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Knowledge Tracing (KT) assesses students’ mastery of specific knowledge concepts and predicts their 
problem-solving abilities by analyzing their interactions with intelligent tutoring systems. Although 
recent years have seen significant improvements in tracking accuracy with the introduction of deep 
learning and graph neural network techniques, existing research has not sufficiently focused on the 
impact of difficulty on knowledge state. The text understanding difficulty and knowledge concept 
difficulty of programming problems are crucial for students’ responses; thus, accurately assessing 
these two types of difficulty and applying them to knowledge state prediction is a key challenge. 
To address this challenge, we propose a Difficulty aware Programming Knowledge Tracing via Large 
Language Models(DPKT) to extract the text understanding difficulty and knowledge concept difficulty 
of programming problems. Specifically, we analyze the relationship between knowledge concept 
difficulty and text understanding difficulty using an attention mechanism, allowing for dynamic 
updates to students’ s. This model combines an update gate mechanism with a graph attention 
network, significantly improving the assessment accuracy of programming problem difficulty and 
the spatiotemporal reflection capability of knowledge state. Experimental results demonstrate that 
this model performs excellently across various language datasets, validating its application value in 
programming education. This model provides an innovative solution for programming knowledge 
tracing and offers educators a powerful tool to promote personalized learning.

Knowledge Tracing (KT) aims to model students’ knowledge mastery states by analyzing their interaction data 
with Intelligent Tutoring Systems (ITS), automatically assessing their mastery of specific knowledge concepts, 
and predicting whether they can successfully solve related problems in their next attempts1,2. In programming 
education, knowledge tracing is particularly important; effective knowledge tracing not only helps educators 
accurately assess students’ programming abilities but also provides data support for personalized learning3,4. 
Through dynamic monitoring of students’ knowledge state, educators can develop more personalized teaching 
strategies to meet the diverse learning needs of different students5.

In recent years, the field of knowledge tracing has developed various innovative models by introducing 
technologies such as deep learning, graph neural networks, and personalized learning2,6. These include deep 
learning models1,7, memory network models8,9, graph neural network models10–12, and probabilistic models13,14, 
which have significantly improved tracking accuracy and the effectiveness of personalized learning. In the field 
of programming education, knowledge tracing technology also plays a crucial role. For example, the PDKT 
model constructs a bipartite graph to embed programming problems and combines the improved pre-trained 
model PLCodeBERT for code embedding and tracking students’ programming knowledge state15. The DSAKT 
model addresses sparse data issues through a self-attention mechanism, enhancing the accuracy of knowledge 
tracing16. The GPPKT model combines students’ learning abilities with a Variational Autoencoder (VAE), 
improving model performance through the integration of personalized answer sequences and knowledge 
graphs17. With continuous technological advancements, the field of knowledge tracing will continue to evolve, 
bringing more possibilities for personalized education and improved learning outcomes.

Currently, research on programming knowledge tracing primarily focuses on predicting students’ learning 
states based on programming problems and their submission records18,19. However, this approach often overlooks 
the significant impact of problem difficulty on answer correctness. Programming problems require students 
not only to accurately understand and analyze the problem text but also to apply knowledge of programming 
language syntax, algorithms, and data structures to solve real-world problems, as shown in Fig.  1, which 
illustrates the impact of text understanding difficulty and knowledge concept difficulty on predicting students’ 
knowledge state. In this process, both the text understanding difficulty and knowledge concept difficulty of 
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programming problems are crucial for students’ success in answering these problems. Currently, the annotation 
of programming problem difficulty largely relies on manual efforts, making it challenging to accurately label 
both text understanding difficulty and knowledge concept difficulty simultaneously. Therefore, efficiently and 
accurately determining the text understanding difficulty and knowledge concept difficulty for each programming 
problem and utilizing this information to optimize the model’s predictions of students’ knowledge state has 
become a key challenge in the field of programming knowledge tracing. This paper aims to address this challenge 
by proposing an innovative method to enhance the efficiency and accuracy of matching programming problem 
difficulties. Through this approach, we can comprehensively and objectively assess students’ programming 
abilities, thereby providing more targeted support and interventions for programming education.

To ensure that the difficulty of programming problems is reasonably matched to students’ knowledge state, we 
face three major challenges: first, the diversity of programming problems complicates the assessment of semantic 
difficulty; second, the interaction between knowledge concept difficulty and text understanding difficulty is 
difficult to effectively distinguish; and third, the sequential modeling of knowledge concepts does not adequately 
consider the strong correlations between them. To address these challenges, we propose the following solutions: 
first, by introducing large language models to extract deep semantic features from programming problems, we 
enhance the precision of semantic difficulty assessment; second, we use an attention mechanism to dynamically 
analyze the relationship between knowledge concept difficulty and text understanding difficulty to ensure the 
model’s detailed performance; finally, combining graph attention mechanisms with a carefully designed gating 
mechanism allows for better attention to the spatiotemporal relationships between knowledge state.

Based on these ideas, we propose difficulty-aware programming knowledge tracing with large language 
models (DPKT). This model dynamically adjusts students’ mastery states of different difficulty knowledge 
concepts by combining an update gate mechanism with a graph attention network. The DPKT model inputs 
programming problems and corresponding knowledge concepts into a large language model to extract rich 
semantic features and uses an attention mechanism to differentiate between knowledge concept difficulty and 
text understanding difficulty, ensuring precise updates to knowledge state.

The main contributions of this model include:

•	 The DPKT model combines large language models with graph attention networks, improving the assessment 
accuracy of programming problem difficulty.

•	 The dynamic update mechanism enables the model to reflect changes in students’ knowledge state in real 
time, enhancing sensitivity to students’ learning progress.

•	 The model proposes new solutions for distinguishing between knowledge concept and text understanding 
difficulty, providing solid theoretical support for personalized learning.

By leveraging the powerful data processing capabilities of large language models, this model achieves significant 
improvements in the efficiency and accuracy of semantic information extraction. Additionally, the DPKT model 
integrates large language models, CodeBERT, and graph attention networks, addressing the issue of accurately 
predicting students’ knowledge state in situations where knowledge concepts are the same but semantic 
difficulties differ, thus enhancing the model’s performance and interpretability. In comparison with existing 
knowledge tracing models, the DPKT model demonstrates excellent performance across various language 
datasets, validating its value in practical applications.

In summary, the DPKT model not only provides an innovative solution for programming knowledge 
tracing but also offers educators a powerful tool, with the expectation of making a positive impact in the field of 
programming education and promoting further research development in this area.

Fig. 1.  A toy example demonstrating the impact of problem difficulty on programming knowledge tracing.
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Related works
In the context of the rapid development of modern educational technology, knowledge tracing models have 
gradually become important tools for personalized learning, helping educators monitor and assess students’ 
learning progress more effectively. At the same time, the introduction of large language models (LLMs) has 
brought new possibilities to the field of knowledge tracing, driving innovation and transformation in educational 
practices20. The following will delve into the foundational models of knowledge tracing, the advancements in 
dynamic adaptive models, as well as the applications and challenges associated with Large Language Models 
(LLMs) in educational contexts.

Knowledge tracing
The foundational models of knowledge tracing lay the theoretical groundwork for subsequent research and 
applications. Bayesian Knowledge Tracing (BKT), as a classic model, utilizes Bayesian networks to predict 
students’ knowledge state, emphasizing the importance of uncertainty and prior knowledge, thus providing 
a solid statistical foundation for knowledge tracing21. Additionally, the application of probabilistic models 
in knowledge tracing further supports the theoretical framework of the entire field22. By incorporating deep 
learning and recurrent neural network techniques, these models can effectively capture students’ mastery 
levels of knowledge concepts, enabling tracking and prediction of personalized learning1. Researchers have 
enriched our understanding of the learning process by identifying key factors influencing student learning, 
allowing for assessments of knowledge mastery and providing feedback to educators to help them adjust 
teaching strategies23,24. Building on this, Memory-Aware Knowledge Tracing (MKT) considers the influence of 
students’ memory factors, enhancing the accuracy of knowledge state predictions by simulating human memory 
processes25. The comprehensive application of these models allows for a more thorough understanding and 
improvement of students’ learning processes.

With the advancement of knowledge tracing technology, dynamic and adaptive knowledge tracing models 
have emerged, better adapting to the changes in students’ learning. These models not only enhance the flexibility 
of knowledge tracing but also improve responsiveness to individual differences among students8,11,26. For 
instance, models that incorporate dynamic student classification can better adjust to varying ability levels 
among students, thus enhancing the personalized learning experience5. Moreover, Knowledge Tracing Machines 
propose a knowledge tracing method based on factorization machines, focusing on accurately modeling 
students’ knowledge state, providing a new perspective for the model27. By using convolutional neural networks 
to model personalized features in students’ learning processes, the learning capabilities of the models are further 
enhanced28. The integration of these dynamic and adaptive models enables a more comprehensive response to 
students’ learning needs and changes.

In recent years, significant progress has been made in the field of programming knowledge tracing, 
particularly in developing models that incorporate the difficulty of programming exercises and forgetting 
factors. For example, a deep knowledge tracing (KT) method integrates the difficulty of programming exercises 
and forgetting factors, using the GPT-3 algorithm to analyze problem difficulty and constructing knowledge 
structure graphs with graph neural networks, thereby improving the model’s predictive performance and 
interpretability29. Additionally, research has explored how the difficulty and order of programming problems 
in online assessment systems affect user performance and cognitive load, revealing various influencing factors 
through statistical analysis3. Common challenges in programming education, such as compilation errors and skill 
misunderstandings, have also received considerable attention4. At the same time, a meta-analysis summarized 
effective interventions in programming education, highlighting the outstanding performance of visualization 
and tangible learning tools in improving learning outcomes30.

The development of knowledge tracing models provides important theoretical support for educational 
practices, especially excelling in personalized learning and dynamic adaptability. However, research in the 
area of programming problems, particularly regarding problem difficulty, remains relatively weak, especially 
concerning the complexity of text understanding and the definition of specific knowledge concept difficulty, with 
limited relevant literature available. Therefore, in-depth exploration of these dimensions will not only enrich the 
application context of knowledge tracing models but also provide a more robust theoretical foundation for the 
deepening and optimization of programming education.

Development of large language models in knowledge tracing
Large language models (LLMs) have emerged as powerful interpreters in the field of knowledge tracing, 
showcasing significant application potential and introducing innovative methods and tools to the educational 
domain31. For instance, CoRE proposes using LLMs as interpreters across various programming forms, including 
natural language programming, pseudocode programming, and AI agent flow programming32. Leveraging LLMs 
can help students understand code, thereby enhancing the learning experience33. To make programming more 
intuitive, Low-code LLM has introduced a low-code approach for visual programming using large language 
models, providing a user-friendly programming environment for non-specialists34. In terms of assessing the 
effectiveness of technology, LLMs have been found to effectively address issues in example programming35. 
Additionally, the Copilot Evaluation Harness presents a method for assessing software programming guided by 
large language models, providing a framework for subsequent application evaluations36. These studies indicate 
that LLMs have a broad application prospect in knowledge tracing and programming education.

The introduction of LLMs has significantly enhanced the capabilities of knowledge tracing models, injecting 
new vitality into the development of educational technology. For example, methods that enhance code 
knowledge tracing with large language models have further propelled innovation in this field37,38. In teaching 
applications, CS1-LLM explores methods to integrate LLMs into introductory computer science courses, 
effectively improving instructional outcomes39. Concurrently, research has found that novices use LLM-based 
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code generators to tackle programming tasks in self-directed learning environments, providing valuable insights 
for course design40. Furthermore, Forgetful Large Language Models discusses lessons learned from using LLMs 
in robotic programming, reflecting their limitations and challenges41. These studies demonstrate that LLMs 
not only enhance the functionality of knowledge tracing models but also reveal their extensive potential in 
educational practice.

Despite the promise of LLMs in education and the insights they offer for course design, revealing the diversity 
of educational goals2,42, several challenges remain to be addressed. In terms of technological integration and 
infrastructure, incorporating LLMs into existing educational technologies requires substantial resources and 
technical support, and deployment in different educational environments may necessitate customized solutions. 
Additionally, ethical and legal issues cannot be overlooked; using LLMs involves concerns about the use and 
ownership of student data, necessitating compliance with data protection regulations. To tackle these challenges, 
close collaboration among educators, technology developers, policymakers, and researchers is essential to 
ensure that the application of LLMs in education is responsible, effective, and capable of enhancing educational 
quality and equity. Through this research, we can gain deeper insights into the challenges of LLMs in education 
and provide valuable perspectives for future development43,44.

Preliminary
In this section, we will provide a formal definition of the difficulty-aware programming knowledge tracing with 
large language models. Additionally, we will introduce some fundamental elements and important embeddings 
involved in our proposed DPKT framework. Table 1 summarizes the mathematical symbols used in this paper.

Problem definition
In the online programming assessment system, the set of students is represented as S, the set of programming 
problems as P, the set of knowledge concepts as K, and the set of student code submission responses as R. The student 
set S = {s1, s2, . . . , sn} contains n different students. The problemming problem set P = {p1, p2, . . . , pm} 
represents m different coding problems. The knowledge concepts set K = {k1, k2, . . . , kv} contains v different 
knowledge concepts, generated based on LLMs in this paper. The set of text understanding difficulty levels 
T D = {1, 2, 3, 4} include 4 difficulty levels. The set of knowledge concepts difficulty levels KD = {1, 2, 3, 4} also 
includes 4 difficulty levels. The set of student submission responses R = {0, 1} contains two elements, indicating 
whether the student’s submitted code is deemed acceptable by the system. Here, 1 represents a successful code 
submission, while 0 indicates a failed submission. During the student’s programming practice, this is represented 
as a programming event sequence L = {(p1, k1, td1, kd1, r1), (p2, k2, td2, kd2, r2), . . . , (pt, kt, tdt, kdt, rt)}
. In this sequence, pt represents the programming problem answered by the student at time step t, kt indicates the 
corresponding knowledge concept generated by the large model, tdt denotes the text understanding difficulty 
level of the problem, kdt represents the knowledge concept difficulty level, and rt indicates the student’s 
submission status at time step t, By analyzing the student’s historical practice records, we can trace their mastery 
of programming knowledge. The definition of knowledge tracing in programming practice is as follows:

Knowledge Tracing(KT): The historical practice records of students 
L = {(p1, k1, td1, kd1, r1), (p2, k2, td2, kd2, r2), . . . , (pt, kt, tdt, kdt, rt)}, The task of programming 
knowledge tracing (KT) is a dynamic process. A student’s programming skill level progresses and changes over 
time based on their performance in understanding knowledge concepts and the difficulty of problem text. The 
goal of this task is to assess their mastery of programming skills based on their historical code submissions, 
in conjunction with their performance in knowledge concept mastery and text understanding, and to further 
predict their performance in the next programming task.

Difficulty definition
To better track students’ programming learning progress and performance, we introduce two important 
factors: knowledge concept difficulty(KD) and problem text understanding difficulty(TD)45,46. Knowledge 
concept difficulty reflects the complexity of the programming concepts or skills involved in a problem. It can 
be quantified based on multiple dimensions, such as the coverage of knowledge concepts and the frequency 
with which students master these concepts. The Dreyfus model divides the skill acquisition process into: 
the Novice stage, the Advanced Beginner stage, the Competent stage, the Proficient and Expert stage. Each 

Symbol Description

S The set of students

P The set of programming problems

R The set of response

m, n, v The number of problem, student and KCs

KC The set of Knowledge concepts

KD Knowledge Concepts difficulty

TD Text understanding difficulty

di Knowledge Concepts difficulty level

ui Problem text understanding difficulty level

Table 1.  Mathematical symbol and descriptions.
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stage represents a different level of understanding and application ability. Based on this model, we define the 
difficulty levels of programming problems into four tiers corresponding to the novice, advanced, proficient, and 
expert stages, thus providing a systematic difficulty assessment framework47–49. Specifically, this is defined as: 
KD = {d1, d2, d3, d4}, where each di represents a specific difficulty level, with higher values indicating greater 
complexity in syntax.

Problem text understanding difficulty refers to the complexity of students’ reading and comprehension 
of programming problems. This difficulty not only depends on whether the problem description is clear and 
concise but also relates to the terminology used in the problem and the complexity of the problem background. 
It is defined as: T D = {u1, u2, u3, u4}, where each ui represents different levels of text understanding 
difficulty, with higher values indicating that the problem description is more complex and harder for students to 
understand. We generate the difficulty levels for each knowledge concept and the text understanding difficulty 
levels of the problems using large language models. Table  2 summarizes the descriptions and definitions of 
knowledge concepts and problem text understanding difficulties.

Embeddings
Before delving into the assessment of programming problem difficulty and the generation of embeddings 
based on large language models, we need to briefly introduce some key fundamental elements that aid in a 
deeper understanding of the model’s internal workings. In this model, five key elements are primarily involved: 
problems (P), knowledge concepts (KCs), knowledge concept difficulty (KD), text understanding difficulty ( 
TD), and student code submission responses (R), which are represented through embedding matrices. The 
problem embedding matrix V ∈ Rm×dp , represents the embeddings generated by CodeBERT for programming 
problems, with dimensions m × dp, where m is the number of problems and dp is the dimension size of the 
problem embeddings. The knowledge concept embedding matrix K ∈ Rv×dk , represents the embeddings 
generated by CodeBERT for knowledge concepts related to programming problems, with dimensions v × dk , 
where vis the number of knowledge concepts and dk  is the dimension size of the knowledge concept embeddings. 
The knowledge concept difficulty embedding matrix KD ∈ R4×dg , represents the embeddings generated by the 
large language model for knowledge concept difficulty in programming problems, with dimensions 4 × dg , where 
4 corresponds to the four levels of knowledge concept difficulty and dg  is the dimension size of the knowledge 
concept difficulty embeddings. The text understanding difficulty embedding matrix TD ∈ R4×dt  represents 
the embeddings generated by the large language model for text understanding difficulty in programming 
problems, with dimensions 4 × dt, where 4 corresponds to the four levels of text understanding difficulty and 
dt is the dimension size of the text understanding difficulty embeddings. The student code submission response 
is represented by the embedding matrix R ∈ R2×dr , with dimensions 2 × dr , where 2 indicates whether the 
submitted code was accepted by the system (1 for accepted, 0 for rejected), and dr  is the dimension size of the 
response embeddings.

The DPKT framework
In this section, we will delve into the DPKT framework proposed in this paper, the structure of which is 
illustrated in Fig. 2. This framework is divided into four main parts. The first part is the difficulty assessment layer, 
which assesses the text understanding difficulty and knowledge concept difficulty of programming problems 
using a large language model, generating relevant difficulty level information. The second part is the semantic 
perception layer, which utilizes the large language model to extract semantic information about difficulty from 
the problems, constructing a relationship graph between problem difficulty and knowledge concepts. The third 
part is the knowledge update layer, which enhances and updates knowledge based on the information from the 
first two layers, thereby better reflecting the students’ grasp of knowledge. The fourth part is the prediction layer, 
which uses the updated knowledge information to predict and assess students’ knowledge state. Next, we will 
provide a more detailed discussion and explanation of these four modules.

Difficulty assessment layer
Traditional programming problem difficulty labeling primarily relies on the accuracy of each problem50. This 
method depends on a large amount of student submission data, leading to inaccurate labeling for new or 
infrequently used problems. Accuracy assessments often overlook the details and complexities of the problems 
and cannot reflect real-time changes in problem difficulty or student abilities46. Furthermore, traditional methods 

Symbol Description

d1 The knowledge concept belongs to the beginner level of programming, such as basic syntax, variable declaration, simple control structures, etc.

d2 Involves more complex logic, such as array manipulation, recursion, basic algorithms, etc.

d3 Requires the application of advanced programming skills and algorithms, such as dynamic programming, graph algorithms, concurrent programming, etc.

d4 Focused on advanced scenarios in algorithm competitions or real-world development, such as distributed systems, memory optimization, multithreading, etc.

u1 The problem description is clear and concise, easy for students to understand, requiring no additional background knowledge.

u2 The problem is slightly more complex, potentially involving multiple steps or requiring students to combine certain background knowledge.

u3 The problem includes multi-layered logical descriptions or complex backgrounds, possibly necessitating strong reading comprehension skills from students.

u4
The problem involves a large number of technical terms or implicit assumptions, requiring students to have a solid knowledge base and strong reasoning skills 
to understand.

Table 2.  Difficulty level description.
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are mainly based on historical performance, failing to effectively capture the deep structure of programming 
knowledge. The method proposed in this paper, which utilizes a large language model to label the knowledge 
concepts and text understanding difficulty of programming problems, is more resource-efficient and accurate. 
It fully leverages the powerful coding and comprehension capabilities of large language models, providing a 
comprehensive understanding of knowledge concepts and levels36. For evaluating the difficulty of knowledge 
concepts in programming problems, we adopted the following prompt approach:

	 A = {problem_id, text_description, LT D, LKD, KCs}� (1)

Where: A is the complete difficulty dictionary for the problems, LKD ∈ D represents the difficulty level of the 
knowledge concepts for the problem identified by problem_id, LT D ∈ D indicates the text understanding 
difficulty level for the problem identified by problem_id, KCs are the knowledge concepts involved in the 
problem.

To effectively integrate the information from the feature set A and provide a unified representation for 
subsequent model training and prediction, we convert the set A into an embedding matrix Q. This transformation 
not only captures the relationships among the various features but also represents rich semantic information 
through high-dimensional vectors, thereby enhancing the model’s expressive and generalization capabilities.

Thus, the embedding matrix Q is constructed as:

	

Q =




fone_hot(problem_id)
fword2vec(text_description)

finteger(LT D)
finteger(LKD)
fone_hot(KCs)


� (2)

In this way, we can represent various aspects of the problems more comprehensively, improving the accuracy and 
effectiveness of subsequent analyses.

We use a large language model to pre-train the difficulty levels of knowledge concepts and text understanding 
difficulty for programming problems. The pre-training data is obtained through manual annotation. We invited 
ten experienced teachers in the field of computer education to assess the knowledge concept difficulty of 

Fig. 2.  The core architecture of the DPKT model involves using a large language model to annotate the text 
understanding difficulty and knowledge concepts difficulty of programming tasks. The task difficulty is then 
incorporated as one of the input conditions for predicting the student’s knowledge state at the next time step in 
the knowledge tracing model.
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selected programming problems: KD = {d1, d2, d3, d4} and the text understanding difficulty of the problems: 
T D = {u1, u2, u3, u4}. Each teacher provided ratings for different difficulty dimensions of each problem. 
Ultimately, we conducted a weighted average of all teachers’ ratings to generate a comprehensive difficulty score 
for each problem. Let the score for the i problem be Si, where Sj

i  represents the rating given by the j teacher for 
the i problem (including both knowledge concept difficulty and text understanding difficulty). The final score 
for each problem can be expressed as:

	
Si = 1

N

N∑
j=1

wjSj
i � (3)

In the equations, N  is the total number of teachers (in this case, 10), and wj  is the weight assigned to the j teacher, 
which is set based on the teacher’s professional background, experience, and scoring consistency. Specifically, 
among the 10 teachers, there are 3 senior teachers, 3 intermediate teachers, and 4 junior teachers. Due to their 
extensive experience and professional level, senior teachers have a higher base weight, and after adjustment for 
consistency, their weight values are 0.144, 0.12, and 0.144, respectively. The base weight for intermediate teachers 
is slightly lower than that for senior teachers, with weight values of 0.10, 0.08, and 0.10, respectively. Junior 
teachers have a relatively lower base weight, with weight values of 0.064, 0.08, 0.096, and 0.064, respectively. 
This method of weight distribution takes into account both the professional level and scoring stability of the 
teachers, more accurately reflecting the reference value of each teacher’s scores51. The calculations for knowledge 
concept difficulty scores and text understanding difficulty scores can be expressed as: KDi = {d1, d2, d3, d4}
, T Di = {u1, u2, u3, u4}

Therefore, the final comprehensive difficulty scores can be expressed as:

	
KDfinal

i = 1
N

N∑
j=1

wjKDj
i � (4)

	
T Dfinal

i = 1
N

N∑
j=1

wjT Dj
i � (5)

Here, the value ranges for the knowledge concept difficulty score matrix KD and the text understanding 
difficulty score matrix T D are KDj

i , T Dj
i ∈ [1, 4], for each i (problem index) and j (the j-th teacher). By using 

a weighted average approach, we can effectively integrate the professional assessments from different teachers, 
thereby providing a more objective and accurate difficulty score for each programming problem.

Through the pre-training of knowledge concept difficulty and text understanding difficulty using the 
large language model, we obtain the embedding matrix Q. We further extract contextual information from 
programming problems and knowledge concepts using the self-attention mechanism of the CodeBERT model, 
generating high-quality embedding representations. These embeddings can capture the semantic relationships 
within the text, thus providing rich information for subsequent processing.

The K  and V  matrices output by CodeBERT are used for attention calculations, where K  represents the 
keys (knowledge concepts and problem features), and V  represents the values (information associated with 
K  ). The attention mechanism dynamically weights the importance of different information by calculating the 
relationships among Q,K  and V . Q represents the query of the current input, K  consists of the features to be 
referenced, while V  contains the values associated with K .

Through attention calculations, the model can focus on the knowledge concepts or semantic information 
most relevant to the current input. The attention mechanism helps the model understand the relationships 
between different knowledge concepts and problems, making the final output more semantically relevant, 
thereby enhancing the assessment of students’ knowledge state. The calculation process is as follows:

	 ṽTD = softmax(F (KTD, QTD)) · VTD � (6)

	 ṽKD = softmax(F (KKD, QKD)) · VKD � (7)

The generated VTD and VKD are fused, with the calculation formula as follows:

	 Ṽ = αVTD + (1 − α)VKD� (8)

Here, F (K, Q) represents the similarity function in the self-attention mechanism, α is a trainable fusion weight, 
VTD and VKD are the attention results for knowledge concept difficulty and text understanding difficulty, 
respectively.

Semantic perception layer
Through the perception of problem text understanding difficulty and knowledge concept difficulty in the 
difficulty perception layer, we need to further understand the close relationship between the problem at time t 
and the problems solved by the student from time 1 to t − 1 . This forms a spatiotemporal representation of the 
student’s knowledge state, providing a more accurate assessment of the student’s knowledge state.
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We treat knowledge concepts and programming problems as each node Ṽi, aggregating the information 
of each node’s neighboring nodes through the self-attention mechanism to generate new node feature 
representations. This helps capture the relationships and contextual information between nodes. By aggregating 
the information from neighboring nodes to update each node’s state, we reflect the student’s mastery of different 
knowledge concepts. The model allows for the dynamic adjustment of contributions from different neighboring 
nodes, thus determining how to aggregate information based on the actual situation.

We construct the adjacency matrix B based on Ṽ . In this graph, the node Ṽi represents the features of each 
programming problem, and the relationship between two nodes indicates that the two programming problems 
are semantically similar or have a dependency relationship.

	
Sim(Ṽi, Ṽj) = Ṽi · Ṽj

∥Ṽi∥∥Ṽj∥
� (9)

Among them, Sim(Ṽi, Ṽj) represents the cosine similarity between node Ṽi and node Ṽj, where Ṽi and Ṽj are the 
feature vectors of the two nodes, and ∥ · ∥ denotes the vector norm.

First, we construct the similarity matrix S, where S[i][j] indicates the similarity between node i and node j :

	 S[i][j] = similarity(Ṽi, Ṽj)� (10)

According to the similarity matrix S, a threshold λ is set. The threshold λ is a trainable key parameter that 
determines the connection between two nodes. The adjacency matrix B is constructed based on this threshold:

	
B[i][j] =

{ 1 if S[i][j] ≥ λ
0 if S[i][j] < λ � (11)

According to the adjacency matrix, for each pair of adjacent nodes i and j, we calculate the attention coefficient 
αj

i :

	
αj

i = softmaxj

(
aT [W vi ∥ W vj ]√

d

)
� (12)

Here, vi and vj  are the feature vectors of nodes i and j, W  is a learnable weight matrix, a is the weight vector 
used for attention calculation, ∥ denotes the concatenation operation, and d is the feature dimension.

The attention coefficient αj
i  is used to weight the features of adjacent nodes; for each node i, its updated 

feature representation h′
i is obtained by weighted aggregation of the information from adjacent nodes:

	

h′
i = σ


 ∑

j∈N(i)

αijW vj


� (13)

Here, N(i) denotes the set of adjacent nodes connected to node i, σ is the ReLU non-linear activation function.
The adjacency matrix defines the connection relationships between nodes and guides the calculation of 

attention coefficients, influencing the node feature update process. Through Graph Attention Networks (GAT), 
the DPKT model we designed can effectively propagate and aggregate the features and contextual information of 
problems within the graph structure, aiding in a more accurate assessment of the student’s learning state.

Finally, the new feature matrix of the nodes is output:

	 H ′ = concat(h′
1, h′

2, . . . , h′
N )� (14)

Each node in the matrix H ′ represents the integration of information from that node and its adjacent nodes, 
reflecting the student’s status in learning programming knowledge and skills, thus providing rich contextual 
information for subsequent knowledge tracing and state assessment.

Knowledge update layer
Different difficulty levels of exercises have varying impacts on students’ knowledge state, and the influence of 
exercise difficulty on knowledge state is dynamic48. The knowledge update layer allows for the dynamic updating 
of students’ mastery of exercises at different difficulty levels and their overall knowledge state. Specifically, we 
first concatenate the semantic features h′

t at time t with the student’s code submission response Rt and the 
previous hidden state Ht−1 to obtain a comprehensive information vector Zt, The specific calculation formula 
is as follows:

	 Zt = h′
t ⊕ Rt ⊕ Ht−1� (15)

In this context, ⊕ denotes the vector concatenation operation.
The students’ knowledge state are updated by practicing exercises of varying difficulties, and the knowledge 

update gate Gt dynamically adjusts the students’ mastery of knowledge at different difficulty levels, facilitating 
effective information integration. The calculation formula is as follows:

Scientific Reports |        (2025) 15:11475 8| https://doi.org/10.1038/s41598-025-96540-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	 Gt = σ(Wg · Zt + bg)� (16)

Where, Wg  is the weight matrix for the update gate, bg  is the bias vector, and σ(·) is the Sigmoid activation 
function.

To ensure the model can dynamically update knowledge state, we integrate current input information with 
historical data to enhance and update the knowledge state. The calculation formula is as follows:

	 ht = (1 − Gt) · Zt + Gt · tanh(Wh · Zt + bh)� (17)

Where Wh is the weight matrix for knowledge state updates, bh is the bias vector, and  represents element-wise 
multiplication.

Through the knowledge update layer, the model integrates the latest and historical semantic information from 
exercises and students’ knowledge state, allowing for dynamic updates during the students’ learning process.

Output layer
The knowledge mastery state of the student at the current time ht is obtained. To better predict the student’s 
knowledge performance at the next time step, the next programming problem and relevant knowledge points are 
fused into the current knowledge state for output. The calculation formula is as follows:

	 yt =ht ⊕ Pt+1 ⊕ KCt+1 � (18)

	 yt+1 =σ(Wy · yt + by) � (19)

Where, Wy  is the learnable weight parameter, by  is the bias term, and σ(·) is the Sigmoid activation function.

Objective function
During the model training process, we employed the Adam optimization algorithm to accelerate convergence and 
enhance robustness through adaptive learning rates. Since knowledge tracing can be regarded as a classification 
problem, we selected the binary cross-entropy loss function, which effectively measures the discrepancy between 
predictions and true labels. Specifically, the objective function is defined as:

	
L = −

T∑
t=1

[Rt log yt + (1 − Rt) log(1 − yt)] + µθ||θ||2� (20)

Among them, θ represents all trainable parameters in this model, including learning rate, batch size, number 
of training epochs, and regularization techniques. The specific settings are as follows: The initial learning rate 
is set to 0.001, and a learning rate decay strategy is adopted, where the learning rate is reduced to 0.1 of the 
original after a certain number of training epochs. Batch size: The batch size is set to 32, which is the optimal 
value found in experiments, ensuring model training efficiency while avoiding overfitting. Number of training 
epochs: The number of training epochs is set to 50, and the optimal number of training epochs is selected 
through cross-validation. Regularization: L2 regularization technology is used, with a regularization coefficient 
set to 0.01 to prevent model overfitting. With these settings, we can more effectively optimize model parameters 
and improve model performance and generalization ability. µθ  is the regularization hyperparameter used to 
prevent model overfitting. The regularization term µθ∥θ∥2 penalizes the model’s complexity by adding the L2 
norm of the parameters to the loss function, thereby improving the model’s generalization ability. To ensure 
the reproducibility and transparency of the model, we have made detailed adjustments and verifications of the 
regularization hyperparameter µθ  in the experiment. Specifically, the value of µθ  is the optimal value obtained 
by grid search within the interval [10−4, 10−3, 10−2, 10−1]. When µθ  is set to 10−3, the model achieves the 
best performance on the validation set, striking a good balance between predictive accuracy and generalization 
ability. This selection process ensures the model’s stability and generalization ability across different datasets.

Experiments
In the experimental section, we first provide a detailed overview of the dataset used, including its source, 
structure, and statistical information. We describe the data preprocessing, feature extraction, and other 
processes to ensure that the model can efficiently utilize this data. Next, we compare the baseline model with our 
proposed knowledge tracing model based on large language models in terms of their ability to predict student 
performance, showcasing their performance across various evaluation metrics. Furthermore, we conduct a 
series of experiments to explore the different modules of the model and their impact on overall performance, 
revealing the advantages and potential of large language models in knowledge tracing tasks. The key research 
questions we aim to investigate are as follows:

•	 RQ1: Does our proposed knowledge tracing model based on large language models demonstrate superior 
performance in predicting students’ future performance?

•	 RQ2: How does the difficulty of programming problems affect the modeling of students’ knowledge state?
•	 RQ3: How much prior knowledge should be provided for large language models to achieve optimal results?
•	 RQ4: How does the difficulty level generated by large language models compare to the difficulty level anno-

tated by humans?
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•	 RQ5: What is the impact of different modules in the model (such as difficulty assessment and semantic aware-
ness) on the knowledge tracing results?

•	 RQ6: What is the effect of problems at varying difficulty levels on the model’s performance?
•	 RQ7: How does the knowledge tracing model based on large language models understand the code submitted 

by students?

Through the exploration of these questions, we not only validate the model’s effectiveness across different tasks 
but also investigate its limitations and areas for optimization, aiming to provide guidance for future related 
research.

Datasets
To validate the effectiveness of DPKT, we selected the Project CodeNet dataset for testing. Project CodeNet is 
a large and diverse programming dataset that contains approximately 14 million code samples, covering over 
50 programming languages. It is particularly well-suited for tasks such as programming problem difficulty 
modeling and student knowledge state prediction49. Table 3 presents specific statistical information filtered after 
data cleaning. A notable feature of Project CodeNet is that it provides detailed metadata for each programming 
problem, such as code execution time, memory usage, and submission status (whether it passed or failed). 
This rich metadata provides a solid foundation for our difficulty analysis based on large language models. In 
CodeNet, 94.6% of submissions are made in the following four programming languages: C++, Python, Java, 
and C. In this study, we focus on these four languages. To more accurately assess students’ programming skills, 
this research utilizes programming problems combined with the execution results of the code (such as whether 
it compiled successfully and whether it was correct) to trace students’ knowledge state. Additionally, to handle 
exercise sequences of varying lengths, we set the maximum sequence length for analysis to 50. For sequences 
exceeding this length, we split them into multiple parts, while shorter sequences are standardized through zero 
padding. This approach ensures that the model can effectively leverage the diversity of different problems and 
languages for difficulty perception and student state prediction.

Experimental setup
To comprehensively assess the performance of the DPKT model, we conducted an in-depth comparison with 
several mainstream baseline models. To ensure fairness and scientific rigor in the comparison, all baseline models 
were reproduced under the same experimental conditions, with precise tuning of their key parameters to ensure 
each model operated in its optimal state. These baseline models encompass existing mainstream knowledge 
tracing (KT) methods, representing various learning strategies and network architectures. For performance 
evaluation, we selected AUC (Area Under Curve) and ACC (Accuracy) as the primary metrics, which allow for 
a more comprehensive assessment of the overall performance of the models and directly measure their accuracy 
in actual prediction tasks, particularly in predicting accuracy under different student knowledge state. The 
experimental methods strictly followed the principle of reproducibility, with all models running on a Linux server 
equipped with a Tesla V100 GPU, and multiple repetitions were conducted to minimize the impact of random 
factors on the experiments, ensuring the reliability and robustness of the results. In this study, we employed 
5-fold cross-validation to assess the model’s performance, which ensures the stability of the evaluation results 
while reducing computational costs. During the experimental process, we thoroughly tested the model through 
cross-validation and extensively verified it with different types of datasets, such as real student learning datasets 
from educational platforms.The LLM model we utilized is GPT-4o, which is a multimodal large language model, 
and the BERT model is CodeBERT, an optimized BERT model for programming languages52. The selection and 
application of these models further enhance the depth and breadth of our research.

•	 DKT1 proposes using recurrent neural networks (RNNs) to model students’ knowledge state. By not relying 
on manual knowledge encoding, RNNs capture more complex student learning behaviors, enhancing the 
predictive performance of knowledge tracing tasks.

•	 DKVMN8 is based on dynamic memory networks and introduces static key and dynamic value matrices to 
store knowledge concepts and the levels of knowledge mastered by students, respectively. This model au-
tomatically discovers and updates knowledge state, addressing the issue of manual concept annotation in 
traditional methods.

•	 SAKT53 employs self-attention mechanisms to select relevant knowledge concepts from students’ past activ-
ities, offering better handling of data sparsity issues. The model excels in sparse data environments, signifi-
cantly enhancing predictive performance.

•	 EKT7 uses self-attention mechanisms to select past activities related to specific knowledge concepts, mitigat-
ing the impact of data sparsity on the model. The model demonstrates outstanding performance on multiple 
real datasets, improving AUC and prediction outcomes.

Language type Number of problems Number of students Number of submissions

C++ 1218 678 35,245

Python 1097 689 29,330

Java 1052 487 22,650

C 963 512 19,400

Table 3.  Statistics of Selected Languages from Project CodeNet Dataset.
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•	 Code-DKT19 is designed for programming tasks and extends the DKT model with attention mechanisms, 
automatically extracting code features relevant to problems and enhancing prediction performance in pro-
gramming tasks through these features.

•	 DKT+54 addresses issues present in DKT (such as input reconstruction failure and inconsistent knowledge 
level predictions) by introducing two regularization terms to enhance the model’s predictive consistency and 
stability, thereby improving DKT’s performance.

•	 DIMKT50 introduces a problem difficulty matching mechanism to dynamically assess the relationship be-
tween students’ knowledge state and problem difficulties, adjusting knowledge state predictions for problems 
of varying difficulty.

•	 QIKT55 refines the modeling of students’ knowledge state through problem-centric approaches and proposes 
a prediction layer based on item response theory, enhancing the model’s interpretability and predictive ac-
curacy.

•	 TCKT56 incorporates time and causality enhancement mechanisms to improve the consistency and predictive 
accuracy of knowledge state through self-attention methods and knowledge forgetting and acquisition gates.

•	 THKT57 introduces a hierarchical guidance mechanism to dynamically assess student feedback at different 
problem levels, optimizing predictions of students’ knowledge mastery and enhancing the model’s interpret-
ability and hierarchical recognition capabilities.

Performance prediction (RQ1)
To validate the effectiveness of our proposed DPKT model in tracking students’ knowledge state and predicting 
future performance, we conducted a comparative analysis with various classic baseline models. In the experiment, 
we used AUC (Area Under the Curve) and ACC (Accuracy) as the main evaluation metrics. AUC measures the 
model’s ability to distinguish between positive and negative samples, while ACC represents the overall predictive 
accuracy of the model. Table 4 shows the average performance of different models on the AUC and ACC metrics. 
The choice to report the average values rather than the standard deviation values is based on the experimental 
design, where the consistency of experimental conditions leads to minimal variation in results. Specifically, by 
repeating the experiments multiple times, we ensured that the data division and experimental conditions were 
the same each time, thus making the average values of AUC and ACC highly stable. Compared to traditional 
knowledge tracing models such as DKT and DKVMN, the DPKT model outperformed across all programming 
language datasets. As show in Table 4, this indicates that the DPKT model is better at capturing changes in 
knowledge concepts and difficulty levels within programming problems. Models like EKT and THKT, which 
encode problems, performed well on certain datasets; for instance, THKT achieved an AUC of 75.2% on the 
C dataset, but their overall performance was still inferior to that of the DPKT model. By introducing graph 
attention mechanisms, DPKT enables finer semantic integration and knowledge state updates, significantly 
enhancing prediction accuracy. A core advantage of the DPKT model lies in its automated annotation of 
knowledge points and difficulty levels for programming problems using large language models. This automation 
improves the model’s generalization ability, allowing it to capture students’ learning trajectories more precisely 
across different difficulty levels, leading to more accurate predictions of their knowledge state. This design 
enables DPKT to flexibly adjust its predictions based on the content and difficulty of programming problems, 
significantly enhancing the model’s predictive performance.

Through comparative experiments with baseline models, our DPKT model demonstrated strong performance 
across multiple programming language datasets, especially excelling in AUC and ACC metrics on C++ and C 
datasets. Additionally, the DPKT model effectively enhanced the dynamic tracking of students’ knowledge state 
through automated annotation and multi-level attention mechanisms. The experimental results confirm the 
advantages of the DPKT model in programming knowledge tracing and predicting student future performance, 
providing new research directions for personalized teaching and knowledge assessment.

Methods C++_AUC C++_ACC C_AUC C_ACC Java_AUC Java_ACC Python_AUC Python_ACC

DKT1 70.9 69.7 71.7 66.5 71.8 69.7 74.0 68.0

DKVMN8 71.5 69.9 66.9 64.2 71.8 70.3 73.8 69.0

SAKT53 71.9 70.6 72.5 67.0 73.0 69.9 74.5 68.8

EKT7 72.0 70.0 73.2 69.8 75.0 71.7 73.3 67.0

Code-DKT19 71.2 69.9 71.8 67.4 71.8 67.9 72.5 69.1

DKT+54 73.2 71.0 72.9 69.7 74.9 72.6 75.5 68.5

DIMKT50 72.5 71.7 75.1 68.7 73.5 71.8 75.9 68.9

QIKT55 73.4 71.6 72.4 67.3 72.2 70.8 73.8 69.5

TCKT56 73.6 70.9 73.1 68.4 72.6 71.8 76.0 67.7

THKT57 73.8 71.8 75.2 70.0 74.5 72.5 74.9 70.0

DPKT 76.2 74.5 75.7 71.5 75.4 72.9 76.8 68.1

Table 4.  Comparison of the AUC and ACC performance (%) of various knowledge tracing methods on the 
C++, C, Java, and Python datasets. The best results are highlighted in bold, and the second-best results are 
underlined.
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Knowledge state modeling (RQ2)
In programming learning, assessing students’ knowledge state is crucial for effective knowledge tracing. 
Programming problems often involve multiple knowledge points with varying levels of difficulty and complexity. 
Capturing students’ knowledge state in programming tasks through the DPKT model becomes key to evaluating 
their programming abilities. As shown in Fig. 3, the DPKT model illustrates changes in students’ knowledge state 
across multiple knowledge points, especially as the difficulty and complexity of problems gradually increase, 
reflecting dynamic variations in their mastery of these points.

First, overall, students’ knowledge state change with the increase in practice involving different difficulty levels. 
Second, we find that problems of varying difficulty impact students’ knowledge state differently. For instance, the 
knowledge state growth for problems 9 and 10 differs significantly from that for problems 18 and 19. Medium-
difficulty problems (like 9 and 10) provide solid consolidation opportunities, ensuring students steadily improve 
their mastery while gradually adapting to more complex tasks. High-difficulty problems (like 18 and 19), while 
challenging, can greatly enhance students’ knowledge state, particularly when related to prerequisite knowledge; 
the benefits of practicing high-difficulty problems are even more pronounced.

Third, the DPKT model can also explain the impact of problem difficulty on knowledge state by analyzing 
the relationships between knowledge concepts. In the experiment, we found that the prerequisite relationships 
between knowledge concepts affected the degree to which students mastered the relevant knowledge concepts, 
with high-difficulty problems having a greater impact on the mastery of these related knowledge concepts. This 
demonstrates that the DPKT model effectively captures the dynamic changes in students’ knowledge state across 
different knowledge concepts and problem difficulties, and it uses difficulty analysis to help explain variations 
in students’ knowledge mastery. The DPKT model provides strong data support for knowledge tracing in 
programming learning. By integrating and analyzing multidimensional features such as problem difficulty, 
knowledge concepts, and student responses, the model reveals patterns of how students’ knowledge state change 
with increasing difficulty. This model offers a solid basis for optimizing personalized learning pathways.

The impact of data proportion fed into LLM on performance (RQ3)
To verify the impact of prior knowledge from different data volumes on model performance, we designed an 
experiment to segment datasets from four programming languages (C++, C, Python, Java) and input them into 
the model for training and evaluation. The experimental results, as shown in Fig. 4, reveal the following trends:

First, the volume of data from different programming languages affects model performance (AUC and ACC) 
differently. As the training data volume increases, the model’s AUC and ACC metrics generally show an upward 
trend, but this growth is not linear. For example, in the Python dataset, the AUC significantly improves with 
initial increases in data volume, but the growth rate gradually slows when the volume reaches 3/4 or more. A 
similar phenomenon occurs in the C++, C, and Java datasets, where the increases in AUC and ACC tend to 
plateau as data volume grows.

Second, specifically, C++ exhibits the fastest growth rate when the data volume increases from 1/4 to 1/2, 
reflecting its sensitivity to data volume. As a powerful programming language, C++ has high flexibility and 
complexity, making it suitable for handling large amounts of complex algorithms and data structures, which may 
lead to significant AUC growth in the early stages. In contrast, Java’s AUC growth is relatively slow, particularly 
during the 1/4 to 1/2 data volume stage, indicating weaker model adaptability to this language. Java is mainly 
used for enterprise-level applications and large-scale systems, and its strict syntax rules and relatively steep 
learning curve may limit the model’s effectiveness with smaller data volumes. Comparatively, C and Python 
perform at a moderate level across different data volume stages, with Python starting at a higher point and 
overall performing better. The simplicity and widespread applicability of Python may enhance its learnability in 

Fig. 3.  The learning sequences and knowledge state evolution of two students across knowledge components 
(KCs) with different levels of difficulty. The difficulty levels are divided into four grades, with higher numerical 
values representing greater difficulty.
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projects, especially in data science and artificial intelligence, further facilitating the model’s rapid understanding 
of its characteristics.

Based on the results of this experiment, we draw preliminary conclusions regarding the optimal amount of 
prior knowledge for large language models: data volume, the characteristics of programming languages, and 
the amount of prior knowledge collectively influence the model’s performance. Future research could further 
explore how to optimize the allocation of prior knowledge according to different programming languages and 
datasets to enhance model performance and achieve broader applicability.

Comparison of expert annotations of problem difficulty with results generated by the large 
language model (RQ4)
To evaluate the differences and consistency between difficulty annotations generated by large language models 
and those made by human annotators, we designed a comparative experiment involving ten experienced 
computer education teachers. These teachers manually annotated the text understanding difficulty and 
knowledge concepts difficulty of problems in four programming languages. To ensure the comparability of the 
results, all annotations used a uniform scale of 1 to 4, representing low, low-medium, medium-high, and high 
difficulty (with 1 being the lowest and 4 the highest).

We matched the annotations generated by the large language model with those of the teachers and assessed 
the consistency between the two using both quantitative and qualitative analysis methods. The matching 
approach primarily involved calculating the difference in difficulty levels for each question, categorizing the 
consistency into three levels: fully consistent, acceptable deviation, and inconsistent. Subsequently, we quantified 
the consistency scores and measured the overall performance of the model using the average consistency score. 
In addition, we performed qualitative analysis of difficulty trends based on the data and compared the time costs 
involved, providing a comprehensive assessment of the large model’s potential in large-scale annotation tasks. 
The specific methods are as follows:

1. Matching Algorithm: For each programming problem i, the teacher’s annotated text understanding 
difficulty is T text

i  and the knowledge concepts difficulty is T syntax
i , while the corresponding difficulties 

generated by the large language model are M text
i  and M syntax

i . The difference in text understanding difficulty 
and knowledge concepts difficulty for each problem is calculated as:

	 ∆text
i =

∣∣T text
i − M text

i

∣∣ � (21)

	 ∆syntax
i =

∣∣T syntax
i − M syntax

i

∣∣ � (22)

Based on the size of the difference ∆i,the matching situations are categorized into three types58,59: Perfect 
Match: ∆text

i ≤ 0.5 and ∆syntax
i ≤ 0.5. Acceptable Deviation: 0.5 < ∆text

i ≤ 1.0 or 0.5 < ∆syntax
i ≤ 1.0. 

Inconsistent: ∆text
i > 1.0 or ∆syntax

i > 1.0.
2. Consistency Score: To quantify the consistency of each problem in terms of text understanding and 

knowledge concepts difficulty, we introduce the consistency score Si:

	
Si = 1 −

(
∆text

i + ∆syntax
i

2

)
� (23)

Here, the range of Si is from 0 to 1, where 1 indicates perfect consistency and 0 indicates inconsistency.
3. Average Consistency Score: We calculate the average consistency score S̄ for all problems to measure 

overall consistency:

Fig. 4.  By inputting different proportions of raw data into the LLM to generate knowledge concepts, we can 
observe its impact on the model’s AUC performance.
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S̄ = 1

N

N∑
i=1

Si� (24)

Here, N  is the total number of problems. The results are shown in the table. The calculation formula for the 
Kappa value is:

	
Kappa = Po − Pe

1 − Pe
� (25)

Where Po is the observed consistency, which is the proportion of problems annotated consistently by both the 
experts and the large model; Pe is the expected consistency, which is the consistency under random assignment. 
The Kappa value ranges from [−1, 1]60,61, where:

1 : Perfect consistency.
0 : Consistency equivalent to random selection.
Negative values : Consistency below random levels.
Specifically,
0.01–0.20 : Almost no consistency.
0.21–0.40 : Weak consistency.
0.41–0.60 : Moderate consistency.
0.61–0.80 : Strong consistency.
0.81–1.00 : Almost complete consistency.
The results, as shown in Fig.  5, indicate that when analyzing the difficulty annotations for different 

programming languages, C++ and Python perform better than C and Java. Specifically, C++ has 75 problems 
matched for text understanding difficulty, with a Kappa value of 0.57; for knowledge concepts difficulty, the 
number of matched problems is 80, with a Kappa value reaching 0.64, demonstrating high consistency. Python 
has 80 matched problems for text understanding difficulty, with a Kappa value of 0.65, and 85 matched problems 
for knowledge concepts difficulty, achieving a Kappa value of 0.73, indicating that the model can effectively 
capture the difficulty characteristics of Python. In contrast, C has 70 matched problems for text understanding 
difficulty, with a Kappa value of 0.50, and 65 matched problems for knowledge concepts difficulty, with a Kappa 
value of only 0.44, showing lower consistency. Additionally, Java’s Kappa values for text understanding and 
knowledge concepts difficulties are 0.53 and 0.47, respectively, overall performing worse than C++ and Python. 
These data indicate that the large language model generally exhibits good annotation consistency when labeling 
the difficulties of different programming languages, but there are also certain discrepancies. These differences 
reflect that the model’s annotation effectiveness is influenced by the characteristics of the programming 
languages, laying the groundwork for future work.

Model component effectiveness evaluation (RQ5)
The DPKT model utilizes a large language model to accurately annotate the knowledge concepts and difficulty 
levels of programming problems, integrating this difficulty-related semantic information into the process of 
updating students’ knowledge state. To validate the key roles of the large language model, BERT model, and 
graph attention network in modeling student knowledge state within DPKT, we conducted experimental analyses 
based on datasets from four programming languages (C++, C, Java, Python) to assess the positive contributions 
of each component to the prediction of students’ knowledge state, as shown in Table 5.

The large language model plays a crucial role in updating student knowledge state, especially when handling 
complex programming language datasets (such as Python), where its understanding of problem and knowledge 

Fig. 5.  Comparison of the Consistency between Human Annotations and LLMs Annotations for text 
Understanding Difficulty and Knowledge Concepts Difficulty of 100 Problems in Four Programming 
Languages.
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concepts difficulty significantly enhances model performance. Meanwhile, the CodeBERT model is essential for 
capturing the semantic relationships between knowledge concepts and problems; its removal leads to a notable 
decline in model performance, underscoring its indispensability in modeling interactive relationships. Although 
the performance drop from removing the graph attention network is less pronounced than for the first two 
modules, it still plays a positive role in integrating multidimensional information and handling complex problem 
difficulties, indicating the collaborative effect of these modules in enhancing the overall capabilities of the model.

The difficulty information processed by the large language model provides more precise and detailed 
annotations of problem and knowledge concepts difficulties, laying a solid foundation for subsequent research. 
This accurate difficulty information not only aids in optimizing the design of personalized learning paths for 
students but also improves the accuracy of knowledge state updates, enhancing the efficiency of educational 
technology applications. Furthermore, the deep modeling of the semantic relationships between knowledge 
concepts and problems through the CodeBERT module further enhances the model’s understanding of student 
learning states, increasing the overall reliability of predictions. The significance of the graph attention network 
in integrating multidimensional information enables effective consolidation of difficulty information from 
various sources, thereby improving the model’s ability to handle complex problem difficulties. Therefore, the 
comprehensive research based on the large language model, CodeBERT, and graph attention network provides 
new insights and directions for future model optimization, personalized learning path design, and educational 
research, promoting the further development of educational technology.

Analysis of the role of difficulty factors in knowledge tracing models (RQ6)
Accurately assessing and tracking students’ knowledge state is crucial for improving learning efficiency and 
developing personalized learning plans1. However, variations in text understanding difficulty and knowledge 
concepts difficulty across different problems can significantly affect students’ performance and the predictive 
effectiveness of models. In this experiment, we analyzed the impact of text understanding difficulty and 
knowledge concepts difficulty on student knowledge state updates, leading to several important conclusions. 
We had students practice a series of programming problems with the same knowledge concepts difficulty but 
varying understanding difficulties, as well as problems with the same text understanding difficulty but differing 
knowledge concepts difficulties. Their minimum knowledge state, final knowledge state, and optimal knowledge 
state are illustrated in the radar chart in Fig. 6.

When knowledge concepts difficulty is the same, and students practice programming problems with different 
understanding difficulties, their knowledge state do not change significantly. Moderate text understanding 

Fig. 6.  After practicing a series of programming problems with varying levels of difficulty, the radar chart of 
changes in students’ knowledge state.

 

Methods C++_AUC C++_ACC C_AUC C_ACC Java_AUC Java_ACC Python_AUC Python_ACC

DPKT w/o LLM 74.8 73.2 74.3 70.1 74.0 71.4 75.5 66.9

DPKT w/o BERT 73.5 72.1 73.1 69.0 73.0 70.5 74.1 65.4

DPKT w/o GAT 75.2 73.8 74.5 70.8 74.7 71.9 75.9 67.2

Table 5.  Results of ablation studies on different programming language datasets.
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difficulty helps students better understand the problems, enhancing their performance and facilitating updates 
to their knowledge state. However, if text understanding difficulty is too high, students need to invest more effort 
to understand the problems, which can negatively affect the performance of some students. As a result, the model 
may incorrectly assume that these students have not mastered the relevant knowledge, preventing a positive 
update to their knowledge state. Conversely, when text understanding difficulty is the same, and students practice 
programming problems with different knowledge concepts difficulties, their knowledge state show significant 
improvement. After correctly analyzing the problem requirements, students practicing with problems of lower 
knowledge concepts difficulty can boost their confidence, foster their interest in learning, and promote further 
in-depth study. However, the improvement in knowledge state may be limited. In contrast, problems with higher 
knowledge concepts difficulty effectively differentiate students of varying levels, prompting greater cognitive 
enhancement, but may also demotivate some students and reduce their interest in learning. Therefore, moderate 
understanding and knowledge concepts difficulties can maintain a balance between student performance and 
knowledge state updates while ensuring high predictive accuracy for the model.

Both text understanding difficulty and knowledge concepts difficulty play vital roles in the knowledge 
tracing process, influencing not only student performance but also the model’s accuracy in predicting students’ 
knowledge state. Optimal levels of understanding and knowledge concepts difficulty can enhance students’ 
learning outcomes and enable the model to more accurately track updates in their knowledge state. In research, 
setting appropriate difficulty levels can help students gain a better learning experience while improving the 
model’s predictive accuracy. Future studies could further explore the best application scenarios for different 
difficulty combinations in knowledge state updates, providing richer references for optimizing educational 
models.

Case study (RQ7)
Comprehension difficulty of problems is a key factor affecting the performance of student knowledge state 
prediction models50. Through the analysis of problems of varying difficulty, we found that both excessively 
high and low comprehension difficulty can significantly impact the accuracy of model predictions. When 
comprehension difficulty is not taken into account, the model may rely on relatively simple knowledge concepts 
difficulty to predict student performance. However, even with lower knowledge concepts difficulty, students 
may fail to complete problems due to high comprehension difficulty, leading to biased predictions. For example, 
a student encountered a series of problems based on “loop structures” where the comprehension difficulty 
was rated as 1 and the knowledge concepts difficulty as 2. The first problem had low comprehension difficulty, 
and the student was able to complete it successfully, with the model accurately predicting that the student had 
mastered the relevant knowledge. In contrast, the third problem had the same knowledge concepts difficulty as 
the previous one, but due to an increase in comprehension difficulty, the student faced challenges. However, due 
to the complexity of the problem’s wording, the model failed to recognize this, incorrectly predicting that the 
student had mastered the knowledge concepts.

As shown in Fig.  7, when comprehension difficulty is too high, students often struggle to accurately 
understand the problem, failing to adequately demonstrate their knowledge mastery. In this case, even though 
the model predicts that the student can correctly complete the problem based on lower knowledge concepts 
difficulty, the understanding barrier leads to the student not completing the task as expected, resulting in the 
model incorrectly updating their knowledge state to “not mastered.” This bias introduced by high comprehension 
difficulty demonstrates that relying solely on knowledge concepts difficulty for predictions is one-sided. In 
contrast, in problems with moderate comprehension difficulty, students can successfully understand the problem 
and respond correctly, allowing the model to accurately capture the student’s knowledge state and update it to 
“mastered.”

On the other hand, while problems with low comprehension difficulty can help build student confidence, if 
the problems are too simple, students may easily complete them but fail to effectively enhance their knowledge 
level. As a result, the model might misjudge the student’s true learning state, leading to updates in knowledge 
state that lack reference value.

Therefore, considering comprehension difficulty plays an important corrective role in student knowledge 
state prediction models. By integrating comprehension difficulty with knowledge concepts difficulty, the model 

Fig. 7.  The impact of text understanding difficulty in textual problems with varying difficulty levels for the 
same knowledge concept on model prediction results.
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can more comprehensively evaluate student learning performance. For instance, when the model predicts a 
problem with low knowledge concepts difficulty that the student should be able to complete, incorporating 
comprehension difficulty can correct potential biases. In situations where comprehension difficulty is high, even 
if the grammar is simple, the model can reasonably anticipate that the student might perform poorly due to 
unclear problem wording, thus avoiding erroneous updates to their knowledge state. Comprehension difficulty 
should not be overlooked in knowledge state prediction models. By introducing comprehension difficulty, the 
model can more accurately capture the student’s true knowledge level, avoiding performance declines caused by 
imbalances in problem features. This not only improves the accuracy of predictions but also provides stronger 
support for designing personalized learning paths. Future research should further explore how to dynamically 
adjust the difficulty of different problems to better help students master knowledge while enhancing the 
performance of knowledge tracing models.

Conclusions and limitations
This paper proposes a difficulty-aware programming knowledge tracing with large language models. The model 
inputs programming problems and knowledge concepts into the CodeBERT pre-trained model, leveraging 
difficulty annotations generated by the large language model, combined with attention mechanisms and graph 
attention mechanisms, to create a semantic matrix of difficulty. Through the knowledge update layer, the 
model can dynamically adjust the student’s knowledge state and predict their future mastery of knowledge. 
By combining the comprehension difficulty of problems with the difficulty of knowledge concepts, the model 
provides a more comprehensive and accurate tracking of the student’s learning state.

The model not only evaluates the student’s grasp of knowledge concepts but also captures the challenges 
students face in problem comprehension, thereby enhancing prediction accuracy. With the help of attention 
mechanisms and graph attention networks, the model effectively integrates complex problem information 
and updates the student’s knowledge state. As students complete problems of varying difficulty, the model 
dynamically adjusts their knowledge mastery state, reflecting their learning progress in real time.

Although the model demonstrates good performance, there are still areas for further improvement and 
optimization. For instance, future research could consider integrating more data sources generated during 
the learning process, such as code debugging information, time management, and even emotional data. By 
incorporating multimodal information, the model would gain a more comprehensive understanding of student 
learning behaviors, thus improving the accuracy of predictions and knowledge tracing. Current models primarily 
focus on short-term knowledge state updates; in the future, a long-term prediction module could be introduced 
to combine students’ historical performance and long-term learning paths, predicting changes in knowledge 
mastery over extended periods. This would facilitate better adjustments to curricula and teaching strategies. 
With these improvements, future knowledge tracing models will be more personalized and intelligent, helping 
students master knowledge more efficiently in programming learning, while also providing educators with more 
precise teaching strategy support.

Data availability
The dataset analyzed during the current research period can be found in the Project Code net repository at 
https://github.com/IBM/Project_CodeNet.git. The code for this study can be found at the following GitHub 
repository: https://github.com/ELLE157/DPKT.
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