshops, Vol.
2,2(2017).

33. Liu, A. et al. Perceptual-sensitive gan for generating adversarial patches, in Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 33, 1028-1035 (2019).

34. Goodfellow, L. J., Shlens, J. & Szegedy, C. Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014).

35. Papernot, N. et al. Practical black-box attacks against machine learning, in Proceedings of the 2017 ACM on Asia Conference on
Computer and Communications Security 506-519 (2017).

36. Hu, W. & Tan, Y. Generating adversarial malware examples for black-box attacks based on gan, in International Conference on Data
Mining and Big Data, 409-423 (Springer, 2022).

37. Carlini, N. & Wagner, D. Towards evaluating the robustness of neural networks, in 2017 IEEE Symposium on Security and Privacy
(sp), 39-57 (IEEE, 2017).

38. Xu, L. & Zhai, J. Dcvae-adv: A universal adversarial example generation method for white and black box attacks. Tsinghua Sci.
Technol. 29, 430-446 (2023).

39. Kang, B, Yerima, S. Y., McLaughlin, K. & Sezer, S. N-opcode analysis for android malware classification and categorization, in 2016
International Conference on Cyber Security and Protection of Digital Services (Cyber Security), 1-7 (2016).

40. Li, D. et al. Pad: Towards principled adversarial malware detection against evasion attacks. IEEE Trans. Dependable Secure Comput.
21, 920-936 (2023).

41. Zhou, Y., Cheng, G., Chen, Z. & Yu, S. Malpurifier: Enhancing android malware detection with adversarial purification against
evasion attacks. arXiv preprint arXiv:2312.06423 (2023).

42. Papernot, N., McDaniel, P, Wu, X,, Jha, S. & Swami, A. Distillation as a defense to adversarial perturbations against deep neural
networks, in 2016 IEEE Symposium on Security and Privacy (SP) 582-597 (IEEE, 2016).

Acknowledgement

The authors would like to thanks Prince Sultan University for paying the APC of this publication.

Scientific Reports |

(2025) 15:11867 | https://doi.org/10.1038/s41598-025-96392-x nature portfolio

https://doi.org/10.1109/ICIP42928.2021.9506278
https://doi.org/10.1109/IBCAST.2019.8667136
http://arxiv.org/abs/1702.02284
http://arxiv.org/abs/2003.14123
http://arxiv.org/abs/1511.06434
https://doi.org/10.1109/ICIMCIS51567.2020.9354315
https://doi.org/10.1109/ICIMCIS51567.2020.9354315
https://doi.org/10.3390/rs13214358
https://doi.org/10.1109/JSYST.2019.2906120
https://doi.org/10.1016/j.ins.2020.04.019
https://doi.org/10.1016/j.ins.2020.04.019
http://arxiv.org/abs/1801.02610
http://arxiv.org/abs/1907.05793
http://arxiv.org/abs/1702.05983
http://arxiv.org/abs/1912.06409
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/2312.06423
http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Author contributions

Naveed Ahmed: Lead on conceptualization, Methodology, Writing of the original draft, Material preparation,
Data collection, Analysis. Amjad Rana Saleem: Contributed to review and editing, Material preparation, Data
collection, Analysis. Hassan Jalil Hadi: Responsible for detail review of study. Faisal Bashir Hussain: Detailed
review and editing of the manuscript. Mohammaed Ali Alshara: Responsible for detail review of study. Prasun
Chakrabarti: Contributed to review and editing, Material preparation, Data collection, Analysis. Tulika Chakra-
bart: Provided supervision, Project administration.

Funding
This work is funded under Project No. SEED-CCIS-2023-151 by Prince Sultan University.

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to N.A. or A.S.R.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have
permission under this licence to share adapted material derived from this article or parts of it. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommo
ns.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2025, corrected publication 2025

Scientific Reports |

(2025) 15:11867 | https://doi.org/10.1038/s41598-025-96392-x nature portfolio

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿GEAAD: generating evasive adversarial attacks against android malware defense
	﻿﻿Related work
	﻿﻿Proposed framework for evasive adversarial attack against android malware defense
	﻿DOpGAN
	﻿Grey-box model
	﻿Operation code frequency feature
	﻿Operation code distribution feature generation
	﻿Parameters for discriminator

	﻿Parameters for generator
	﻿Training process
	﻿Feature extraction tool

	﻿DCGAN based model structure
	﻿OFOA module
	﻿Target detection models
	﻿﻿Analysis and results
	﻿Implementation of proposed framework
	﻿Opcode distribution feature generation module

