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Accurate high-resolution runoff predictions are essential for effective flood mitigation and water 
planning. In hydrology, conceptual models are preferred for their simplicity, despite their limited 
capacity for accurate predictions. Deep-learning applications have recently shown promise for runoff 
predictions; however, they usually require longer input data sequences, especially for high-temporal 
resolution simulations, thus leading to increased model complexity. To address these challenges, 
this study evaluates the robustness of two novel approaches using Long Short-Term Memory (LSTM) 
models. The first model integrates the outputs of a simple conceptual model with LSTM capabilities, 
while the second model is a stand-alone model that combines coarse and fine temporal inputs to 
capture both long and short dependencies. To ensure accuracy and reliability, we utilized a century-
long meteorological dataset generated from a sophisticated physics-based model, eliminating any 
influence of measurement errors. The training phase employed multiple sub-periods ranging from 
7- to 50-year, with a separate 50-year subset for validation. Our findings highlight the consistent 
improvement of both LSTM models with increasing training dataset lengths, while conceptual models 
show no notable enhancement beyond 15 years of training data. Both LSTM models demonstrate 
superior performance in capturing the reference flow duration curve, offering a promising pathway for 
more computationally efficient models for runoff predictions.

Keywords  Length of calibration dataset, GR4H and GR5H models, One-step ahead prediction, Efficient 
LSTM models, Hybrid ML and conceptual models, Longer training dataset

High-resolution runoff predictions are essential for understanding the dynamics of hydrologic systems, ultimately 
leading to effective water resource planning and management. Over the past few decades, rainfall-runoff models 
have evolved significantly to estimate the streamflow time series across various temporal and spatial scales1. 
These models are generally grouped into three main categories: physics-based, conceptual, and data-driven2. The 
physics-based approach employs the principles of physical processes to simulate the mechanism of hydrologic 
systems. These physical processes typically include fundamental principles such as conservation of mass, 
momentum, and energy, as well as detailed simulations of hydrological phenomena like infiltration, percolation, 
routing, and evapotranspiration3. This approach entails longer calibration processes and requires a detailed 
description of the catchments’ physical characteristics4. In contrast, conceptual models provide simplified 
mathematical representations of the physics principles for hydrological simulations, requiring limited inputs 
within a computationally efficient framework5. Recently, data-driven models have gained significant attention 
due to their ability to handle complex simulations by capturing the non-linear relationships between the inputs 
and the outputs without the need for any physical knowledge6.

In recent years, numerous Deep Learning (DL) techniques have been utilized in the hydrological field, 
particularly for predicting runoff responses5,7. Among these, Long Short-Term Memory (LSTM), a variant of 
Recurrent Neural Networks (RNN), has demonstrated high efficacy in handling sequence patterns for time-
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series modeling8–10. LSTM addresses the traditional RNN issues of vanishing and exploding gradients through 
its integrated structure of input, output, and forget gates11. Several studies highlighted the capabilities of LSTM 
in providing reliable runoff responses5,6,12. A comparative analysis was conducted to evaluate the performance of 
LSTM with other DL techniques, including Artificial Neural Networks (ANN) and Gated Recurrent Unit (GRU) 
networks, in simulating runoff responses7. The results indicated that both LSTM and GRU models performed 
equally well, significantly outperforming the ANN model. Similarly, the performance of LSTM as assessed in 
comparison to ANN and M-EIES, a physics-based model, showed that the LSTM model outperformed both 
models under normal and extreme rainfall conditions13. Recently, eight data-driven models were evaluated 
against the Soil and Water Assessment Tool (SWAT), a complex physics-based model, underscoring the potential 
of LSTM models in predicting runoff responses14.

LSTM models have been used for predicting hydrographs across various time intervals: including 15-min15, 
1-h16, 3-h, and 6-h7, daily14, and even monthly time step17. However, developing high-resolution rainfall-runoff 
models necessitates the incorporation of long Input Data sequence Length (IDL), which typically requires more 
complex and computationally expensive models. For instance, various IDLs for monthly runoff predictions were 
investigated, indicating that a 6-month IDL is sufficient to capture the monthly temporal pattern18. Moving to 
daily rainfall-runoff modeling, a 180-day IDL was used to capture the dynamics of the annual pattern11. An IDL 
of 4320 h was introduced for hourly simulations19. The primary challenge of increasing the temporal resolution 
of the model lies in the necessity to extend the IDL: 6 months, 180 days, and 4320-h values for monthly, daily, 
and hourly simulations, respectively. A higher IDL typically leads to a more complex model and increased 
computational expenses. To reduce the required computational time, daily and hourly meteorological data were 
combined to estimate the hourly runoff values6. Instead of employing an 8760-h IDL, they used a combination of 
a 365-day IDL with hourly IDL trials of 24, 48, and 120 h. While this study demonstrated a noticeable reduction 
in the IDL compared with the earlier studies; there remains a need to further reduce the IDL duration to enhance 
the efficiency of DL models. Enhanced model efficiency is critical for improving water resource planning and 
management practices through reduced training times and accelerated prediction capabilities.

Data-driven models yield remarkable results, but impose substantial demands in terms of data requirements, 
extensive training periods, time-consuming parameter tuning, and computational resources according to their 
architecture and complexity19. Conversely, conceptual models typically offer superior computational efficiency, 
requiring significantly less calibration time20. Notably, a number of lumped conceptual models have been 
developed for runoff predictions, demonstrating their potential in hydrological modeling21. These models 
are available at different temporal resolutions, ranging from the annual to sub-hourly time scales22–25. The 
complexity of these models can be defined according to their structure and the number of calibrated parameters. 
Three representative lumped models were selected to exemplify the conceptual approach, each exhibiting 
distinct levels of complexity: GR4H, GR5H, FLEX with 4, 5, and 10 calibrated parameters, respectively21,26,27. 
Despite the applicability of both conceptual and data-driven approaches, there is a serious need to investigate the 
capabilities and limitations inherent in each approach. This assessment will facilitate the formulation of precise 
recommendations and optimal practices for their implementation in hydrological modeling, thereby enhancing 
the efficacy of water resource planning and management strategies.

The rainfall-runoff modeling framework has long been constrained by the limited length of available datasets, 
which hinders the evaluation of model performance. DL techniques generally require large training and testing 
datasets; however, most of the historical records used for RNN applications span only a few years to a decade. 
For instance, the testing phase of three DL models was conducted using only 2 years of data6. Similarly, a 5-year 
testing dataset was employed to evaluate the accuracy of a data-driven model28. Even for the applications on 
large-scale datasets such as CAMELS, only 10 years of data were used for the testing step19. To address this gap, 
this study utilizes a longer meteorological dataset generated based on a sophisticated physics-based model29. 
This step aims to investigate the impact of training dataset length on the performance of the DL and conceptual 
models in predicting the runoff responses from hydrological forcing variables.

Ultimately, this study tests and compares the efficiency and accuracy of novel LSTM models versus conceptual 
models in predicting high-resolution hourly runoff responses. This is accomplished through: (a) developing 
LSTM models with more efficient architectures using limited multi-scale inputs, (b) evaluating the accuracy of 
the developed models by comparing them with a set of efficient conceptual models, and (c) assessing the impact 
of calibration data length on model performance using a 100-year hourly dataset.

Study area and data sources
The Ninnescah River, located in south central Kansas, USA, was investigated as a test case application for this 
study. As a tributary of the Arkansas River, it originates from two forks, the north and south, before meandering 
to the east-southeast (Fig. 1). The drainage area of the outlet (at USGS gage 07145500) is approximately 5500 km2. 
The basin experiences an average annual precipitation depth of around 800 mm30. The observed hydrographic 
data exhibits high winter discharge peaks and low baseflow discharges during the summer months31.

This study employs a metrological dataset generated through a novel approach, which was developed to 
construct a long hydrograph series29. This methodology conserves the statistical, frequency, and stochastic 
properties inherent in observed hydrographs for the basin under study. This innovative approach comprises 
three key steps: (a) generating a daily precipitation series using a stochastic weather generator; (b) disaggregating 
the generated daily precipitation series into a finer hourly timescale; (c) estimating the runoff responses through 
a continuous rainfall-runoff transformation simulation using HEC-HMS model, ultimately producing a precise 
long-term hydrograph. This approach was used to generate a high-resolution long hydrograph that exhibits a 
satisfactory correlation with the observed series according to statistical criteria and the Flow Duration Curves 
(FDCs)29. Their contribution concluded with generating a century-long dataset comprising precipitation, 
Potential Evapotranspiration (PET), and runoff responses at hourly resolution. While the extensive temporal 
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coverage is integral to this analysis, it is essential to acknowledge that the dataset is derived from model simulations 
rather than direct ground-based observations, which may introduce inherent limitations. Nonetheless, this 
long-term scale is crucial for examining the influence of calibration dataset length on model performance. This 
approach enables the assessment of various lengths of calibration datasets, leading to a better understanding of 
best practices when dealing with short or long datasets and identifying which models are most suitable under 
each scenario.

Methodology
Conceptual models
GR4H33, GR5H26, and FLEX22 are commonly used computational models in rainfall-runoff modeling, 
particularly on an hourly time scale. The GR4H model, an adapted hourly version of the daily model GR4J, 
employs only two reservoirs and four calibrated parameters to simulate the rainfall-runoff dynamics27,33. The 
GR5H model, an extension of GR4H, incorporates an additional parameter to represent the exchange flux26. 
This enhanced version demonstrated superior performance in capturing nonlinear dynamics of catchments, 
particularly in predicting low-flow discharges23,24. The FLEX model leverages detailed hydrological processes, 
including infiltration, surface runoff, and groundwater flow, through the utilization of four distinct reservoirs 
and ten calibrated parameters, providing a more mechanistic representation of rainfall-runoff interactions21,22.

The lumped GR4H and GR5H models were implemented using the freely available R package, airGR34. The 
FLEX model was executed using Python, following the model description22. This simple conceptual approach 
requires only hourly precipitation, PET, and runoff series. The parameters of all three lumped models were 
calibrated based on maximizing the Nash-Sutcliffe efficiency criterion. To minimize the influence of initial state 
conditions, a preliminary warm-up period of one year was used at the beginning of the calibration dataset.

Long short-term memory
LSTM architecture is a sophisticated model adept in handling sequence patterns, demonstrating superior 
performance compared to most of the RNN models across various applications35,36. The power of the LSTM 
model arises from its unique structure, which incorporates three specialized gates: the input gate, the forget gate, 

Fig. 1.  Location of Ninnescah River watershed at USGS station 0714550032. The map was generated using 
ArcGIS Pro 3.3 software.
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and the output gate37. These gates regulate the flow of information through the network, enabling the model to 
selectively retain or discard information over extended sequences. The typical structure of the LSTM model is 
defined according to the following equations:

	 ft = σ (Wfxxt + Wfhht−1 + bf )� (1)

	 it = σ (Wixxt + Wihht−1 + bi)� (2)

	 ot = σ (Woxxt + Wohht−1 + bo)� (3)

	 gt = φ (Wgxxt + Wghht−1 + bg)� (4)

	 Ct = gt ⊙ it + Ct−1 ⊙ ft� (5)

	 ht = φ ( Ct ) ⊙ ot � (6)

 where σ and φ  are the logistic sigmoid and tanh activation functions; W  represents the weight matrix for 
each gate; b is the bias term; ⊙ is the elementwise multiplication. xt is the time-series input at the tth step. 
Ct represents the cell state core, which contains three gates ft, it and ot for forget, input and output gates, 
respectively. gt is the updated condition of the cell state; ht is the intermediate information flowing between 
the cells35.

GR4H-LSTM model
This study presents a novel technique that integrates the strengths of conceptual models with the advanced 
capabilities of LSTM networks to enhance runoff predictions. Specifically, we aim to improve the runoff predictions 
by using the outputs of the GR4H model as inputs to the LSTM model. The selection of the GR4H model was 
based not only on its widespread application in hydrological studies but also on its parsimonious structure, 
which facilitates robust performance even with limited calibration datasets. The proposed GR4H-LSTM model 
incorporates the hourly outputs of the GR4H model along with three key inputs: hourly precipitation, hourly 
PET, and accumulated precipitation over the preceding 24 h. This approach is designed to optimize efficiency 
while capturing both short-term and long-term dependencies between the inputs and outputs, using an IDL of 
50 h. The GR4H-LSTM model improves the network’s performance by extracting precise information from an 
informative and limited set of inputs, thereby optimizing the network’s performance.

GR4H-LSTM model is developed with a focus on efficiency, encompassing only three layers. The model 
consists of an initial LSTM layer with 32 units, followed by a dropout layer with a rate of 0.2 to reduce overfitting. 
Subsequent layers include a dense layer with 16 units featuring linear activation, intended to facilitate a seamless 
information transition to the output layer, which comprises a single neuron for continuous target prediction. The 
model is compiled with the Adam optimizer and Mean Squared Error (MSE) as the loss function, designed to 
minimize prediction errors in a regression framework38.

Multi-scale LSTM model
This study proposes another version of the LSTM that operates independently of conceptual models, functioning 
as a stand-alone model. This model is designed to enhance efficiency, by leveraging a limited set of informative 
inputs. The novelty of this approach lies in the integration between coarse and fine temporal Multi-Scale inputs 
into an LSTM architecture, termed as MS-LSTM, to capture both long and short dependencies between the inputs 
and outputs. To enhance efficiency, the MS-LSTM model is designed to avoid using finer temporal resolution 
inputs for capturing long-term hydrological processes, instead employing coarse inputs. Conversely, finer 
resolution inputs are essential for accurately capturing short-term hydrological dependencies. This approach 
necessitates the implementation of a gradual multi-scale input strategy, encompassing finer resolution data to 
capture short-term hydrologic behavior closer to the simulated time step, while simultaneously incorporating 
coarser resolution inputs to account for the long-term impacts inherent in hydrological processes.

MS-LSTM requires three distinct features: precipitation, PET, and preceding runoff responses, as represented 
in Fig. 2a. To represent PET, two average values are used for the first and second two weeks of the month preceding 
the simulated time step. This aims to avoid the complexity of employing a large number of high-resolution 
PET inputs, which do not significantly enhance accuracy. In contrast, the precise representation of precipitation 
characteristics necessitates both coarse and high-resolution inputs. The model integrates four coarse-scale 
inputs to represent precipitation over the preceding month, including accumulated precipitation values over 2 
weeks, 1 week, and two half weeks. Additionally, it incorporates 18 high-resolution inputs, each corresponding 
to the accumulated precipitation over a 2-h interval. Furthermore, the hydrologic nature of discharge responses 
in streams follows a sequential pattern, where incorporating lagged information proves effective in predicting 
the following runoff responses. Therefore, the model utilizes five preceding hourly runoff values, with one runoff 
value every 9-hr. Ultimately, the total number of inputs is 29 (2 for PET, 22 for precipitation, and 5 for runoff), 
representing a significant reduction in the inputs required compared to other existing machine learning models, 
which may require thousands of inputs.

The MS-LSTM model is developed with a focus on efficiency, comprising only three layers. The model starts 
with an LSTM layer, followed by two fully connected layers. The LSTM layer has 16 hidden units to capture 
the temporal dependencies, utilizing the Gaussian Error Linear Unit (GELU) activation function for enhanced 
gradient propagation39. The first dense layer, consisting of 6 neurons, also utilizes the GELU activation function to 
maintain non-linearity throughout the network. The final dense layer, featuring a single neuron with an implicit 
linear activation, is designed to output a singular runoff prediction value. This configuration demonstrates a 
balance between model complexity and performance, facilitating effective runoff predictions while maintaining 
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reasonable computational demands during both the training and prediction stages. The model is compiled with 
the Adam optimizer, employing the MSE as a loss function38.

At the training stage, the MS-LSTM utilizes preceding reference runoff values as inputs to predict the next 
runoff value, as shown in Fig. 2a. While incorporating lagged information during model training is common 
and acceptable for sequential models, it is crucial to verify the model’s capability to function independently in 
real-world scenarios without relying on such preceding data. To address this concern and prevent any potential 
data leakage during the testing stage, a one-step prediction technique is investigated. This technique involves 
executing the model iteratively, as illustrated in Fig.  2b, wherein the model’s predictions serve as inputs for 
subsequent time steps. Specifically, after the initial prediction using observed data, each subsequent forecast 
utilizes the previous time step’s prediction as an input, rather than observed values. This iterative process 
continues throughout the testing period, with the model generating and using its own predictions as inputs. 
Effectively, this process enables the model to generate its own future inputs, simulating autonomous operation 
in practical applications and assessing the model’s ability to maintain accuracy over extended periods without 
continuous access to observed data.

Performance evaluation
In this study, several performance criteria are used to compare between the simulated and reference hourly runoff 
series. The Nash-Sutcliffe efficiency (NSE) index40, Kling-Gupta efficiency (KGE) criterion41, the coefficient of 

Fig. 2.  MS-LSTM model: (a) model inputs, and (b) the testing technique: one-step predicted runoff is used as 
an input for the following time steps.
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determination (R2)42, and the Root Mean Squared Error (RMSE)43 have been widely used in the water resources 
sector to compare between simulated and observed series25,44,45, according to the following equations:

	

NSE = 1 −
∑ n

i=1(Ri − Si)2

∑ n

i=1(Ri−
−
R)

2 � (7)

	 KGE = 1 −
√

(r − 1)2 + (β − 1)2 + (α − 1)2� (8)

	

R2 = 1 −
∑ n

i=1(Ri − Si)2

∑ n

i=1

(
Ri−

−
R

)2 � (9)

	
RMSE =

√
1
n

∑ n

i=1
(Ri − Si)2� (10)

 where Ri and Si are the reference and the simulated values respectively; r is the Pearson correlation coefficient 
between simulated and reference series; β is the ratio between the mean of the simulated and reference series; α 
is the ratio between the standard deviation of the simulated and reference series; 

−
R is the average value of the 

reference series; and n is the number of data points in the reference series.
Flow Duration Curves (FDCs) are essential tools for providing a comprehensive representation of streamflow 

variability and facilitating informed decision-making across various hydrological applications such as water-
use planning, hydropower management, flood control, dam operations, water-quality management, and 
geomorphological studies. Therefore, it is important to evaluate the models’ performance in capturing the 
reference FDC. The Average Absolute Deviation (AAD) is investigated to compare between the predicted and 
reference FDCs29, as defined in Eq. (11). AAD values range from 0 to ∞, with lower values closer to 0 indicating 
a better match. To estimate a representative AAD value between FDCs, for both high runoff and baseflow 
responses, it is recommended to investigate a wide range of exceedance probabilities: 0.001%, 0.01%, 0.1%, 0.5%, 
1%, 4%, 10%, 25%, and 50%.

	
AAD = 1

n

∑ n

i=1

∣∣Qr
pi% − QS

pi%

∣∣
Qr

pi%
� (11)

where Qr
pi% and QS

pi% are the runoff values at the exceedance percentage of pi% for reference and simulated 
series, respectively. The investigated number of various exceedance percentages is denoted by n.

Results and discussion
This study primarily assesses the impact of the training dataset duration on the performance of the models, 
while comparing conceptual and advanced DL approaches in their capacity to capture the temporal dynamics 
of hydrological responses. To enhance the fidelity of this study, a century-long dataset was used, offering high-
resolution precipitation, PET, and runoff responses at an hourly timescale. The first 50-year period of the dataset 
was allocated for calibration and training purposes, utilizing various sub-periods datasets. The testing dataset, 
comprising the latter half of the century-long dataset, remained constant across all simulation iterations to 
ensure consistent evaluation.

Impact of calibration dataset duration on model performance
The impact of varying training data lengths on the accuracy of runoff response predictions by conceptual and DL 
models was investigated. Figure 3 presents the testing NSE values derived from five models as the training dataset 
length increases from 7 to 50 years. The improvement in validation NSE values between the top-performing 
models of both DL and conceptual approaches is 6%, 13%, and 20% for training datasets of 15, 30, and 50 years, 
respectively. This comparison resulted in the following observations:

•	 Conceptual models demonstrate superior performance relative to the developed LSTM models when trained 
on a 7-year dataset. However, both approaches exhibit similar performance at the 10-year dataset. At the 15-
year duration and longer, both LSTM models consistently surpass the performance of all three conceptual 
models.

•	 The performance of both LSTM models demonstrates a continuous improvement trend as the length of the 
training dataset increases. Conversely, there is no significant enhancement observed in the performance of 
conceptual models beyond a training dataset length of 15 years.

The more parsimonious conceptual models indicate robust performance at shorter training dataset lengths. 
However, as the complexity of the models increases, their predictions improve with longer training periods.

The GR4H-LSTM model outperforms MS-LSTM at short to medium training dataset lengths, suggesting 
that the simplified conceptual background of GR4H is more effective with limited data-series lengths. However, 
beyond a training dataset length of 30 years, MS-LSTM begins to exhibit superior performance. This indicates 
the effectiveness of employing gradual multi-scale inputs, including both coarse and fine temporal inputs, to 
overcome the lack of physics-based information.

Scientific Reports |        (2025) 15:15820 6| https://doi.org/10.1038/s41598-025-96577-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


The performance evaluation of the models was further extended by comparing the predicted with reference 
time series. To achieve this, three distinct events representing floods of varying magnitudes were selected to 
illustrate how the performance of the models evolves with increasing training dataset lengths, as illustrated in 
Fig. 4. The key findings are outlined as follows:

•	 Both LSTM models significantly outperform the GR5H model in simulating peak flow responses and the 
recession limb of hydrological events.

•	 The MS-LSTM model exhibits significant instability in runoff predictions when trained on a short 7-year da-
taset. However, this instability diminishes, and the model becomes more robust with longer training datasets. 
This is evident in the increasing alignment between the predictions and the reference curve, particularly for 
Events A and C.

•	 The GR4H-LSTM model consistently produces robust runoff predictions and accurately captures peak flows, 
especially with longer training datasets. However, it faces limitations in precisely modeling the recession limb 
of flood events, especially for Events B and C.

•	 The GR5H model consistently underestimates peak flows across all three events. Longer training datasets 
demonstrate no noticeable improvement in runoff predictions, indicating the model’s limited capacity to 
effectively learn from the provided data.

Comparative analysis: conceptual vs. LSTM models over 50-Year training
The performance of the models was evaluated using a 50-year training dataset, employing various performance 
criteria to assess their ability to predict the reference hydrographs. The DL models demonstrate superior 
performance over the conceptual models across all examined criteria, as illustrated in Fig. 5. The MS-LSTM 
model achieves the highest performance with NSE and R2 of 0.90 and 0.91, respectively. The GR4H-LSTM 
model, however, achieved the highest KGE score of 0.84. Conversely, the simplicity of the conceptual models 
constrained their ability to leverage the advantages of long training datasets, thereby limiting their performance 
in accurately predicting hydrological responses. The GR4H model, with the simplest structure, exhibits the 
lowest accuracy, with an NSE value of 0.66 and the highest RMSE approaching 20 m3/s.

Evaluating model performance across a spectrum of hydrological events is crucial for assessing the robustness 
and versatility of predictive models. Figure 6 presents time-series comparisons between reference and predicted 
values for nine distinct events. These events span a range of return periods, from relatively frequent occurrences 
(2-year return period) to more rare events exceeding a 10-year return period. The following key observations 
can be drawn from this comparison:

•	 While no single model demonstrates robust performance across all investigated events, both LSTM models 
exhibit consistent performance with less deviation compared to the conceptual models.

•	 Conceptual models generally tend to underestimate the peaks of the investigated events, with exceptions 
observed in Events 2 and 9, where they notably overestimate the peak responses.

•	 The MS-LSTM model demonstrates strong capabilities in capturing the peaks, except for Event 2, where pre-
dictions are notably underestimated.

•	 The GR4H-LSTM model performs well in predicting the runoff responses, although it tends to underestimate 
peaks, especially at Events 3, 5, and 6.

Fig. 3.  Comparison of validated NSE values with increasing the training period length for both conceptual and 
LSTM models.
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Fig. 5.  Validation portion evaluation for using both conceptual and LSTM models according to various 
performance criteria: (a) NSE, (b) KGE, (c) R2, and (d) RMSE.

 

Fig. 4.  Reference and predicted hydrographs for three example events with increasing the calibration period 
length for three models: MS-LSTM, GR4H-LSTM, and GR5H.
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The evaluation of model performance in reproducing FDCs is essential for a comprehensive assessment of their 
capabilities, as FDCs are widely utilized to characterize overall runoff patterns in various water resource planning 
and management applications. Figure  7 compares the FDCs predicted by both DL and conceptual models 
against the reference series, with a specific focus on the highest 4% exceedance probability. This comparison 
yields several significant insights into model performance and applicability:

•	 The conceptual models exhibit limited accuracy in capturing the FDC, particularly at the highest 1% exceed-
ance probability, compared to the LSTM models.

•	 Both LSTM models demonstrate enhanced accuracy in representing the maximum peak of the reference 
FDC, outperforming the conceptual models, which exhibit a significant tendency to overestimate this critical 
value.

•	 The GR4H-LSTM model demonstrates the least deviation with an AAD value of 13.5%, whereas the GR4H 
model has the highest value of approximately 24%.

Conclusions
This study evaluated three conceptual and two novel LSTM models for predicting hourly runoff responses 
based on several performance criteria. To optimize computational efficiency in hydrological simulations, both 
LSTM models were developed with simple structures and minimal input requirements. The GR4H-LSTM model 
represents a novel technique to incorporate physics-based knowledge into the DL framework by employing the 

Fig. 6.  Reference and predicted hydrographs for various example events using both conceptual and LSTM 
models (validation portion).
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outputs of the GR4H model as inputs into the LSTM model, in addition to traditional inputs: precipitation and 
PET. This proposed architecture extracts valuable insights from the conceptual model, significantly enhancing 
prediction accuracy within an efficient framework by requiring substantially fewer IDL inputs. However, it 
shows limitations in precisely capturing the recession limb of flood events.

The second model, MS-LSTM, was designed as a stand-alone model relying on the precipitation, PET, and 
preceding runoff responses. The model’s applicability was rigorously tested through an iterative process, where 
runoff predictions from each time step were used as inputs for subsequent forecasts, demonstrating the model’s 
capacity to maintain accuracy over extended periods for real-world scenarios without relying on continuous 
observed data. This model employs a gradual multi-scale input strategy, encompassing finer and coarse 
resolution inputs, aiming to achieve two key objectives: (a) minimizing the number of required inputs, and (b) 
capturing both long-term and short-term dependencies within the data. By utilizing a limited yet informative 
set of inputs, the model facilitates less complex LSTM architectures. This simplicity enables the LSTM model 
to focus more effectively on the most relevant temporal dependencies, thereby enhancing the robustness and 
accuracy of its predictions. However, this model necessitates a relatively long training dataset to ensure reliable 
runoff predictions.

A synthetic meteorological dataset, generated from an advanced physics-based model and spanning 100 
years, was employed in this study. This dataset not only facilitates the assessment of the impact of increasing 
training dataset periods on model performance but also provides a cleaner representation of rainfall-runoff 
processes, free from the noise and measurement errors inherent in real-world observations. Some key findings 
and recommendations from this study include the following:

Conceptual models exhibit superior performance compared to advanced DL models when training datasets 
are limited to 10 years or less. However, these conceptual models demonstrate limited capacity for improvement 
with longer calibration datasets beyond 15 years.

•	 Conceptual models exhibit superior performance compared to advanced DL models when training datasets 
are limited to 10 years or less. However, these conceptual models demonstrate limited capacity for improve-
ment with longer calibration datasets beyond 15 years.

•	 Both LSTM models show a consistent improving trend in performance with increasing training dataset 
lengths, indicating superior learning capacity.

•	 The integration of LSTM capabilities with the basic GR4H model demonstrates significant potential. This 
hybrid approach achieves notably superior performance with a relatively short 15-year training dataset, with 
continued improvements observed as dataset length increases.

•	 The GR4H-LSTM outperforms the stand-alone MS-LSTM version for short to medium-length training da-
tasets, underscoring the promising potential of integrating conceptual models with DL algorithms. The MS-
LSTM compensates for the absence of the physical framework provided by the GR4H model by employing a 
longer IDL. This adaptation enables the MS-LSTM to capture the hydrological processes, although it requires 
longer training datasets to surpass the performance of the GR4H-LSTM model.

•	 Both LSTM models surpass conceptual models in predicting the reference FDC, particularly in the highest 
1% exceedance probability. This enhanced accuracy in FDC prediction is crucial for effective water resource 
planning and management practices.

Fig. 7.  Comparison of FDCs for the reference series against the predicted series using both conceptual and 
LSTM models (validation portion).
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Utilizing data from physics-based models, rather than direct observations, is often constrained by the limited 
duration of observational data series. Further, while two distinct DL models based on LSTM were presented, 
future research is needed to evaluate the applicability and performance of other models, including Transformer 
and Gated Recurrent Units. Despite the potential of the GR4H-LSTM model, which requires outputs from a 
conceptual model, there is a need to develop a physics-informed ML model that can operate efficiently as a 
stand-alone tool without the need to obtain data from other conceptual models/tools. This integration of physics 
principles with ML techniques has the potential to address challenges associated with observed data, enabling 
more generalizable predictions.

Data availability
The raw data supporting the findings of this study were obtained from (Fathi et al., 2024), and are available from 
the corresponding author upon reasonable request.
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